
Verificação Automática
de Especificações OBLOG

Dissertação de Mestrado submetida ao Departamento de
Informática da Faculdade de Ciências da Universidade de
Lisboa como parte dos requisitos para a obtenção do grau

de Mestre em Informática.

por

Paulo Jorge Fernandes Carreira

Dezembro de 1999

Universidade de Lisboa
Faculdade de Ciências
Departamento de Informática

ii

Automatic Verification of OBLOG Specifications

This dissertation was prepared by Paulo Jorge Fernandes Carreira under the supervision
of Prof. Dr. José Luiz Lopes Fiadeiro at the Department of Informatics of the Faculty of
Science of the University of Lisbon in partial fulfillment of the requirements for the
degree of Master in Computer Science. In the curricular part of his master’s studies the
author completed the following courses: Concurrent Programming, Distributed Artificial
Intelligence, Formal Specification, General Systems Theory, Neural Networks, Neural
Dynamics, Machine Learning and Object Oriented Programming.

December 1999

Verificação Automática de Especificações OBLOG

Esta dissertação foi preparada por Paulo Jorge Fernandes Carreira sob a supervisão do
Prof. Doutor José Luiz Lopes Fiadeiro no Departamento de Informática da Faculdade de
Ciências da Universiade de Lisboa como parte dos requisitos para a obtenção do grau de
Mestre em Informática. Na parte curricular dos estudos o autor realizou as seguintes
disciplinas: Aprendizagem, Especificação Formal, Inteligência Artificial Distribuída,
Neurodinâmica, Programação Centrada em Objectos, Programação Concorrente, Redes
Neuronais e Teoria dos Sistemas Gerais.

Dezembro de 1999

iii

Abstract

Designing correct software has been a problem for as long as computers have existed.
Although Software engineering methodologies have contributed to the increasing quality
of software systems, they cannot be successful without appropriate tools. Recent
advances in a branch of software engineering that borrows concepts from discrete
mathematics named Formal Methods, has enabled the automatic verification of computer
systems although with some limitations. The two main verification approaches that
emerged from Formal Methods are called Automatic Theorem Proving and Model-
Checking. These two approaches left academia and have achieved success in the
verification of real world systems. An obstacle for the extended use of these tools is
requiring the formalization of systems in mathematical based notations. This thesis
intends to take a step further in the direction of automatic verification of software by
proposing a strategy for the verification of a high-level object-oriented specification
language. The approach presented here is based on a translation of a subset of OBLOG
specifications into two different formalisms: The Process Algebraic language LOTOS
and Communicating Automata. These concepts were tested in the verification of the
Alternating Bit Protocol with acceptable results.

Keywords

Automata, Automatic Verification, Computer Aided Verification, Formal Methods,
Formal Specification, Model-Checking, Object-Oriented Languages, Process Algebras,
Specification Languages, Temporal Logic.

iv

Resumo

O desenho de software que opere correctamente tem constituído um problema desde que
os primeiros computadores foram construídos. Muito embora a adopção de métodos de
Engenharia de Software tenha dado um contributo visível no aumento da qualidade dos
sistemas de software, não se podem atingir os padrões de qualidade necessários sem
ferramentas apropriadas. Avanços recentes numa área da Engenharia de Software que
importa muitos dos seus conceitos do campo das matemáticas discretas, denominada
Métodos Formais, tem vindo a tornar possível a verificação automática de sistemas
computadorizados ainda que com algumas limitações. As duas aproximações principais
têm por nome Demonstração Automática de Teoremas e Verificação Baseada em
Modelos. Tanto uma como outra deixaram o meio académico alcançando sucesso na
verificação de sistemas de tamanho real. Um dos obstáculos que se põe ao uso extensivo
destas técnicas é o requisito de utilizar uma notação matemática para representar os
sistemas que pretendemos verificar. Esta tese tem por objectivo dar mais um passo em
frente na direcção da verificação automática de Software propondo uma estratégia para a
verificação de especificações escritas numa linguagem de alto nível. As ideias
apresentadas assentam na tradução de um sub-conjunto das especificações OBLOG para
dois formalismos diferentes, a saber: A linguagem LOTOS, baseada na Álgebra dos
Processos e os Autómatos Comunicantes. Os conceitos apresentados foram testados na
verificação de uma versão do Protocolo do Bit Alternante com resultados aceitáveis.

