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Abstract 

Promoting the accuracy and coverage of the alighting of passengers in public transport is essential to support route 

planning and policy decisions aiming to sustainable mobility. Although previous studies place several principles for 

alighting estimation from incomplete smart card data, most remain dispersed and address one single mode. These gaps 

hinder a comprehensive comparison of the success rates of existing alighting algorithms. To address the above 

challenges, this work assesses side-by-side state-of-the-art principles for alight stop inference using smart card data 

from multimodal transport networks. To our best knowledge, this research is the first incrementally measuring the 

impact of each principle present in the literature. It further discusses uncertainty factors and proposes a confidence 

metric on the estimated alighted stops. 
Keywords: sustainable urban mobility; data science; alighting stop inference; smart card data analysis; public transport; multimodal transport 

1. Introduction 

Public transport operators, whose automatic fare system (AFC) only records passenger ticket transactions on the 

vehicle boarding, depend on reliable solutions to infer the alighting information to assess traffic dynamics. End-to-end 

traffic dynamics are essential for the diagnosis of vulnerabilities (e.g., capacity, walking needs on transfer) to properly 

support an inclusive transport planning and policy-making (Gavriilidis et al., 2020; Cerqueira et al., 2021; Sobral et 

al., 2021). In this context, previous studies have contributed with trip-chaining algorithms for the alighting stop and 

timestamp inference (Farzin, 2008; Trepanier and Chapleau, 2006; Zhao et al., 2007; Nassir et al., 2011; Munizaga et 

al., 2014). Most of the proposed algorithms are heuristic, relying on principles that describe the prevailing passenger’s 

mobility, e.g. a passenger boards near the alighted stop in the previous trip. Over the last two decades, novel 

methodologies and principles have been proposed, claiming higher percentage of successfully estimated trip 

transactions. Despite the relevance of these previous studies, mostly concern to the assessment of the algorithm success 

rather than critically assessing the impact of each underlying principle against the set of alternative principles. Briefly, 

the principles that have been applied so far are dispersed by various modes and their effectiveness has been assessed 

on single transportation modes, preventing a robust comparison of success rates between state-of-the-art principles 

and their methodologies.  
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To address the above mentioned issues, this research aims to assess, side by side, the impact of state-of-the-art 

principles on alighting stop inference in a multimodal transportation network. In addition, this work contributes with 

a SWOT analysis on the existing principles, mainly exploring its weaknesses and providing a novel statistic that 

assigns a confidence score to each alighting stop inferred. The city of Lisbon is used as the study case, with the target 

smart card data corresponding to all transactions from October 2019 in the primary public operators: bus-and-tram 

operator, CARRIS, and subway operator, METRO.  

The paper has the following organization: section 2 describes the state-of-the-art principles for alighting inference 

and validation methods; section 3 proposes six heuristic models to measure the impact of the principles; section 4 

gathers the results obtained from each model using integrative AFC data from Lisbon’s multimodal transport network, 

discussing the principles’ fallacies; and finally, section 5 provides major concluding remarks. 

2. Related work 

Since the first alighting inference approach proposed by Barry et al. (2002), several studies suggested additional 

principles to explain the passengers’ mobility dynamics. Usually, the principles are shaped into heuristics, which guide 

a trip-chaining algorithm. In this scope, previous studies generally rely on two baseline assumptions: a) the passengers 

tend to board next to the location where they alighted in the previous trip (Barry et al., 2002); and b) the passengers 

tend to return to the location where they boarded at the beginning of the day (Trepanier and Chapleau, 2006). Since 

then, the literature empirically proposed more complex assumptions, to progressively increment the effectiveness of 

models. Summarizing, the following list presents the main principles regarding the location and time alighting 

information, ordered chronologically: 
 

1. The passenger boards next to the location where 

alighted in the previous trip (Barry et al., 2002); 

2. The passenger returns to the same location where it 

boarded at the beginning of day (Barry et al., 2002); 

3. It is not possible to estimate the alighting stop of an 

isolated trip within a day (Barry et al., 2002); 

4. The alight stop cannot be inferred if the consecutive 

alight stop occurs in the same location (Barry et al., 

2002); 

5. If the first and last boarding of the day occur at the 

same stop/station, the alighting stop of last 

transaction cannot be inferred (Barry et al. 2002);  

6. After boarding, the passenger can only alight in the 

following stops of the boarding route (Trepanier 

and Chapleau, 2006); 

