
Experimenting with a Flexible Awareness Management Abstraction for Virtual
Collaboration Spaces

Ricardo Jota, Jorge Martins, António Rito-Silva and João Pereira

INESC-ID/Technical University of Lisbon Rua Alves Redol nº 9, 1000-029 Lisboa, PORTUGAL
{Jota.Costa, Jorge.B.Martins, Rito.Silva, Joao}@inesc-id.pt

ABSTRACT
The awareness management problem is still very far

from solved. It is difficult to create an abstraction that’s
flexible enough to be used in the wide range of
applications that deal with Awareness management
problems. This paper describes a generic object-oriented
abstraction for the problem of awareness management in
Collaborative Virtual Environments (CVEs). The
described abstraction allows us to use different types of
awareness information and awareness management
policies. It is shown how the defined abstraction was
applied to the conference table problem, what qualities
where observed and how different variations of the same
problem are solved using an incremental solution.

1. INTRODUCTION

Awareness is a very important concept in CSCW

systems. As stated in [6] “awareness is an understanding
of the activities of others, which provides a context for
your own activity”. Collaborative Virtual Environments
(CVEs) are networked virtual environments used to
support collaborative work. Users are represented
graphically within the environment and can perceive other
user actions through their graphical representation. In
these systems, awareness information is all the
information about existing objects and users within the
system. This information includes user and object
graphical representation, the sounds produced by users,
and user actions. These systems also have the
characteristic of aiming to support a large number of
simultaneous users (in the order of the tens of thousands).
In the presence of a large number of users the amount of
information that must be processed by each user can be
overwhelming. As such, it is usually necessary to manage
the amount of information that must be processed by each
user. This is called awareness management. The goal of
awareness management is to allow each user to only

process the information that is relevant for him. Some of
the existing systems use awareness management as a
mechanism for reducing network bandwidth and
increasing their scalability, while others use awareness
management to promote user collaboration by using it to
scope user interaction. The work described in this paper
was done in the context of the MOOSCo (Multi-user
Object-Oriented virtual environments with Separation of
Concerns) project. MOOSCo proposes a software
engineering separation of concerns approach for the
development of Multi-user Virtual Environments. For
each of the different aspects of these systems, different
concerns are identified. The system functionality is
obtained by composition of the solutions defined for each
of the concerns. Further details about the MOOSCo
approach can be found in [2][3]. Section two describes the
related work. Section three presents the awareness
management abstraction,[1]. The Experimentation section
describes several solutions using the MOOSCo
framework, and their use of the abstraction to support
different awareness management policies in the
conference table problem. Section five evaluates our
approach to the awareness management problem. Finally,
section six presents our conclusions and future work.

2. RELATED WORK

Awareness management is a very important issue in

CVEs. It is used as a mechanism of regulating the amount
of information each user must process. Awareness
management helps collaboration between users, by
suppressing all the awareness information about users and
objects that are not relevant for the current users’
collaborative task. Awareness management also has an
important role in the scalability of this kind of systems.
By limiting the amount of information that must be
processed by each user, awareness management can be a
very effective mechanism for reducing resource usage,
like network bandwidth and computer processing power.

Given the importance of awareness management,
different policies have been used depending on the
systems requirements and goals. In RING [7] users are
only aware of the objects they can see. This policy is
adequate for environments that contain several visual
barriers such as walls and doors, but it performs badly in
densely populated open space environments. SPLINE [4]
partitions the environment in spatial regions called
locales. Each user is aware of all the objects in the current
locale and in the immediate neighbors. The partitioning of
the environment is a very flexible mechanism for
structuring the virtual environment. In SPLINE each
locale defines its own independent coordinate system. The
virtual environment results from the connection of several
locales. Each connection between two locales defines a
3D transformation that describes the relations between the
locale’s coordinate systems, which allows the creation of
non-Euclidean environments. This approach also eases
the extension of the environments, since it is only a matter
of defining new locales and connecting them to the
existing ones. Finally, the locales approach also provides
an effective mechanism for controlling awareness.
Allowing the awareness of the adjacent locales gives
users the notion of spatial continuity, increasing at the
same time the system scalability. Unfortunately, SPLINE
only provides this built-in policy. However there are
situations where different policies could be more useful.
For instance, one could be interested only in the current
locale, or interested in the current locale and a small
subset of the adjacent locales. NPSNET [10] divides the
environment in fixed-size regions called cells and each
user defines an area of interest through an aura. Users are
only aware of the cells their auras intersects. The size and
shape of the cells were chosen taking into account the
target application domain, military simulation.
MASSIVE-1 supports the spatial model of interaction [5].
In this model users define auras and interaction between
two users can only happen when the two users’ auras
intersect. The model also uses the concepts of focus and
nimbus to compute the awareness level that a user can
have of another user or object. The focus represents an
user interest in a particular medium. The nimbus
represents an observed object’s projection in a particular
medium. The awareness level that an object A has of an
object B in a particular medium M is a function of A’s
focus and B’s nimbus in M. In MASSIVE-2 [9] the
spatial model of interaction was extended with the third-
party object concept which represents objects that can
affect other object’s and user’s awareness levels by
changing their values of aura, focus and nimbus. The
spatial model of interaction is perhaps one of the most
complex and flexible awareness management models. It is
suitable for controlling user interaction in large-scale
virtual environments. However, the model is too focused
on the spatial aspect making it difficult to manage