Palavras Chave

Álgebras de Processos, Autómatos, Especificação Formal, Métodos Formais, Linguagens
Object-Oriented, Lógica Temporal, Verificacão Automática, Verificação Assistida por
Computador, Verificação Baseada em Modelos.

v

Preface

By the praxis of dissertations this is the section in which I should thank everyone
involved in this work. The task is sometimes unfortunate for the writer (me) – do I have
enough space to thank all my closest friends? And what about all those anonymous
speakers and writers that sparked some thought on me and made me rethink my work? I
am also indebted to them, am I not? So, just because your name is not here that doesn’t
mean that I don’t remember your smile.

This thesis is the result of a one-year research project in Automatic Verification as
a grantee sponsored by OBLOG Software. The working environment at OBLOG is great
both in people and logistics. Many thanks go to all my friends there.

I won’t only thank but single out my advisor, Prof. José Luiz Fiadeiro for starting
me into this wonderful field of Computer Science. For his commitment in finding money
for me, for giving me the opportunity to meet researchers from other countries, for his
patience and many times, inspiring good humor – Thanks. I believe this can only be
compensated with excellent work.

Some notes for some friends; Gonçalo: Thanks for taking me home. Rui Bastos:
Thanks for suffering some of my chapters. José Cruz: Our discussions about Turing
Machines were inspiring and I definitely understand your dilemma of dishes after dinner.

Thanks to Asia, Gosia, Justyna, Karolina and Magda, I can now ‘concat’ some
words in Polish – Your commitment in teaching me is greatly acknowledged. I recognize
it was a good anti-stress exercise reading a foreign language at night, in those days of
theory. Especially Karolina, who helped me with this proverb: Dzisiaj lepiej QL �ZF]RUDM�
Jutro lepiej QL �G]LVLDM – Karolina, codziennie! (I can e-mail the translation to the most
curious minds).

Finally to my dearest Susana, whose love and support played a significant deal in
the necessary energy to carry out this job. Thanks. Thanks for being so generously that
‘parallel’ part of me, so that I could work on thesis problems. You are great!

To all of you who were touched by my sometimes-rude temperament, please
forgive me.

I end up saying that I have been blessed, with family and friends that made my
life so much richer, so much fuller, and so much happier. In this work, I’m convinced,
there is also a part of each of them.

Paulo Carreira

vi

Index

Automatic Verification of OBLOG Specifications... ii
Verificação Automática de Especificações OBLOG .. ii
Abstract ... iii
Keywords... iii
Resumo.. iv
Palavras Chave... iv
Preface .. v
Index.. vi
Introduction... 1
Chapter 1 – Automatic Verification in Software Engineering .. 3

1.1 Problems of the classical software engineering processes....................................... 3
1.2 Formal methods for software engineering .. 4
1.3 Automatic verification... 6

Chapter 2 – State Transition Systems and Temporal Logic .. 10
2.1 Transition systems ... 11
2.2 Modal Logic.. 12
2.3 Linear temporal logic... 13
2.3 Branching time logics .. 15
2.4 Hennessy-Milner Logic ... 18
2.5 Mu-Calculus.. 19
2.6 Specification of properties using temporal logic... 21

Chapter 3 – Model-Checking... 26
3.1 Process overview... 26
3.2 State space generation.. 27
3.3 Model-Checking approaches.. 28
3.4 Optimizing the Model-Checking process ... 30
3.5 Classes of systems ... 32
3.6. Some of the existing verifiers ... 34

Chapter 4 – The OBLOG specification language ... 37
4.1 Objects, Operations and Methods .. 37
4.2 Features left out of the OBLOG language .. 38
4.3 Behavior Components ... 39
4.4 Some aspects of coding behavior components ... 41
4.5 Specification of the Alternating Bit Protocol.. 44

Chapter 5 – Process algebraic verification approach to OBLOG specifications.............. 47
5.1 Technical framework... 47
5.2 Translating OBLOG specifications into LOTOS.. 53
5.3 Case study – verifying the Alternating Bit Protocol ... 63

Chapter 6 – Verifying OBLOG specifications using Communicating Automata 68
6.1 Technical framework... 68
6.2 Translating OBLOG programs into IO-Automata .. 71
6.3 Case study – verifying the Alternating Bit Protocol ... 80

Conclusion.. 85

vii

References .. 90
Appendix A – Syntax of the OBLOG specification language... 98
Appendix B – Initial OBLOG specification of the ABP... 100
Appendix C – Syntactic sugar free specification of the ABP.. 103
Appendix D – LOTOS specifications of the ABP.. 107
Appendix E – Summary of properties verifyed with CADP... 120
Appendix F – UPPAAL .ta specification of the ABP... 121
Appendix G – UPPAAL .ta specification of test automata and properties 129

Introduction

Whenever we look around, to parking meters, medical instrumentation, power plants,
telephone switching equipment or aircraft navigation systems, we can perceive an
increasing dependence of humans on computerized systems. These systems exhibit
complex behavior because they are constituted of many interacting parts that operate
simultaneously and interact with their surrounding environment in many different ways.

