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Abstract. The discovery of dense biclusters in biological networks re-
ceived an increasing attention in recent years. However, despite the im-
portance of understanding the cell behavior, dense biclusters can only
identify modules where genes, proteins or metabolites are strongly con-
nected. These modules are thus often associated with trivial, already
known interactions or background processes not necessarily related with
the studied conditions. Furthermore, despite the availability of bicluster-
ing algorithms able to discover modules with more flexible coherency, their
application over large-scale biological networks is hampered by efficiency
bottlenecks. In this work, we propose BicNET (Biclustering NETworks),
an algorithm to discover non-trivial yet coherent modules in weighted
biological networks with heightened efficiency. First, we motivate the rel-
evance of discovering network modules given by constant, symmetric and
plaid biclustering models. Second, we propose a solution to discover these
flexible modules without time and memory bottlenecks by seizing high ef-
ficiency gains from the inherent structural sparsity of networks. Results
from the analysis of protein and gene interaction networks support the
relevance and efficiency of BicNET.

1 Introduction

The increasing precision and completeness of biological networks from diverse
organisms provide an unprecedented opportunity to understand the organization
and dynamics of the cell [2]. In particular, the discovery of functional network
modules has been largely used to characterize, discriminate and predict biological
functions [29, 25, 2, 28]. The task of discovering such modules can be mapped into
the discovery of coherent regions in weighted graphs, where nodes represent the
molecular units (typically genes, proteins or metabolites) and the edges’ weights
represent the strength of the interactions between the biological molecules. In
this context, a large focus has been placed on the identification of dense regions
[12, 9, 11, 1], where each region is given by a statistically significant set of highly
interconnected nodes. In recent years, a high number of biclustering algorithms
has been proposed to discover dense regions from (bipartite) graphs by mapping
them as adjacency matrices and searching for dense submatrices [1, 9, 3, 25, 22].
A bicluster is then given by two subsets of strongly connected nodes. Despite the
effectiveness of biclustering to model local interactions, the focus on dense regions
comes with key drawbacks. First, such regions are usually associated with either
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trivial or already well-known putative modules. Second, the weights of the inter-
actions associated with less studied genes, proteins and metabolites have lower
confidence (with penalizations highly dependent on the organism under study)
and may not reflect the true role of these molecular interactions in certain cellular
processes [31]. In particular, the presence of (well-studied) regular/background
cellular processes may mask the discovery of sporadic or less-trivial processes.

Although many biclustering algorithms are able to find flexible coherencies
in (adjacency) matrices [23], two major challenges have been preventing their
application to biological networks. First, the generalized lack of understanding on
the relevance and biological meaning of network modules with flexible coherency
(given by plaid models, for example). Second, the hard combinatorial nature of
biclustering regions with flexible coherency, together with the high dimensionality
of matrices derived from biological networks are often associated with memory
and time bottlenecks, and/or undesirable restrictions on the structure and quality
of biclusters. This work aims to answer these problems by: 1) pinpointing the
biological relevance of modeling non-dense regions in a network, and 2) enabling
the efficient learning of flexible biclustering models from large biological networks.

To address these challenges we propose the algorithm BicNET (Biclustering
NETworks). BicNET integrates contributions from pattern-based biclustering
algorithms [14, 15] for the exhaustive discovery of biclusters with parameterizable
coherency and quality, and adapts their data structures and searches to explore
efficiency gains from the inherent sparsity of biological networks. Furthermore,
we motivate the relevance of finding non-dense yet coherent modules and provide
a meaningful analysis of BicNET’s outputs. Results gathered from synthetic and
real data show: the relevance of the proposed efficiency principles for biclustering
large (possibly dense) networks, and the effectiveness of BicNET to discover a
complete set of non-trivial yet coherent and biologically significant modules.

The paper is organized as follows. Section 2 provides background on the tar-
get task of modeling functional modules given by regions with flexible coherency
criteria and surveys major contributions from related work. Section 3 proposes
the BicNET algorithm. Section 4 provides empirical evidence for the relevance
of BicNET to unravel non-trivial yet relevant modules in synthetic and real net-
works. Finally, we draw conclusions and highlight directions for future work.

2 Background

Biclustering can be applied to different types of networks: homogeneous networks,
given for instance by protein-protein interactions (PPI) and gene interactions
(GI); and heteregeneous networks, capturing interactions between distinct molec-
ular entities (proteins, protein complexes, metabolites, genes, etc.), between host
and viral molecules, or between biological entities and certain terms/properties.
These networks can be mapped into (bipartite) graphs for the subsequent dis-
covery of highly interconnected regions associated with modules.