awareness using semantic or organization considerations.
In MASSIVE-3 [8] an extension to the SPLINE model
was adopted. In this extension the environment is also
divided into locales and the locales can be connected
through boundaries. Each locale can have several aspects,
each representing a certain type of awareness information.
The awareness management is performed, by selecting the
locales and corresponding aspects that are relevant to a
particular user. The system allows the programmer to
select, or even adapt, the policy. Since locale aspects can
be arbitrarily defined, it is possible to support awareness
management taking into account organizational
associations between the objects of an environment. Due
to the existence of different application requirements it is
necessary to support different awareness management
policies. All the mentioned systems only offer support for
a particular policy or family of policies. MASSIVE-3
allows some degree of adaptation, by letting the
programmers choose the policy that selects the relevant
locales to a particular user. However, the adaptation is
confined to a particular kind of awareness policy, based
on locales and aspects. It is not possible to use different
policies. This problem is normally due to the lack of
proper design abstractions that are, not only able to solve
the problem at hand, in this case awareness management,
but also able to support the several variations that exist for
the problem’s solution. To deal with this problem, this
paper presents an object-oriented awareness management
abstraction that is flexible enough to support different
awareness management policies. Instead of trying to
provide a one-size-fits-all solution for awareness
management, the proposed abstraction allows different
policies to be defined, and programmers have to choose
the most appropriate policy for the application being
developed.

3. AWARENESS MANAGEMENT

ABSTRACTION

This section describes an object-oriented abstraction

for awareness management in CVEs. It is not the goal of
the proposed abstraction to define a generic model for
awareness management that can be used for all kinds of
CVEs systems. Instead the abstraction aims to provide a
common framework upon which different solutions for
awareness management can be built. To be able to
achieve this goal it is necessary that the abstraction is
flexible enough to capture the variations that exist in the
different solutions for the problem. The description of the
Awareness Management abstraction is divided in three
sections. First we present a general description of the
awareness management problem. Second we describe
different variations that a flexible solution for awareness
management should support. third we present our

solution, i.e. the proposed object-oriented abstraction for
awareness management. The solution presentation
consists of: a description of the structure and the elements
that are part of the abstraction; a description of how these
elements collaborate to solve the problem at hand; and a
description of how the abstraction supports the variations
that were identified.

3.1 Problem

One of the issues of awareness management is what

type of information must be considered for awareness
management purposes? For instance, the sound produced
by a certain user A can be used as awareness information.
In this case user B will be aware of A when he can hear
him. The geometric appearance of objects and users can
also be considered as awareness information. Each user
becomes aware of objects and users from the moment
he/she sees them. Even the user’s actions can be used as
awareness information. For example, user A may be able
to see user B but be unable to understand the actions
he/she is executing due to the distance between them.
After approaching user B, user A may then be aware of
the actions user B is performing. Once the information
used for awareness management is defined, it is necessary
to define how the users declare their interest in certain
types of information. Although there might exist different
types of awareness information, a user may, at a certain
moment, only be interested in a particular type. Once the
awareness information and mechanisms by which the
users express their interest are defined, it is necessary to
guarantee that each user only receives information that is
relevant for him. There are several policies to manage
who should receive a certain type of information. For
instance, the proximity to the information source may be a
way to define who may receive it. Moreover, the
existence of visual barriers may be used to determine who
should not receive certain visual information.

3.2 Variations

A solution for awareness management must support

the following variations:
Awareness Information Definition. The awareness

information sould be defined in accordance with the
application requirements. The choice of awareness
information can be determined by the applications
functional requirements, e.g., collaboration, or by non-
functional requirements, e.g., the system has to support a
large number of simultaneous users.