7. The walking distance, between an alighting stop 

and consecutive boarding (of the next trip), it must 

be less than given threshold (Trepanier and 

Chapleau, 2006); 

8. For the last trip of the day, the alighting stop must 

be next to the place where boarded at the beginning 

of the day, at a distance less than a given threshold 

(Trepanier and Chapleau, 2006); 

9. For the last trip of the day, if the alighting stop is 

not estimated, the model estimates the alighting 

stop that it is next to the place of the first boarding 

stop of the following day (Trepanier and Chapleau, 

2006); 

10.  Given a trip set with alighting information and also 

with symmetric pattern (such as RB and BR, where 

R and B are boarding), a transaction with no 

alighting stop can be estimated, if it belongs to a 

similar symmetric pattern (Zhao et al., 2007); 

11. Between consecutive trip segments there is no 

private transportation modes (Zhao et al., 2007); 

12. The estimated alighting timestamp must occur 

before the boarding timestamp of the next trip 

segment (Nassir et al., 2011); 

13. If the model does not infer an alighting stop with 

success, the model can relax assumptions by 

searching for an alight stop among the stops in the 

opposite direction route (Nassir et al., 2011); 

14. The chaining period of 24 hours begins when the 

network operator has the lowest activity, for 

instance, 3:50 AM until the next day at 4:00 AM 

(Munizaga et al., 2014). 

 

Table 1 shows principles, validation methods and the reported accuracies of the previous studies on alighting 

inference with trip-chaining methodology. For simplicity, the principles are cited through the order number from 

previous list. Overall, the reported accuracy shows that alighting inference with multimodal transportation has a 

positive impact on alighting inference, with an average rate percentage over the 80% (Alsger et al., 2016; Munizaga 

et al., 2014; Hora et al., 2017). Nevertheless, a comparative analysis on success rates is not trivial, since methodologies 

and validation are in a contradiction between studies. In most research, the ground-truth data are not available to test 

the inference results, and for this reason, the validation is based on two major options: i) sensitive analysis, by ranging 

the algorithm parameterization, or ii) comparative analysis with external sources, such as surveys.  
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Table 1 shows that most of the previous studies set a specific threshold range to limit the transactions’ percentage 

within the alighting stops inferred. Usually, it is the walking distance or the time spent between transactions. This 

threshold analysis must be taken into account, because shorting the walking distance/time cutoff, increases the 

probability of rejecting true positives, and, otherwise, increasing the overfitting susceptibility (accepting false 

positives). Indeed, a detailed sensitive analysis and validation is essential to avoid jeopardizing operators decision-

making based on these results or following exploratory analysis, such as transfer detection, and origin-destination 

matrices (Alsger et al., 2015; Sanchez-Martínez, 2017; Kumar et al., 2018; Li et al., 2011; Hussain et al., 2021). 

 
Reference Mode Model 

Principles 

Accuracy Validation and placed thresholds 

Trepanier and Chapleau 

(2006) 

Bus 1, 3, 6, 7, 8, 

9 

66% Walking distance threshold of 2 km. 

Zhao et al. (2007) Rail 1, 3, 8, 10, 
11 

71,2% Statistical tests on the OD matrices. 

Nassir et al. (2011) Bus 1, 8, 11, 12, 

13 

51 273 of 84 413 

transactions 

60,74% 

Average walking speed of  3mph (4.8 km/h) threshold. 

Wang et al. (2011) Bus 1, 8 62,8%-78,5% Validation of specific routes against 

surveys/questionnaires. 

Munizaga and Palma 
(2012) 

Bus and Metro 1, 8 80,77% and 
83,01% 

Validation on two datasets, with walking distance 
threshold of 1 kilometer. 

Munizaga et al. (2014) Bus and Metro 1, 8, 14 85 % Endogenous analysis through the sensitive analysis 

over the distance function 𝑓𝑑. Exogenous analysis by 

comparing the inferred results with the reported trips 

made by 53 volunteers. 

Nunes et al. (2015) Bus 1, 6, 8 62,4% Walking distance range between 400 to 1000 meters. 

Alsger et al. (2016) Bus, Metro, 

Ferry 

- 76%-84% Walking distance range between 400 to 1000 meters. 

Hora et al. (2017) Bus and Metro 1, 8, 14 80% Walking distance at 403 meters. 