Definition 1. Given a weighted bipartite graph with two sets of nodes X={x1, .., xn}
and Y={y1, .., ym}, and interactions aij∈R relating nodes xi and yj, biclus-
tering aims to find a set of biclusters B={B1, .., Bm}, where each bicluster
Bk=(I, J) is a subgraph (module) given by two subsets of nodes, I⊆X ∧ J⊆Y ,
satisfying specific criteria of coherency, quality, and significance.



3

This task can be solved with traditional biclustering on real-valued matri-
ces by mapping the bipartite graph into an adjacency matrix, where rows and
columns are given by the nodes and the values by the weighted interactions. In
this case, subsets of rows and columns define a bicluster associated with a network
module with coherent interactions. The structure of a set of biclusters is defined
by their number, size and positioning. Flexible structures are characterized by an
arbitrary-high number of (possibly overlapping) biclusters. The coherency of a
bicluster is defined by the observed correlation of values. Definition 2 introduces
dense, constant, symmetric and plaid coherencies. The quality of a bicluster is
defined by the type and amount of tolerated noise. The statistical significance of
a bicluster determines the deviation of its probability of occurrence from expec-
tations.

Definition 2. Let the elements in a bicluster aij∈(I, J) have specific coherency.
A bicluster is dense when the average strength of its interactions, 1

|I||J|Σi∈IΣj∈J |aij |,
is significantly high. A constant coherency is observed when aij=kj where kj is
the expected strength of interactions between nodes in I and yj node from J . In the
presence of symmetries, aij=kjci where ci∈{−1, 1}. A plaid coherency considers
cumulative contributions on the elements where biclusters/subgraphs overlap.

Related Work on Biclustering Biological Networks. A large number of algorithms
has been proposed to find modules in unweighted and/or weighted graphs mapped
from homogeneous and/or heterogeneous biological networks [25, 6, 29]. In un-
weighted graphs, clique detection with Monte Carlo optimization [30], proba-
bilistic motif discovery [5] and clustering on graphs [6] have been, respectively,
applied to discover modules in PPIs (yeast), GIs (E. coli) and metabolic net-
works. In unweighted bipartite graphs, the densest regions correspond to bi-
cliques. Bicliques can be efficiently mined using density-constrained biclustering
[8], Motzkin-Straus optimization [11], formal concepts and pattern-based biclus-
tering [3, 25, 34, 22]. In weighted graphs, the density of a module is given by the
average strength of interactions. Strength is either determined by a measure of
confidence (when it is predicted from literature or diverse data sources) or by the
functional correlation between nodes (when it is derived from experimental data).
Densely weighted modules have been discovered with betweenness-based parti-
tioning [6], graph flow-based clustering [27] and several biclustering approaches,
including SAMBA [32], multi-objective searches [24] and pattern-based bicluster-
ing [10, 9, 1]. The application of these methods over homogeneous and viral-host
PPIs show that protein complexes largely match the found modules [24, 6, 27].

The discovery of dense network modules has been largely accomplished with
pattern-based biclustering algorithms [9, 10, 3, 25, 34, 22, 1] due to their intrinsic
ability to exhaustively discover flexible structures of biclusters. Frequent pat-
terns in discrete networks can be mapped1 as biclusters with specific coherency

1
Let L be a finite set of items, and P an itemset P ⊆ L. A discrete matrix D is a set of transactions
in L, {P1, .., Pn}. Let the coverage ΦP of an itemset P be the set of transactions in D in which
P occurs, {Pi ∈ D | P ⊆ Pi}, and its support supP be the coverage size, |ΦP |. Given D and a
minimum support θ, the frequent itemset mining task aims to compute: {P | P ⊆ L, supP ≥ θ}.

Given D, let a matrix A be the concatenation of D elements with their column indexes. Let ΨP

of an itemset P in A be its indexes, and ΥP be its original items in L. A set of biclusters ∪k(Ik, Jk)
can be derived from frequent itemsets ∪kPk by mapping (Ik, Jk)=(ΦPk

, ΨPk
) to compose constant

biclusters with coherency across rows ((Ik, Jk)=(ΨPk
, ΦPk

) for column-coherency) with pattern ΥP .
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strength determined by the number of symbols (ranges of weights) assigned to the
interactions. In unweighted graphs, closed frequent itemset mining and associa-
tion rule mining were applied to study interactions between proteins and protein
complexes in yeast proteome network [34] and between HIV-1 and human pro-
teins [25, 22]. More recently, association rules were also used to obtain a modular
decomposition of positive and negative GIs (aij∈{-1,0,1}) [3]. In weighted graphs,
Dao et. al [10] and Atluri et. al [1] relied on the loose antimonotone property of
density to propose weight-sensitive pattern mining searches. DECOB [9], origi-
nally applied to PPIs and GIs from human and yeast, uses an additional filtering
step to output of non-similar modules only.

