
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

GitSEED: A Git-backed Automated Assessment Tool for Software
Engineering and Programming Education

Pedro Orvalho
pmorvalho@tecnico.ulisboa.pt

INESC-ID, IST, U. Lisboa
Lisboa, Portugal

Mikoláš Janota
mikolas.janota@cvut.cz

Czech Technical University in Prague
Prague, Czech Republic

Vasco Manquinho
vasco.manquinho@tecnico.ulisboa.pt

INESC-ID, IST, U. Lisboa
Lisboa, Portugal

Abstract

Due to the substantial number of enrollments in programming
courses, a key challenge is delivering personalized feedback to stu-
dents. The nature of this feedback varies significantly, contingent on
the subject and the chosen evaluation method. However, tailoring
current Automated Assessment Tools (AATs) to integrate other pro-
gram analysis tools is not straightforward. Moreover, AATs usually
support only specific programming languages, providing feedback
exclusively through dedicated websites based on test suites.

This paper introduces GitSEED, a language-agnostic automated
assessment tool designed for Programming Education and Software
Engineering (SE) and backed by GitLab. The students interact with
GitSEED through GitLab. Using GitSEED, students in Computer
Science (CS) and SE can master the fundamentals of git while receiv-
ing personalized feedback on their programming assignments and
projects. Furthermore, faculty members can easily tailor GitSEED’s
pipeline by integrating various code evaluation tools (e.g., mem-
ory leak detection, fault localization, program repair, etc.) to offer
personalized feedback that aligns with the needs of each CS/SE
course. Our experiments assess GitSEED’s efficacy via comprehen-
sive user evaluation, examining the impact of feedback mechanisms
and features on student learning outcomes. Findings reveal positive
correlations between GitSEED usage and student engagement.

CCS Concepts

•Applied computing→Computer-assisted instruction; Inter-
active learning environments; Computer-managed instruc-

tion; E-learning; Collaborative learning.

Keywords

Automated Assessment Tools, Programming Education, Software
Engineering Education, Computer-aided Education, Git

1 Introduction

The increasing need for programming and Software Engineering
(SE) education has led to the emergence of various online courses,
including Massive Open Online Courses (MOOCs) [11, 18, 19]. Pro-
viding feedback to CS students on their programming assignments
and projects demands considerable time and effort from the faculty.
Thus, there is a rising demand for systems, such as Automated
Assessment Tools (AATs), that can deliver automated, comprehen-
sive, and personalized feedback to students. When compared to
non-automated evaluators, such as teaching assistants, AATs can
evaluate several assignments or code submissions efficiently and
quickly. Hence, AATs facilitate the learning process since students
get their feedbackmuch faster. Moreover, AATs offer objectivity and
consistency, adhering to some evaluation metric (e.g., a test suite).

The interest and development of AATs dates back to the 1960s [12,
27]. Over the past two decades, there has been a surge in the growth
and adoption of AATs [1, 4, 8, 14, 26, 28, 32]. However, despite
the remarkable growth in the development and usage of AATs,
certain drawbacks have become increasingly apparent. Primarily,
a majority of AATs [4, 14] merely display the outcomes of a set
of input/output tests used for the student’s evaluation and lack
other kinds of feedback. Secondly, ATTs tend to be specific to one
programming language or a limited set of languages. AATs that are
language-agnostic are scarce [8, 28]. Thirdly, AATs typically offer
feedback solely through dedicated websites, necessitating students
to familiarize themselves with new GUI interfaces. Finally, it is
either challenging or impractical to adapt most AATs to integrate
other program analysis tools, which might be essential to provide
more personalized feedback in some CS/SE courses.

This paper introduces GitSEED, a new tool that overcomes
the aforementioned limitations of previous AATs. GitSEED is a
novel Git-backed AAT for Software Engineering and Programming
Education. Figure 1 presents the overview of GitSEED. As Figure 1
shows, the students interact with GitSEED through GitLab. This
way, CS/SE students can learn the fundamentals of git while re-
ceiving personalized feedback on their programming assignments
and projects. Afterwards, using GitLab’s runners, GitSEED is no-
tified whenever there is a new submission from group X. GitSEED
evaluates this new submission against a test suite and using pro-
gram analysis tools defined by the faculty. Finally, the resulting
evaluation report is pushed into X’s git repository (repo) so that
the students have access to personalized feedback right away.

Furthermore, GitSEED is language agnostic, i.e., it can be used
for any CS/SE course no matter the programming language(s) used.
Moreover, most CS/SE students are familiar or will be familiar
throughout their courses, with several git web interfaces (e.g., Git-
Lab, GitHub, Gitea). Therefore, GitSEED eliminates the necessity
for students to acquaint themselves with an unfamiliar GUI in-
terface, which happens frequently in several universities where
different CS/SE courses use different GUI interfaces for automated
assessment of programming tasks [1, 4, 8, 14, 27].

GitSEED has two different categories of assessments: labs and
projects. Either one is optional, and it is possible to have an un-
limited number of projects depending on the chosen configuration.
Faculty can choose which assessment model aligns best with their
courses. Moreover, faculty members can easily tailor the pipeline
of GitSEED, enhancing the quality of feedback provided to the
students aligned with the needs of each course. For example, code
evaluation tools can be integrated into GitSEED, such as memory
leak detection [17], fault localization [23], program repair [11, 24],
plagiarism detection [31], code coverage [9], among others [7, 25].

