
One-to-many Data Transformations

through Data Mappers

Paulo Carreira a,b, Helena Galhardas a, Antónia Lopes b,
João Pereira a

aINESC-ID and Technical University of Lisbon, Avenida Prof. Cavaco Silva,
Tagus Park, 2780-990, Porto-Salvo, Portugal

bFaculty of Sciences, University of Lisbon, C6 - Piso 3, 1749-016 Lisboa, Portugal

Abstract

The optimization capabilities of RDBMSs make them attractive for executing data
transformations. However, despite the fact that many useful data transformations
can be expressed as relational queries, an important class of data transformations
that produce several output tuples for a single input tuple cannot be expressed in
that way.

To overcome this limitation, we propose to extend Relational Algebra with a new
operator named data mapper. In this paper, we formalize the data mapper operator
and investigate some of its properties. We then propose a set of algebraic rewriting
rules that enable the logical optimization of expressions with mappers and prove
their correctness. Finally, we experimentally study the proposed optimizations and
identify the key factors that influence the optimization gains.

Key words: Data Warehousing, ETL, Data Mapper operator, Query optimization,
Relational algebra

1 Introduction

The setup of modern information systems comprises a number of activities
that rely, to a great extent, in the use of data transformations [LR99]. Well
known cases are migrations of legacy data, Extract-Transform-Load (ETL)

Email addresses: paulo.carreira@tagus.ist.utl.pt (Paulo Carreira),
hig@inesc-id.pt (Helena Galhardas), mal@di.fc.ul.pt (Antónia Lopes),
joao@inesc-id.pt (João Pereira).

Preprint submitted to Elsevier Science 29 August 2007

processes that support data warehousing, cleansing of data and integration of
data from multiple sources. This situation leads to the development of data
transformation programs that must move data instances from a fixed source
schema into a fixed target schema.

One natural way of expressing data transformations is to use a declarative
query language and specifying the data transformations as queries (or views)
over the source data. Because of the broad adoption of RDBMSs, such lan-
guage is often SQL, a language based on Relational Algebra (RA). Unfortu-
nately, due to its limited expressive power [AU79], RA alone cannot be used
to specify many important data transformations [LSS96].

To overcome these limitations, several alternatives have been adopted: (i)
the implementation of data transformation programs using a programming
language, such as C or Java, (ii) the use of an RDBMS proprietary language
like Oracle PL/SQL; or (iii) the development of data transformation scripts
using a commercial ETL tool. However, transformations expressed in this way
are often difficult to maintain, and more importantly, there is little room
for optimization [CGLP05]. We remark that only recently an optimization
technique for ETL processes was proposed [SVS05].

The normalization theory underlying the relational model imposes the orga-
nization of data according to several relations in order to avoid redundancy
and inconsistency of information. In Codd’s original model, new relations are
derived from the database by selecting, joining and unioning relations. Despite
the fact that RA expressions denote transformations among relations, the no-
tion that presided the design of RA (as noted by [AU79]) was that of retrieving
data. This notion, however, is insufficient for reconciling the substantial differ-
ences in the representation of data that occur between fixed source and target
schemas [Mil98].

One such difference occurs when the source data is an aggregation of the tar-
get data. For example, source data may consist of salaries aggregated by year,
while the target consists of salaries aggregated by month. The data transfor-
mation that has to take place needs to produce several tuples in the target
relation to represent each tuple of the source relation. We designate these data
transformations as one-to-many data mappings. As we will demonstrate in Sec-
tion 3.3, this class of data transformations cannot be expressed by standard
RA, even if we use the generalized projection operator [SKS01].

Our experience with the Ajax [GFSS00] data cleaning tool and with the Data
Fusion [CG04] legacy-data migration tool has shown that in the context of data
transformation, there is a considerable number of data transformations that
require one-to-many mappings. In fact, as recognized in [Gal01], an important
class of data transformations requires the inverse operation of the SQL group

2

Relation LOANS Relation PAYMENTS

ACCT AM

12 20.00

3456 140.00

901 250.00

ACCTNO AMOUNT SEQNO

0012 20.00 1

3456 100.00 1

3456 40.00 2

0901 100.00 1

0901 100.00 2

0901 50.00 3

Fig. 1. (a) On the left, the LOANS relation and, (b) on the right, the PAYMENTS
relation.

by/aggregates primitive so that, for each input tuple, they produce several
output tuples.

In this paper, we propose an extension to RA to represent one-to-many data
transformations. This extension is achieved through a new operator that, like
the generalized projection operator, relies on the use of arbitrary, external
functions.

There are two main reasons why we chose to extend RA. First, even though
RA is not expressive enough to capture the semantics of one-to-many map-
pings, we want to make use of the available expressiveness for the remaining
data transformations. Second, we intend to take advantage of the optimiza-
tion strategies that are implemented by relational database engines [Cha98].
Our decision to adopt database technology as the basis for data transforma-
tion is not new. Several RDBMSs, like Microsoft SQL Server, already include
additional software packages specifically designed for ETL tasks. However, to
the best of our knowledge, none of these extensions is grounded in database
theory. Therefore, the capabilities of relational engines, for example, in terms
of optimization opportunities are not fully exploited.

In the remainder of this section, we first present a motivating example to
illustrate the usefulness of one-to-many data transformations. Then, in Section
1.2, we highlight the contributions of this paper.

1.1 Motivating example

Here, we present a simple example of a data transformation that is a one-to-
many mapping. It is based on a real-world data migration scenario, that was
intentionally simplified for illustration purposes.

3

Example 1.1: Consider the source relation LOANS[ACCT, AM] (represented in
Figure 1) that stores the details of loans requested per account. Suppose LOANS

data must be transformed into PAYMENTS[ACCTNO, AMOUNT, SEQNO], the target
relation, according to the following requirements:

(1) In the target relation, all the account numbers are left padded with zeroes.
Thus, the attribute ACCTNO is obtained by (left) concatenating zeroes to
the value of ACCT.

(2) The target system does not support loan amounts superior to 100. The at-
tribute AMOUNT is obtained by breaking down the value of AM into multiple
installments with a maximum value of 100, such that the sum of amounts
for the same ACCTNO is equal to the source amount for the same account.
Furthermore, the target field SEQNO is a sequence number for the install-
ment. This sequence number starts at 1 for each sequence of installments
of a given account.

The implementation of data transformations similar to those requested for
producing the target relation PAYMENTS of Example 1.1 is challenging, since
solutions to the problem involve the dynamic creation of tuples based on the
value of the attribute AM.

1.2 Major contributions

This paper proposes to extend RA with the mapper operator, which signifi-
cantly increases its expressive power and, in particular, allows us to represent
one-to-many data transformations. Informally, a mapper is applied to an input
relation and produces an output relation. It iterates over the input tuples and
generates zero, one or more output tuples per input tuple, by applying a set of
domain-specific functions. In this way, it supports the dynamic creation of tu-
ples based on source tuple contents. This kind of operation appears implicitly
in most languages aiming at implementing schema and data transformations
but, as far as we know, it has never been properly characterized as a first-class
operator. New optimization opportunities arise when promoting a mapper to
a relational operator.

The main contributions of this paper are the following:

(1) the formalization of a new primitive operator, named data mapper ;
(2) a set of provably correct algebraic rewriting rules for expressions involving

the mapper and other relational operators, which are useful for optimiza-
tion purposes;

(3) the development of cost estimates for expressions involving filters and
mappers;

4

(4) the identification of the main factors that influence the gains stemming
from optimization opportunities;

(5) experimental validation of the proposed optimizations and their corre-
sponding cost formulas.

The rest of this paper is organized as follows. Preliminary definitions are pro-
vided in Section 2. The formalization of the mapper is presented in Section 3.
Section 4 presents the algebraic rewriting rules that enable the logical opti-
mization of several expressions involving the mapper operator. The cost esti-
mates for expressions involving filters and mappers are developed in Section 5,
and the validation experiments presented in Section 6. Finally, related work
is summarized in Section 7 and conclusions are presented in Section 8.

2 Preliminaries

A domain D is a set of atomic values. We assume a set D of domains and a set
A of attribute names together with a function Dom : A → D that associates
domains to attributes. We will also use Dom to denote the natural extension
of this function to lists of attribute names: Dom(A1, ..., An) = Dom(A1) ×
...×Dom(An).

A relation schema R consists of a list A = A1, ..., An of distinct attribute
names. We write R(A1, ..., An), or simply R(A), and call n the degree of the
relation schema. Its domain is defined by Dom(A). A relation instance (or
relation, for short) with schema R(A1, ..., An) is a finite set r ⊆ Dom(A1) ×
... ×Dom(An); we write r(A1, ..., An), or simply r(A). Each element t of r is
called a tuple or r-tuple and can be regarded as a function that associates a
value of Dom(Ai) with each Ai; we denote this value by t[Ai]. Given a list
B = B1, ..., Bk of distinct attributes in A1, ..., An, we denote by t[B] the tuple
〈t[B1], ..., t[Bk]〉 in Dom(B).