Some of these works have been extended to discover discriminative modules,
often referred as multigenic markers, for classification tasks such as function pre-
diction [10, 29, 22]. Network-based (bi)clustering methods for function prediction
have been comprehensively reviewed by Sharan et. al [29].

Related Work on Biclustering Modules with Flexible Coherency. Although the
state-of-the-art is focused on the discovery of dense network modules, slight vari-
ants of this coherency have been proposed [32, 19, 1]. Despite the large availabil-
ity of biclustering algorithms able to find biclusters with flexible coherency [23],
empirical evidence shows that they are not prepared to deal with the sparsity
and/or high-dimensionality of adjacency matrices mapped from networks. A first
attempt towards this end was presented by Tomaino et al. [33] for small networks.

3 Solution

In what follows, we first show how biclustering can be applied to discover coher-
ent modules following constant, symmetric and plaid models, possibly containing
noisy and missing interactions. Second, we extend pattern-based searches to op-
timally handle the inherent structural sparsity of biological networks.

3.1 Network Modules with Flexible Coherency

Biclustering Weighted Graphs. For an effective application of state-of-the-art bi-
clustering algorithms to (weighted) graphs derived from biological networks, two
principles should be satisfied. First, the weighted graph should be mapped into
a minimal bipartite graph. In heterogeneous networks, multiple bipartite graphs
are created (each with two disjoint sets of nodes with heterogeneous interactions).
The minimality requirement can be satisfied by identifying subsets of nodes with
cross-set interactions but without intra-set interactions to avoid unnecessary du-
plicated nodes in the disjoint sets of nodes (see Fig.1). This is essential to avoid
the generation of large bipartite graphs and subsequent very large matrices.

Second, when targeting non-dense coherencies, two real-valued adjacency ma-
trices need to be derived from the bipartite graph (a matrix with rows and
columns mapped from the disjoint sets of nodes and its transpose) for an ex-
haustive space exploration. This is different from using all nodes as rows and
columns in a single matrix and then filling the upper and lower triangular ma-
trices, which can can lead to inconsistencies when a bicluster has elements from
both the upper and lower triangular matrices. Also, the larger size and density of
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such matrix can significantly hamper the efficiency of the biclustering task. The
few attempts to find non-dense biclusters in biological networks fail to satisfy
this principle [33], thus delivering incomplete and often inconsistent solutions.

Pattern-based Biclustering. Under the satisfaction of the previous principles, a
wide-range of biclustering algorithms can be applied to discover modules with
flexible coherencies [23]. Yet, to our knowledge, only pattern-based bicluster-
ing [14–16] is able to guarantee an exhaustive yet efficient discovery of flexible
structures of biclusters with parameterizable coherency and quality criteria. This
provides the necessary context to measure the relevance and impact of discov-
ering modules with non-dense coherency and noise-tolerance. In particular, we
rely on BicPAM and BiP algorithms [15, 13]. These algorithms, respectively, use
frequent itemset mining and association rule mining to find biclusters with con-
stant/symmetric and plaid coherencies. Furthermore, they integrate the dispersed
contributions from previous pattern-based algorithms and address some of their
limitations, providing key principles to surpass discretization problems (by intro-
ducing the possibility to assign multiple symbols to a single element) and robustly
handle noise and missing values. Fig.1 provides a view on how transactions can
be derived from (heterogeneous) biological networks for the discovery of constant
modules (see [15] for details on the itemization, mining and postprocessing steps).

Fig.1: Pattern-based biclustering of (heterogeneous) biological networks.

Constant Model. Given a bicluster defining a module with coherent interac-
tions between two sets of nodes, the constant coherency (Definition 2) implies
that the nodes in one set show a single type of interaction with the nodes in
the remaining set. Illustrating, consider a set of interactions between genes and
proteins, where their absolute weight defines the strength of the association and
their sign determines whether the association corresponds to activation or repres-
sion mechanisms. The constant model guarantees that when a gene is associated
with a group of proteins, it establishes the same type of interaction with all
these proteins (such as heightened activation of the transcription of a complex of
proteins). When analyzing the transposed matrix (by switching the disjoint sets
of the bipartite graph), similar relations can be observed: a protein coherently
affects a set of genes (softly repressing their expression, for example). The con-
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stant model can also disclose relevant interactions between homogeneous groups
of genes, proteins and metabolites. Fig.2 provides an illustrative constant module.

Fig.2: Biclustering (noise-tolerant) modules with the constant model.

The constant model can be further applied to networks with qualitative inter-
actions capturing distinct types of regulatory relations, such as binds, activates
or enhances associations, common in a wide-variety of PPIs [22, 25].

The constant model is essential to guarantee that molecular units with non-
necessarily high (yet coherent) influence on another set of molecular units are
not excluded. The constant coherency is in general more flexible than the dense
coherency, leading to the discovery of larger modules. The exception is when the
dense coherency is not given by highly weighted interactions, but instead by all
interactions independently of their weight (extent of interconnected nodes).