Different Awareness Management Policies.
Different awareness management policies represent
different ways of computing the awareness information
that should be received by each user. Each application
should be able to choose the most appropriate awareness

management policies to apply in their contexts. Moreover,
they should be able to define their own awareness
management policies that take into account the
application specific requirements.

3.3 Solution

The main characteristic of the proposed solution for

the awareness management concern is the identification
and separations of all entities that are present in the
awareness management problem. These entities are: The
sources of awareness information; The consumers that are
interested in receiving this kind of information; And the
policy that is responsible for disseminating the
information to the interested consumers. This way the
management policy can be changed, independently from
the awareness information and the behavior associated
with handling that information. Moreover this separation
also allows the use of different types of awareness
information, independently of the awareness management
policy used.

3.3.1 Structure and Participants

The abstraction Awareness Management has the

following participants:
Scope. Represents a source of awareness information..
ScopeExpression. Represents expressions that describe

a certain information. Each Scope has a scope expression
associated that describes information it represents.

InterestedParty. Represents an entity interested in a
certain type of awareness information. It must be
associated with a scope to have access to that information.
The association and dissociation of interested parties to
scopes is managed by the awareness management policy.

InterestExpression. Represents the interest of a party in
a certain type of awareness information.

InterestSpace. Represents a space that contains several
scopes for the same type of awareness information.
Interested parties are registered in interest spaces by
indicating their interest expressions. An interested space
can also play the role of a scope. This way, it is possible
to define hierarchical interested spaces that use different
awareness policies at each hierarchical level. The
awareness management of the whole structure results
from the awareness management of its constituent parts.

AwarenessPolicy. Represents an awareness
management policy. A policy is responsible for
determining the interest expressions matched by each
scope expression. Every time a match is detected, the
policy informs the corresponding interested party that it
should be associated with the scope. When the match
ceases the policy informs the interested party to dissociate
itself from the scope. Usually, the scope and interest
expressions are dependent of the awareness management
policy. However, the interested parties and the
information scopes are independent of the expressions
and policy being used. The choice of which interest
expressions and scope expressions to use depends of the
interest space awareness policy.

4. EXPERIMENTATION

The Awareness Management abstraction described in

this paper was implemented in Java™ as an object
oriented micro-framework. This micro-framework is part
of a larger framework called MOOSCo that supports the
development of CVEs. The MOOSCo framework was
developed using a separation of concerns approach. An
abstraction was defined and implemented for each
concern. The support for CVES was obtained by
composition of the concern implementations. These
concerns are described with more detail in [1]. In this
paper our goal is to show that the Awareness Management
abstraction has the following qualities:

Expressiveness power. The awareness management
abstraction must be able to produce a solution to a large
set of problems. The abstraction must have enough
flexibility so that it can be applied efficiently in different
problems. Moreover, its flexibility must allow
programmers to solve each variation of the same problem
with minimal changes from the generic solution for that
particular problem. The framework must be flexible
enough to allow the concerns to interact and therefore
allow solutions that include cooperation of concerns to be
implemented.

Incremental development. One of our goals is to
promote incremental development by allowing
programmers to change the instantiated composition,
starting from the simpler ones and moving incrementally
to the more complex ones. The ideia is to start with a
basic solution to the problem to solve and then build upon

that solution to achieve more complex solutions to
variations of the problem.

Easy to use. To develop software using a framework,
the framework should not overhead programmers with
hard to use interfaces. It must be intuitive and easy to use
with the rest of the code the programmer must develop.

These are the goals that guided our experimentation
and the qualities that are present in the abstraction and the
framework.

In the remainder of this section we present an
experiment that show how our solution achieves these
qualities. We start with a simple example and we’ll move
incrementally to more complex ones.

4.1 Conference table – basic implementation

The environment of our experiment consists on a

conference table, around which users can sit. In this
experiment awareness management controls the
interaction between the persons that sat at the table and
the remaining persons of the environment. Persons at the
table cannot interact (chat) with users outside the table.
However, depending on the awareness configuration,
users outside the table may or may not “hear” what the
users at the table are saying.

For our first example we will use the following rules to
describe the conference table environment:

1. There are two kinds of persons, the ones sitting
at the table, called invited speakers, and the ones away
from the table, called audience. The audience members
can have a microphone that they use to ask questions to
the invited speakers.

2. Everyone is able to ear the invited speakers.
3. Everyone is able to ear audience members with

microphone.
4. Each audience member is able to ear the other

audience members according to their proximity.
5. The invited speakers are not able to ear the

audience members without microphone (note rule number
3.).