1

https://orcid.org/0000-0002-7407-5967
https://orcid.org/0000-0003-3487-784X
https://orcid.org/0000-0002-4205-2189


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Pedro Orvalho, Mikoláš Janota, and Vasco Manquinho

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

1) Code
Submission

GitSEEDGitLab

Student/Group X

Course Group

X's Git Repo
X's 

Code

Feedback/
Evaluation Results 

(README)

2) Alert
new submission Test 

Suite

3) Code Evaluation

X's Code 

Program 
Analysis Tool(s)

Successful/Unsuccessful X's Feedback

README

4) Pushes the 
feedback to X's repo

5) Get feedback 
form GitLab

Figure 1: The overview of GitSEED.

The paper is organized as follows. Section 2 presents the imple-
mentation and possible configurations of GitSEED in more detail.
GitSEED has already proven successful in two separate courses,
a first-year programming course and a CS graduate course. Sec-
tion 3 discusses our experiments and evaluates the effectiveness of
GitSEED in enhancing programming education. Through the anal-
ysis of feedback from students enrolled in a first-year undergradu-
ate course, we explore the role of GitSEED’s features, including
dashboards and feedback mechanisms, in facilitating learning and
improving student performance. Finally, Section 4 briefly reviews
related work, and the paper concludes in Section 5.

To summarize, this paper makes the following contributions:

• We present GitSEED, an open-source language-agnostic auto-
mated assessment tool designed for Software Engineering (SE)
and Programming Education and backed by GitLab;

• GitSEED is integrated into GitLab’s continuous integration
(CI) workflow, which adopts educational assessment within a
professional version control platform rather than a dedicated
website, like so many other AATs;

• Students interact with GitSEED through GitLab, learning this
way the fundamentals of git while receiving personalized feed-
back on their assignments;

• Faculty members can easily adapt GitSEED by integrating other
code analysis tools to offer personalized feedback that aligns
with the needs of each CS/SE course.

• GitSEED is publicly available onGitLab [20] and onZenodo [22].

2 GitSEED

This section presents the internals of GitSEED and configuration
options. Section 2.1 describes the GitLab features required by Git-
SEED. Next, Section 2.2 focuses on the back-end of GitSEED and
its workflow, and Section 2.3 details the measures taken in order
to ensure that all stages of the GitSEED pipeline are safe. Finally,
Section 2.4 explains our implementation of GitSEED.

2.1 GitLab

Figure 2 illustrates the complete workflow of GitSEED, where
GitLab plays the role of an intermediary between the students
and GitSEED. Notice that students only interact with GitLab, and
then GitLab triggers the processing of submissions in GitSEED.

Furthermore, GitSEEDwas designed to work with other git web in-
terfaces. Modern, widely-used programming editors/environments
(e.g., VS Code) already feature user-friendly interfaces for manag-
ing git repos. Hence, the submission process and getting feedback
can be easily done within the student’s programming environment,
eliminating the need to exit their coding workspace. Alternatively,
students can also use GitLab’s web interface.

2.1.1 GitLab Group, Subgroups and Course Repo. GitSEED expects
the following structure of groups in GitLab: a main GitLab group
with all the students (e.g., CS101), a subgroup for each distinct
evaluation element (e.g., labs, project, etc.), an additional subgroup
for feedback, and a git repo for the entire course (CS101, in Figure 2)
that contains all the course’s information and dashboards for each
evaluation element.

GitSEED has different repos for labs and projects. The rationale
behind this choice is that while labs remain open throughout the
semester, projects have distinct deadlines and may involve different
groups of students. Furthermore, the feedback can also be pushed
directly to the same git repos used by students for code submissions.
However, having two different repos, one for code submissions and
one for getting feedback, is the best approach for first-year students.
This approach mitigates the chances of merging conflicts or git
conflicts between students and GitSEED. Hence, GitSEED uses
different repos to simplify the students’ repos synchronization. This
way, students manage their code development repos, and GitSEED
only submits to the feedback repo.

In GitLab, each project member is assigned a role that deter-
mines which actions they can take in the git repo 1. In GitSEED,
students assume the role of “Developers” for their own repos (e.g.,
projects, labs), granting them read and write access. However, stu-
dents assume the role of “Reporters” for their feedback git repos
and in the course global project, granting them viewing but not
editing privileges. Note that the group of students can only see their
own feedback repo and not those of other groups. Finally, faculty
members hold the roles of “Maintainers” or “Owners” for all repos,
depending on the chosen configuration.

2.1.2 Continuous Integration (CI). GitSEED takes advantage of
the CI pipeline2 available on GitLab. The CI pipeline, essential

1https://docs.gitlab.com/ee/user/permissions.html
2https://docs.gitlab.com/ee/ci/

2

https://docs.gitlab.com/ee/user/permissions.html
https://docs.gitlab.com/ee/ci/


233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

GitSEED: A Git-backed Automated Assessment Tool for Software Engineering and Programming Education

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

1) Code
Submission

GitSEEDGitLabStudent/Group
X CS101 GitLab Group

X's Git Repo for Project 1

X's 
Code12) Monitor their 

progress using the 
global dashboard

2) GitLab
Runner
(CI Job)

Test 
Suite

5) Evaluation 
Procedure

X's Code 

Program 
Analysis Tool(s)

Succ./Unsucc. X's Feedback

README

9) Pushes the feedback to 
X's repo and the 
evaluated code

11) Get feedback 
form GitLab

Project1 GitLab Subgroup

...