We will use the term relational algebra to denote the standard notion as in-
troduced by [Cod70]. The basic operations considered are union, difference,
Cartesian product, projection (πX , where X is a list of attributes), selection
(σC , where C is the selection condition) and renaming (ρA→B, where A and
B are lists of attributes).

3 The mapper operator

In this section, we present the new relational operator and show how it can
express one-to-many data transformations. We also analyze some of its prop-

5

erties and discuss the expressive power of the resulting setting.

A mapper is a unary operator µF that takes a relation instance of a given
relation schema as input (source schema) and produces a relation instance of
another relation schema as output (target schema) 1 . The mapper operator is
parameterized by a list F of special functions, which we designate as mapper
functions.

Roughly speaking, each mapper function allows one to express a part of the
envisaged data transformation, focused on one or more attributes of the tar-
get schema. Although the idea is to apply mapper functions to tuples of a
source relation instance, it may happen that some of the attributes of the
source schema are irrelevant for the envisaged data transformation. The ex-
plicit identification of the attributes that are considered relevant is then an
important part of a mapper function. Mapper functions are formally defined
as follows.

Definition 3.1 : A mapper function fA is a triple 〈A, B, f〉 where A is a
non-empty list of distinct attributes (it defines the output attributes), B is
a list of distinct attributes (it identifies the relevant input attributes), and
f :Dom(B)→P(Dom(A)) is a computable function (if B is empty, then f is
just a set). We say that fA is an A−mapper function. Let t be a tuple of a
relation instance s(X1, ..., Xn) s.t. all the attributes in B are also in X1, ..., Xn.
We define fA(t) to be the application of the underlying function f to the tuple
t, i.e., f(t[B]).

In this way, a mapper function describes how a specific part of the target
data can be obtained from the source data, defining simultaneously part of
the target schema. The intuition is that each mapper function establishes how
the values of a group of attributes of the target schema can be obtained from
the attributes of the source schema. The key point is that, when applied to a
tuple, a mapper function produces a set of values, rather than a single value.

We shall freely use fA to denote both a mapper function 〈A, B, f〉 and the
function f itself, omitting the list B whenever its definition is clear from the
context, and this shall not cause confusion. We shall also use Dom(fA) to
refer to list B. This list should be regarded as the list of the source attributes
declared to be relevant for the part of the data transformation encoded by the
mapper function. Notice, however, that even if fA is a constant function, it
may be defined as being dependent on all the attributes of the source schema.
The relevance of the explicit identification of these attributes will be clarified
in Section 4 when we present the algebraic optimization rules for projections.

1 Although the symbol µ is also used to represent the nest operator of Nested
Relational Algebra [JS82, TF86], the mapper operator is not related to nest.

6

Certain classes of mapper functions enjoy properties that enable the optimiza-
tions of algebraic expressions containing mappers (see also Section 4). Map-
per functions can be classified according to (i) the number of output tuples
they can produce, or (ii) the number of output attributes. Mapper functions
that produce singleton sets, i.e., ∀(t ∈ Dom(X)) |fA(t)| = 1 are designated
single-valued mapper functions. In contrast, mapper functions that produce
multiple elements are said to be multi-valued mapper functions. Concerning
the number of output attributes, mapper functions with one output attribute
are called single-attribute, whereas functions with many output attributes are
called multi-attribute.

We designate by identity mapper functions the single-valued mapper functions
〈A, A, f〉 s.t. f(t) = {t}. Also interesting is the class of the single-valued map-
per functions 〈A, B, f〉 s.t. Dom(B) = Dom(A) and f(t) = {t}. These are said
to be renaming mapper functions, given that they only establish a transforma-
tion of the schema. Finally, a constant mapper function is a mapper function
〈A, [], f〉 s.t. f(t) = c, for every t ∈ Dom(B) and some c ∈ P(Dom(A)).

As mentioned before, a mapper operator is parameterized by a list of mapper
functions.

Definition 3.2 : A list F = fA1 , ..., fAk
of mapper functions is said to be

proper for transforming the data of a relation s(X1, ..., Xn) iff the attributes
included in the Aj lists, for 1 ≤ j ≤ k, are all distinct.

In other words, F is proper if it specifies, in a unique way, how the values of
the schema Y = A1 · ... · Ak —the target schema— are produced, where ‘·’
denotes polymorphic concatenation.

The mapper operator µF puts together the data transformations of the input
relation defined by the mapper functions in F . Given a tuple s of the input
relation, µF (s) consists of the tuples t of Dom(Y) that, to each list of attributes
Ai, associate values in fAi

(s). Formally, the mapper operator is defined as
follows.

Definition 3.3: Given a relation s(X1, ..., Xn) and a proper list of mapper
functions F = fA1 , ..., fAk

, the mapper of s with respect to F , denoted by
µF (s), is the relation instance with schema Y = A1 · ... · Ak and the set of
tuples defined by

µF (s)
def
= {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ k t[Ai] ∈ fAi

(u)}

As mentioned before, this new operator relies on the use of arbitrary com-
putable functions that are external to the resulting extension of the relational
algebra. Notice also that mapper may be defined in terms of partial functions,

7

i.e., the underlying functions do not have to be defined for all values of their
source set. It follows from Definition 3.3 that if fAi

(t) is undefined for some
fAi
∈ F and t ∈ s, then so is µF (s).

The set of admissible functions can be further constrained, if required. As we
will see in Section 3.2, for some specific classes of admissible functions, the
integration of the mapper operator with existing query execution processors
is easier.

In order to illustrate this new operator, we revisit Example 1.1.

Example 3.1: The requirements presented in Example 1.1 can be described
by the mapper µacct,amt, where acct is an [ACCTNO]-mapper function with do-
main ACCT that returns a singleton with the account number ACCT properly
left padded with zeroes and amt is the [AMOUNT,SEQNO]-mapper function with
domain AM s.t., amt(am) is given by

{(100, i) | 1 ≤ i ≤ (am/100)} ∪ {(am%100, (am/100)+1) | am%100 6= 0}

where we have used / and % to represent the integer division and modulus
operations, respectively.

For instance, if t is the source tuple (901, 250.00), the result of evaluating
amt(t) is the set {(100, 1), (100, 2), (50, 3)}. Given a source relation s includ-
ing t, the result of the expression µacct,amt(s) is a relation that contains the set
of tuples {〈’0901’, 100, 1〉, 〈’0901’, 100, 2〉, 〈’0901’, 50, 3〉}.

In order to illustrate the full expressive power of mappers, we present an
example of selective transformation of data.

Example 3.2: Consider the conversion of yearly salary data into quarterly
salary data. Let EMPDATA[ESSN, ECAT, EYRSAL] be the source relation that con-
tains yearly salary information about employees. Suppose we need to generate
a target relation with schema EMPSAL[ENUM, QTNUM, QTSAL], which maintains
the quarterly salary for the employees with long-term contracts. In the source
schema, we assume that the attribute EYRSAL maintains the yearly net salary.
Furthermore, we consider that the attribute ECAT holds the employee category
and that code ’S’ specifies a short-term contract whereas ’L’ specifies a long-
term contract.

This transformation can be specified through the mapper µempnum,sal where
empnum is a [ENUM]-mapper function with domain [ESSN,ECAT,EYRSAL]

that makes up new employee numbers (i.e., a Skolem function [HY90]), and
sal is the [QTNUM,QTSAL]-mapper function

salQTNUM, QTSAL(ecat, eyrsal)

8

with domain [ECAT,EYRAL] that generates quarterly salary data, defined as:

sal(ecat, eyrsal) =

{
{(i, eyrsal

4) | 1 ≤ i ≤ 4} if ecat = ’L’

∅ if ecat = ’S’

3.1 Properties of Mappers

Notice that the mapper operator admits a more intuitive definition in terms of
the Cartesian product of the sets of tuples obtained by applying the underlying
mapper functions to each tuple of the input relation. More concretely, the
following proposition holds.

Proposition 1: Given a relation s(X1, ..., Xn) and a proper list of mapper
functions F = fA1 , ..., fAk

,

µF (s) =
⋃
u∈s

fA1(u)× ...× fAk
(u).

Proof

µF (s) = {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ k t[Ai] ∈ fAi
(u)}

=
⋃
u∈s

{t ∈ Dom(Y) | ∀1 ≤ i ≤ k t[Ai] ∈ fAi
(u)}

=
⋃
u∈s

fA1(u)× ...× fAk
(u)

This alternative way of defining µF (s) is also important because of its opera-
tional flavor, equipping the mapper operator with a tuple-at-a-time semantics.
When integrating the mapper operator with existing query execution pro-
cessors, this property plays an important role because it means the mapper
operator admits physical execution algorithms that favor pipelined execution
[Gra93].

