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Abstract. Biclustering has been largely applied for gene expression
data analysis. In recent years, a clearer understanding of the syner-
gies between pattern mining and biclustering gave rise to a new class
of biclustering algorithms, referred as pattern-based biclustering. These
algorithms are able to discover exhaustive structures of biclusters with
flexible coherency and quality. Background knowledge has also been
increasingly applied for biological data analysis to guarantee relevant
results. In this context, despite numerous contributions from domain-
driven pattern mining, there is not yet a solid view on whether and how
background knowledge can be applied to guide pattern-based bicluster-
ing tasks.

In this work, we extend pattern-based biclustering algorithms to effec-
tively seize efficiency gains in the presence of constraints. Furthermore,
we illustrate how constraints with succinct, (anti-)monotone and con-
vertible properties can be derived from knowledge repositories and user
expectations. Experimental results show the importance of incorporat-
ing background knowledge within pattern-based biclustering to foster
efficiency and guarantee non-trivial yet biologically relevant solutions.

1 Introduction

Biclustering, the task of finding subsets of rows with a coherent pattern across
subsets of columns in real-valued matrices, has been largely used for expression
data analysis [9,11]. Biclustering algorithms based on pattern mining methods
[9,11,12,18,22,25], referred in this work as pattern-based biclustering, are able
to perform flexible and exhaustive searches. Initial attempts to use background
knowledge for biclustering based on user expectations [5,7,15] and knowledge-
based repositories [18,20,26] show its key role to guide the task and guaran-
tee relevant solutions. In this context, two valuable synergies can be identified
based on these observations. First, the optimality and flexibility of pattern-based
biclustering provide an adequate basis upon which knowledge-driven constraints
can be incorporated. Contrasting with pattern-based biclustering, alternative
biclustering algorithms place restrictions on the structure (number, size and
positioning), coherency and quality of biclusters, which may prevent the incor-
poration of certain constraints [11,16]. Second, the effective use of background
knowledge to guide pattern mining searches has been largely researched in the
context of domain-driven pattern mining [4,23].
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Despite these synergies, there is a lack of literature on the feasibility and
impact of integrating domain-driven pattern mining and biclustering. In particu-
lar, there is a lack of research on how to map the commonly available background
knowledge in the form of parameters or constraints to guide the biclustering task.
Additionally, the majority of existing pattern-based biclustering algorithms rely
on searches dependent on bitset vectors [18,22,25], which may turn their per-
formance impracticable for large and dense biological datasets. Although new
searches became recently available for biclustering large and dense data [13],
there are not yet contributions on how these searches can be adapted to seize
the benefits from the available background knowledge.

In this work, we address these problems. First, we list an extensive set of
key constraints with biological relevance and show how they can be specified for
pattern-based biclustering. Second, we extend F2G [13], a recent pattern-growth
search that tackles the efficiency bottlenecks of peer searches, to bed able to effec-
tively use constraints with succinct, (anti-)monotone and convertible properties.

To achieve these goals, we propose BiC2PAM (BiClustering with Constraints
using PAttern Mining), an algorithm that integrates recent breakthroughs on
pattern-based biclustering [9,11,12] and extends them to effectively incorporate
constraints. Experimental results confirm the role of BIC2PAM to foster the bio-
logical relevance of pattern-based biclustering solutions and to seize large effi-
ciency gains by adequately pruning the search space.

The paper is structured as follows. Section 2 provides background on pattern-
based biclustering and domain-driven pattern mining. Section 3 surveys key
contributions and limitations from related work. Section 4 lists biologically
meaningful constraints and proposes BiC2PAM for their effective incorporation.
Section 5 provides initial empirical evidence of BIC2PAM’s efficiency and ability
to unravel non-trivial yet biologically significant biclusters from gene expression
data. Finally, concluding remarks are synthesized.

2 Background

Definition 1. Given a matriz, A=(X,Y), with a set of rows X ={z1,..,2,}, a
set of columns Y ={y1, .., ym }, and elements a;;€R relating row i and column j:
the biclustering task aims to identify a set of biclusters B={Bjy, .., By, }, where
each bicluster By = (Ix, Jx) is a submatriz of A (I C X and Jy, CY ) satisfying
specific criteria of homogeneity and significance [11].