Feedback Repo for X's Project 1

Feedback Subgroup for Project1

...

README

X's Code (tar) README

CS101 Global Git Repository

Project1 Dashboard

GitLab-runner User

Link to

3) Alerts GitSEED 
about X's submission

GitSEED User

4) Incrontab checks for new files and 
calls the evaluation procedure

6) Checks .gitlab-ci.yml for modifications

7) Checks if cool-down period was respected

If not

If yes

If yes

8) Evaluates X's code on a sandbox (safeexec)

10) Updates CS101 
Project1 

Dashboard

X's Code (tar)

Figure 2: Workflow of GitSEED for processing a new project submission from group X in CS101.

for testing and deploying software projects, operates through a
.gitlab-ci.yml script outlining all testing and deployment ac-
tions. It utilizes “runners”, agents executing these actions, such as
tests, as defined in the script.

GitLab Runner. GitSEED requires a GitLab runner to be in-
stalled and self-hosted in the machine where GitSEED is running
(e.g., a Linux virtual machine (VM)). In this machine, the runner
runs the job described in the .gitlab-ci.yml. The runner’s job
is to add information to GitSEED’s queue that student X made
a new submission to project Y. The faculty needs to adapt the
.gitlab-ci.yml based on the programming language(s) being
evaluated in the course. Distinct students can use different pro-
gramming languages for the same programming task.

2.2 GitSEED’s Back-end

Next, we detail the stages of the GitSEED workflow from Figure 2.

2.2.1 GitLabManager. The GitLab manager interacts with Git-
Lab and creates/modifies/clones all the necessary subgroups and
repos and assigns the students and faculty to their own repos. Git-
SEED works for single-student groups and for groups with several
students. Using the GitLabmanager, the faculty can easily manage
students’ access to their git repos. The students’ accesses can be
removed, for example, after a project deadline or if the students
modified something in the git repo that were not supposed to (e.g.,
.gitlab-ci.yml).

2.2.2 Assessments. GitSEED has two categories of assessments:
labs and projects. Either one is optional, and it is possible to have
an unlimited number of projects depending on the chosen configu-
ration. Each type of assessment has its own evaluation script.

Labs. GitSEED allows faculty members to publish each different
lab’s exercises in the student’s repos. Each lab corresponds to a
practical class. Additionally, with GitSEED, students who do not

finish all the lab exercises during the class can still conclude and
automatically check their implementations afterwards.

Projects. GitSEED allows the publication of the projects’ de-
scriptions and related data in the students’ repos. Moreover, after a
project’s deadline, faculty members can remove the students’ access
to write into their repos and then reevaluate all the projects one
last time. This last reevaluation might be necessary in case there
was any submission that was not assessed due to the cool-down
period (see description of cool-down periods next).

2.2.3 Commits Database. GitSEED maintains a database contain-
ing all students’ commits timestamps for every evaluation element.
The goal is to have a cool-down period for each different evaluation
element, ensuring that only the submissions respecting their previ-
ous cool-down period are evaluated. This measure is implemented
to prevent overloading GitSEED’s machine. Note that some CS/SE
courses have thousands of students, who tend to submit multiple
times, especially near project deadlines. Moreover, a cool-down
period forces students to think more thoroughly about their pro-
gram before making new submissions, as no new feedback will be
provided for commits made during this time. The default cool-down
period is set at 1 minute for lab exercises and 10 minutes for project
assignments. Nevertheless, these periods can be easily modified
(see Section 2.2.8). Furthermore, the feedback report (README) lets
the students know when their current cool-down period is over.

2.2.4 Dashboard. GitSEED keeps a dashboard/leaderboard for
each distinct evaluation element. These dashboards are automat-
ically posted by GitSEED in the course’s central git repo so all
students can monitor their progress with regard to their colleagues.
The dashboards keep track of each student/group’s number of suc-
cessful/unsuccessful tests, their number of submissions, and the
number of days since the beginning of the project/lab assignment.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Pedro Orvalho, Mikoláš Janota, and Vasco Manquinho

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

2.2.5 GitLab-Runner. The runner (see Section 2.1.2) needs to be
installed in the same machine where GitSEED is running and to
have write access to the folder that keeps track of new submissions.

2.2.6 Incrontab. The machine where GitSEED is installed has an
incrontab daemon that is triggered by the GitLab runner. The Git-
Lab runner adds the information that a new commit was performed
on a given repo, and that triggers the evaluation procedure.

2.2.7 Evaluation. During the evaluation process, GitSEED first
checks if the students modified the .gitlab-ci.yml script. If this
is the case, students lose their rights to push/modify the git repo
and are asked to reach out to faculty members. Otherwise,GitSEED
checks if the cool-down period was respected. If not, the student’s
new submission is not evaluated. Otherwise, if the cool-down period
was respected, then GitSEED proceeds to the next evaluation step.

safeexec. To run the students’ code safely, GitSEED uses safe-
exec [30] which is a lightweight sandbox for executing user pro-
grams. Alongside safeexec, other program analysis tools can be
run on the students’ code. After completing the evaluation, Git-
SEED submits the evaluation report (README) and a tar file con-
taining the evaluated code (e.g., a programming assignment’s im-
plementation) to the respective feedback repo. Finally, GitSEED
updates the respective dashboard in the course’s central git repo
with the student’s performance.