Lee et al. (2021) Bus and Metro 1,8 41%-65% Walking distance between 500 and 1500 meters 

Table 1: Previous studies summary, including accuracy percentage, principles, inference results, validation and placed thresholds on the alighting 

inference with trip-chaining algorithms. 

3.  Methodology for Alighting Stop Inference 

3.1.  Principles for a baseline architecture 

Principles 3, 4, 5, 6, 7, 8, 12 and 14 mentioned in the previous section 2 were selected to assemble a solid baseline 

model for bus alighting inference. Principles 1, 2, 10 and 11 are discarded in this study because are outdated for the 

problem scope. In summary, according to the chosen principles, the alighting stop of a given transaction is inferred, 

if the boarding stop of next transaction is at a distance lower than a given threshold and if the boarding stops of both 

transactions do not correspond to the same location. Inferring the alighting stop for the last transaction of the day, 

undertakes the mentioned restrictions but the sequent transaction is the first of the day. It is considered a day, a period 

of 24 hours, whose activity starts at 3:59 AM until the next day at 4:00 AM. Finally, the estimated alighting timestamp 

must occur before the boarding timestamp of next trip transaction. From the SWOT analysis point of view, the 

suggested principles present strengths on the simulation of general behavior of passengers. Besides, the addition of 

multimodality is considered an opportunity to improve the success rate (according to previous works). Yet, the next 

sections will discuss the weakness of some of the previous principles in the inference, due to unexpected passenger 

behavior (considered threats for the model). 

 

3.2.  Extended principles and remarks 

Beyond considering multimodal behaviours, we further extend the baseline architecture to undertake less-trivial 

passenger behaviour throughout the networks. In this context, it is implemented the principles called β1  and β2 .  
Principle β1  assumes: if the passenger boards at the route’s terminal, the alighting stop must be sought in the opposite 

direction. This new rule forks from principle 13 (mentioned in the related work), restricting the probability of inference 

errors (Nassir et al., 2011). It is considered a threat (external factor), triggering the search for the alighting stop on the 

opposite route, whatever the boarding stop may be. On the other hand, when passengers board at the terminal, it is 
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certain that they intend to travel in the opposite direction. So, this novel principle gives an opportunity to undertake 

this situation, without compromising the algorithm robustness.  

Principle β2  it is triggered when the last alighting stop of the day is not inferred, because it is far from the location of 

first boarding of the day. Then, the principle selects an alighting stop that is near to the first stop of the following 

day(s). β2 aims to cover the weakness of principle 9 (Trepanier and Chapleau, 2006), because it assumes that the 

passenger remains on the same spot for long period (e.g., passenger leaves the city temporarily or stays overnight in 

a different place from their usual). Even so, this novel principle may raise inference errors by letting a linkage between 

two transactions with same or close boarding.  

 

In fact, to the best of our knowledge, the impact of this possibility, informally described in principle 9, was not yet 

assessed. For better understating, Figure 1 illustrates this likely situation, with the following aspects: a) at the day 5, 

the boarding of the last transaction occurred at the location L1 and the next boarding (another day) occurs at the 

location l2; b) distance between L1 and L2 is lower than 500 meters. In this scenario, the principle admits a travel 

from L1 to L2, although, given the short distance it is more likely a trip from L1 to a location far from L2. For this 

reason, this principle is only valid when the boardings of both transactions (the last transaction of the day and the first 

of the next days) are at distance greater than a defined threshold. For simplification, this constraint is termed Cross-

Day Chaining. 

 

 

 

 

 

 

 

 

 

 

3.3.  Definition of Alighting Models Architecture 

Grounded on the aforementioned alighting inference possibilities, six different methods are defined and empirically 

assessed. The comparative analysis between these methods aims at measuring each principle’s impact side-by-side in 

the alighting inference task. Table 2 summarizes the six models: i) models I, II, and III only receive as input bus 

transactions, meanwhile model IV, V, and VI receive as input transactions from bus and metro operators; ii) the models 

I and IV are trained with a baseline architecture, and the remaining models are trained with baseline architecture plus 

with extended principles (described in sections 3.1 and 3.2).  

 

 Baseline Principle Baseline Principle + β1  Baseline Principle+ β1  and β2  

Unimodal Model I Model II Model III 

Multimodal Model IV Model V Model VI 

Table 2: Summary of proposed models to measure each principle’s impact. 