The algorithm that computes data transformation through mappers, just
needs to compute the Cartesian product in Proposition 1. Obviously, this
algorithm relies on the computability of the underlying mapper functions and
builds on concrete algorithms for computing them. Furthermore, the fact that
the calculation of µF (s) can be carried out tuple by tuple clearly entails the
monotonicity of the mapper operator.

Proposition 2: The mapper operator is monotonic, i.e., for every pair of
relations s1(X) and s2(X) if s1 ⊆ s2, then µF (s1) ⊆ µF (s2).

9

Proof

µF (s1) = {t ∈ Dom(Y) | ∃u ∈ s1 ∀1 ≤ i ≤ k s.t. t[Ai] ∈ fAi
(u)}

by hypothesis s1 ⊆ s2

⊆ {t ∈ Dom(Y) | ∃u ∈ s2 ∀1 ≤ i ≤ k s.t. t[Ai] ∈ fAi
(u)}

⊆ µF (s2)

3.2 Normal-forms

As defined in Definition 3.2, a list of mapper functions F is proper for trans-
forming the data of a given relation only if the subsets of attributes produced
by any two different mapper functions in F do not overlap. It is not difficult to
see that, in general, a data transformation can be achieved through different
lists of functions.

Consider, for instance, the [ACCTNO,AMOUNT,SEQNO]-mapper function named
payments with domain [ACCT,AM] that yields installment amounts jointly
with the transformed account numbers. Clearly, the list of proper mapper
functions F = acct, amt defined in 3.1 is equivalent to the single element list
G = payments, with respect to the data transformation they specify. However,
algebraic expressions containing µF offer more opportunities for optimization
than expressions containing µG. Compared to G, the list F can be regarded
as being reduced compared to G. In a similar way, mapper functions may
use dispensable input attributes. Consider acct′ to be a mapper function with
domain [ACCT,AM]. Then, the list of functions F can be compared with the list
of functions H = acct′, amt where acct′ only differs from acct in the domain.
Given that H includes one mapper function with a domain larger than it is
required, F can be regarded as being in a more reduced form than H.

In fact, the list F is what we will call a normal form because it cannot be
reduced in a sense that can be made precise as follows.

Definition 3.4 : Let S(X1, ..., Xn) be a fixed relation schema. The reduc-
tion relationship between lists of mapper functions proper for transforming the
data of relations with schema S(X1, ..., Xn), represented as −→, is the greatest
transitive relationship satisfying the following constraints:

(1) if [f1, ..., 〈A, Bf , f〉, ..., fk] −→ [f1, ..., 〈A, Bg, g〉, ..., fk] then the list of at-
tributes Bg is strictly a sublist of Bf and f(t) = g(t), for every t ∈
Dom(X).

(2) if [f1, ..., 〈A, B, f〉, ..., fk] −→ [f1, ..., 〈A1, B1, g1〉, 〈A2, B2, g2〉, ..., fk] then
B1 and B2 are sublists of B, and a permutation ε exists such that A =
ε(A1 · A2) and f(t) = ε(g1(t)× g2(t)), for every tuple t ∈ Dom(X).

10

Intuitively, a list of mapper functions can be reduced, if one of its mapper func-
tions either includes superfluous attributes in its domain or defines a trans-
formation of data that can be decomposed, that is, expressed as a Cartesian
product of two functions.

Definition 3.5: A mapper µF is in normal form if there does not exist a list
of mapper functions G s.t. F −→ G, i.e., if F cannot be reduced.

From a practical point of view, a mapper that is not in normal form presents
a number of limitations. To begin with, the co-existence of independent com-
ponent functions in the same function, limits the choice of physical execution
algorithms. For instance, consider using caching for the most expensive func-
tions. If an expensive function is implemented together with an inexpensive
one in one single function, it may not be possible to apply this algorithm as it
may not be feasible to decide at compile time which is the expensive function.
Another important aspect is the number of optimization opportunities that
may arise in expressions involving mappers: the opportunities for applying op-
timizations in Section 4 increase as the mapper operators involved are closer
to normal forms.

From a software engineering point of view, trying to maintain an implemen-
tation where the logic of several functions is bundled into fewer functions is
also undesirable. It violates a desirable property of software artifacts which is
high cohesion. The notion of normal form characterizes a principled way to
verify whether the specification of a mapper together with its functions has
this property.

3.3 Expressive power of mappers

Concerning the expressive power of the mapper operator, two important ques-
tions are addressed. First, we compare the expressive power of relational al-
gebra (RA) with its extension by the set of mapper operators, henceforth
designated as M-relational algebra or simply MRA. Second, we investigate
which standard relational operators can be simulated by a mapper operator.

It is not difficult to recognize that MRA is more expressive than standard
RA. It is obvious that the expressive power of mapper operators comes from
the fact that they are allowed to use arbitrary computable functions. In fact,
the class of mapper operators of the form µf , where f is a single-valued func-
tion, is computationally complete. This implies that MRA is computationally
complete and, hence, MRA is not a query language like standard RA.

The question that naturally arises is whether MRA is more expressive than
the relational algebra with a generalized projection operator πL where the

11

projection list L has elements of the form Yi ← f(A), where A is a list of
attributes in X1, ..., Xn and f is a function involving arithmetic operations
only [SKS01].

With generalized projection, it becomes possible to define arithmetic compu-
tations to derive the values of new attributes. Still, there are MRA-expressions
whose effect is not expressible in RA, when extended with the generalized pro-
jection operator even when considering any computable function. We shall use
RA-gp to designate the latter.

The additional expressive power results from the fact that mapper operators
use functions that map values into sets of values and, thus, are able to produce
a set of tuples from a single tuple. For some multi-valued functions, the number
of tuples that are produced depends on the specific data values of the source
tuples and does not even admit an upper-bound.

Consider for instance a database schema with relation schemas S(NUM) and
T(NUM, IND), s.t. the domain of NUM and IND is the set of natural numbers.
Let s be a relation with schema S. The cardinality of µ[f](s), where f is
an [NUM,IND]-mapper function s.t. f(n) = {〈n, i〉 : 1 ≤ i ≤ n}, does not
(strictly) depend on the cardinality of s. Instead, it depends on the values of
the concrete s−tuples. For instance, if s is a relation with a single tuple {〈x〉},
the cardinality of µ[f](s) depends on the value of x and does not have an upper
bound.

This situation is particularly interesting because it cannot happen in RA-gp.

Proposition 3: For every expression E of the relational algebra RA-gp, the
cardinality of the set of tuples denoted by E admits an upper bound defined
simply in terms of the cardinality of the atomic sub-expressions of E.

Proof This can be proved in a straightforward way by structural induction
in the structure of relational algebra expressions. Given a relational algebra
expression E, we denote by |E| the cardinality of E. For every non-atomic
expression we have: |E1 ∪ E2| ≤ |E1| + |E2|; |E1 − E2| ≤ |E1|; |E1 × E2| ≤
|E1| × |E2|; |πL(E)| ≤ |E|; |σC(E)| ≤ |E|; |ρX1,...,Xn→Y1,...,Yn(E)| ≤ |E|.

Hence, it follows that:

Proposition 4: There are expressions of the M-relational algebra that are
not expressible by the relational algebra RA-gp on the same database schema.

Another aspect of the expressive power of mappers, that is interesting to ad-
dress, concerns the ability of mappers for simulating other relational operators.
In fact, we will show that projection, renaming and selection operators can
be seen as special cases of mappers. That is to say, there exist three classes of

12

mappers that are equivalent, respectively, to projection, renaming and selec-
tion. From this we can conclude that the restriction of MRA to the operators
mapper, union, difference and Cartesian product is as expressive as MRA.

Projection can be obtained through mapper operators over identity mapper
functions. One identity mapper function is included for each project attribute.
The project attribute has to be an attribute of the source schema.

Rule 1: Let S(X1, ..., Xn) be a relation schema and Y1, ..., Ym a list of different
attributes in X1, ..., Xn. For every relation instance s(X1, ..., Xn), the term
πY1,...,Ym(s) is equivalent to µF (s), where F = fY1 , ..., fYm and fYi

is the identity
mapper function, for every 1 ≤ i ≤ m.

Proof

πY1,...,Ym(s) = {t[Y1, ..., Ym] | t ∈ s}
= {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ m s.t. u[Yi] = t[Yi]}
= {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ m s.t. t[Yi] ∈ {u[Yi]}}
because fYi

(t) = {t}, for every t ∈ Dom(Yi)

= {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ m s.t. t[Yi] ∈ fYi
(u)}

= µfY1
,...,fYm

(s)

Strictly speaking, a renaming ren is a bijective function among sets of at-
tributes X and Y s.t. Dom(Xi) = Dom(Yi) and ren(Xi) 6= Xi, for every
Xi ∈ X. This function is usually represented as X1, ..., Xn → Y1, ..., Yn. The
relational renaming operator is a unary relational operator parameterized by
a renaming function [AdA93, AHV95]. Renaming can also be expressed by a
mapper parameterized by renaming mapper functions. We include one renam-
ing function for mapping each source attribute to the corresponding target
attribute.