Symmetric Model. The presence of symmetries is key to simultaneously cap-
ture activation and repression mechanisms associated with the interactions of
a single node [15]. The symmetric model introduces a new degree of flexibility
by enabling the discovery of more complex regulatory modules, where a specific
gene/protein may show symmetric regulatory behavior according to the expected
pattern, yet still respect the observed coherency. Fig.3 illustrates the symmetric
model, where rows with symmetries are identified with dashed lines.

Plaid Model. The plaid assumption [13] is essential to describe overlapping reg-
ulatory behavior associated with cumulative effects in the strength of interactions
between nodes that appear in multiple functional modules. Illustrating, consider
that two genes interact in the context of multiple biological processes, a plaid
model can consider their cumulative effect on their interaction’s weights (based
on the expected weight associated with each active process). This is also valid
for the regulatory influence between proteins and for heterogeneous networks.
The plaid assumption of GIs and PPIs also provides insights on the network
topology and molecular functions, revealing hubs and core interactions (based on
the amount of overlapping interactions), and between- and within-pathway inter-
actions (based on the interactions inside and outside of the overlapping areas).
Fig.3 illustrates a plaid model associated with two overlapping modules. These
modules could not be discovered without a plaid assumption.

Handling Noisy and Missing Interactions. An undesirable restriction of
exhaustive searches for dense modules is that they may exclude relevant nodes
associated with a bicluster if those nodes do not interact with all of the nodes in
one subset of nodes from the bicluster. Understandably, meaningful modules with
missing interactions are common since the majority of existing biological networks
are still largely incomplete. Pattern-based biclustering is able to recover missing



7

Fig.3: Biclustering modules with the symmetric and plaid models.

interactions recurring to well-established and efficient postprocessing procedures
(based on the merging and extension of the discovered modules) [15].

Furthermore, the scoring scheme of interactions might be prone to experimen-
tal noise, preprocessing biases and structural noise (particularly common for less
studied and stable genes or proteins), not always reflecting the true interactions.
Pattern-based biclustering also allows the assignment of multiple symbols to spe-
cific interactions [15], thus avoiding the exclusion of noisy interactions (see Fig.1).
Although default parameterizations are provided to guarantee an adequate tol-
erance to noise, the level of sparsity and noise of the discovered modules can be
parametrically controlled using thresholds based on quality expectations. Fig.2
shows an illustrative coherent module with corrections associated with missing
interactions (red dashed lines) and noisy interactions (red continuous lines).

3.2 BicNET: Efficient Biclustering of Biological Networks

Understandably, the task of discovering modules with the introduced coheren-
cies is more complex than finding dense modules (complexity discussed in [15]).
Empirical evidence shows that state-of-the-art biclustering algorithms are only
scalable for biological networks up to a few hundreds of nodes (see Results). Nev-
ertheless, a key property distinguishing biological networks from gene expression
or clinical data is their underlying sparsity. Illustrating, some of the densest PPI
and GI networks from well-studied organisms still have a density below 5% (ra-
tio of interconnected nodes after excluding nodes without interactions). While
traditional biclustering depends on operations over matrices, pattern-based bi-
clustering algorithms are prepared to mine transactions of varying length. This
property makes pattern-based biclustering able to exclude missing interactions
from searches and thus surpass memory and efficiency bottlenecks. Based on
this observation, we propose BicNET (BiClustering Biological NETworks), a
pattern-based biclustering algorithm for the discovery of network modules with
non-trivial coherencies and robustness to noise. Additionally, BicNET relies on
the following principles to explore further efficiency gains.

We propose a new data structure to efficiently preprocess data: an array,
where each position (node from a disjoint set in the bipartite graph) has a list of
pairs, each pair representing an interaction (corresponding node and the interac-
tion weight). Discretization and itemization procedures are performed by linearly
scanning this structure three times. Thus, their time and memory complexity is
linear on the number of interactions.

Pattern-based searches commonly rely on bitset vectors due to the need to
retrieve not only the frequent patterns but also their supporting transactions in
order to compose biclusters. However, bitset vectors are costly in terms of mem-
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ory, and the associated intersection operations are computationally expensive
for large-scale networks. For this reason, we rely on the recently proposed F2G
miner [17] and on revised implementations of Eclat and Charm miners where diff-
sets are used to address the bottlenecks of bitsets. These pattern-based searches
guarantee an efficient discovery of constant, symmetric and plaid models.

Furthermore, the underlying pattern mining searches of BicNET are dynami-
cally selected based on the properties of the network to optimize their efficiency.
Horizontal versus vertical data formats [15] are selected based on the ratio of
rows and columns from the mapped matrix. Apriori (candidate generation) ver-
sus pattern-growth (tree projection) searches [15] are selected based on network
density (pattern-growth searches are preferable for dense networks). We also push
the computation of similarities between all pairs of biclusters (the most expen-
sive postprocessing procedure) into the mining step by checking similarities with
distance operators on a compact data structure to store the frequent patterns.