4.1.1 Solution
This problem has two kind of interactions:
• The one between invited speakers (and audience

members with microphone) and all the other people
• The one between audience members
This indicates that the problem can be effectively

solved with two InterestSpace. The first manages the
interaction between invited speakers and all the other
people, and implements a policy “all-see-all”. The second
one manages the interaction between the audience
members. The second InterestSpace implements an Aura
policy in which each person sees others according to their
proximity.

Another remark is that an audience member with a
microphone behaves exactly like an invited speaker. This

can be implemented by giving the audience members the
property of having a microphone. When this property is
valid then the audience member behavior is just like an
invited speaker and just requires inserting the audience
member’s Scope in the invited speakers’ InterestSpace.

4.1.2 Implementation details
Each person defines an InterestedParty which

represents her interest in what others are saying. An
Interested Party includes an InterestExpression. Recall
that the InterestExpression defines the interest of an
InterestedParty in a certain type of awareness
information. Each person can be a source of information
therefore, the people have to define a Scope which acts as
the source of the speech information. The Scope includes
a ScopeExpression. That describes the sound reach of its
associated person.

This way we can define exactly what each person hears
and to whom each person talks to, e.g, everybody or just
the audience members that are near the concerned person.

The environment is divided in two interestSpaces:
Invited speaker InterestSpace – This InterestSpace

enables everyone access to the information produced by
the invited speakers. This InterestSpace will use an “all-
see-all” policy. In this policy every party knows every
scope present in this InterestSpace. Therefore, the
following parties and scopes are inserted in this
InterestSpace:

• The parties of invited speaker and audience
members parties;

• The scopes of invited speaker. This way
everyone ears them;

• The scopes of audience members with a
microphone.

• Audience member InterestSpace – This
InterestSpace manages the interaction between audience
members. As we said previously, audience members can
interact if they are physically close. To implement this
requirement, this InterestSpace will use an Aura Policy.
This policy defines InterestExpressions and
ScopeExpressions as auras centered at each user position.
When an InterestExpression of a user A intersects a
ScopeExpression of a user B, user A party joins user B
scope. All the audience member parties and scopes are
placed in this InterestSpace.

4.1.3 Conclusions
We can apply our awareness management abstraction

in several ways to solve this problem. [1] describes
another possible way to solve the conference table
problem.

The Aura policy used in this solution is similar to the
spatial model of interaction used in MASSIVE-1 and can
be easily modified to be compatible with NPSNET [10].
To be compatible with NPSNET [10] one would use
square auras in a discrete referential, this would be equal
to the fixed regions called cells. As in NPSNET users

define areas of interest trough auras it would be
compatible with our Aura policy. Our “all-see-all” policy
could be modified to be compatible with RING [7] just by
adding rules that express that if a user sees an object but
had another object intersecting the direct line between the
user and the first object then the user would not be able to
see the first object. By having such an expressiveness
power our framework covers most of the related work
with just two policies with minor adaptations. The
microphone, in this example is treated like a property.
That extends the information range. For instance, if an
audience member has a microphone he can be heard by
the invited speakers. This kind of property that modifies
an user awareness is used in policies based on properties.
In this example, the Aura policy used is composed with
this microphone property to allow the users to extend
their awareness range when desired.

In the rest of this section, we present several iterations
of the conference table problem by adding additional
requirements and apply an incremental development
where each solution is based on the previous one. This
shows the quality of incremental development of our
awareness management abstraction. Each iteration
exercises a different part of the abstraction, globally
demonstrating the expressiveness power of the
abstraction.

4.2 Conference table – iterations

Having solved the conference table with a solution that

uses the MOOSCo framework, now we will introduce
several requirements that aren’t addressed by the previous
solution. Each iteration will be achieved by incremental
development of the previous solution.

4.2.1 First iteration - Invited speakers with just one
microphone

In this iteration, we introduce the following restriction:
• Only one invited speaker may be heard by the

audience members at a giving moment
At first sight, the basic solution would solve this, but

notice that by allowing just one invited speaker to be
heard by the audience members, we still allow other
invited speakers to speak among themselves.

4.2.1.1 Solution
Unlike the last solution, we now have three

interactions to deal with:
• Between invited speakers
• Between the invited speaker allowed to speak

and the audience members
• Between audience members
To solve this iteration, we divide the Invited speaker

InterestSpace used in the last solution into two
InterestSpaces. Once again, the number of interactions we
have to deal with equals the number of InterestSpaces the
solution has.