Rule 2 : Let S(X1, ..., Xn) and T (Y1, ..., Yn) be two relation schemas, such
that, Dom(X) = Dom(Y). For every relation instance s(X1, ..., Xn), the term
ρX1,...,Xn→Y1,...,Yn(s) is equivalent to µF (s) where F = fY1 , ..., fYn and, for every
1 ≤ i ≤ n, fYi

is the renaming mapper function 〈Yi, Xi, idDom(Yi)〉.

Proof

ρX1,...,Xn→Y1,...,Yn(s)

= {t[Y1, ..., Ym] | t ∈ s}
= {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ m s.t. u[Yi] = t[Yi]}
= {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ m s.t. t[Yi] ∈ {u[Yi]}}
because fYi

(t) = {t}, for every t ∈ Dom(Yi)

= {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ m s.t. t[Yi] ∈ fYi
(u)}

= µfY1
,...,fYm

(s)

13

Since mapper functions may map input tuples into empty sets (i.e., no output
values are created), they may act as filtering conditions which enable the
mapper to behave not only as a tuple producer but also as a filter.

Rule 3: Let S(X1, ..., Xn) be a relation schema, C a condition over the at-
tributes of this schema. There exists a set F of proper mapper functions for
transforming S(X) s.t., for every relation instance s(X1, ..., Xn), the term
σC(s) is equivalent to µF (s).

Proof It suffices to show how F can be constructed from C and prove the
equivalence of σC and µF . Let F = fX1 , ..., fXn where each mapper function
fXi

is the mapper function with domain Xi s.t.

fXi
(t) =

{t[Xi]} if C(t)

∅ if ¬C(t)

We have,

µF (s) = {t ∈ Dom(X) | ∃u ∈ s ∀1 ≤ i ≤ n t[Xi] ∈ fXi
(u)}

by the definition of fXi

= {t ∈ Dom(X) | ∃u ∈ s s.t. (∀1 ≤ i ≤ n t[Xi] ∈ {u[Xi]}) and C(u)}
= {t ∈ Dom(X) | ∃u ∈ s s.t. (∀1 ≤ i ≤ n t[Xi] = u[Xi]) and C(u)}
= {t ∈ Dom(X) | ∃u ∈ s s.t. t = u and C(u)}
= {t ∈ Dom(X) | t ∈ s and C(t)}
= σC(s)

4 Algebraic optimization rules

Algebraic rewriting rules are equations that specify the equivalence of two
algebraic terms. Through algebraic rewriting rules, queries presented as re-
lational expressions can be transformed into equivalent ones that are more
efficient to evaluate. In this section we present a set of algebraic rewriting
rules that enable the logical optimization of relational expressions containing
occurrences of the mapper operator.

One commonly used strategy consists of minimizing the amount of information
transferred from operator to operator. In this spirit, we adapt two classes of
algebraic rewriting rules to the mapper operator. We start by presenting the
rules for pushing selections, that attempt to reduce the cardinality of the
source relations to be evaluated as early as possible and then we present rules
for pushing projections, that avoid propagating attributes that are not used
by subsequent operators.

14

4.1 Pushing selections to mapper functions

When applying a selection to a mapper we can take advantage of the mapper
semantics to introduce an important optimization. Given a selection σCAi

ap-
plied to a mapper µfA1

,...,fAk
, this optimization consists of pushing the selection

σCAi
, where CAi

is a condition on the attributes produced by some mapper
function fAi

, directly to the output of the mapper function. Rule 4 formalizes
this notion.

Rule 4: Let F = fA1 , ..., fAk
be a list of multi-valued mapper functions, proper

for transforming relations with schema S(X). Consider a condition CAi
de-

pendent of a set of attributes Ai for some 1 ≤ i ≤ k. Then, for every relation
instance s(X),

σCAi
(µF (s)) = µF\{fAi

}∪{σCAi
◦fAi

}(s)

where

(σCAi
◦ fAi

)(t) =

fAi
(t) if C(t)

∅ if ¬C(t)

Proof Let Y = A1 · ... · Ak.

σCAi
(µF (s)) = {t ∈ Dom(Y) | t ∈ µF (s) and CAi

(t[Ai])}
= {t ∈ Dom(Y) | ∃u ∈ s

∀1 ≤ j ≤ k s.t. t[Aj] ∈ fAj
(u) and CAi

(t[Ai])}
= {t ∈ Dom(Y) | ∃u ∈ s

∀1 ≤ j ≤ k, j 6= i s.t. t[Aj] ∈ fAj
(u) and

t[Ai] ∈ fAi
(u) and CAi

(t[Ai])}
= {t ∈ Dom(Y) | ∃u ∈ s

∀1 ≤ j ≤ k, j 6= i s.t. t[Aj] ∈ fAj
(u) and

t[Ai] ∈ σCAi
(fAi

(u)}
= µF\{fAi

}∪{σCAi
◦fAi

}(s)

The benefits of Rule 4 are easier to understand when considering the alter-
native definition for the mapper semantics in terms of a Cartesian product
presented in Section 3.1. Intuitively, if at least one of the mapper functions
is multi-valued, it follows from Proposition 1, that the Cartesian product ex-
pansion generated by fA1(u)× ...× fAk

(u) can produce duplicate values for
some set of attributes Ai, 1 ≤ i ≤ k. To see how, please refer to Example 3.1.
Hence, by pushing the condition CAi

to the mapper function fAi
, the condition

will be evaluated fewer times, i.e., only once for each output value of fAi
(t)

as opposed to once for each output tuple of µF (t). This is particularly impor-
tant for of expensive predicates, e.g., those involving expensive functions or

15

sub-queries (e.g., evaluating the SQL exists operator). See, e.g., [Hel98] for
details on optimization of queries with expensive predicates.

Furthermore, note that when CAi
(t) does not hold, the evaluation of (σCAi

◦
fAi

)(t) returns the empty set. Considering the Cartesian product semantics
of the mapper operator presented in Proposition 1, once a function returns
the empty set, no output tuples will be generated. Thus, we may skip the
evaluation of all mapper functions fAj

, such that j 6= i. Physical execution
algorithms for the mapper operator can take advantage of this optimization
by evaluating fAi

before any other mapper function.

Even in situations in which neither expensive functions nor expensive predi-
cates are present, this optimization can be employed as it alleviates the average
cost of the Cartesian product, which depends on the cardinalities of the sets
of values produced by the mapper functions.

Example 4.1: Consider the relation SMALLPAYMENTS[ACCTNO, AMOUNT, SEQNO]
formed by all payments whose amount is smaller than 5. This relation can be
obtained from the relation PAYMENTS presented in Example 1.1 by composing
a selection with a mapper. According to Example 3.1, µacct,amt(LOANS) corre-
sponds to the relation PAYMENTS, then the expression σAMOUNT<5(µacct,amt(LOANS))
denotes the relation SMALLPAYMENTS. By applying Rule 4 to the above expres-
sion we obtain µacct,σAMOUNT<5◦amt(LOANS), which is likely to be faster to evaluate.

4.2 Pushing selections through mappers

An alternative way of rewriting expressions of the form σC(µF (s)) consists of
replacing the attributes that occur in the condition C by the mapper functions
that compute them. Suppose that, in the selection condition C, an attribute
A is produced by the mapper function fA. By replacing the attribute A with
the mapper function fA in condition C we obtain an equivalent condition.

In order to formalize this notion, we first need to introduce some notation. Let
F = fA1 , ..., fAk

be a list of mapper functions proper for transforming S(X)
and Y = A1 · ... · Ak. The function resulting from the restriction of fAi

to an
attribute Yj ∈ Ai is denoted by fAi

|Yj
. Moreover, given an attribute Yj ∈ Y ,

F |Yj
represents the function fAi

|Yj
s.t. Yj ∈ Ai. Note that, because F is a

proper list of mapper functions, the function F |Yj
exists and is unique.

Rule 5: Let F = fA1 , ..., fAk
be a list of mapper functions, proper for trans-

forming S(X), Y = A1 · ... · Ak and B = B1, ..., Bm be a list of attributes in
Y . If H = F |B1 , ..., F |Bm is a list of single-valued functions then, for every

16

relation instance s of S(X),

σCB
(µF (s)) = µF (σC[B1,...,Bm←F |B1

,...,F |Bm](s))

where CB means that C depends on the attributes of B, and the condition
that results from replacing every occurrence of each Bi by Ei is represented as
C[B1, ..., Bm ← E1, ..., Em].

This rule replaces each attribute Bi in the condition C by the expression
that describes how its values are obtained. In practice, this rule is of broad
application as the attributes used in the condition of a selection are often
generated either by single-valued functions like (i) identity mapper functions,
(ii) constant mapper functions or (iii) arithmetic expressions. Cases (i) and
(ii) draw from attribute renamings and value assignments. As an illustra-
tion, consider the condition C to be A < B. We may rewrite the expression
σA<B(µX→A,2→B,fC

(s)) as µX→A,2→B,fC
(σX<2(s)). Concerning case (iii), a new

condition is produced by expanding attributes with arithmetic expressions. In
this case, although the expression is evaluated twice —once in the condition
and once in the mapper—, the number of tuples that have to be handled by
the mapper operator can be drastically reduced. These tradeoffs are analyzed
in detail in Section 5.