A real-valued matrix can thus be described by a (multivariate) distribution
of background values and a structure of biclusters, where each bicluster satis-
fies specific criteria of homogeneity and significance. The structure is defined by
the number, size and positioning of biclusters. Flexible structures are character-
ized by an arbitrary-high set of (possibly overlapping) biclusters. The coherency
(homogeneity) of a bicluster is defined by the observed correlation of values (see
Definition 2). The quality of a bicluster is defined by the type and amount of
accommodated noise. The statistical significance of a bicluster determines the
deviation of its probability of occurrence from expectations.
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Definition 2. Let the elements in a bicluster a;; € (I,J) have coherency across
rows given by a;j=k;+v;+1:;, where k; is the expected value for column j, 7; is
the adjustment for row i, and n;; is the noise factor [16]. For a given real-valued
matriz A and coherency strength 0: a;j=k;+v;+n;; where n;;€[ —06/2, +0/2].

As motivated, the discovery of exhaustive and flexible structures of biclusters
satisfying certain homogeneity criteria (Definition 2) is a desirable condition to
effectively incorporate knowledge-driven constraints. However, due to the com-
plexity of such biclustering task , most of the existing algorithms are either based
on greedy or stochastic approaches, producing sub-optimal solutions and plac-
ing restrictions (e.g. fixed number of biclusters, non-overlapping structures, and
simplistic coherencies) that prevent the flexibility of the biclustering task [16].
Pattern-based biclustering appeared in recent years as one of various attempts
to address these limitations. As follows, we provide background on this class of
biclustering algorithms, as well as on constraint-based searches.

Pattern-Based Biclustering. Patterns are itemsets, rules, sequences or other
structures that appear in symbolic datasets with frequency above a specified
threshold. Patterns can be mapped as a bicluster with constant values across
rows (a;;=c;), and specific coherency strength determined by the number of
symbols in the dataset, 6=1/|L| where L is the alphabet of symbols. The rel-
evance of a pattern is primarily defined by its support (number of rows) and
length (number of columns). To allow this mapping, the pattern mining task
needs to output not only the patterns but also their supporting transactions
(full-patterns). Definitions 3 and 4 illustrate the paradigmatic mapping between
full-pattern mining and biclustering.

Definition 3. Let L be a finite set of items, and P an itemset P C L. A sym-
bolic matriz D is a finite set of transactions in L, {P1,..,P,}. Let the cover-
age @p of an itemset P be the set of transactions in D in which P occurs,
{P, € D| P C P}, and its support supp be the coverage size, |®p|.

A full-pattern is a pair (P, ®p), where P is an itemset and @p the set of all
transactions that contain P. A closed full-pattern (P,®p) is a full-pattern
where P is not subset of another itemset with the same support,¥Vp/~p|P'| < |P|.

Given D and a minimum support threshold 0, the full-pattern mining task
[13] consists of computing: {(P,Pp) | P C L, supp > 0,Vpi~p|P'| < |P|}.

Given an illustrative symbolic matrix D={(t1,{a,c,e}), (t2,{a,b,d}),
(ta, {a, c,e})}, we have @¢, v ={t1,13}, sup(q,cy=2. For a minimum support §=2,
the full-pattern mining task over D returns the set of closed full-patterns,

{{a},{tr1,t2,t3}), ({a,c,e},{t1,t3})} (note that [P, }|<|Pracerl). Fig 1 illus-

trates how full-pattern mining can be used to derive constant biclusters'.

! Association rule mining, sequential pattern mining and graph mining can be also
used to respectively mine biclusters with noisy, order-preserving and differential
coherencies [9,12].
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Fig. 1. Discovery of biclusters with constant coherency on rows from full-patterns.

Definition 4. Given a symbolic matriz D in L, let a matriz A be the concate-
nation of D elements with their column indexes. Let Wp be the column indexes
of an itemset P, and Tp be the original items of P in L. The set of maximal
biclusters UyBy, = (I, Ji) can be derived from the set of closed full-patterns
Ui Pr from A, by mapping I, =Pp, and J,=Vp,, to compose constant biclusters
with coherency across rows with pattern Vp [11].