4.2.1.2 Implementation details
Each person is defined as described in the last solution.
The environment is divided into three InterestSpaces:
Invited speaker InterestSpace – This InterestSpace

enables invited speakers to have access to the information
provided by other invited speakers. This InterestSpace
uses an “all-see-all” policy. The scopes and parties of the
inivited speakers are placed in this InterestSpace.

Microphone InterestSpace – This InterestSpace
allows everyone to have access to the information
expressed by the invited speakers or audience members
with the microphone. This interestSpace inclues the all
the parties defined and the scope of the person that has
has the microphone. It applies the “all-see-all” policy.

• Audience member InterestSpace – This
InterestSpace is defined as before.

4.2.1.3 Brief discussion
The most visible change form the previous iteration is

the number of InterestSpaces required to solve the
conference table problem. We could present a solution
that would not change the number of InterestSpaces. For
instance, we could, instead of inserting the audience
member parties in the invited speakers InterestSpace as in
the basic implementation do the opposite, insert the
invited speakers scopes (expresses the information) into
the audience members InterestSpace. This would of
course bring another problem, when an audience member
possesses a microphone one would have to insert his
scope in the invited speakers InterestSpace and change his
scope expression in the audience members InterestSpace.
This isn’t a trivial matter, as there aren’t any restrictions
to the “geometry” of an InterestSpace. So by choosing to
increase the number of InterestSpaces we demonstrated
some expressiveness power of the framework and the
small number of changes we have to do to the previous
implementation while keeping the solution easy to
understand.

4.2.2 Second iteration - Invited speakers interact by
proximity

In this iteraction we change the way the invited
speakers interact among themselves. Instead of, allowing
invited speakers to hear every other invited speaker we
apply the following rule:

• An invited speaker hears other invited speaker
when

o The invited speaker is in his proximity
o The invited speaker has a microphone

4.2.2.1 Solution
In the previous solution we had three InterestSpaces.

One of those InterestSpaces manages the interaction
between invited speakers. To solve this new rule all we
have to do is change that InterestSpace policy to an Aura
policy.

4.2.2.2 Implementation details
Each person is defined as described in the last solution.

The environment is divided into three InterestSpaces,
as in the last solution. In this solution, we only change the
definition of the Invited speaker InterestSpace. Now this
InterestSpace enables invited speakers access to the
information expressed by other invited speakers if they
are near. This InterestSpace uses an Aura policy. The
scopes and parties of all invited speakers are inserted in
this InterestSpace.

4.2.2.3 Brief discussion
This iteration clearly shows the flexibility of the

framework. At code level all we have to do is change the
code line where we create the invited speaker
InterestSpace policy to associate it with an Aura policy.

4.2.3 Third iteration - Invited speakers can comment
between them

In the previous iterations an invited speaker could not
say something to someone without, at least, everyone
within range hear it too. In this iteration, an invited
speaker is able to specify who is supposed to hear what he
is saying. Note that having or not a microphone does not
matter. If an invited speaker wants to comment
something, just the ones he chooses would hear them.
Comments can only be done between invited speakers.

4.2.3.1 Solution
This iteration brings two additional problems. The first

one is how an invited speaker with a microphone
comments something. The second is how one expresses
who’s supposed to hear and who’s not. To solve the first
problem we have to change the invited speakers’
InterestSpace. The scope used in this InterestSpace must
be different from the one used in the microphone
InterestSpace, this means that each invited speaker is
composed of two scopes and a InterestedParty. The
InterestSpace policy, and scopes, would have to take into
account the target invited speakers.

4.2.3.2 Implementation details
Each audience member is defined as described in the

last solution.
Each invited speaker is defined an InterestedParty and

two scopes. One scope, called comment scope, is inserted
in the invited speaker InterestSpace and expresses
comment information. The second one, called normal
scope, is inserted into the microphone InterestSpace when
the invited speaker has the microphone.

• The environment is divided into three
InterestSpaces. In this iteration we have to change the
definition of the invited speaker InterestSpace. The other
two InterestSpace’s are identical to the previous solution.
The invited speaker InterestSpace enables invited
speakers to have access to the information expressed by
other invited speakers. Now this InterestSpace uses an
Aura policy that expresses target invited speakers. When
an InterestExpression of a user A intersects a
ScopeExpression of a user B and the ScopeExpression
expresses that the user A is a target user for this

information, user A’s party joins user B’s scope. The
parties and comment scopes of all invited speakers are
added to this InterestSpace.

4.2.3.3 Brief discussion
Having the invited speakers composed by two scopes

and a party is not an odd or a rare option. To solve this
kind of problem where the same entity broadcasts two
distinct types of information it is necessary to have
different scopes, with different expressions that describe
that information scopes. Our abstraction is sufficiently
expressive to support this capability.