In general, the human being does not have an inborn ability to think of every
possible interaction emerging from the kind of systems just mentioned. For that reason,
when designing software for them, misconceptions are frequent leading to errors that are
not manifested in the test phases but only during systems operation as a result of complex
interactions with the environment. Consequences of failures of systems of this kind can
be ranked in material and human loss or even in environmental damage. The
development of better concurrent programming languages and techniques for quality
measurement, test and verification of software has become imperative.

About 30 years ago, Floyd and Hoare [Floyd 67, Hoare 69] proposed the first
techniques for verifying program correctness. However, these techniques were limited
only to a subset of the class of imperative programs that are not suited, in general, to
program the systems mentioned above.

The quest of program verification was greatly influenced in the late 1970s, when
A. Pnueli proposed the use of Temporal Logic to reason about the behavior of concurrent
and reactive programs [Manna & Pnueli 92, Manna & Pnueli 95].

The results of A. Pnueli together with efforts in protocol verification lead to the
development of a technique known as Model-Checking [Burch & al. 90]. This
verification technique, as opposed to some previous ones, allowed the verification
process to be completely automated making it attractive for many applications [Clarke &
al. 86].

Model-Checking is carried out in two phases. The first phase is the construction
of a graph (the model) from the program through exhaustive enumeration of all possible
states into which the system can run, connecting them by arcs representing state
transitions and labeling them with actions taken by the system. The second phase consists
in exploring this graph in order to verify if it meets some specific properties. For this
technique to be feasible, the number of states in the system model must be finite. It
happens in practice that, although finite, the number of states of even small real world
systems is often so high that it falls out of the capacity of the machines that most of us
have access to.The state space explosion problem is certainly the prominent obstacle of
the Model-Checking approach. This problem has been motivating the upsurge of diverse
theoretical results and techniques that applied in a conjoint way can make possible the
verification of real world systems [Clarke & al. 94, Courcoubetis & al. 92].

Although hardware industry is already using Model-Checking techniques with
success for almost one decade [Clarke & al. 92] only recently verification tools appeared
for software systems and still with some limitations. This situation is manly due to the
intrinsic complexity of software verification, which is higher than hardware’s and to the
reliability needs of hardware that prompted for this technology earlier.

2

Verification tools for software also offer very low level languages that are
normally based on automata or process calculi. Nevertheless, we have reasons to believe
that software verification will become a reality taking into account that the size of
systems handled by verification tools has been growing exponentially. In 1983 the first
model checkers only supported 104 states, whereas in 1998 it has been possible to verify a
system with 10120 states.

In this context, it is reasonable to pursue the study of techniques for verification
of OBLOG specifications [Andrade & Sernandas 96]. The OBLOG approach is
constituted of an object-oriented specification language and a box of auxiliary tools that
allow the transformation of specifications into of-the-shelf programming languages.
Providing a correct development framework for the OBLOG toolbox can be done by
verifying the correctness of the specifications and the correctness of the transformations.
This work constitutes a first contribution towards the verification of specifications while
the verification of the transformations is subject for future research work.

Our proposal for verifying OBLOG specifications relies in creating an interface to
take advantage of existing Model-Checking tools instead of building a model checker
specifically for OBLOG. The first part of this work consisted in an evaluation of fitness-
for-purpose of different existing tools focusing on their performance and capacity to
analyze software systems. Pragmatic aspects were taken into account like the degree of
automation of the tools and their integration with other tools, so that the results here
contained could be used in the development of a prototype for verification of OBLOG
specifications.

Two verification suites were selected: 1) The French tool CADP [Garavel 98]
developed at INRIA, mainly due to its interfacing capabilities and its capacity to handle
very large specifications like the specification of the Airbus Flight Warning Computer. 2)
The second tool is the Swedish/Danish tool UPPAAL [Bengtsson & al. 95] jointly
developed by the University of Uppsala and by the University of Aalborg. This second
choice was motivated by the need of a complementary approach that could give us a
somewhat different view and by the performance of this tool that was about ten times the
speed of similar tools.