3.4.  Core chaining trip algorithm 

The trip-chaining algorithm is the main structure to train each model. By default, the algorithm trains Model I 

(baseline architecture, with only input bus transactions). The algorithm receives, as input, a set of n 

transactions {𝑇1, 𝑇2, ⋯ , 𝑇𝑛} of a passenger s, ordered by boarding date. Figure 2 describes the algorithm for alighting 

estimation. In accordance:

1. Collect a new transaction 𝑇𝑛 from passenger s, on set {𝑇1, 𝑇2, ⋯ , 𝑇𝑛},  where n is the transaction index. 

2. If 𝑇𝑛 has alighting stop, skip for step 1, to collect a new transaction. Otherwise, skip for step 3. 

3. If 𝑇𝑛 is the sole transaction in 24 hours, then skip for step 8, otherwise continue to step 4. 

4. If the boarding stop of 𝑇𝑛 is a terminal and principle β1  is enabled, skip for step 5. Otherwise, step 6. 

Figure 1:  Consecutive unique transactions made by a passenger from same origin: potential chaining error caused by principle β2. 
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5. Invert route direction. The alighting stop is searched on the opposite route direction. Continue for step 7.  

6. If 𝑇𝑛  is the last transaction, in 24 hours, then skip for step 9, otherwise continue to step 7. 

7. Estimate an alighting stop for 𝑇𝑛  nearest to the boarding of 𝑇𝑛+1 . Then continue to step 11. 

8. If β2  is enabled, then skip for step 7. Otherwise, continue to step 11 (alighting stop is not estimated). 

9. Estimate the alighting stop of 𝑇𝑛 nearest to the boarding of 𝑇𝑓, where f is the index of the first

transaction of the day. Continue to step 10. The distance is calculated based on the roadmap or approximated using 

Manhattan distance between coordinates. 

10. If it was assigned an alighting stop to 𝑇𝑛, then continue to step 11, otherwise skip for step 8. 

11. If there are more transactions, continue to step 1, otherwise the algorithm ends. 

 

 
Figure 2: Flowchart explaining the alighting inference algorithm.

 

3.5.  Validation 

Validating the model outcome becomes an impractical task when there isn’t available labeled dataset with ground- 

truth or an external dataset to compare. Therefore, the solution holds on success indicators. 

Since the major principles for trip chaining are based on the proximity between consecutive transactions, the most 

reasonable indicator is the transactions’ percentage with a distance to the next transaction lower than a given threshold. 

For simplification, this threshold will be called Walking Distance. As mentioned in section 3.2.2, Model III and VI 

must be meticulously assessed, and for this reason, Section 4 will also address the impact of the Cross-Day Chaining 

threshold. Ultimately, this work proposes a novel and robust statistic that assigns a confidence score to each alight 

stop. This score is explored on the most accurate model. This score considers both indicators, the Walking Distance 

(w) and the Cross-Day Chaining (b) in accordance with the following equation: 

 

𝑠(𝑤, 𝑏) =

{
 
 

 
 

1,  𝑖𝑓 𝑤 ≤ 𝑚𝑖𝑛𝑊𝑑 𝑎𝑛𝑑 𝑏 ≥ 𝑚𝑎𝑥𝐶𝐷
𝑚𝑎𝑥𝑊𝐷−𝑤

𝑚𝑎𝑥𝑊𝐷−𝑚𝑖𝑛𝑊𝐷
,  𝑖𝑓 𝑏 ≥ 𝑚𝑎𝑥𝐶𝐷 𝑎𝑛𝑑 𝑚𝑖𝑛𝑊𝐷 < 𝑤 ≤ 𝑚𝑎𝑥𝑊𝐷

0.5 (
𝑚𝑎𝑥𝑊𝐷−𝑤

𝑚𝑎𝑥𝑊𝐷−𝑚𝑖𝑛𝑊𝐷
+ 

𝑏−𝑚𝑖𝑛𝐶𝐷

𝑚𝑎𝑥𝐶𝐷−𝑚𝑖𝑛𝐶𝐷
) ,   𝑖𝑓 𝑚𝑖𝑛𝑊𝐷 < 𝑤 ≤ 𝑚𝑎𝑥𝑊𝐷 𝑎𝑛𝑑 𝑚𝑖𝑛𝐶𝐷 ≤ 𝑏 < 𝑚𝑎𝑥𝐶𝐷

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (1) 

 

where [minWD , maxWD] and [ minCD , maxCD] are the adopted ranges for the walking distance and Cross-Day 

Chaining values in order to assign a score between 0 and 1, where high values indicate that the alight stop was inferred 

with high confidence, and lower values otherwise. Grounded on previously collected empirical evidence (Nunes et al. 