4 Results and Discussion

Results are organized as follows. First, we compare the performance of BicNET
against state-of-the-art biclustering algorithms using synthetic networks. Second,
we use BicNET for the analysis of large-scale PPI and GI networks to show the
relevance of discovering modules with flexible coherencies and parameterizable
levels of noise and sparsity. BicNET is implemented in Java (JVM v1.6.0-24).
Experiments were computed using an Intel Core i5 2.30GHz with 6GB of RAM.

Synthetic Data. Networks with planted biclusters were generated respecting
the commonly observed topological statistics of biological networks. Variables:

– number of nodes, density and distributions of the weight (positive and nega-
tive ranges revealing the interaction strength);

– degree of noisy and missing interactions (from 0% to 20%).
– number, size (Uniform distribution on the number of nodes), shape (imbal-

ance on the size of the disjoint sets of each subgraph), overlapping, and
coherency (dense, constant, symmetric and plaid) of the planted biclusters:

Network nodes (10% density) Network density (2000 nodes)
200 500 1000 2000 10000 1% 5% 10% 25%

] Hidden modules 5 10 15 20 30 3 5 10 20
] Nodes per module [20,30] [30,40] [40,50] [50,70] [100,140] [50,70] [50,70] [50,70] [50,70]
% Interactions in modules 19,5% 12,2% 7,6% 4,5% 1,1% 22,5% 9,0% 4,5% 2,3%

Real Data. We used four biological networks: GIs in yeast from DryGIN [21]
and STRING v10 [31] databases, and two licensed PPIs in human and E. coli
from STRING v10 [31] database. The scores in these networks show the expected
strength of influence/physical interaction between genes/proteins (see Table 1 for
statistics).

Performance Metrics. Given the set of planted modules H in a synthetic
network, the accuracy of the retrieved modules B is given by two match scores
(1): MS(B,H) defining the extent to what the found biclusters cover the hidden
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Type Organism ]Nodes ]Interactions Density Notes on the weight of interactions

GI Yeast 4455 191309 1.0% Weights (65% negative) from double-mutant arrays [21].

GI Yeast 6314 423335 1.1% Known and predicted associations benchmarked
from multiple data sources and text mining,
and combined through an integrative score [31].

PPI E. Coli 8428 3293416 4.6%
PPI Human 19247 8548002 2.3%

Table 1: Biological networks used to assess the relevance and efficiency of BicNET.

biclusters (completeness), and MS(H,B) reflecting how well the hidden biclusters
are recovered (precision). We present the average of matches collected from 10
instantiations of synthetic networks. These accuracy criteria surpass the problems
of Jaccard matches (only focused on one of the two subsets of nodes at a time
[15]) and RNIA (loose matching criteria [15]). Efficiency and significance are used
to complement this analysis.

MS(B,H) =
1

|B|Σ(I1,J1)∈Bmax(I2,J2)∈H

√
|I1 ∩ I2|
|I1 ∪ I2|

|J1 ∩ J2|
|J1 ∪ J2|

(1)

4.1 Results on Synthetic Data

Fig.4 compares the efficiency of BicNET with state-of-the-art biclustering al-
gorithms with flexible coherence criteria using networks with varying size and
density and planted modules with constant coherency. We selected FABIA2 [18],
ISA [20], xMotifs [26], CC [7] and OPSM [4] to discover modules with flexible
coherency. BicNET shows heightened efficiency levels. Understandably, as most
of the remaining algorithms are only prepared to analyze (non-sparse) matrices,
they show efficiency bottlenecks for even small networks. Furthermore, the major-
ity is not able to accurately recover the planted modules as they cannot interpret
missing interactions. Although SAMBA [32] and some pattern-based biclustering
algorithms, such as BiMax and DECOB [25, 9], are able to discover dense models
efficiently, they are not prepared to discover modules with alternative coherence
criteria.

Fig.4: Efficiency of flexible biclustering algorithms to discover constant modules in
synthetic networks with varying size and density.

Fig.5 zooms-in on the performance of BicNET by quantifying the efficiency
gains in memory and time from using adequate data structures (replacing the
need to use matrices) and searches (replacing the need to rely on bitset vectors).
It also shows that the cost of assigning multiple symbols per interaction are
moderate, despite resulting in an increased network density.

2
Sparse prior equation with decreasing sparsity until able to retrieve a non-empty set of biclusters
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Fig.5: Efficiency gains of BicNET when using sparse data structures, pattern mining
searches providing robust alternatives to bitset vectors, and noise handlers.