Finally, a subset of the OBLOG specification language (Chapter 4) was selected
and a set of rules to convert OBLOG specifications into the input languages of both
verification tools was developed (Chapter 5 and 6). The results contained in these
chapters were tested with an example that also allowed tuning some of the translation
rules.

This dissertation is organized as follows: In Chapter 1, the motivation and use of
formal methods and verification technologies are discussed. Chapter 2 presents the
necessary mathematical background of this work. The presentation of Model-Checking
technology is made in Chapter 3. In Chapter 4, the subset of the OBLOG language is
presented. Chapter 5 describes the verification approach using a process algebraic coding
and Chapter 6 presents the automata theoretic coding.

Chapter 1 – Automatic Verification in Software
Engineering

This chapter aims to frame the Automatic Verification procedures in the context of
Software Engineering and Formal Verification. We start by drawing a sketch of the
Software Engineering process together with its weaknesses. Formal Methods are then
introduced, proposing to minimize some of the problems found in the traditional
Software Engineering approach such as ambiguities and lack of automation, among
others. Still in this section, a further insight is carried out on the usefulness of Formal
Methods and on their integration within the traditional approach. In the final section,
some observations that motivated the use of Automated Verification are given,
introducing two different approaches: Proof-Theoretic and Model-Theoretic verification.

1.1 Problems of the classical software engineering processes

Many organizations use a software development process that is some variant of the V life
cycle diagram presented in Figure 1.1. Starting from requirements, the development
process proceeds through several phases until a final product is delivered. Then, the
maintenance phase begins.

This traditional approach raises some problems. A central one is that errors are
discovered too late in the software development life cycle, when they are expensive to
repair. As a result, the user usually gets lately delivered and misconceived software. In
[Pressman 97] it is outlined that early stages of the software development life-cycle are
error prone and moreover, errors made here can have lasting influence on reliability and
cost of the system.

Nowadays, in the software industry, the various issues affecting the classical
approaches to software engineering process are somewhat common sense. These issues
can be stated generally, as the incapacity to understand the client expectations, followed
by an imprecise requirements specification and ending with the inability to verify
conformance of requirements. The result is obvious: We do not know whether we are
building the right program, and even if we do know, we will not be able to tell if we are
building it right.

Currently, the methodology used in earlier stages of the software development
process (like Requirements Specification and System Analysis) are rather ad hoc. They
are often based of informal or semi-formal diagrammatic descriptions, retaining
ambiguities that will reduce the usefulness of future inspections made to the
implementation, because the inspector and the implementer’s interpretation of the
specification might be different. Furthermore, such descriptions do not allow automation

4

tools, forcing the development team to perform a manual and tedious tasks of testing and
reviewing. We are interested in tools to perform these inspections automatically.

1.2 Formal methods for software engineering

The term Formal refers to the use of techniques from logic and discrete mathematics that
aim at a rigorous approach to the development of computer systems and software in the
tasks of specification, construction and validation.

The specification task is carried during the Systems Analysis and Software
Design phases and is often referred to as Formal specification of properties. In this phase,
essential properties of the system are identified and written in a language that can express
the desired evolution of the system in time. Examples of properties are

1. Deadlock-freedom: e.g.: “A system constituted of two processes is always
able to take an action, either through P1 or through P2.

2. System response: e.g.: “After performing a withdraw operation the balance is
decreased”.

Essentially, a formal specification is a set of formulas {ϕ i} where each ϕ i expresses a
property of the system.

In the construction task, a specification of the system behavior (or
implementation) is carried out, usually during the Software Design and Coding phases.
The behavioral description of the system expresses, in some way, a transition system.
This is a set of system states and a relation between them called transition relation.
Informally, the states of a program (or behavior description) are vectors where each
component is a valuation for a program variable. The transition relation describes to
which states we can go from a certain state by performing a certain action. Intuitively, the
transition relation describes the effects of commands on states. Several languages exist
for the purpose of behavior specification. Usually they are based on Process Algebras like

System Analysis

Coding

Software Design

Unit Test

Module Test

System Test

MaintenanceRequirements Final product delivered
to the user

Figure 1.1 – The V software life cycle diagram

5

CSP, CCS, LOTOS or some automata theoretic framework like Communicating
Automata.