2.2.8 Configurations. GitSEED has several predefined configura-
tions that can be easily modified in the configuration file:
• Cool-down Period (default: 1 min): Amount of time students

need to wait between their own submissions;
• Output Visible (default: false): GitSEED shows (or does not) the

output of all tests to the students;
• Only First Wrong Output Visible (default: true): GitSEED only

shows students their first incorrect output. This option is only
used if the previous option is set to true;

• CPU Time Limit (default: 5 sec): GitSEED runs the students’
code with this CPU time limit for each test case;

• Memory Limit (default: 8 GB): GitSEED runs the students’ code
with this memory limit for each test case.

Easily Tailored. GitSEED’s current methods for evaluation are
fully language agnostic. The evaluation scripts can be easily tai-
lored to evaluate different programming languages. Furthermore,
faculty members can quickly adapt the GitSEED pipeline by inte-
grating or replacing various code evaluation tools (e.g., memory
leak detection, fault localization, program repair, plagiarism checks,
solution checkers) to offer personalized feedback that aligns with
the needs of each CS/SE course. Lastly, GitSEEDwas designed with
modularity in mind. On that account, one can easily remove, add,
or modify any component of GitSEED without compromising it.

2.3 Safety Measures

Several measures must be ensured for GitSEED to operate safely.
Firstly, the GitLab runner user needs to be granted write access to
GitSEED’s folder for new submissions. However, this user should
not have access to any other folders, as the GitLab runner executes
code from the .gitlab-ci.yml script, which may be tampered
with by students. By limiting access to only that folder, the GitLab

runner cannot alter or read anything else from GitSEED. Further-
more, GitSEED runs the students’ code using safeexec, which
simulates a sandbox controlling read/write accesses. Note that Git-
SEED is not dependent on safeexec. Due to GitSEED modularity,
safeexec can be quickly replaced with some other sandbox applica-
tion. Lastly, given the crucial role of .gitlab-ci.yml inGitSEED’s
functionality, this script is added to the gitignore file and students’
READMEs explicitly instruct them not to edit this yml script. Never-
theless, GitSEED checks for any tampering with this script before
evaluating the student’s code. If detected, GitSEED restricts the
student’s access to the repo until the faculty checks the situation.

2.4 Implementation

For this paper, we used a GitLab instance self-hosted at Instituto
Superior Técnico. The GitSEED system was deployed on a ded-
icated virtual machine running Linux (Debian 4.19) on a AMD
Opteron(TM) Processor 6276 with 16GB of RAM. Additionally, the
virtual machine hosted the gitlab-runner package, version 15.9.1.
GitSEED is implemented using bash and python3 (version 3.9.16).
GitSEED uses bash to execute and evaluate the students’ code. On
the other hand, GitSEED relies on python3 and curl to communi-
cate with GitLab, through its API (v3.15.0). Furthermore, GitSEED
utilizes python3 and sqlite3 for the maintenance of the course’s
dashboards and the database containing the commit history.

3 Impact Discussion

This section discusses our experiments with GitSEED, between
Spring 2023 and Spring 2024, in two distinct academic courses at
Instituto Superior Técnico, a first-year undergraduate and a gradu-
ate course. GitSEED offers both formative and summative assess-
ments. Formative assignments, such as lab classes, remain accessible
throughout the semester, allowing students to revise until correct.
Summative assignments, such as projects, also permit unlimited
attempts but come with strict deadlines. Students were briefed
that formative assignments serve as learning aids, encouraging
exploration without fear of repercussions for errors. The aim is
for students to utilize GitSEED until mastery is achieved. Con-
versely, summative assignments serve as assessments of acquired
knowledge and skill, showcasing proficiency in the subject. Since
these summative assignments require more computation time and
memory, higher cool-down periods were established between each
group’s submissions, to prevent overloading GitSEED’s machine.

3.1 Courses Setup

3.1.1 Undergraduate Course (Spring 2023). GitSEED was ini-
tially used in Spring 2023 in a first-year undergraduate course,
Introduction to programming in C, with a total of 528 enrolled
students. GitSEED was used to assess this course’s labs (formative
assignments) and projects (summative assignments).

Assignments. For formative assignments, GitSEED created indi-
vidual git repos for the lab classes. Configuration settings included
a one-minute cool-down period, a five-second CPU time limit, and
an 8GB memory limit for each programming assignment across
eight labs. Throughout these eight labs, students made a total of
10338 code contributions to their repos. Regarding the summative
assignments, this course had two different programming projects,

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

GitSEED: A Git-backed Automated Assessment Tool for Software Engineering and Programming Education

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

each configured for single-student groups. Configuration settings
included a five-second CPU time limit, a 16GB memory limit, and a
10-minute cool-down period for project evaluations. Students made
a total of 15061 code contributions to their repos, 7916 to the first
project and 7145 to the second one.

Program Analysis Tools. For projects evaluation, GitSEED was
tailored to: (1) identify forbidden libraries in student projects, and (2)
run valgrind [17] to detect memory leaks in their code. Providing
feedback on memory leaks proved beneficial, particularly for first-
year students unfamiliar with these tools.

Opportunities for improvement. Throughout the course, we no-
ticed that some students forgot to pull the feedback from GitLab
to their local repos before pushing new modifications, resulting in
git-merge issues. Consequently, GitLab’s CI would ignore these
commits. This happened because students use GitLab web inter-
face to get their feedback while coding in their local git repos. To
address this issue, GitSEED now publishes feedback in separate
repositories, with students’ READMEs containing links for easy
synchronization, especially for first-year students.