Fig.6 compares the performance of BicNET with peer algorithms for discov-
ering dense network modules (hypercliques) in the presence of noisy and missing
interactions. This analysis clearly shows that existing pattern-based searches for
hypercliques have no tolerance to errors since their accuracy rapidly degrades
for an increased number of planted noisy/missing interactions. Thus, they are
not able to deal with the natural incompleteness and scoring uncertainty associ-
ated with biological networks. On the other hand, the observed accuracy levels of
BicNET demonstrate its robustness to noise (validating the importance of assign-
ing multiple ranges of weights for some interactions) and to missing interactions
(showing the effectiveness of BicNET’s postprocessing procedures).

Fig.6: Accuracy of BicNET against peer pattern-based searches to discover dense mod-
ules on networks (2000 nodes, 10% density) with varying degree of noise and missings.

4.2 Results on Real Data

The biological significance of the modules discovered in real data was computed
by assessing the over-representation of Gene Ontology (GO) terms with an hy-
pergeometric test. A module is significant when its genes show enrichment for
one or more terms by having a (Bonferroni corrected) p-value below 0.01. Fig.7
shows the properties of BicNET’s solutions for the four biological networks in Ta-
ble 1. 94% of the modules discovered in DRYGIN’s yeast GIs were significantly
enriched. All the modules discovered in STRING’s yeast GIs were significantly
enriched. BicNET was able to discover the largest number of (non-similar and
statistically significant) biclusters. The analysis of the enriched terms for these
modules against the enriched terms found in other biclustering solutions supports
the completeness, exclusivity and relevance of BicNET’s solutions (Table 2). The
significance of peer solutions from unweighted graphs is penalized by the inability
to remove nodes with either low or non-coherent weights, while the significance
of peer solutions focused on dense regions is additionally hampered by noise and
discretization errors (Fig.7).
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Fig.7: Properties of BicNET’s solutions with varying coherency against peer pattern-
based searches for dense modules (hypercliques) in networks from DRYGIN and STRING.

Table 2 shows the properties of an illustrative set of significantly enriched
modules. We can observe that such biclusters could hardly be discovered by peer
methods due to their non-dense coherency. All of the illustrated modules show
coherent patterns of interaction between nodes combining both differential and
non-differential weights. The provided modules have an average of 5 to 10% of
missing interactions. BicNET is well positioned to find modules with varying
size, coherency and quality. Illustrating, the constant modules D6 and D7 have,
respectively, 23 and 47 nodes and distinct quality, being D7 more tolerant to
noisy interactions. Understandably, the number of nodes per module is naturally
affected by the size and sparsity of the target network. Most of the discovered
modules clearly show non-trivial yet meaningful correlations, whose relevance is
pinpointed by the number of highly enriched terms after correction.

ID Type
]Nodes
|I|×|J| Items

]Terms
p<1E-15

Notes

D
ry

G
IN

D1 constant 18×9 {-4,..,4} 27 Module with coherent strong (-4) and soft (-1) negative interactions.
D2 symmetric 4×9 {-3,..,3} 13 Varying levels of strong (mainly positive) interactions ({±3,±2}).
D3 symmetric 5×6 {-2,-1,1,2} 12 Module with either all positive or negative interactions per ”row”-node ({±1,±2}).
D4 constant 7×5 {1,2} 12 Module with coherent strong (2) and soft (1) positive interactions.
D5 symmetric 7×5 {-2,-1,1,2} 11 Module with either all positive or negative interactions per ”row”-node ({±1,±2}).
D6 constant 13×10 {-2,-1,1,2} 24 Module with mostly strong negative interactions per ”row”-node.
D7 constant 39×8 {-2,-1,1,2} 47 Noise-tolerant module with positive and negative interactions.

S
T

R
IN

G

S1 constant 148×13 {1,2} 169 Noise-tolerant module with positive interactions of varying strength ({1,2}).
S2 constant 80×18 {1,2,3} 98 Module with mostly of non-dense interactions ({1,2}).
S3 constant 83×10 {1,2} 93 Module with non-dense positive interactions before postprocessing ({1}).
S4 constant 50×20 {1,2,3} 70 Module with non-dense positive interactions ({1,2}) before postprocessing.
S5 constant 45×31 {1,2,3} 76 Module with mostly dense interactions (weights in {2,3}).
S6 constant 55×85 {1,2} 143 Module with mostly dense interactions ({2}).

Table 2: Exclusivity and relevance of BicNET solutions: properties of found modules.

Table 3 lists some of the enriched terms for the modules in Table 2, showing
their functional coherence and role to unravel putative biological processes. Inter-
esting, some of the identified modules are part of an additive plaid model (with
in-between condition [13]). Illustrating, modules D6 and S4 share, respectively,
21% and 36% of their interactions with modules D7 and S4 under a plaid as-
sumption. Without this assumption, only smaller modules (excluding key nodes)
could be obtained, resulting in a lower enrichment of their terms.