The validation task consists of checking whether the specified properties follow
from behavior specification. The meaning of “follow from” is explained in Section 1.3.
In real-life software projects, sometimes due to the lack of appropriate tools, not every
property and behavior of the system is specified.

We can look at Formal Methods in two perspectives and see two different roles of
Formal Methods. As noted above, Formal Methods intend to be applied in determining
the quality of specifications, for example if they are consistent (i.e. we cannot conclude
contradictory facts), if certain properties are consequences of the specified requirements
or whether one level of design implements another, among others. In such cases the focus
of Formal Methods is analytical. From the other viewpoint, we say that the focus is
descriptive. The descriptive focus of Formal Methods refers to the clarification of the
systems requirements documentation through the use of a formal specification language
that facilitates communication among development teams helps the inspections or
reviews and allows quality certification of the system being developed. Formal methods
can be usefully applied in both analytical and descriptive perspectives; in real-life
projects however, this may not be so straightforward.

The encouragement of systematic enumeration and exploration of cases needed to
cope with formalization in the System Analysis and Software Development phases leads
to the detection of more design problems than it would otherwise be possible with
traditional methodologies. However, drawbacks of Formal Methods also exist and in the
absence of good tools and a skilled team we are certainly voted to failure.

The application of Formal Methods need not cover the complete software
development cycle. Instead, they can be used to enhance individual phases. In companies
where a software development method is already well established, its enhancement with
the application of Formal Methods is often very rewarding. An explanation of this fact
can be given if we take a look at each phase of the development cycle separately:

• In the System Analysis phase it as been noted above the advantage of early
fault detection. Here, Formal Methods provide accuracy where it is lacking in
conventional analysis approaches1.

• In the Software Design phase, architectural aspects are considered. By
focusing on critical modules of the system we are able to ascertain which
modules should receive Formal Methods analysis. This task is also known as
criticality assessment.

• In the Coding phase, a tool that guides us through the functionalities that need
to be implemented next, that gives us some measure of how much
functionality was implemented by comparing our implementation with the
specification, would be certainly useful. This is feasible with the application
of Formal Methods. Finally, the code could be verified in some automatic or
semi-automatic fashion.

In this context, Formal Methods can certainly be usefully employed.

1 A noteworthy work linking Formal Methods and Systems Analysis can be found in [Moreira 94]. Herein,
Moreira proposes the Rigorous Object-Oriented Analysis (ROOA) – A method that integrates formal
specification languages with object oriented analysis methods.

6

1.3 Automatic verification

Production-line control equipment, aircraft navigation systems, medical instruments or
power plant monitoring systems are some examples of highly complex computerized
systems whose failure can directly lead to personal injury, death or perhaps provoke high
environmental damages. These systems must be highly reliable and verifying them
becomes essential.

Safety-critical systems demand for the most sophisticated correctness assurance
technology available. Meanwhile, the fact that “bugs cost money”2 is progressively
attracting the focus of industry to the practices of verification. For example the Pentium
FDIV bug may have cost Intel 500 million USD. Another example was the explosion of
the Ariane space launcher in June 1996 ultimately due to a software failure [ESA 96].
The loss was estimated at 610 million Euros, about 675 million USD.

Computer systems verification (software and hardware) can be done in a non-
formal or formal way. What distinguishes formal verification from other approaches is
the use of a mathematical based process. This process ensures that if a system is formally
verified to have a certain property then it will never exhibit a behavior that violates this
property (assuming that the verification procedure is correct). The non-formal (and
traditional) ways of attaining reliability standards are based on performing exhaustive
testing, but testing real-world software systems to be 100% reliable is infeasible. Because
of this, a variety of non-formal techniques exist that try to enhance the quality of the
system in the production phase where testing efforts are cleverly balanced to achieve
greater coverage on rather critical parts of the system. However, it is commonly
recognized by the industry that even these efforts are insufficient for many applications.
In general, testing can only demonstrate the presence of errors and not their absence.

Today, there is a consensus among verification practitioners that verification is
too complex to be carried out by hand, at least from a pragmatic point of view. The main
advantage of formal verification is enabling the automation of the verification process,
this means that unto some point, a machine can do the job. Often referred as the “push-
button” principle of verification or automatic verification, this kind of formal verification
consists in giving the machine a specification of the system together with the
specification of a property, pushing a button and waiting until the machine stops and
yields either a yes or no. A ‘yes’ means that the system has the required property and a
‘no’, that the system does not have that property.