Proof In order to prove Rule 5 we proceed in two steps. We start by expand-
ing both expressions into their corresponding sets of tuples. Then we establish
the equivalence of these sets. So, on the one hand we have that,

σCB
(µF (s)) = {t ∈ Dom(Y) | t ∈ µF (s) and CB(t)}

= {t ∈ Dom(Y) | ∃u ∈ s s.t. t[Ai] ∈ fAi
(u) and CB(t),

∀1 ≤ i ≤ k}
(1)

On the other hand we have that,

µF (σC[B1,...,Bm←F |B1
,...,F |Bm](s))

= {t ∈ Dom(Y) | ∃u ∈ σC[B1,...,Bm←F |B1
,...,F |Bm] s.t. t[Ai] ∈ fAi

(u),

∀1 ≤ i ≤ k}
=

{
t ∈ Dom(Y) | ∃u ∈ {v ∈ Dom(X) | v ∈ s and

C[B1, ..., Bm ← F |B1 , ..., F |Bm](v)} s.t. t[Ai] ∈ fAi
(u),∀1 ≤ i ≤ k

}
= {t ∈ Dom(Y) | ∃u ∈ s s.t. t[Ai] ∈ fAi

(u)

and C[B1, ..., Bm ← F |B1 , ..., F |Bm](u),∀1 ≤ i ≤ k}

(2)

It now remains to prove that, if t[Ai] ∈ fAi
(u), for every 1 ≤ i ≤ k then

C[B1, ..., Bm ← F |B1 , ..., F |Bm](u) iff CB(t)

17

This trivially follows from the definition of F |Bi
and the fact that all functions

in H are single-valued.

4.3 Pushing projections

A projection applied to a mapper is an expression of the form πZ(µF (s)). If
F = fA1 , ..., fAk

is a list of mapper functions, proper for transforming S(X),
then an attribute Yi in Y = A1 · ... · Ak such that Yi 6∈ Z, (i.e., that is not
projected by πZ) is said to be projected away. Attributes that are projected
away offer optimization opportunities. Since they are not required for subse-
quent operations, the mapper functions that generate them do not need to be
evaluated. Rule 6 makes this idea precise.

Rule 6: Let F = fA1 , ..., fAk
be a list of mapper functions, proper for trans-

forming S(X) and Y = A1 · ... · Ak. Let Z and Z ′ be lists of attributes in
Y . For every relation instance s of S(X), πZ(µF (s)) = πZ(µF ′(s)), where
F ′ = {fAi

∈ F | Ai contains at least one attribute in Z}.

Proof In what follows, we use Ai ∩ Z 6= ∅ to represent that “at least one
attribute of Ai is in the list Z”. Thus,

πZ(µF (s)) = {t[Z] | t ∈ Dom(Y) and t ∈ µF (s)}
= {t[Z] | t ∈ Dom(Y) and ∃u ∈ s ∀fAi

∈ F s.t. t[Ai] ∈ fAi
(u)}

because only attributes in Ai ∩ Z are projected

and, by hypothesis, Ai ∩ Z 6= ∅ ⇔ fAi
∈ F ′

= {t[Z] | t ∈ Dom(Y) and ∃u ∈ s ∀fAi
∈ F ′ s.t. t[Ai] ∈ fAi

(u), }
= πZ(µF ′(s))

Concerning Rule 6, it should be noted that if Z = A1 · ... ·Ak (i.e, all attributes
are projected), then F ′ = F (i.e., no mapper function can be forgotten).

Example 4.2: Consider the mapper µacct,amt defined in Example 3.1. The
expression πAMOUNT(µacct,amt(LOANS)) is equivalent to πAMOUNT(µamt(LOANS)). The
acct mapper function is forgotten because the ACCOUNT attribute was projected
away. Conversely, neither of the mapper functions can be forgotten in the
expression πACCTNO,SEQNO(µacct,amt(LOANS)).

Another observation is that attributes that are not used as input of any mapper
function need not be retrieved from the mapper input relation. Thus, we may
introduce a projection that retrieves only those attributes that are relevant
for the functions in F ′.

18

Rule 7: Let F = fA1 , ..., fAk
be a list of mapper functions, proper for trans-

forming S(X) and Y = A1 · ... · Ak. For every relation instance s of S(X),
µF (s) = µF (πN(s)), where N is a list of attributes in X, that only includes
the attributes in Dom(fAi

), for every mapper function fAi
in F .

Proof

µF (s) = {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ k s.t. t[Ai] ∈ fAi
(u)}

by the definition of mapper function,

fAi
(u) = fAi

(u[B]) = fAi
(u[N])

= {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ k s.t. t[Ai] ∈ fAi
(u[N])}

= {t ∈ Dom(Y) | ∃u ∈ πN(s) ∀1 ≤ i ≤ k s.t. t[Ai] ∈ fAi
(u)}

= µF (πN(s))

Example 4.3: Consider the relation LOANS[ACCT, AM] of Example 1.1. The at-
tribute AM is an input attribute of the mapper function amt defined in Example
3.1. Thus, the expression µamt(LOANS) is equivalent to µamt(πAM(LOANS)).

5 Estimating the cost of filter expressions

In this section, we present the cost estimation framework for expressions that
combine selections and mappers. First, the cost of the mapper operator is
analyzed in isolation. Then, we proceed to estimate the cost of applying a
selection to a mapper. Finally, we elaborate on the cost estimates for opti-
mized expressions obtained by applying Rule 4 and Rule 5, giving particular
attention to the gains obtained with the proposed optimizations.

We have identified the predicate selectivity [SAC+79], the mapper function
fanout and the mapper function evaluation cost as the primary factors that
affect the gain obtained when applying the proposed optimizations. Similarly
to [CS93], we designate the average cardinality of the output values produced
by a mapper function as the function fanout. Analogously, the mapper fanout
is defined as the average number of tuples produced by the mapper for each
input tuple.

5.1 Estimating the cost of a mapper operator

Since the evaluation of a mapper can be performed on a tuple by tuple basis,
the cost of evaluating the mapper operator expression µF (r) can be estimated
by adding up the per-tuple cost of transforming each tuple of the input relation
r. For each tuple t ∈ r, the cost of producing the output tuples can be defined

19

as the sum of the cost of evaluating all mapper functions and the cost of
performing the Cartesian product of the function outputs. We will not take
the I/O cost into account, since the proposed algebraic optimization rules are
unable to improve it.

Let Cf be the estimated per-tuple cost of a mapper function f . Then, CF is
the estimated per-tuple cost of evaluating all the mapper functions f ∈ F ,
given by CF =

∑
f∈F Cf .

The cost of computing a Cartesian product is linear in the size of its inputs,
i.e., given two sets of elements A and B, the Cartesian product A×B can be
computed in time linear to |A| · |B|.

For a given tuple t, when evaluating an expression of the form µF (t), the
input of the Cartesian product consists of the sets returned by the mapper
functions in F . In this way, if F = fA1 , ..., fAm , then the cost of computing the
Cartesian product algorithm, is k · |fA1(t)| · ... · |fAm(t)|+ m · k0, where k is an
adjustment factor 2 , m is the number of functions in F and the constant k0

represents the overhead incurred by the algorithm for checking the emptiness
of the input sets. In practice, when |fAi

(t)| = 0, the cost of the Cartesian
product algorithm is not zero but a small amount captured by m · k0.

We now need to have an estimate for |f(t)|, for every f ∈ F . The estimated
value of |f(t)| is given by the expected fanout of a mapper function f , des-
ignated as Of . The mapper fanout is represented as OF . We assume that
the function outputs are not correlated, thus the value of OF can be approx-
imated by

∏
f∈F Of . Therefore, if F has m mapper functions, the estimated

per-tuple cost of executing the Cartesian product is Cprd = k · OF + m · k0.
Finally, for an input relation r with cardinality n, the estimated cost of µF (r)
is n · (Cprd + CF) = n · (k ·∏f∈F Of + m · k0 +

∑
f∈F Cf).

5.2 Estimating the cost of a filter applied to a mapper

The cost of the expression σCA
(µF (r)) can be estimated to be the cost of eval-

uating the mapper plus the cost of evaluating the selection condition on each
tuple produced by the mapper. In the sequel, we will refer to this expression
as the non-optimized expression.

Consider Csel to be the average per-tuple cost of evaluating the selection con-
dition CA and let α be its corresponding selectivity, with 0 ≤ α ≤ 1. The cost

2 It is assumed that implementations of the Cartesian product handle attribute
values by reference and not by value. As an effect, k is independent from the size of
the inputs.