The inherent simplicity, efficiency and flexibility of pattern-based biclus-
tering explains the increasing attention [11,12,18,22,25]. The major contribu-
tions of pattern-based approaches for biclustering include: 1) efficient analysis of
large matrices due to the monotone search principles (and the support for dis-
tributed /partitioned data settings and approximate patterns [8]). 2) biclusters
with parameterizable coherency strength (beyond differential assumption) and
type (possibility to accommodate additive, multiplicative, order-preserving and
plaid models) [9,11,12]; 3) flexible structures of biclusters (arbitrary position-
ing of biclusters) and searches (no need to fix the number of biclusters apriori)
[22,25]; and 4) robustness to noise, missings and discretization problems [11].

Constraint-Based Pattern Mining. A constraint is a predicate on the pow-
erset of items C' : 25 —{true,false}. A full-pattern (P, ®p) satisfies C if C(P) is
true. Minimum support is the default constraint in full-pattern mining, Cy.eq(P)
=|®p| > 6. Typical constraints with interesting properties include: regular expres-
sions on the items in the pattern, and inequalities based on aggregate functions,
such as length, maximum, minimum, range, sum, average and variance [24].

Definition 5. Let each item have a correspondence with a real value, L — R,
when numeric operators are considered. C' is monotone if for any P satisfying
C, P supersets satisfy C (e.g. range(P) > v}). C is anti-monotone if for any
P not satisfying C, P supersets do not satisfy C (e.g. max(P) < v). Let Py
satisfy C, C is succint if for any Py satisfying C, Py C Py (e.g. min(Py) <wv).
C' is convertible w.r.t. an ordering of items Ry if for any P satisfying C, P
suffizes satisfy C or/and itemsets with P as suffix satisfy C (e.g. avg(P) > v).

To illustrate these constraints, consider {(t1,{a,b,c}), (t2,{a,b,c,d}), (ts,
{a,d})}, =1 and {a:0,b:1,c:2,d:3} value correspondence. The set of closed full-
patterns under the monotone range(P) > 2 is {({a, b, c}, {t1,t2}), {a,d}, {t1,ts})};
the anti-monotone sum(P) < 11is {({a,b},{t1,t2})}; the succint P 2 {¢,d} is
{({a,b,c,d}, {t2})}; and the convertible avg(P) > 2 is {({b,c,d}, {t2})}-
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3 Related Work

Knowledge-Driven Biclustering. The use of background knowledge to guide
biclustering has been increasingly motivated since solutions with good homo-
geneity and statistical significance may not necessarily be biologically relevant.
However, only few biclustering algorithms are able to incorporate background
knowledge. AI-ISA [26], GenMiner [18] and scatter biclustering [20] are able to
annotate data with functional terms retrieved from repositories with ontologies,
and use these annotations to guide the search. COBIC [19] is able to adjust
its behavior (maximum-flow/minimum-cut parameters) in the presence of back-
ground knowledge. Similarly, the priors and architectures of generative biclus-
tering algorithms can also incorporate background knowledge [10]. However,
COBIC and generative peers are not able to deliver flexible biclustering solutions
and only consider simplistic constraints. Fang et al. [5] propose a constraint-
based algorithm that turns possible the discovery of dense biclusters associated
with high-order combinations of single-nucleotide polymorphisms (SNPs). Data-
Peeler [7], as well as algorithms from formal concept analysis [15] and bi-sets
mining [1], are able to efficiently discover dense biclusters in binary matrices in
the presence of (anti-)monotone constraints. However, these last sets of algo-
rithms impose a very restrictive form of homogeneity in the delivered biclusters.