3.1.2 Graduate Course (Fall 2023). In Fall 2023, GitSEED was
also used in a graduate course on Automated Reasoning with 38
students. The project consisted of solving an NP-Hard optimiza-
tion problem through a Boolean logic solver using Python. There
were 21 groups, each consisting of a maximum of two students.
Configuration settings included a one-minute CPU time limit, a
16GB memory limit, and a 20-minute cool-down period for project
evaluations. Throughout the project, students made a total of 269
contributions to their repos. Once again, we customized GitSEED,
in this case, to incorporate both private and public test cases for
evaluating students’ code. Moreover, we also inserted additional
software into the GitSEED pipeline that gave students feedback
about the satisfiability and optimality of their projects’ solutions.

3.1.3 Undergraduate Course (Spring 2024). In Spring 2024,
GitSEED once again played a pivotal role by supporting the first-
year undergraduate course, Introduction to Programming in C,
which had a total enrollment of 509 students. GitSEED served as
the platform for assessing labs and projects in the course, employing
configurations similar to those outlined in Section 3.1.1. However,
notable adjustments were made for this course iteration.

Feedback. Feedback was provided in separate repositories based
on the insights gained from the previous year.

Program Analysis Tools. A significant enhancement was the in-
tegration of four additional program analysis tools into GitSEED:
CFaults, cppcheck, clang-tidy, and Lizard. Lizard [16] is a cy-
clomatic complexity analyzer for various programming languages,
aiding in evaluating code length and complexity. The fault localiza-
tion tool pinpointed faulty statements within the programs based
on a test suite. Additionally, cppcheck [6] and clang-tidy [2] are
static analyzers used to detect uninitialized variables and various
errors, such as division by zero. Finally, CFaults [21] is a formula-
based fault localization tool that pinpoints bug locations within the
programs. The insights generated by these tools were compiled into
feedback reports and appended alongside test-suite evaluation out-
comes in the students’ feedback repositories. The results from both

the fault localization tool and the static analyzers were presented
to students as “Hints”, strategically guiding them towards poten-
tial problematic statements within their programs. This approach
aimed to provide students with targeted assistance in identifying
and rectifying programming errors. Moreover,GitSEEDwas config-
ured to display only the first incorrect output to students, fostering
a focused learning environment.

3.2 User Study

In Spring 2024, we conducted a comprehensive user study with
students to gather valuable feedback on their experience with Git-
SEED, particularly focusing on its dashboards and the various types
of feedback provided by analysis tools, namely valgrind, lizard,
and “hints” (generated by fault localization and static analyzers).
Throughout the course, we noticed that incorporating motivational
elements, such as the dashboards available within GitSEED, effec-
tively encouraged student engagement and facilitated their progress.
Approximately 20% of the students who were enrolled in the course
for the entire semester took part in the questionnaire. They were
asked anonymously to evaluate the usefulness of the different feed-
back mechanisms and features of GitSEED they encountered dur-
ing the semester (see Appendix A). The findings revealed that stu-
dents perceived the following aspects as particularly beneficial:

GitSEED: 91.8% of students found GitSEED to be a valuable
resource. Its role in providing a centralized platform for assignment
submission, feedback reception, and revision evidently streamlined
the learning process and enhanced overall comprehension. Dash-
boards: 82.2% of students acknowledged the significance of dash-
boards in tracking their progress and monitoring their performance
relative to course objectives. Hints: Despite being less prevalent
than other feedback mechanisms, 68.5% of students recognized the
utility of hints generated by fault localization and static analyzers.
These hints acted as invaluable pointers, directing students towards
potential errors in their code and fostering a deeper understanding
of programming concepts through self-correction. Valgrind: 90.4%
of students found the feedback from valgrind to be beneficial. This
tool’s ability to detect memory management issues and provide
detailed diagnostics undoubtedly aided students in debugging their
programs and writing more robust code. Lizard: 75.3% of students
appreciated the insights offered by lizard, particularly its analysis
of code complexity and length. By highlighting areas of code that
might require simplification or restructuring, lizard contributed
to the optimization of students’ coding practices and the cultivation
of clearer, more efficient programming habits. In addition to eval-
uating the specific components of GitSEED, students were given
the opportunity to provide general feedback through short-answer
responses. These open-ended questions allowed students to express
their thoughts, suggestions, and concerns regarding their overall
experience with GitSEED. Overall, the user study underscored
the positive impact of GitSEED’s features and feedback mecha-
nisms on students’ learning experiences, reaffirming its value as a
comprehensive educational tool for programming courses.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Pedro Orvalho, Mikoláš Janota, and Vasco Manquinho