20

of the non-optimized expression is:

n · (Cprd + CF) + n ·OF · Csel (3)

where n ·(Cprd+CF) is the expected cost of µF . Multiplying n by the fanout of
the mapper OF , we get the expected number of output tuples for the mapper
operator. Since the selection condition is evaluated once for each tuple returned
by the mapper, n ·OF ·Csel represents the total cost of evaluating the selection
condition.

5.3 Estimating the cost of an expression optimized with Rule 4

We now consider the cost of the optimized expression µF\gAj
∪{σCAj

◦gAj
}(r)

obtained through Rule 4. Assuming that gAj
∈ F is the mapper function

onto which the condition is pushed, we consider a list of functions where the
mapper function σCAj

◦ gAj
replaces gAj

.

The per-tuple cost of evaluating σCAj
◦gAj

is estimated to be CgAj
+OgAj

·Csel,

i.e., the cost of evaluating the mapper function gAj
plus the cost of evaluating

the selection condition CAj
for each element produced by the function.

Obviously, the cost of the Cartesian product for the optimized expression
is not the same as the cost of the Cartesian product for the non-optimized
expression, since σCAj

◦ gAj
and gAj

have different fanouts. More precisely,

since α represents the probability that CAj
holds, the fanout of σCAj

◦ gAj
is

given by α · OgAj
. This means that the cost of the Cartesian product for the

optimized expression, represented as Cprd′ is given by k ·OF\gAj
·α ·OgAj

+m·k0,

which is equivalent to k · α ·OF + m · k0.

The cost of the mapper corresponding to the optimized expression is estimated
to be:

n · (Cprd′ + CF\gAj
+ CgAj

+ OgAj
· Csel) (4)

which corresponds to the cost of the Cartesian product plus the cost of com-
puting all functions except gAj

, plus the cost of computing σCAj
◦gAj

. This can

be simplified to

n · (Cprd′ + CF + OgAj
· Csel) (5)

The expected gain for this optimization represented as ∆G4 is now computed
as the difference between (3) and (5), which becomes:

∆G4 = n · (Cprd + CF) + n ·OF · Csel − n · (Cprd′ + CF + OgAj
· Csel) (6)

21

Since Cprd′ = k · α ·OF + m · k0, developing and simplifying (6) we obtain:

∆G4 = n · k ·OF · (1− α) + n · Csel · (OF −OgAj
) (7)

We remark that high gains are obtained for small selectivities. In contrast, as
the selectivity α approaches 100%, the factor n · k · OF · (1 − α) in (7) tends
to zero, thus decreasing the gain. Concerning the influence of the mapper
function fanout OgAj

, we conclude from (7) that the greater is the difference

between OF and OgAj
, the higher is the gain. It is interesting to observe that if

OgAj
> OF , when the selectivity is near 100%, ∆G4 will be negative. However,

for this to be possible, since gAj
∈ F , some other function in F should have

a fanout much smaller than 1. If the fanout OgAj
is smaller than the mapper

fanout, i.e., OgAj
< OF , the gain will always be positive. In this situation, the

higher is the value of Csel, the higher is the gain ∆G4 obtained.

5.4 Estimating the cost of an expression optimized with Rule 5

As presented in Section 4.2, the optimized expression obtained by applying
Rule 5 takes the form µF (σC[B1,...,Bl←F |B1

,...,F |Bl
](s)), where H = F |B1 , ..., F |Bl

is the set of mapper functions that are propagated into the selection condition.

The cost of the optimized expression is given by summing (i) the cost of
evaluating the new selection condition C[B1, ..., Bl ← F |B1 , ..., F |Bl

], with (ii)
the cost of evaluating the mapper µF for every tuple that is not filtered by
the condition. Since the new condition is obtained by inlining the mapper
functions of H in the condition C, the per-tuple cost of evaluating the new
condition is estimated as Csel + CH , that is, the cost of evaluating the initial
selection plus the cost of evaluating the propagated functions. Therefore, when
applying this rule, the Cartesian product and the rest of the mapper functions
are only evaluated when σC[B1,...,Bl←F |B1

,...,F |Bl
] holds. Thus, we estimate the

cost of the optimized expression as:

n · (Csel + CH) + n · α · (Cprd + CF) (8)

where n · (Csel + CH) represents the cost of evaluating the condition and
n · α · (Cprd + CF) represents the cost of evaluating the mapper for the tuples
that are not filtered by the condition. Note that, since only single-valued
functions can be pushed into the condition, the mapper functions in H have
fanout equal to one.

The gain of this optimization is obtained as the difference between (3) and
(8). Hence,

∆G5 = n · (Cprd + CF) + n ·OF ·Csel−n · (Csel + CH)−n ·α · (Cprd + CF) (9)

22

which becomes

∆G5 = n · (1− α) · (Cprd + CF) + n · Csel · (OF − 1)− n · CH (10)

Looking at the gain formula (10), we observe that smaller selectivities α result
in higher gains. The gain ∆G5 increases with the fanout of the mapper OF , with
the evaluation cost of the selection condition Csel and with the evaluation cost
of all mapper functions CF . Pushing fewer functions or cheaper functions to
the selection condition means lower values of CH , which also results in higher
gains.

5.5 Selecting the best optimization

In some situations, only one of the rewriting rules apply. Rule 5 can only be
applied when the attributes of the condition are produced by single-valued
functions, while Rule 4 can be employed when optimizing selections whose
conditions involve attributes mapped by multi-valued or single-valued func-
tions. Additionally, Rule 4 can only be applied when the attributes of the
selection condition are produced by only one function, while Rule 5 can be
applied when conditions involve multiple attributes that are produced by mul-
tiple functions.

If the attributes of the selection condition are produced by only one mapper
function and, furthermore, if this mapper function is single-valued, then both
rules can be applied. In this case, we need to identify the rule that brings
the highest gain. This is determined by comparing the gains obtained by both
rules. It is more advantageous to use Rule 4 instead of Rule 5 when ∆G4 −
∆G5 > 0, which is the same as

n · CH + n · Csel · (OgAj
− 1)− n · (1− α) · (CF + m · k0) > 0 (11)

We develop (11) taking into account that, since gAj
is single-valued, the fanout

OgAj
is 1, and we get

CH > (1− α) · (CF + m · k0) (12)

As the selectivity α approaches 100%, we see that (1− α) · (CF + m · k0) gets
smaller. This indicates that for higher selectivities, Rule 5 is more likely to
perform better than Rule 4. Since CH and CF are fixed, we note that there
always exists a selectivity α0 for which Rule 5 is better than Rule 4. Moreover,
the higher the difference between the CF and CH is, the lower α0.

23

6 Experimental Validation

In this section, we seek to validate the optimizations, the cost formulas pro-
posed and to compare the different optimization rules. To achieve this desider-
atum, we implemented the mapper operator and conducted a number of exper-
iments that compare expressions combining selections with mappers to their
optimized equivalents. The experiments address the influence of predicate se-
lectivity, the mapper function fanout and the mapper function cost on the
optimizations proposed in Rule 4 and in Rule 5.

To ensure the same conditions for both rules, our setup is as follows. A
base expression σpi

(µf1,f2,f3,f4(r)) is compared with the optimized variants
µf1,σpi◦f2,f3,f4(r) for Rule 4, and µf1,f2,f3,f4(σpi[f2](r)) for Rule 5. The map-
per function f1, unless otherwise stated, has a fanout of 2.0, f2 always has
a fanout of 1.0 and the remaining functions, f3 and f4, have a fanout of 2.0.
The input relation r is an input relation with synthetic data. The predicate
pi corresponds to a condition with a predefined selectivity. Furthermore, the
predicate pi[f2] represents a new predicate that results from expanding the
function f2 in the condition corresponding to pi, as presented in Section 4.2.

For the sake of accuracy, we applied predicates that guarantee predefined
selectivity values. Likewise, when we needed to vary the fanout or the cost
factors of a function, we employed functions specifically designed to guarantee
predefined fanout factors and per-tuple costs. Each experiment measured total
work, i.e., the sum of the time taken to read the input tuples, plus the time
taken to compute the output tuples, plus the time taken to write them.

The implementation of the mapper operator was developed on top of the
XXL library [vdBDS00, vdBDK+01], which provides database query process-
ing functionalities through a set of relational operators.

All experiments were conducted on a standard PC with an AMD Athlon
processor at 1.8Ghz, 1GB of RAM, Linux kernel version 2.4.27 and Sun’s
JRE 1.4.2. The tests were performed with the machine physically discon-
nected from the network and only the essential operating system processes
were running. Time measurements were performed using stopwatch objects
implemented with the Java time utility classes.

To ascertain that the differences in performance were caused by improvements
brought by one optimized expression over the original, we verified that the
amount of I/O performed on both expressions was the same and, furthermore,
that it was performed in the same regions of the disk. To that end, raw devices
were used instead of regular files.