2015, Alsger et al. 2016, Hora et al. 2017, Lee et al. 2021), we assign the default values of 200 and 1000 meters for 

minWD and maxWD variables respectively, and 500 and 2000 meters for minCD and maxCD variables respectively.  
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3.6. Data acquisition and consolidation 

The research counts with public traffic data from Lisbon city, from the principal public bus network and subway, 

called CARRIS and METRO, respectively. Both datasets were gathered by the city council in close cooperation with 

public operators: 44 million public traffic transactions, from October 2019, whose 33 million are from the subway 

operator, and 11 million are from the bus operator. The principles herein in the study are applied over the bus 

transactions, whose alighting information is missing. Strategically, it is used a portion of the subway dataset (about 

19 million transactions), comprising only users that traveled in bus and metro operators. Employing the remaining 

data would be useless and add processing time and space into the algorithm. The dataset with metro smart card data 

includes route description, boarding and alighting features such the locations and timestamp. Meanwhile, the bus 

dataset has boarding information and complete route description specifying the code, orientation and route variant. 

Besides, we suggest other optimization measures that were implemented under python language conventions. Firstly, 

the stops and routes features are kept in a dictionary object, which is the most efficient data structure for retrieving. 

Secondly, the model avoids intense SQL calls to the database. Third, it is built, iteratively, a dictionary for each card 

identifier, storing the respective traffic transactions, ordered chronologically by boarding timestamp. 

4. Results 

All available smart card transactions, i.e. 11 360 894 bus transactions, are considered for the target imputation of 

alighting information. The first models I, II, III required 60 to 80 minutes to conclude the inference task, meanwhile 

the remaining took each 100 to 120 minutes. As a measure to read the accuracy of each model, it is considered the 

percentage of trips that fulfil the constraint criteria. Table 3 summarizes the results of each model against the walking 

distance constraint (ranging from 500 to 1500 meters) and Table 4 shows the results of Model VI considering the 

Cross-Day Chaining threshold. The last row on both tables show the absolute amount and percentage of sole trips 

made on 24 hour period, without alighting information. Ultimately, Figure 3 shows the distribution of confidence 

score (assigned to each alighting stop estimated), on the outcome of best model and parameterization from previous 

results (Model VI). 

 

4.2.  Sensitive Analysis on the walking distance constraint 

Table 3 shows evidence that the accuracy is higher when the walking distance threshold and model complexity 

increases. Specifically, by comparing the baseline architectures (models I and IV), it is clear that the multimodal 

model outperforms the unimodal, with a higher increase of 11.06 pp (when the threshold constraint is marked on the 

1000 meters). Additionally, Model IV halves the percentage of unique transactions without alighting information. 

Indeed, the overall results show that the integration of other modes boosts the models’ performance. This event is 

explained by the algorithm’s dependence on the traceability of the passenger’s path.  

 

 Unimodal Multimodal 

Walking 

Distance  

Model description Model I Model II Model III Model IV Model V Model VI 

Data amount 11 360 894 input transaction without alighting stop 

 

≤ 𝟓𝟎𝟎 

Absolute amount 6 534 101 6 807 503 7 499 145 7 687 683 8 011 982 8 501 078 

Accuracy % 57.51% 59.92% 66.00% 67.76% 70.52% 74.83% 

 

≤ 𝟏𝟎𝟎𝟎 

Absolute amount 7 131 522 7 425 289 8 254 418 8 387 749 8 737 664 9 326 987 

Accuracy % 62.77% 65.36% 72.65% 73.83% 76.91% 82.10% 

 

≤ 𝟏𝟓𝟎𝟎 

Absolute amount 7 435 603 7 739 820 9 602 666 8 668 542 9 029 649 9 622 791 

Accuracy % 65.47% 68.15% 75.72% 76.31% 79.51% 84.70% 

Sole transactions on the day 

without alighting information   

2 400 676 

21.13% 

2 400 676 

21.13% 

1 752 377 

15.42% 

1 268 153 

11.16% 

1 268 153 

11.16% 

871 684 

7.67% 

Table 3: Results from sensitive analysis on the Walking Distance threshold. 