In a concluding note, when analyzing networks derived from knowledge-based
repositories and literature (such as networks from STRING [31]), the flexibility
of coherence and noise-robustness is critical to deal with uncertainty and re-
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ID Terms description (])
]Terms
p<1E-15

]Nodes

D
ry

G
IN

D1 Histone modification; regulation of histones: H3-K79/H3-K4 methylation, H2B ubiquitination, etc. (5); 6 27
D2 Gluconeogenesis; glutamate metabolic/catabolic processes (2); nicotinamide metabolism/biosynthesis (2); 6 13

D3
Positive and negative regulation of transcription from RNA polymerase II; Invasive growth response to
glucose limitation and hyperosmotic salinity response by regulating RNA polymerase II (5);

5 12

D4 Meiotic anaphase I; activation of anaphase-promoting complex activity involved in meiotic cell cycle; 4 12
D5 Negative reg. of phospholipid biosynthesis; lipid homeostasis; isopropylmalate and oxaloacetate transport; 4 11

D6
Cotranslational protein targeting to membrane; protein insertion into mitochondrial membrane; protein
import into peroxisome membrane; reg. sporulation; actin filament bundle assembly involved in cytokinesis;

5 25

D7 Acetate fermentation, acetyl-CoA biosynthesis (from acetate), reg. transcription on exit from mitosis; 7 50

S
T

R
IN

G

S1
Response to hypoxia; oxidation-dependent protein catabolic process; anaerobic respiration; age-dependent
response to reactive oxygen species; cellular response to oxidative stress;

36 169

S2 Positive & negative reg. of mitotic and nuclear cell cycle, DNA replication, budding cell apical bud growth; 16 98
S3 Transport of aerobic e-, acetyl-CoA, vacuolar transm., amine (5); ribose phosphate & D-ribose processes (2); 22 93
S4 Heterochromatin maintenance involved in chromatin silencing; sister chromatid segregation; 6 70
S5 Cytoplasmic and mitochondrial translation (4); regulation of translational fidelity; ADP biosynthesis; 6 76
S6 rRNA processing; separation, cleavage & maturation of SSU-rRNA (5); ribosomal (large subunit) biogenesis; 14 143

Table 3: Illustrative set of biologically significant BicNET’s modules: description of the
highly enriched terms in the modules presented in Table 2.

gions where weights may be affected due to the unbalanced focus of research
studies. When analyzing networks derived from data experiments (such as GIs
from DRYGIN [21]), the discovery of modules with non-necessarily strong inter-
actions (given by the constant model, for example) can be critical to identify
less-predominant (yet key) biological processes, such as the ones associated with
early stages of stimulation or disease.

5 Conclusions and Future Work

This work motivates and answers the task of biclustering large-scale biological
networks to discover modules with flexible yet meaningful coherency and ro-
bustness to noise. In particular, we explored the relevance of mining non-trivial
modules in both homogeneous and heterogeneous networks, and assessed the lim-
its in efficiency of existing biclustering algorithms targeting non-dense models.
Combining state-of-the-art contributions on pattern-based biclustering with ef-
ficient searches on networks, we propose BicNET algorithm for the exhaustive
discovery of constant, symmetric and plaid models in biological networks. Ad-
ditional strategies are further incorporated to retrieve modules with noisy and
missing interactions, thus addressing the limitations of the existing exhaustive
searches on networks. BicNET enables the analysis of dense networks with up to
50000 nodes. Results on synthetic and real networks confirm its efficiency and
relevance to discover non-trivial (yet coherent and significant) modules.

Six possible directions are identified for future work: to consider further co-
herencies such as order-preserving and scale factors; enhance searches with scala-
bility principles from pattern mining (data partitioning strategies and search for
approximate patterns [14]); extend the proposed contributions for the integrative
mining of network and expression data; explore the relevance of the plaid model
to identify and characterize hubs; enlarge the experimental analyzes towards bi-
ological molecules with yet unclear roles; and embrace predictive tasks.
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5. Berg, J., Lässig, M.: Local graph alignment and motif search in biological networks. National
Academy of Sciences 101(41), 14689–14694 (2004)

6. Chen, J., Yuan, B.: Detecting functional modules in the yeast protein–protein interaction net-
work. Bioinformatics 22(18), 2283–2290 (2006)

7. Cheng, Y., Church, G.: Biclustering of expression data. In: ISMB. pp. 93–103. AAAI (2000)
8. Colak, R.: Towards finding the complete modulome: density constrained biclustering. Ph.D.

thesis, Simon Fraser University (2008)
9. Colak, R., Moser, F., Chu, J.S.C., Schönhuth, A., Chen, N., Ester, M.: Module discovery by ex-

haustive search for densely connected, co-expressed regions in biomolecular interaction networks.
PLoS One 5(10), e13348 (2010)