24

Fig. 2. Evolution of total work for the original and optimized expressions with one
million tuples using cheap functions. (a) On the left, the effect of applying predicates
pi with increasing selectivities. (b) On the right, the effect of increasing the fanout
of the mapper function f1, maintaining the predicate selectivity fixed to 2.5%.

6.1 The influence of the predicate selectivity

Seeking to validate the effect of the predicate selectivity, a set of experiments
was carried out using a different pi predicate with selectivities ranging from
0.1% to 100%. The tests were executed over an input relation with 1 million
input tuples. Figure 2a shows the evolution of the total work for different
selectivities, using cheap functions with their default fanouts.

As expected, for both rules, the highest gains brought by the optimization were
obtained for small selectivities. For Rule 4, more concretely, for a selectivity
of 0.1%, the optimized expression was 2.7 times faster than the original one.
For Rule 5, with the same selectivity, the optimized expression was 5.5 times
faster.

With respect to Rule 4, as the selectivity decreases, more results are filtered
out from function f2 by the predicate pi and, therefore, the cost of computing
the Cartesian product involved in the mapper is smaller. As the selectivity
tends to 100%, the gain drops since the number of tuples filtered out from
f2 tend to zero. These results validate the gain formula (7). This rule also
reduces the number of times the condition is evaluated. Even for a selectivity
of 100%, the non-optimized expression evaluates the condition more often that
the optimized expression. However, since in these experiments the predicate
evaluation is very cheap, the small gain obtained is not visible in the figure.

With respect to Rule 5, as a direct effect of pushing the condition through the
mapper, the mapper is evaluated over fewer tuples and thus, many Cartesian
product computations and function evaluations are saved. As the selectivity of
the condition tends to 100%, the number of tuples fed into the mapper grows.
Therefore, the cost of the non-optimized expression is approximately the same
as the cost of the optimized expression.

6.2 The influence of the function fanout

In order to experimentally check how the function fanout affects the proposed
optimizations, we tracked the evolution of total work for the original and
optimized expressions when the fanout factor varies. Function f1 was replaced

25

Fig. 3. Evolution of total work for the original and optimized expressions in the
presence of expensive functions while processing 100K tuples with the cost of f2

set to 10ms per call. (a) On the left, the effect of increasing the cost of f3 with a
constant selectivity factor of 2.5% for pi. (b) On the right, the effect of increasing
the selectivity factor of pi, maintaining the cost of f3 constant at 25ms per call.

by a function that guarantees a predefined fanout factor ranging from 0.01
(unusually small) to 100. To isolate the effect of the fanout, the selectivity of
the predicate was kept constant at 2.5%. The results are depicted in Figure 2b.

For small values of the fanout, Rule 4 presents a slight degradation of ≈ 1% in
performance with respect to the performance of the original expression, while
Rule 5, displays an improvement of ≈ 35%. The modest improvement brought
by Rule 5 is explained by the fact that, for small values of the fanout, the
Cartesian product is rarely performed, so no gain is introduced. Additionally,
in the case of Rule 4, for small values of the mapper fanout, the expression
OF − OgAj

is negative. As a consequence, according to the gain formula (7),

the gain is also negative.

As explained in Section 5.1, the cost of the Cartesian product increases with
the fanout, since the higher the fanout, the more tuples have to be produced by
the Cartesian product for each input tuple. For high values of fanout, the cost
of performing the Cartesian product becomes the dominant factor. Thus, the
gain obtained by both rules increases with the fanout since both optimizations
reduce the cost of the Cartesian product. For a fanout of 100, we observed that
Rule 4 was 2.7 times faster than the original and Rule 5 was 2.95 times faster.
See Figure 2a and Figure 2b.

In this experiment, Rule 5 is consistently cheaper than Rule 4. Since the
selectivity for this experiment is 2.5%, according to (12), we know that Rule 5
is cheaper than Rule 4 whenever Cf2 < 97.5% · (CF + m · k0). Trivially, this
inequality holds because the cost of all functions in F is the same.

6.3 The influence of the function evaluation cost

To validate how the function cost influences the optimization gains, two sets
of experiments were put in place. The first set of experiments increased the
cost of an expensive function, while the second set of experiments varied the
selectivity of the condition in the presence of expensive functions. We consid-
ered f3 to be the expensive mapper function. In the first set of experiments,
shown in Figure 3a, the cost of f3 varied from 1ms per call to 100ms per call.
In the second set of experiments, shown in Figure 3b, the cost of f3 is fixed to

26

25ms. In both sets of experiments the function being optimized, which is f2,
had a fixed cost of 10ms per call.

In Section 5.3, we remarked that the gain for Rule 4 is independent of the
mapper function cost. Although there is a gain resulting from savings in the
Cartesian product computation, as show by gain formula (7), this gain is
very small by comparison with the mapper execution cost when we are in the
presence of expensive functions. The outcome of the experiments is aligned
with the cost estimates. Notice that in Figure 3a and Figure 3b, the line
plots of the optimized expressions for Rule 4 overlap the line for the original
expression.

With respect to Rule 5, we observe that the cost of the mapper functions and
the predicate selectivity directly influence the gain. Our observations validate
the gain formula (10), in that small selectivities and a high function cost result
in high gains.

In Figure 3a, the cost of the optimized expression for Rule 5 is initially higher
than the cost of the original expression. This happens because for lower func-
tion costs, the mapper function f2, which is the only function pushed into the
selection condition, is more expensive than the function f3. This means that,
in the gain formula (10), n ·CH is higher than the other factors of the formula,
which results in a negative gain. As f3 gets more expensive, the value of CF

grows. This causes n · (1− α) · (Cprd + CF) to increase, eventually leading to
a positive gain.

In Figure 3b, we observe that the cost of the optimized expression for Rule 5
eventually becomes more expensive than the cost of the original expression.
In fact, as the selectivity factor α increases, n · (1−α) · (Cprd +CF) decreases,
and since CH is high, the gain eventually becomes negative.

These two experiments highlight the limitation of Rule 4. This rule does not
optimize the cost of evaluating the functions. Thus, when the cost of evaluating
the mapper functions increases, both the original and the optimized expres-
sions increase by the same amount. By contrast, Rule 5 reports important
gains.

Nevertheless, Rule 4 is quite successful if the cost of applying the predicate is
high. In the optimized version for Rule 4, the predicate is applied for each out-
put value of the mapper function. In the non-optimized version, the predicate
is applied for each tuple of the result Cartesian product. The number of tuples
produced by the Cartesian product, for each input tuple, is given by multiply-
ing the fanout factors of all mapper functions. In the presence of expensive
predicates, for functions with high fanout, high gains can be achieved.

27

7 Related work

To support the growing range of applications of RDBMSs, several extensions
to RA have been proposed since its inception (like e.g., aggregates [Klu82]),
mainly in the form of new operators. Applications requiring data transfor-
mations bring a new requirement to RA as their focus is no more limited to
the initial idea of deriving information [Par78, AU79] but also involves the
production of new data items.

Data transformation is an old problem and the idea of using a query language
to specify such transformations has been proposed back in the 1970’s with
two prototypes, Convert [SHL75] and Express [SHT+77], both aiming at data
conversion.

More recently, three efforts, Potter’s Wheel [RH01], Ajax [GFS+01] and Data
Fusion [CG04], have proposed operators for data transformation and cleaning
purposes. Potter’s Wheel fold operator is capable of producing several output
tuples for each input tuple. The main difference w.r.t. the mapper operator
lies in the number of output tuples generated. In the case of the fold operator,
the number of output tuples is bound to the number of columns of the input
relation, while the mapper operator may generate an arbitrary number of
output tuples.

The semantics of the Ajax map operator represents exactly a one-to-many
mapping. Unlike our data mapper, the Ajax operator allows the specification
of a selection condition applied to each input tuple. However, it has not been
proposed as an extension of the relational algebra. Consequently, the issue of
semantic optimization, as we propose in this paper, has not been addressed
for the Ajax map.

Data Fusion tool [CG04] implements the semantics of the mapper operator
as it is presented here, to express one-to-many data transformations in the
context of legacy-data migrations. The employment of this tool in large com-
mercial legacy-data migration projects corroborated the need of supporting
data transformations that require one-to-many mappings. However, the cur-
rent version of Data Fusion is not supported by an extended relational algebra
as we propose.

Solutions for restructuring semi-structured data [Suc98] like WOL [DK97],
YAT [CS97], and TransScm [MZ98] aim at transforming both schema and
data. These systems use Datalog-style rules in their specification languages.
Their expressiveness is restricted to avoid potentially dangerous specifications
(that may result in diverging computations). As a result, they cannot express
the dynamic creation of tuples.

28

Data transformations are also required in ETL processes. To the best of our
knowledge, in most ETL tools, to express one-to-many data-transformations,
the user has to resort to some form of ad-hoc scripting. Furthermore, the
optimization of ETL data transformations is a recent effort [SVS05].