Full-Pattern Mining for Biclustering. The majority of existing full-pattern
miners rely on frequent itemset mining with implementations based on bitset
vectors to represent transaction-sets. There are two major classes of searches
with this behavior. First, Apriori-based searches [8], generally suffering from
costs of candidate generation for low support thresholds (commonly required for
biological tasks [22]). Efficient implementations include LCM and CLOSE, used
respectively by BiModule [22] and GenMiner [18] biclustering algorithms. Sec-
ond, vertical-based searches, such as Eclat and Carpenter [8]. These searches rely
on intersection operations over transaction-sets to generate candidates, requiring
structures such as bitset vectors or diffsets. However, for datasets with a high
number of transactions the bitset cardinality becomes large, these structures
consume a significant amount of memory and operations become costly. MAFTA
is an implementation used by DeBi [25]. Only in recent years, a third class of
searches without the bottlenecks associated with bitset vectors were made avail-
able by extending pattern-growth searches for the discovery of full-patterns using
frequent-pattern trees (FP-Trees) annotated with transactions. F2G [13] used by
default in BicPAM [11] implements this third type of searches.

Constraint-Based Pattern Mining. A large number of studies explore how
constraints can be used with pattern mining. Two major paradigms are avail-
able: constraint-programming (CP) and dedicated searches. First, CP allows the
pattern mining task to be declaratively defined according to sets of constraints
[4,14]. These declarative models are expressive as they can allow mathematical
expressions over itemsets and transaction-sets. Nevertheless, due to the poor
scalability of CP methods, they have been only used in highly constrained set-
tings, small-to-medium data, or to mine approximative patterns [4,14].
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Second, pattern mining methods have been adapted to optimally seize effi-
ciency gains from different types of constraints. Such efforts replace naive solu-
tions: post-filtering patterns that satisfy constraints. Instead, the constraints
are pushed as deeply as possible within the mining step for an optimal prun-
ing of the search space. The nice properties exhibited by constraints, such as
anti-monotone and succinct properties, have been initially seized by Apriori
methods [21] to affect the generation of candidates. Convertible constraints,
can hardly be pushed in Apriori but can be handled by FP-Growth approaches
[23]. FICA, FICM, and more recently MCFPTree, are FP-Growth extensions to
seize the properties of anti-monotone, succinet and convertible constraints [23].
The inclusion of monotone constraints is more complex. Filtering methods, such
as ExAnte, are able to combine anti-monotone and monotone pruning based on
reduction procedures [2]. Reductions are optimally handled in FP-Trees [3].

4 Pattern-Based Biclustering with Constraints

BicPAM [11], BicSPAM [12] and BiP [9] are the state-of-the-art algorithms
for pattern-based biclustering. They integrate the dispersed contributions of
previous pattern-based algorithms and extend them to discover non-constant
coherencies and to guarantee their robustness to discretization (by assigning
multi-items to a single element [11]), noise and missings. In this section, we pro-
pose BiC2PAM (BiClustering with Constraints using PAttern Mining) to inte-
grate their contributions and adapt them to effectively incorporate constraints.
BiC2PAM is a composition of three major steps: 1) preprocessing to itemize real-
valued data; 2) mining step, corresponding to the application of full-pattern min-
ers; and 3) postprocessing to merge, reduce, extend and filter similar biclusters.
As follows, Section 4.1 lists native constraints supported by parameterizations
along these steps. Section 4.2 lists biologically meaningful constraints with prop-
erties of interest. Finally, we extend a pattern-growth search to seize efficiency
gains from succinct, (anti-)monotone and convertible constraints (Section 4.3).

4.1 Native Constraints

Below we list a set of structural constraints that can be incorporated by adapt-
ing the parameters that control the behavior of pattern-based biclustering algo-
rithms along their three major steps.

Relevant constraints provided in the pre-processing step:

— combined inclusion of annotations (such as functional terms) with succinct con-
straints. A functional term is associated with an interrelated group of genes,
and thus it can be appended as a new dedicated symbol to the respec-
tive transactions/genes, possibly leading to a set of transactions with varying
length. Illustrating, consider 77 and 75 terms to be respectively associated with
genes {g1,93,94} and {g3,g5}, an illustrative dataset for this scenario would
be {(g1,{a11, .., a1m,T1}), (92, {a21, ., a2m}), (gs{asi, ., azm, T1, T2 }), ...}. Pattern
mining can then be applied on top of these annotated transactions with succinct
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constraints to guarantee the inclusion of certain terms (such as P N {71, T>}7#0).
This is useful to discover, for instance, biclusters with genes participating in specific
functions of interest.