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

4 Related Work

Automated Assessment Tools (AATs). Over the past decades, there
has been a growing interest in the automated evaluation of Soft-
ware Engineering (SE) and Computer Science (CS) students [27].
Typically, AATs assess programming tasks using input/output (IO)
tests predefined by the course’s faculty. There exists a substan-
tial number of AATs that function as web-based Integrated Devel-
opment Environments (IDEs) for evaluating students’ code using
IO tests. Examples include CodeOcean [33],Mooshak [14], and
Web-Cat [8]. Enki [26] is also a web-based IDE although it offers
other kinds of pedagogical skills to the students, e.g., gamifica-
tion features. Furthermore, Autolab [1] and Submitty [28] are
open-source web-based course management platforms that auto-
matically grades students’ code. Autolab maintains scoreboards
for each evaluation element in order to motivate the students, while
Submitty provides an interface for Teaching Assistants (TAs) to
manually grade assignments. Additionally, Codeboard.io [4] is a
web-based IDE to teach programming tasks. Faculty members can
share programming exercises with the students. These exercises are
assessed using a result string or a set of predefined unit tests. The
set of programming languages available is limited and Codeboard.io
is difficult to tailor in order to get more personalized feedback for
the students. GradeStyle [13] serves as a code style marker tool
that provides feedback for assignments in Java by opening a GitHub
issue in each student’s repository. Moreover, gradescope [10] is
another online tool to administer and grade programming assign-
ments as well as other kinds of assessments (e.g., exams). However,
gradescope only has paid licenses for education.

GitHub Classroom [3] is an AAT tool available on GitHub
that allows faculty to create and manage digital classrooms and
assignments. GitHub Classroom uses the same mechanism of a
CI runner (GitHub Actions) to process student code and report on
quality aspects. GitHub Classroom shares several benefits with
GitSEED, is language agnostic, and enables students to learn the
fundamentals of git while receiving feedback on their assignments.
However, GitHub Classroom operates on a third-party platform.
There may be regulatory or institutional policies that restrict the
use of cloud-based services for certain types of data. On the other
hand, GitLab is open-source and can be self-hosted by educational
institutes. Additionally, GitHub Classroom may not seamlessly
integrate with existing learning management systems (LMS) used
by educational institutions. This lack of integration can result in
administrative challenges, such as maintaining separate platforms
for course materials, grades, and communication. While GitSEED
can be easily integrated with this kind of systems. Finally, while
GitHub Classroom is free to use, some advanced features or inte-
grations may require paid GitHub plans. For example, the number
of minutes available for GitHub Actions (CI) is limited per month.
Instructors may need to consider the cost of providing GitHub
accounts or repositories for students, especially in cases where insti-
tutional resources are limited. In contrast, educational institutions
can use the premium version of GitLab for free, and both GitLab
and GitSEED are open-source projects. Finally, it is worth not-
ing that there is no equivalent to GitHub Classroom on GitLab,
highlighting an opportunity for GitSEED to fill this gap.

Competitive Programming Contests (CPCs). CPCs are online plat-
forms that host programming contests. In these websites, students
and CS/SE professionals, engage in solving computational problems
under time/memory constraints. These contests serve as platforms
to assess and enhance problem-solving skills, algorithmic efficiency,
and programming proficiency. Typically, CPCs assess contestants’
code using an IO test suite. LeetCode [15], topcoder [34], Code-
forces [5], and replit [29] are among the most famous CPCs. Both
Codeforces [5] and replit [29] offer features for programming
education. However, the evaluation process relies solely on IO tests.

5 Conclusion

This paper presents GitSEED, an open-source, language-agnostic
automated assessment tool (AAT) seamlessly integrated with Git-
Lab. Students benefit from personalized feedback on programming
assignments and projects, mastering Git fundamentals simulta-
neously. Notably, GitSEED eliminates the need for students to
navigate new GUI interfaces. Integrated into GitLab’s continuous
integration (CI) workflow, GitSEED brings educational assessment
into a professional version control platform rather than a dedicated
web-based platform. Furthermore, faculty can easily customize
GitSEED’s pipeline with various code evaluation tools. Our experi-
ments showcased GitSEED’s success in both undergraduate and
graduate courses, affirming its efficacy in programming education.
It enhances student engagement and learning outcomes. Positive
student feedback highlights GitSEED contribution to active learn-
ing and a supportive educational environment.

Acknowledgments

This work was partially supported by Portuguese national funds
through FCT, under projects UIDB/50021/2020 (DOI: 10.54499/-
UIDB/50021/2020), PTDC/CCI-COM/2156/2021 (DOI: 10.54499/-
PTDC/CCI-COM/2156/2021) and 2022.03537.PTDC (DOI: 10.54499/-
2022.03537.PTDC) and grant SFRH/BD/07724/2020 (DOI: 10.54499/-
2020.07724.BD). PO acknowledges travel support from the EU’s
Horizon 2020 research and innovation programme under ELISE
Grant Agreement No 951847. This work was also supported by the
MEYS within the program ERC CZ under the project POSTMAN
no. LL1902 and co-funded by the EU under the project ROBOPROX
(reg. no. CZ.02.01.01/00/22_008/0004590). This article is part of the
RICAIP project funded by the EU’s Horizon 2020 research and
innovation program under grant agreement No 857306.