In this solution we added classes that did not exist in
the previous solution (the new scope) and changed, once
more, the policy of one InterestSpace to cope with the
new requirement. We where able to use most of the code
developed to solve the previous solution. We only had to
modify three code lines of the previous implementation
and add the new classes to implement the new solution.
This shows the incremental development quality of our
abstraction.

4.2.4 Fourth iteration - Invited speaker microphone
has a range

In the previous iterations we treated the microphone as
a property of the invited speakers or the audience. To
improve the example we will treat the microphone like a
real object and not a property. This can be described in
the following rule: The invited speakers can use (talk to)
the microphone only if they are in the microphone
proximity. Otherwise the invited speakers can only
comment among themselves.

4.2.4.1 Solution
With this example we take the following conclusions

about the qualities referred above:
To treat the microphone like a real object we need to

define it as an InterestedParty (his range) and a Scope
(that represents the sound system range connected to the
microphone). The interaction between invited speakers
and audience members is done through the microphone.

Unlike the previous solution the invited speaker does
not need to define two scopes. Now, the second scope that
was inserted in the microphone InterestSpace is replaced
by the microphone scope.

In this solution we keep the architecture of the
previous solution, maintain the same number of
InterestSpaces, but change where each Scope and
InterestedParty is inserted. In this solution the only
scopes inserted in the microphone InterestSpace are the
microphones Scopes. The other Scopes interact with the
microphone InterestedParty and not directly with the
listeners InterestedParty

4.2.4.2 Implementation details
The microphone is defined using a Scope and an

InterestedParty. The Scope represents the information the
microphone wants to express and the InterestedParty

represent the interest the microphone expresses to hear all
sounds that are in its range.

Both audience members and invited speakers are
composed by a Scope and an InterestedParty likewise to
what we have defined in the previous iteration. The Scope
represents what that person says and the InterestedParty
represents what the person can hear.

The envioremnt is, again, represented by three
InterestSpaces. The audience member InterestSpace is
equal to the one defined in the previous iteration. The
invited speaker and microphone InterestSpaces are now
defined as follows. The invited speaker InterestSpace uses
the same policy used in the last solution. The Scopes
parties of all invited speakers and the microphone’s
parties are added to this InterestSpace. When an invited
speaker wants to talk to the microphone, he must include
it in his Scope Expression. Finally, the microphone
InterestSpace enables everyone to have access to the
information expressed by the invited speakers or audience
members with microphone. This InterestSpace uses an
“all-see-all” policy. The parties of all audience members
and invited speakers and the Scopes of the microphone
are inserted in this InterestSpace.

4.2.4.3 Brief discussion
This iteration shows the expressiveness power and the

incremental development, qualities of the abstraction.
The expressiveness power quality is shown by

transforming the microphone from a person’s property
into an entity described like the invited speakers or
audience members. One could go to the extreme and
represent everything like this, even the sound speakers or
the conference table.

To implement this solution we can reuse all entities,
apart from the microphone defined on the previous
iteration, thus demonstrating the incremental development
quality. The way of acquiring a microphone must change
but the code responsible for this does not belong to the
abstraction but to the domain logic inserted to deal with
microphone ownership.

We would like to remark that by combining the Aura
policy with the microphone entity one allows a user to be
aware of other users that his aura alone would not enable
him to be aware of the others. This emulates the third-
party objects concept used in MASSIVE-2 [9] that affects
the users by changing their values of aura, focus and
nimbus.

4.2.5 Fifth iteration – More than one conference table
So far, we have considered that there is a single

conference table. In this iteration we consider the
existence of several conference tables, side by side, and a
user can jump from one to another. A user from a
conference table can see the topic that are being discussed
in the conference tables adjacent his conference table he’s
in and, at any given moment, the user can leave one

conference to join another. A user cannot be in two
conference tables at the same time.

4.2.5.1 Solution
To be able to deal with several conference tables, we have
to compose policies to obtain the desired effect.
Moreover, we need to create a way to represent the
various conference tables and their interaction. The
conference tables need to interact so that the topic of each
table is forwared to its adjacent conference table. The
solution of this iteration is as follows. First, we create a
class, we call it conference, that contains a Scope, an
interestedParty, a conference table, and that conference
table’s topic. We call instances of this class locales. The
Scope of a locale express which locales are adjacent to it.
The interestedParty represents the locale in the awareness
policy. Second, we create an InterestSpace that manages
the interaction between locales and satisfies the problem
requirements. And encapsulate the conference table
solution in the locales inserted in this new InterestSpace.