10. Dao, P., Colak, R., Salari, Moser, Davicioni, Schönhuth, Ester, M.: Inferring cancer subnetwork
markers using density-constrained biclustering. Bioinformatics 26(18), i625–i631 (2010)

11. Ding, C., Zhang, Y., Li, T., Holbrook, S.: Biclustering protein complex interactions with a
biclique finding algorithm. In: ICDM. pp. 178–187 (2006)

12. Georgii, E., Dietmann, S., Uno, T., Pagel, P., Tsuda, K.: Enumeration of condition-dependent
dense modules in protein interaction networks. Bioinformatics 25(7), 933–940 (2009)

13. Henriques, R., Madeira, S.: Biclustering with flexible plaid models to unravel interactions be-
tween biological processes. IEEE/ACM TCBB (2015)

14. Henriques, R., Antunes, C., Madeira, S.C.: A structured view on pattern mining-based biclus-
tering. Pattern Recognition (2015)

15. Henriques, R., Madeira, S.: Bicpam: Pattern-based biclustering for biomedical data analysis.
Algorithms for Molecular Biology 9(1), 27 (2014)

16. Henriques, R., Madeira, S.C.: Pattern-based biclustering with constraints for gene expression
data analysis. In: Computational Methods in Bioinformatics and Systems Biology (EPIA-
CMBSB). LNAI, Springer (2015)

17. Henriques, R., Madeira, S.C., Antunes, C.: F2g: Efficient discovery of full-patterns. In:
ECML/PKDD IW on New Frontiers to Mine Complex Patterns. Springer-Verlag (2013)

18. Hochreiter, S., et al.: FABIA: factor analysis for bicluster acquisition. Bioinf. 26(12), 1520–1527
(2010)

19. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits
in molecular interaction networks. Bioinformatics 18(suppl 1), S233–S240 (2002)

20. Ihmels, J., Bergmann, S., Barkai, N.: Defining transcription modules using large-scale gene ex-
pression data. Bioinformatics 20(13), 1993–2003 (Sep 2004)

21. Koh, J.L.Y., Ding, H., Costanzo, M., Baryshnikova, A., Toufighi, K., Bader, G.D., Myers, C.L.,
Andrews, B.J., Boone, C.: Drygin: a database of quantitative genetic interaction networks in
yeast. Nucleic Acids Research 38(suppl 1), D502–D507 (2010)

22. MacPherson, J.I., Dickerson, J., Pinney, J., Robertson, D.: Patterns of hiv-1 protein interaction
identify perturbed host-cellular subsystems. PLoS Comput Biol 6(7), e1000863 (2010)

23. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey.
IEEE/ACM TCBB 1(1), 24–45 (2004)

24. Maulik, U., Mukhopadhyay, A., Bhattacharyya, M., Kaderali, L., Brors, B., Bandyopadhyay, S.,
Eils, R.: Mining quasi-bicliques from hiv-1-human protein interaction network: A multiobjective
biclustering approach. IEEE/ACM TCBB 10(2), 423–435 (2013)

25. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.: A novel biclustering approach to association
rule mining for predicting hiv-1–human protein interactions. PLoS ONE 7(4), e32289 (04 2012)

26. Murali, T.M., Kasif, S.: Extracting conserved gene expression motifs from gene expression data.
In: Pacific Symposium on Biocomputing. pp. 77–88 (2003)

27. Pereira-Leal, J.B., Enright, A.J., Ouzounis, C.A.: Detection of functional modules from protein
interaction networks. PROTEINS: Structure, Function, and Bioinformatics 54(1), 49–57 (2004)

28. Segal, E., Wang, H., Koller, D.: Discovering molecular pathways from protein interaction and
gene expression data. Bioinformatics 19(suppl 1), i264–i272 (2003)

29. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Molecular
systems biology 3(1) (2007)

30. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Na-
tional Academy of Sciences 100(21), 12123–12128 (2003)

31. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Si-
monovic, M., Roth, A., Santos, A., Tsafou, K.P., et al.: String v10: protein–protein interaction
networks, integrated over the tree of life. Nucleic acids research p. gku1003 (2014)

32. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expres-
sion data. Bioinformatics 18, 136–144 (2002)

33. Tomaino, V., Guzzi, P.H., Cannataro, M., Veltri, P.: Experimental comparison of biclustering
algorithms for ppi networks. In: BCB. pp. 671–676. ACM (2010)

34. Xiong, H., Heb, X.F., Ding, C., Zhang, Y., Kumar, V., Holbrook, S.R.: Identification of functional
modules in protein complexes via hyperclique pattern discovery. Pac. Symp. Biocomput. (2005)