References

[1] autolab. 2023. https://autolabproject.com. Accessed: 2024-05-01.
[2] clang tidy. 2024. . https://clang.llvm.org/extra/clang-tidy/. Accessed: 2024-05-01.
[3] GitHub Classroom. 2024. . https://classroom.github.com. Accessed: 2024-05-01.
[4] Codeboard.io. 2023. https://codeboard.io. Accessed: 2024-05-01.
[5] Codeforces. 2023. https://codeforces.com. Accessed: 2024-05-01.
[6] cppcheck. 2024. . https://cppcheck.sourceforge.io. Accessed: 2024-05-01.
[7] Pedro da Silva. 2019. SQUARES : A SQL Synthesizer Using Query Reverse Engi-

neering. Master’s thesis. Instituto Superior Técnico, Lisboa, Portugal.
[8] Stephen H. Edwards and Manuel A. Pérez-Quiñones. 2008. Web-CAT: auto-

matically grading programming assignments. In Proceedings of the 13th An-
nual SIGCSE Conference on Innovation and Technology in Computer Science
Education, ITiCSE 2008, Madrid, Spain, June 30 - July 2, 2008, June Amillo,
Cary Laxer, Ernestina Menasalvas Ruiz, and Alison Young (Eds.). ACM, "", 328.
https://doi.org/10.1145/1384271.1384371

[9] gcov. 2024. . https://gcc.gnu.org/onlinedocs/gcc/Gcov.html. Accessed: 2024-05-
01.

[10] GradeScope. 2024. . https://www.gradescope.com. Accessed: 2024-05-01.
6

https://autolabproject.com
https://clang.llvm.org/extra/clang-tidy/
https://classroom.github.com
https://codeboard.io
https://codeforces.com
https://cppcheck.sourceforge.io
https://doi.org/10.1145/1384271.1384371
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://www.gradescope.com


697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

GitSEED: A Git-backed Automated Assessment Tool for Software Engineering and Programming Education

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

[11] Sumit Gulwani, Ivan Radicek, and Florian Zuleger. 2018. Automated clustering
and program repair for introductory programming assignments. In PLDI 2018.
ACM, "", 465–480.

[12] Jack Hollingsworth. 1960. Automatic graders for programming classes. Commun.
ACM 3, 10 (1960), 528–529. https://doi.org/10.1145/367415.367422

[13] Callum Iddon, Nasser Giacaman, and Valerio Terragni. 2023. GRADESTYLE:
GitHub-Integrated and Automated Assessment of Java Code Style. In 45th
IEEE/ACM International Conference on Software Engineering: Software Engineering
Education and Training, SEET@ICSE 2023, Melbourne, Australia, May 14-20, 2023.
IEEE, "", 192–197. https://doi.org/10.1109/ICSE-SEET58685.2023.00024

[14] José Paulo Leal and Fernando M. A. Silva. 2003. Mooshak: a Web-based multi-site
programming contest system. Softw. Pract. Exp. 33, 6 (2003), 567–581. https:
//doi.org/10.1002/spe.522

[15] Leetcode. 2023. https://leetcode.com. Accessed: 2024-05-01.
[16] Lizard. 2024. Lizard: A simple code complexity analyser. https://github.com/

terryyin/lizard. Accessed: 2024-05-01.
[17] Nicholas Nethercote and Julian Seward. 2003. Valgrind: A program supervision

framework. Electronic notes in theoretical computer science 89, 2 (2003), 44–66.
[18] Pedro Orvalho, Mikoláš Janota, and Vasco Manquinho. 2022. C-Pack of IPAs: A

C90 Program Benchmark of Introductory Programming Assignments. https:
//doi.org/10.48550/arXiv.2206.08768

[19] Pedro Orvalho, Mikolás Janota, and Vasco Manquinho. 2022. InvAASTCluster:
On Applying Invariant-Based Program Clustering to Introductory Programming
Assignments. CoRR abs/2206.14175 (2022). https://doi.org/10.48550/ARXIV.2206.
14175 arXiv:2206.14175

[20] Pedro Orvalho, Mikoláš Janota, and VascoManquinho. 2024. . https://gitlab.inesc-
id.pt/u020557/GitSEED. Accessed: 2024-09-10.

[21] Pedro Orvalho, Mikolás Janota, and Vasco Manquinho. 2024. CFaults: Model-
Based Diagnosis for Fault Localization in C Programs with Multiple Test Cases.
In Formal Methods - 26th International Symposium, FM 2024, Milan, Italy, 2024,
Proceedings (Lecture Notes in Computer Science, Vol. 14933). Springer, Cham, 463–
481. https://doi.org/10.1007/978-3-031-71162-6_24

[22] Pedro Orvalho, Mikoláš Janota, and Vasco Manquinho. 2024. GitSEED: A Git-
backed Automated Assessment Tool for Software Engineering Education. https:
//doi.org/10.5281/zenodo.13741158

[23] Pedro Orvalho, Mikolás Janota, and Vasco M. Manquinho. 2024. CFaults:
Model-Based Diagnosis for Fault Localization in C Programs with Multiple Test
Cases. CoRR abs/2407.09337 (2024). https://doi.org/10.48550/ARXIV.2407.09337
arXiv:2407.09337

[24] Pedro Orvalho, Jelle Piepenbrock, Mikolás Janota, and Vasco M. Manquinho.
2023. Graph Neural Networks for Mapping Variables Between Programs. In ECAI
2023 - 26th European Conference on Artificial Intelligence (Frontiers in Artificial
Intelligence and Applications, Vol. 372). IOS Press, Poland, 1811–1818. https:
//doi.org/10.3233/FAIA230468

[25] Pedro Orvalho, Miguel Terra-Neves, Miguel Ventura, Ruben Martins, and
Vasco M. Manquinho. 2019. Encodings for Enumeration-Based Program Syn-
thesis. In Principles and Practice of Constraint Programming - 25th International
Conference, CP 2019, Stamford, CT, USA, September 30 - October 4, 2019, Proceedings
(Lecture Notes in Computer Science, Vol. 11802), Thomas Schiex and Simon de Givry
(Eds.). Springer, ., 583–599. https://doi.org/10.1007/978-3-030-30048-7_34