— ranges of values (or symbols) to ignore from the input matrix, remove(S) where
S C RY (or S C £). In gene expression, elements with default/non-differential
expression are generally less relevant and thus can be removed. This is achieved
by removing these elements from the transactions. Despite the simplicity of this
constraint, this option is not easily supported by peer biclustering algorithms [16].

— minimum coherency strength (or number of symbols) of the target biclusters:
0=1/|L|. Decreasing the coherency strength (increasing the number of symbols)
reduces the noise-tolerance of the resulting set of bilusters and it is often associ-
ated with solutions composed by a larger number of biclusters with smaller areas.

— level of relaxation to handle noise by increasing the 7;; noise range (Definition 2).
This constraint is used to adjust the behavior of BiIC2PAM in the presence of noise
or discretization problems (values near a boundary of discretization). By default,
one symbol is associated with an element. Yet, this constraint gives the possibility
to assign an additional symbol to an element when its value is near a boundary
of discretization, or even a parameterizable number of symbols per element for a
high tolerance to noise (proof in [11]).

Relevant constraints provided in the mining step:

— minimum pattern length (minimum number of columns in the bicluster).

— stopping criteria: either the anti-monotone minimum support length (minimum
number of rows in the bicluster), or iteratively decreasing support until minimum
number of biclusters is discovered or minimum area of the input matrix is coverage
by the discovered biclusters.

— type of coherency and orientation. Currently, BIC2PAM supports the selection of
constant, additive, multiplicative, symmetric, order-preserving and plaid models
with coherency on rows or columns (according to [9,11]).

— pattern representation: simple (all coherent biclusters), closed (all maximal biclus-
ters), and maximal (solutions with a compact number of biclusters with a prefer-
ence towards a high number of columns).

Understandably, constraints addressed at the postprocessing stage are not
desirable since they are not able to seize major efficiency gains. Nevertheless,
BiC2PAM supports two key types of constraints that could imply additional
computational costs, but are addressed with heightened efficiency: 1) maximum
percentage of noisy and missing elements per bicluster (based on merging proce-
dures [11]), and 2) minimum homogeneity of the target biclusters (using exten-
sion and reduction procedures with a parameterizable merit function [11]).

4.2 Biologically Meaningful Constraints

Different types of constraints were introduced in Definition 5. In order to illus-
trate how such constraints can be specified and instantiated, a symbolic gene
expression matrix (and associated “price table”) is provided in Fig.2, where the
rows correspond to different genes and the values correspond to observed levels of
expressions for a specific condition (column). The {-3,-2}, {-1,0,1} and {2,3} sets
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conditions

Y1Y2Y3Y4... terms transactions valge:items

xi1l-2-1 2 0. ng  itemization | (t1,{y1-2,y32,...,N1}) (price table)
.x21=3 0 0 3 ../ NiN2 m’ (t2,{y1-3,y43,...,N1,N2}) =3: y1-3,y2-3,y3-3,y4-3,... (high repression)
§X3 0-321.. neutral (t3,{y2-3,y22,...}) -2:y1-2,y2-2,Y3-2,Y4-2,... (soft repression)
Wy4/-2 1 3 0. N2 regulation | (t4,{y1-2,y33,...,N1}) 2:yi12,y22, Y32, y42,... (soft activation)
X5-3-2 1 3..N2 {1013 (ts,{y1-3,y2-2,y43,...,N2})|| 3:y13, y23, y33, y43,... (high activation)

Fig. 2. Illustrative symbolic dataset and “price table” for expression data analysis.

of symbols are respectively associated with repressed (down-regulated), default
(preserved) and activated (up-regulated) levels of expression.

First, succinct constraints in gene expression analysis allow the discovery
of genes with specific constrained levels of expression across a subset of condi-
tions. Hlustrating, min(P)=-3 implies an interest in biclusters (biological pro-
cesses) where genes are at least highly repressed in one condition. Alternatively,
succinct constraints can be used to discover non-trivial biclusters by focusing
on non-highly differential expression (e.g. patterns with symbols {-2,2}). Such
option contrasts with the large focus on dense biclusters [16]. Finally, succinct
constraints can also be used to guarantee that a specific condition of interest
appears in the resulting set (e.g. P N {y2-3, y2-2, 922, y23} #  to include y2), or
a specific annotation (P N {Ny, Nao} # 0).