Clio [MHH+01] is a tool aiming at the discovery and specification of schema
mappings. It has the ability to generate SQL queries for data transforma-
tions from schema mappings. However, the class of data transformations sup-
ported by Clio is induced by select-project-join queries. Recent work on Clio
[FKMP03] proposed to perform the transformation of data instances from a
source schema into a target schema based on source-to-target schema depen-
dencies, but their semantics of universal solutions is not powerful enough to
entail the class of one-to-many transformations we propose to tackle in this
document.

8 Conclusions

This paper addresses the problem of expressing one-to-many data transfor-
mations that frequently arise in legacy-data migrations, ETL processes, data
cleaning and data integration scenarios. Since these transformations cannot be
expressed as RA expressions, we have proposed a new operator named data
mapper that is powerful enough to express them.

We then presented a simple semantics for the mapper operator and proved
that RA extended with the mapper operator is more expressive than stan-
dard RA. Interesting properties of mappers were described. We showed that
mappers admit a tuple-at-a-time semantics and that they can subsume stan-
dard relational operators like projection, renaming and selection. Then, a set
of standard algebraic optimization rules for pushing projections and selec-
tions through mappers, that enable the logical optimization of a subset of
relational queries extended with mappers, were proposed together with their
corresponding proofs of correctness.

To better understand the issues that arise in the optimization of algebraic
expressions involving our new operator, we developed and experimentally val-
idated the cost estimation formulas for expressions that combine relational
filters with mappers. This effort led us to identify the main factors that in-
fluence the optimization gains. This is an essential step towards designing
heuristics for a cost-based optimizer.

We strongly believe that current relational database technology enhanced with
the mapper operator will provide a powerful data transformation engine. We
aim at providing both logical and physical optimization strategies to the query

29

optimizer specially tailored for data transformations. To that end, we are
developing and experimenting different physical execution algorithms for the
mapper operator. Furthermore, we are extending the work presented with the
algebraic optimization rules for other operators of the RA and maturing the
cost formulas presented towards cost-based optimization.

From an application point-of-view, we also plan to incorporate this technology
in the newer versions of the Ajax [GFS+01] data cleaning tool and in Data
Fusion [CG04] legacy-data migration tool.

References

[AdA93] P. Atzeni and V. de Antonellis. Relational Database Theory.
The Benjamin/Cummings Publishing Company, Inc., 1993.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Database
Systems. Addison-Wesley, 1995.

[AU79] A. V. Aho and J. D. Ullman. Universality of data retrieval
languages. In Proc. of the 6th ACM SIGACT-SIGPLAN Symp.
on Principles of Programming Languages, pages 110–119. ACM
Press, 1979.

[CDSS98] S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your mediators
need data conversion! In ACM SIGMOD Int’l Conf. on the
Managment of Data, pages 177–188, 1998.

[CG04] P. Carreira and H. Galhardas. Efficient development of data
migration transformations. In ACM SIGMOD Int’l Conf. on
the Managment of Data, 2004.

[CGLP05] P. Carreira, H. Galhardas, A. Lopes, and J. Pereira. Extending
the relational algebra with the Mapper operator. DI/FCUL TR
05–2, Department of Informatics, University of Lisbon, January
2005. URL http://www.di.fc.ul.pt/tech-reports.

[Cha98] S. Chaudhuri. An overview of query optimization in relational
systems. In PODS ’98: Proc. of the ACM SIGACT-SIGMOD-
SIGART Symp. on Principles of Database Systems, pages 34–43.
ACM Press, 1998.

[Cod70] E. F. Codd. A relational model of data for large shared data
banks. Communications of the ACM, 13(6):377–387, 1970.

[CS93] S. Chaudhuri and K. Shim. Query optimization in the presence
of foreign functions. In Proc. of the Int’l Conf. on Very Large
Data Bases (VLDB’93), pages 529–542, 1993.

[CS97] S. Cluet and J. Siméon. Data integration based on data conver-
sion and restructuring. Extended version of [CDSS98], 1997.

[DK97] S. B. Davidson and A. Kosky. Wol: A language for database
transformations and constraints. In Alex Gray and Per-Åke Lar-

30

son, editors, Proc. of the 13th Int’l Conf. on Data Engineering,
pages 55–65. IEEE Computer Society, 1997.

[FKMP03] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Ex-
change: Semantics and Query Answering. In Proc. 8th Int’l Conf.
on Database Theory (ICDT). IEEE Computer Society, 2003.

[Gal01] H. Galhardas. Data Cleaning: Model, declarative language and
algorithms. PhD thesis, Université de Versailles Saint-Quentin-
en-Yvelines, 2001.

[GFS+01] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C. A. Saita.
Declarative data cleaning: Language, model, and algorithms. In
Proc. of the Int’l Conf. on Very Large Data Bases (VLDB’01),
2001.

[GFSS00] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. Ajax: An
extensible data cleaning tool. ACM SIGMOD Int’l Conf. on
Management of Data, 2(29), 2000.

[Gra93] Goetz Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 2(25), 1993.

[Hel98] J. M. Hellerstein. Optimization techniques for queries with
expensive methods. ACM Transactions on Database Systems,
22(2):113–157, 1998.

[HY90] R. Hull and M. Yoshikawa. Ilog: Declarative creation and ma-
nipulation of object identifiers. In Proc. Int’l Conf. on Very
Large Databases (VLDB’90), pages 455–468, 1990.

[JS82] G. Jaeschke and H. J. Schek. Remarks on the algebra of non
first normal form relations. In Proc. of the 1st ACM SIGACT-
SIGMOD Symp. on Principles of Database Systems (PODS ’82),
pages 124–138. ACM Press, 1982.

[Klu82] A. Klug. Equivalence of relational algebra and relational calcu-
lus query languages having aggregate functions. Journal of the
ACM, 29(3):699–717, 1982.

[LR99] D. Lomet and E. A. Rundensteiner, editors. Special Issue on
Data Transformations. IEEE Data Engineering Bulletin, 1999.

[LSS96] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian.
SchemaSQL - a Language for Querying and Restructuring
Database Systems. In Proc. Int’l Conf. on Very Large Databases
(VLDB’96), pages 239–250, 1996.

[MHH+01] R. J. Miller, L. M. Haas, M. Hernandéz, C. T. H. Ho, R. Fa-
gin, and L. Popa. The Clio Project: Managing Heterogeneity.
SIGMOD Record, 1(30), 2001.

[Mil98] R. J. Miller. Using Schematically Heterogeneous Structures.
Proc. of ACM SIGMOD Int’l Conf. on the Managment of Data,
2(22):189–200, 1998.

[MZ98] T. Milo and S. Zhoar. Using schema matching to simplify het-
erogeneous data translation. In Proc. of the Int’l Conf. on Very
Large Data Bases (VLDB’98), 1998.

31

[Par78] J. Paredaens. On the expressive power of the relational algebra.
Inf. Processing Letters, 7(2):107–111, 1978.

[RH01] V. Raman and J. M. Hellerstein. Potter’s Wheel: An Interactive
Data Cleaning System. In Proc. of the Int’l Conf. on Very Large
Data Bases (VLDB’01), 2001.

[SAC+79] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access path selection in a relational database
management system. In ACM SIGMOD Int’l Conf. on the Man-
agment of Data, pages 23–34, 1979.

[SHL75] N. C. Shu, B. C. Housel, and V. Y. Lum. CONVERT: A
High Level Translation Definition Language for Data Conver-
sion. Communications of the ACM, 18(10):557–567, 1975.

[SHT+77] N. C. Shu, B. C. Housel, R. W. Taylor, S. P. Ghosh, and V. Y.
Lum. EXPRESS: A Data EXtraction, Processing and RE-
Structuring System. ACM Transactions on Database Systems,
2(2):134–174, 1977.

[SKS01] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database Sys-
tems Concepts. MacGraw-Hill, 4th edition, 2001.

[Suc98] D. Suciu. An overview of semistructured data. SIGACTN:
SIGACT News (ACM Special Interest Group on Automata and
Computability Theory), 29(4):28–38, 1998.

[SVS05] A. Simitsis, P. Vassiliadis, and T. K. Sellis. Optimizing ETL
processes in data warehouses. In Proc. of the 21st Int’l Conf. on
Data Engineering (ICDE), 2005.

[TF86] S. J. Thomas and P. C. Fischer. Nested relational structures.
Advances in Computing Research, 3:269–307, 1986.

[vdBDK+01] J. van den Bercken, J. P. Dittrich, J. Kräamer, T. Schäafer,
M. Schneider, and B. Seeger. XXL a library approach to sup-
porting eficient implementations of advanced database queries.
In Proc. of the Int’l Conf. on Very Large Data Bases (VLDB’01),
2001.

[vdBDS00] J. van den Bercken, J. P. Dittrich, and B. Seeger. XXL: A pro-
totype for a library of query processing algorithms. In W. Chen,
J. F. Naughton, and P. A. Bernstein, editors, Proc. of the ACM
SIGMOD Int’l Conf. on Management of Data. ACM Press, 2000.

32