4.2.5.2 Implementation details
The implementation assumes each conference table is

an object of conference type that implements the previous
solution. Invited speakers and audience members
maintain the same composition as described in the
previous solution.

We define a new InterestSpace, called Locale
InterestSpace that has a new kind of policy. This
InterestSpace enables the interaction between the various
locales. The Scopes and interestedParties of locales are
inserted in this InterestSpace. To solve the interaction
between conference tables, the locale InterestSpace use a
new awareness policy. This policy consists in allowing
the locales to see just their adjacent locales. The adjacent
locales are expressed thought the Scope. When a locale is
adjacent to another locale it sends its topic to the other
locale. Whenever a user enters a locale, he is inserted in
the locale conference table. A user can move to any of the
adjacent locales of his locale. If the user decides to move,
he is removed from the locale conference table and is
inserted into the new locale conference table.

4.2.5.3 Brief discussion
This new policy, where the Scopes indicate who is

adjacent to whom, is compatible to the SPLINE spatial
regions and can even be more powerful since it allows
each user to be aware of much more that just their
immediate neighbours. For instance, if our locale
InterestSpace implements an Aura policy, each locale
would have, as adjacent, all the locales within his
interestedParty range. If each locale has a different
conference table awareness the example is comparable to
the MASSIVE-3 adaptation of the SPLINE model.

The possibility to have InterestSpaces within
InterestSpaces allows us even more expressiveness of our
abstraction. This way we can have several spatial regions
each of them with a different policy.

This example also shows that we can use the previous
solution by composing policies which helps the
development of a project.

5. EVALUATION

In this section we discuss what qualities we can be

extracted from the various iterations.
Expressiveness power. Each iteration offers a

different problem to solve and the abstraction is powerful
enough to handle each problem in an efficient and elegant
way thus effectively solving each iteration. The
abstraction solves the basic problem and all the iteration
with a minimum change from the basic solution. For
instance, in the second iteration all we had to do was
change the InterestSpace policy. Moreover we have
shown that for the same problem, the abstraction can
present several solutions with different kinds of
advantages. We can then conclude that the abstraction has
the proposed expressiveness power.

Incremental development. Starting at the basic
problem and going through the various iterations, we can
identify a strong similarity in the solutions. This means
that the incremental development identified as a goal was
achieved. We can use the abstraction to solve parts of the
problem and then use incremental development to solve
the rest of the problem. Each solution improves the
previous one by replacing something on that solution or
by adding something new. Since the problems are
incremental, each solution builds on the previous one and
does not need to remove any concepts that still apply. If
there is a change of perspective (like in the “microphone-
as-property” to microphone-as-entity change) the only
code that changes is the one that relates not to the
framework usage but with functional portions that need to
change to cope with the new requirements. For instance,
in the fourth iteration the invited speakers stopped owning
a microphone since now the microphones are entities.
This means that the abstractions are well defined and
support the problem with accuracy. One example of this is
the fifth iteration where the abstraction was composed to
solve the problem. If the abstractions were not well
defined that would not be possible.

Easy to use. The basic awareness management
abstraction is composed of six concepts. Having so few
concepts means that the framework is not hard to learn,
use or even change. Nonetheless it has sufficient concepts
that divide the problem into independent pieces of code
which can be extended according to one’s needs. For
example if one wanted to hear or see further it would
change his InterestExpression and if one would need to
hear different languages one would add additional
InterestedParties. To change the way two people interact,
we need to change the Awareness Policy. All this allows
the programmer to write less code and have simple

primitives to develop awareness solutions. For example to
create a policy and InterestSpace, the policy is already
defined, all we have to do is:

• policy = new AuraPolicy();
• space = new InterestSpace(“name”, policy);

By dividing the problem, into independent problems
the framework has well defined spots of evolution. This
means one can build a generic solution to a problem using
the various concepts given by the framework and then fill
in the gaps to achieve a specific solution. An example is
given with the conference table where the generic solution
consists of three InterestSpaces and one Scope and Party
for each person. For each iteration of the conference
problem we adapted that solution to solve the particular
problem presented. Another question is why did we
choose those solutions to the problems presented and not
other possible solutions? To answer this question we use a
real example. Consider the following situation: John is
trying to say something to Mary but Mary is twenty
meters away and does not seem to listen. What could we
do in this example? Assuming we could do some absurd
things in real life, we could do the following:

• Improve Mary’s hearing so that she could hear
John twenty meters away

• Change wave physics so that anyone could hear
anyone. This would solve the problem even if John was
one kilometer away

• Move Mary or John closer to one another so they
could hear each other loud and clear

• Ask John to speak louder. This last solution
seems the easier and best solution to the problem.