Second, (anti-)monotone constraints are key to capture background knowl-
edge and guide biclustering. Illustrating, the non-succinct monotonic constraint
countVal(P) > 2 implies that at least two different levels of expression must
be present within a bicluster (biological process). In gene expression analysis,
biclusters should be able to accommodate genes with different degrees of up-
regulation and/or down-regulation. Yet, the majority of existing biclustering
approaches are only able to model constant values across conditions [11,16].
When constraints, such as the value-counting inequality, are available, the prun-
ing of the search space allows an efficient handling of very low support thresholds
for these non-trivial biclusters to be discovered.

Finally, convertible constraints also play an important role in biological
settings to guarantee, for instance, that the observed patterns have an average
of values within a specific range. Illustrating, the anti-monotonic convertible
constraint avg(P) < 0 indicates a preference for patterns with repression mech-
anisms without a strict exclusion of activation mechanisms. These constraints
are useful to focus the discovery on specific expression levels, while still allowing
for noise deviations. Understandably, they are a robust alternative to the use of
strict bounds from succinct constraints with maximum-minimum inequalities.

4.3 Effective Use of Constraints in Pattern-based Biclustering

Although native constraints are supported through adequate parameterizations
of pattern-based biclustering algorithms, the previous (non-native) constraints
are not directly supported. Nevertheless, as surveyed, pattern mining searches
have been extended to seize efficiency gains when succinct, (anti-)monotone or
convertible constraints are considered. Although there is large consensus that
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Fig. 3. Illustrative behavior of F2G [13].

pattern-growth searches are better positioned to seize efficiency gains from con-
straints than peer methods based on bitset vectors, there is not yet proof whether
this observation remains valid in the context of full-pattern mining. As such, we
extend the recently proposed F2G algorithm to guarantee an optimal pruning of
the search space in the presence of constraints and integrate F2G in BiC2PAM.
F2G implements a pattern-growth search that does not suffer from efficiency
bottlenecks since it relies on tree structures where transaction-IDs are stored
without duplicates?. F2G behavior is illustrated in Fig.3. In this section, we first
show the compliance of F2G with principles to handle succinct and convertible
constraints [23]. Second, we show compliance of F2G with principles to handle
difficult combinations of monotone and anti-monotone constraints [3].

Compliance with Different Types of Constraints. Unlike candidate gen-
eration methods, pattern growth methods (such as FP-Growth) provide further
pruning opportunities. Pruning principles can be standardly applied on both
the original database (full FP-Tree) and on each projected database (condi-
tional FP-Tree). CFG extensions to FP-Growth [23] seize the properties of such
constraints under three simple principles. First, supersets of itemsets violating
anti-monotone constraints are removed for each (conditional) FP-Tree (e.g. for
y12 conditional database, remove conflicting items Uj%,{y;2,v:3} as their sum
violates sum(P) < 3). For an effective pruning, it is recommended to order the
symbols in the header table according to their value and support [23,24]. F2G
is compliant with these removals, since it allows the rising of transaction-IDs in
the FP-Tree according to the order of candidate items for removal in the header
table (property explained in [13]).

For the particular case of an anti-monotone convertible constraint, itemsets
that satisfy the constraint are efficiently generated under a pattern-growth search
[24] (e.g. {y1-3,y22,y42} itemset is not included in the generated pattern set
respecting avg(P) < 0), and provide a simple criterion to either stop FP-tree
projections or prune items in a (conditional) FP-Tree.