[26] José Carlos Paiva, José Paulo Leal, and Ricardo Alexandre Peixoto de Queirós.
2016. Enki: A Pedagogical Services Aggregator for Learning Programming Lan-
guages. In Proceedings of the 2016 ACM Conference on Innovation and Technology

in Computer Science Education, ITiCSE 2016, Arequipa, Peru, July 9-13, 2016, Alison
Clear, Ernesto Cuadros-Vargas, Janet Carter, and Yván Túpac (Eds.). ACM, "",
332–337. https://doi.org/10.1145/2899415.2899441

[27] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated Assess-
ment in Computer Science Education: A State-of-the-Art Review. ACM Trans.
Comput. Educ. 22, 3 (2022), 34:1–34:40. https://doi.org/10.1145/3513140

[28] Matthew Peveler, Jeramey Tyler, Samuel Breese, Barbara Cutler, and Ana L.
Milanova. 2017. Submitty: An Open Source, Highly-Configurable Platform for
Grading of Programming Assignments (Abstract Only). In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education, SIGCSE
2017, Seattle, WA, USA, March 8-11, 2017, Michael E. Caspersen, Stephen H.
Edwards, Tiffany Barnes, and Daniel D. Garcia (Eds.). ACM, "", 641. https:
//doi.org/10.1145/3017680.3022384

[29] replit. 2023. https://replit.com. Accessed: 2024-05-01.
[30] safeexec. 2024. . https://github.com/ochko/safeexec. Accessed: 2024-05-01.
[31] Saul Schleimer, Daniel Shawcross Wilkerson, and Alexander Aiken. 2003. Win-

nowing: Local Algorithms for Document Fingerprinting. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data, San Diego,
California, USA, June 9-12, 2003, Alon Y. Halevy, Zachary G. Ives, and AnHai
Doan (Eds.). ACM, "", 76–85.

[32] Chad Sharp, Jelle van Assema, Brian Yu, Kareem Zidane, and David J. Malan. 2020.
An Open-Source, API-Based Framework for Assessing the Correctness of Code
in CS50. In Proceedings of the 2020 ACM Conference on Innovation and Technology
in Computer Science Education, ITiCSE 2020, Trondheim, Norway, June 15-19,
2020, Michail N. Giannakos, Guttorm Sindre, Andrew Luxton-Reilly, and Monica
Divitini (Eds.). ACM, "", 487–492. https://doi.org/10.1145/3341525.3387417

[33] Thomas Staubitz, Hauke Klement, Ralf Teusner, Jan Renz, and Christoph Meinel.
2016. CodeOcean - A versatile platform for practical programming excercises
in online environments. In 2016 IEEE Global Engineering Education Conference,
EDUCON 2016, Abu Dhabi, United Arab Emirates, April 10-13, 2016. IEEE, "",
314–323. https://doi.org/10.1109/EDUCON.2016.7474573

[34] topcoder. 2023. https://www.topcoder.com. Accessed: 2024-05-01.

A User Study Questions

• Q1. In your opinion, was the use of the code submission/evaluation
system in this course helpful?

• Q2. In your opinion, were the dashboards for the labs and the
project helpful?

• Q3. In your opinion, were the hints provided in the feedback for
Lab 2 submissions helpful?

• Q4. In your opinion, was the Valgrind report in the feedback for
the labs and project helpful?

• Q5. In your opinion, was the Lizard report in the project feedback
helpful?

• Q6. If you would like to leave any comments or suggestions,
please enter them here.

7

https://doi.org/10.1145/367415.367422
https://doi.org/10.1109/ICSE-SEET58685.2023.00024
https://doi.org/10.1002/spe.522
https://doi.org/10.1002/spe.522
https://leetcode.com
https://github.com/terryyin/lizard
https://github.com/terryyin/lizard
https://doi.org/10.48550/arXiv.2206.08768
https://doi.org/10.48550/arXiv.2206.08768
https://doi.org/10.48550/ARXIV.2206.14175
https://doi.org/10.48550/ARXIV.2206.14175
https://arxiv.org/abs/2206.14175
https://gitlab.inesc-id.pt/u020557/GitSEED
https://gitlab.inesc-id.pt/u020557/GitSEED
https://doi.org/10.1007/978-3-031-71162-6_24
https://doi.org/10.5281/zenodo.13741158
https://doi.org/10.5281/zenodo.13741158
https://doi.org/10.48550/ARXIV.2407.09337
https://arxiv.org/abs/2407.09337
https://doi.org/10.3233/FAIA230468
https://doi.org/10.3233/FAIA230468
https://doi.org/10.1007/978-3-030-30048-7_34
https://doi.org/10.1145/2899415.2899441
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3017680.3022384
https://doi.org/10.1145/3017680.3022384
https://replit.com
https://github.com/ochko/safeexec
https://doi.org/10.1145/3341525.3387417
https://doi.org/10.1109/EDUCON.2016.7474573
https://www.topcoder.com

	Abstract
	1 Introduction
	2 GitSEED
	2.1 GitLab
	2.2 GitSEED's Back-end
	2.3 Safety Measures
	2.4 Implementation

	3 Impact Discussion
	3.1 Courses Setup
	3.2 User Study

	4 Related Work
	5 Conclusion
	Acknowledgments
	References
	A User Study Questions