This problem can be solved by the framework as
follows. John has a Scope, Mary has an InterestedParty
and they are both inserted into an InterestSpace with an
Aura policy. In our framework the above solutions
correspond to:

• Increase the interestExpression range
• Modify the Aura policy to an “all-see-all” policy
• Move the Scope or Party so that their

Expressions intersect
• Increase the ScopeExpression range
The solutions we chose in section four are those that

make more sense. The framework is flexible enough to
support with several solutions to the same problem. But
as in real life, some of those solutions do not make sense.
The solutions chosen are the most adaptable and the ones
where the inserted code is more generic thus allowing
more iterations to be done on top of them.

6. CONCLUSION

In this paper, we presented our solution to the

awareness management problem. Our solution has the
following qualities: expressiveness power, incremental

development and easy to use. Our solution improves the
time to design a solution since the framework is easy to
use, the time to develop the basic solution since there is a
small set of concepts to apply and even improves the
reiterations (correct concepts, well defined spots to insert
domain code and high code reusability). Due to the
incremental development property, programmers can
develop a basic solution and then build more complex
solutions on top without wasting valuable resources. One
problem our abstraction cannot solve is the fading of the
information. For instance, when a police car, with its
sirens on, starts moving away from a person, she should
ear the sound fading away. It does not stop hearing the
sirens just because the police car is too far. The current
abstraction does not handle continuous expressions of
information just discrete expressions that define when you
can receive or not the information. This issue is being
addressed by adding a filter abstraction. This seems to be
a promising path of evolution for the framework. Filters
are entities that transform information. Placed between
scopes and parties they can be used to change the
information being transmitted. The challenge here is
maintaining the separation between information definition
and information propagation, since a filter should be
independent of how the information it filters gets
propagated.

7. ACKNOWLEDGMENTS

This work was partially funded by Fundação para a

Ciência e Tecnologia, Praxis/ C/ EEI/ 33127/ 1999
MOOSCo.

8. REFERENCES

[1] M. Antunes, A. R. Silva, and J. Martins. An

Abstraction for Awareness Management in Collaborative
Virtual Environments. In Virtual Reality Software &
Technology 2001(VRST 2001), Banff, Alberta, Canada,
November 2001. ACM SIGGRAPH.

[2] M. Antunes, H. Miranda, A. R. Silva, L.
Rodrigues, and J. Martins. Separating replication from
distributed communication: Problems and solutions. In
International Workshop on Distributed Dynamic
Multiservice Architectures (DDMA 2001), pages 103–
108, Phoenix, Arizona, USA, April 2001. IEEE.

[3] M. Antunes and A. R. Silva. Using separation
and composition of concerns to build multiuser virtual
environments. In 6th International Workshop on
Groupware (Criwg’2000), Portugal, October 2000. IEEE.

[4] J. Barrus, R. Waters, and D. Anderson. Locales:
Supporting Large Multiuser Virtual Environments. In
IEEE CG and Applications, November 1996.

[5] S. Benford and L. Fahln. A Spatial Model of
Interaction in Large Virtual Environments. In
Proceedings ECSCW’93, Milan, Italy, September 1993.

[6] P. Dourish and V. Bellotti. Awareness and
coordination in shared workspaces. In In Proc. Computer
Supported Cooperative Work (CSCW ‘92), 1992.

[7] T. Funkhouser. Ring: A Client-Server System
for Multi-User Virtual Environments. In Proceedings of
the 1995 Symposium on Interactive 3D Graphics, pages
85–92. ACM SIGGRAPH, March 1995.

[8] C. Greenhalg, J. Pubrick, and D. Snowdon.
Inside MASSIVE-3: Flexible support for data consistency
and world structuring. In Proceedings of the 3rd
International Conference on Collaborative Virtual
Environments, (CVE’2000), San Francisco, California,
USA, September 2000. ACM Press.

[9] C. Greenhalgh and S. Benford. Boundaries,
Awareness and Interaction in Collaborative Virtual
Environments. In Proceedings of the 6th Workshop on
Enabling Technologies (WET-ICE ’97) Infrastructure for
Collaborative Enterprise, Cambridge, Massachusetts,
USA, June 1997. IEEE Computer Society Press.

[10] M. Macedonia, M. Zyda, D. Pratt, D. Brutzman,
and P. Barham. Exploiting Reality with Multicast Groups.
In IEEE CG and Applications, September 1995.