2 The FP-tree is recursively mined to enumerate all full-patterns. Unlike peer pattern-
growth searches, transaction-IDs are not lost at the first scan. Full-patterns are
generated by concatenating the pattern suffixes with the full-patterns discovered
from conditional FP-trees where suffixes are removed. F2G is applicable on top of
FP-Close trees to mine closed full-patterns [13].
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Finally, the removal of conflicting transactions (e.g. ¢; and t; does not
satisfy the illustrated succinct constraint) and of individual items (e.g. UM {y;-
1,4;0,9;1}) do not cause changes in the FP-Tree construction methods. Addi-
tionally, constraint checks can be avoided for subsets of itemsets satisfying a
monotone constraint (e.g. no further checks of countVal(P) > 2 constraint when
the range of values in the suffix is >2 under the {0, y11}-conditional FP-Tree).

Combination of Constraints. The previous extensions of pattern-growth
searches are not able to effectively comply with monotone constraints when
anti-monotone constraints (such as minimum support) are also considered. In
FP-Bonsai [3], principles to further explore the monotone properties for pruning
the search space are considered without reducing anti-monotone pruning oppor-
tunities. This method is based on the ExAnte synergy of two data-reduction
operations that seize the properties of monotone constraints: p-reduction, which
deletes transactions not satisfying C'; and a-reduction, which deletes from trans-
actions single items not satisfying C'. Thanks to the recursive projecting approach
of FP-growth, the ExAnte data-reduction methods can be applied on each con-
ditional FP-tree to obtain a compact number of smaller FP-Trees (FP-Bonsais).
The FP-Bonsai method can be combined with the previously introduced prin-
ciples, which are particularly prone to handle succinct and convertible anti-
monotone constraints. Since F2G can be extended to support the pruning of
FP-Trees, it complies with the FP-Bonsai extension.

5 Results and Discussion

In this section, we assess the performance of BIC2PAM on synthetic and real
datasets with different types of constraints and three distinct full-pattern miners:
AprioriTID?, Eclat® and F2G. BiC2PAM is implemented in Java (JVM v1.6.0-
24). The experiments were computed using an IC i5 2.30GHz with 6GB of RAM.

Results on Synthetic Data. The generated data settings are described in
Table 1. Biclusters with different shapes and coherency strength (]£|€{4,7,10})
were planted by varying the number of rows and columns using Uniform dis-
tributions with ranges in Table 1. For each setting we instantiated 20 matrices
with background values generated with Uniform and Gaussian distributions.

Table 1. Properties of the generated dataset settings.

Matrix size (frows X fcolumns) 500x 50 1000x100  2000x200  4000x400
Nr. of hidden patterns 5 10 15 25

Nr. transactions for the hidden patterns [10,14] [14,30] [30,50] [50,100]
Nr. items for the hidden patterns [5,7] [6,8] [7,9] [8,10]

BiC2PAM was applied with a default merging option (70% of overlapping)
and a decreasing support until a minimum number of 50 (maximal) biclusters

3 http://www.philippe-fournier-viger.com /spmf/
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was found. Fig.4 provides the results of parameterizing BiIC2PAM with different
pattern miners and two simple constraints defining the target coherency strength
and symbols to remove. We observe that the proposed F2G miner is the most
efficient option for denser data settings (looser coherency). Also, in contrast
with existing biclustering algorithms, BiIC2PAM seizes large efficiency gains from
neglecting specific ranges of values (symbols) from the input matrix.

Time (s} = Full-Pattern Miner Time (s} i Constraints

1000 f' 7 400

200 - s A priodT I 4 // - 300 = All symbols (|L]=7)

600 4 e Eclat V4 = Remove [0}

F2G 7.7 200 {===Remove{-1,0,1}

400
—|L|=7 100 —

200 -
- |L|=4

o - o :

SO0x60  1000x100  2000x200 4000x400 S00x60 1000x100 = 2000x200 4000x400

Fig. 4. BiC2PAM performance in the presence of simplistic native constraints.

In order to test the ability of BIC2PAM to seize further efficiency gains in the
presence of non-trivial constraints, we fixed the 2000x200 setting with 6 sym-
bols/values {-3,-2,-1,1,2,3}. In the baseline performance, constraints were satis-
fied using post-filtering procedures. Fig.5 illustrates this analysis. As observed,
the use of constraints can significantly reduce the search complexity when they
are properly incorporated within the full-pattern mining method. In particular,
CFG principles [23] are used to seize efficiency gains from convertible constraints
and FP-Bonsai [3] to seize efficiency gains from monotonic constraints.