 

The inclusion of both β1 and β2 principles yield a notable positive impact in both categories, unimodal and 

multimodal. Observing Table 3 and fixing the row with a threshold mark at 1000 meters, model IV guarantees a 

73.83% accuracy and the following model V outperform it with 3.1pp. Considering walking distance ≤ 1000m, model 

VI is the one with highest performance, increasing 5.19pp against model V. Additionally, the percentage of unique 
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trip decreases between model V and VI, because principle β2 infers an alight stop by chaining with next transaction 

of the following days (augmented chaining window). 

 

4.3.  Sensitive Analysis on the Cross-Day Chaining constraint  

As mentioned in Section 3, Cross-Day Chaining constraint avoids consecutive boarding within a distance lower than 

a given threshold. Table 4 ranges the Cross-Day Chaining threshold against the model VI. As expected, by augmenting 

the threshold, the model accuracy decreases. When the walking distance threshold is lower than 1000 meters and the 

Cross-Day Chaining is higher than 500 meters, the accuracy achieves 82.10%, meanwhile when the Cross-Day 

Chaining constraint increases to 2000 meters, then the accuracy reaches the lower value of 79.23%. Choosing a 

conservative parameterization reduces the error margin of mislabeling and consequently, lowers the accuracy. 

However, even with these conditions, the accuracy percentage is still higher than the previous models. For instance, 

if the Cross-Day Chaining threshold is settled at 2000 meters and the walking distance threshold at 1000 meters, the 

accuracy is 79.23%, outperforming the previous model V (76.91% accuracy at same walking distance). For this reason, 

it is suggested to be conservative on the parameterization in order to avoid jeopardizing operator’s planning based on 

mislabeled alighting data. 

 

 Model VI 

Walking Distance 

threshold 

Cross-Day Chaining 

threshold 

CD > 500 CD > 1000 CD > 1500 CD > 2000 

 

≤ 𝟓𝟎𝟎 

Absolute amount 8 501 078 8 388 644 8 305 949 8 244 601 

Accuracy % 74.83% 73.84% 73.11% 72.57% 

 

≤ 𝟏𝟎𝟎𝟎 

Absolute amount 9 326 987 9 173 588 9 072 809 9 001 236 

Accuracy % 82.10% 80.74% 79.86% 79.23% 

 

≤ 𝟏𝟓𝟎𝟎 

Absolute amount 9 622 791 9 463 974 9 080 762 9 010 325 

Accuracy % 84.70% 83.30% 79.93% 79.31% 

Sole transactions on the day without 

alighting information   

1 268 153 

11.16% 

979 335 

8.62% 

1 044 066 

9.19% 

1 090 645 

9.6% 
Table 4: Results from sensitive analysis on Cross-Day (CD) Chaining threshold and Walking Distance threshold. 

 

Finally, Figure 3 plots the distribution of confidence scores assigned to the inferring alighting stops  by model VI, 

assigned using equation 1 (Validation section). These results are valuable information to indicate the overall 

performance of the model. Around 10 million transactions were assigned to an alighting stop, and the majority 

(71,56% of transactions) have a confidence score higher than 80%. 

 

 

 

 

 
Figure 3: Distribution of confidence score on model VI 

5. Concluding remarks 

The gathered research outcomes shed light on pivotal issues to the alighting stop inference task, necessary for public 

transport planning and travel behaviour analysis in the presence of incomplete AFC systems. In particular, this work 

provides a critical point of view on the state-of-the-art principles; tailors models in the presence of multimodal traffic 

data; improves the success rate considering the specifics of situational and contextual data; and suggests practical 

optimization on the data processing to handle large amounts of data. The SWOT analysis and the measured impact 

assessment of each state-of-the-art principles revealed important weaknesses on the existing methods to handle less-
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trivial passenger behaviour. For this reason, new principles were suggested, including a novel parameterization in 

order to avoid inference errors. Moreover, to the best of our knowledge, this is the former research study with cross-

modal comparisons of OD estimation principles, as well as the first comprehensive study of the alight stop 

predictability in the Lisbon public transport system. We expect to extend the research and conducted analysis to 

transport systems in other European cities. Amongst other ends, the highlighted contributions are essential to improve 

the quality of (multimodal) OD matrix inference, a pivotal task to respond to the ongoing traffic demand changes 

along time, particularly important throughout the current pandemic times. 
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