Time |5}

= F2G haseline

F2G with CFG principles
F2G with FP-Bonsai principles

m F2G with all principles

count -152
No & sum(P;
consiaints 1,1} ¢p 515( ) Valtégslp} avg(Pj<0 ;u{r‘rigp}

Fig. 5. Efficiency gains of considering constraints in F2G using different principles.

Results on Real Data. Fig.6 shows the (time and memory) efficiency of apply-
ing BiC2PAM in the yeast? expression dataset with different pattern miners and
varying support thresholds for a desirable coherency strength of 10% (|£]|=10).
The proposed F2G is the most efficient option in terms of time and, along with
Apriori, a competitive choice for efficient memory usage.

Finally, Figs.7 and 8 show the impact of biologically meaningful constraints
in the efficiency and effectiveness of BIC2PAM. For this purpose, we used the
complete gasch dataset (6152x176) [6] with six levels of expression (|£]|=6). The
effect of constraints in the efficiency is shown in Fig.7. This analysis supports
their key role of providing opportunities to solve hard biomedical tasks.

* http://www.upo.es/eps/bigs/datasets.html


http://www.upo.es/eps/bigs/datasets.html

Author Proof

12 R. Henriques and S.C. Madeira

Time (s} Memory (Mb])
m— Bit set Apriori
150
= Eclat
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1% """'" 10% 5% 2% 1% Min
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Fig. 6. Computational time and memory of full-pattern miners for yeast (2884x17).

Time (s)

’:;‘;'Jfl_ln y 3 y ! y 3 y 3

75
50
25

= F2G baseline

F25 with CFG principles

F2i3 with FP-Bonsai principles
m F2G with all principles

no no null  sum(P) count -3%
constraints  exp. <5 Va"é%—"fpl avg(P)=0 5u‘r;néP]

Fig. 7. Efficiency gains from using biological constraints for gasch (6152x176).

The impact of these constraints in the relevance of pattern-based biclustering
solutions is illustrated in Fig.8. The biological relevance of each bicluster was
derived from the functionally enriched terms using an hypergeometric test of
Gene Ontology (GO) annotations [17]. As a measure of significance, we counted
the number of terms with Bonferroni corrected p-values below 0.01 [17]. Two
major observations can be retrieved. First, when focusing on properties of inter-
est (e.g. differential expression), the average significance of biclusters increases
as their genes have higher propensity to be functionally co-regulated. This trend
is observed despite the smaller size of the constrained biclusters. Second, when
focusing on rare expression profiles (>3 distinct levels of expression), the aver-
age relevance of biclusters slightly decreases as their co-regulation is less obvious.
Yet, such non-trivial biclusters hold unique properties with potential interest.

% of significant biclusters from fuund full-patterns

@ #relevant
&0 (_) full-patterns
30

o

no constraints  no null expresion  avg|{P)=-2 V cnuntVaIues(PPS
avg|P)z2

Fig. 8. Biological relevance of F2G for multiple constraint-based profiles of expression.

6 Conclusions

This work motivates the task of biclustering biological data in the presence of
constraints. To answer this task, we explore the synergies between pattern-based
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biclustering and domain-driven pattern mining. As a result, BiC2PAM algorithm
is proposed to effectively incorporate constraints derived from user expectations
and available background knowledge.

Two major sets of constraints were proposed for the discovery of biclus-
ters with specific interestingness criteria. First, native constraints to guarantee
the discovery of biclusters with parameterizable coherency, noise-tolerance and
shape, and to consider annotations from knowledge-based repositories. Second,
constraints with succinct, monotone, anti-monotone and convertible properties
to focus the search space on non-trivial yet biologically meaningful patterns.

In this context, we extended a recent pattern-growth search to optimally
explore efficiency gains in the presence of different types of constraints.

Results from synthetic and real data show that biclustering benefits from
large efficiency gains in the presence of constraints derived from background
knowledge. We further provide evidence of the relevance of the supported types
of constraints to discover non-trivial yet meaningful biclusters in expression data.
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50021/2013 and the PhD grant SFRH/BD/75924/2011 to RH.
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