The recent upsurge of interest in formal methods was greatly influenced by the
appearance of techniques to perform automatic verification. Although far from being an
El Dorado, automatic verification as proven to be successful in many domain-specific
applications like communication protocols and hardware systems [Clarke & al. 92].

We may identify two classes of programs (often referred as systems)3. One class,
is the class of those programs that are ordinarily described as sequential programs. The
second class is the class of continuously operating programs (or reactive systems), like
operating systems, communication protocols or traffic control systems.

2 Quotation from [Hu 95]
3 Some authors prefer to distinguish the terms “program” and “system”, for instance the program can be
considered a part of the system. Herein however, a “program” is a description of a “system” at some level
of abstraction. In the current context the two terms can be used interchangeably without confusion.

7

Classical approaches for reasoning about sequential programs are based on
formalisms like Floyd’s strongest consequents, Dijkstra’s weakest pre-conditions or
Hoare’s Logic. Floyd’s work introduced the first formalism for verifying the correctness
of computer programs. He introduced the idea of strongest verifiable consequent, this is
the strongest assertion which holds after the execution of a statement, given an assertion
that holds before that statement. By giving a set of rules to automatically compute the
strongest verifiable consequent for every language construct, Floyd presented a
formalism to verify the correctness of programs (without loops). Dijkstra and Hoare
expanded Floyd’s work. Hoare starts from the post-condition and computes the pre-
condition.

These classical verification formalisms were developed based on the observation
that sequential programs initially accept some input, perform some computation and,
finally, output a result. We can see them as a transformation from initial states to final
states, or, from pre-conditions to post-conditions. However, in the class of reactive
programs, we can observe an arbitrarily long, possibly non-terminating behavior that
maintains ongoing interaction with its environment, where outputs can influence future
inputs. We must remark that, environment in this setting, possibly contains users, other
programs, or hardware capable of producing events and data. Thus, the class of reactive
systems subsumes many programs commonly labeled as concurrent, distributed or
parallel. Since reactive programs are continuously operating and yield infinite
computations, there is no final state. So, in this framework, initial-state/final-state
formalisms like Hoare Logic are of little use.

In the late 1970s A. Pnueli showed that Temporal Logic could constitute an
effective formalism to reason about reactive and concurrent systems. Details can be
found in [Manna & Pnueli 92, Manna & Pnueli 95].

Proposed techniques to achieve the goal of systems verification can be cast into
two groups: Proof-Based Methods (also called Deductive Methods) and Model-
Theoretical methods (also called State-Exploration Methods). Both have been intensively
studied in the literature and numerous algorithms have been proposed. Deductive
methods comprehend two techniques: Proof Checking and Theorem Proving, whereas
Model-Theoretical methods refer to a technique known as Model-Checking. Throughout
this dissertation the Model-Checking technique will receive extensive treatment. More
detailed analysis of Proof-Checking and Theorem Proving can be found in, e.g. [NASA
97]. A reference to the distinction drawn between Proof-Theoretical Methods and Model-
Theoretical Methods can be found in [Emerson 91].

Deductive Methods
Deductive methods refer to the use of deductive reasoning. In order to give an

informal definition of deductive reasoning we must recall two of the constituting parts of
a logic : Axioms and Inference Rules. These two together denote the infinite set of all
theorems of a logic L, by successive instantiation of Inference Rules on Axioms and
previously obtained theorems. Starting from a set of L-formulas A (or Assumptions), the
set of consequences of A in L may be described as the successive instantiation of
Inference Rules of L on Assumptions of A, Axioms of L and previously obtained
consequences of A. Deductive reasoning is the task of verifying whether a L-formula C is
a consequence of a set of Assumptions A. If this task succeeds, we can say that C follows
from A, C can be proved from A or symbolically, A LC.

8

In the context of Automatic Verification, in order to make use of deductive
methods we are interested in having a logic representation of the program P. This is
achieved through a semantic mapping that produces a set of formulas from P to be used
as assumptions. Using these assumptions, we are able to verify the conformance of
program P with specification S. A program P is conformant with a specification S if
every formula of S is a consequence of the assumptions drawn from P.

An important technique intimately related to theorem proving is Proof Checking.
The idea behind it is the following: the user builds the proof and the Proof Checker
double-checks it. This kind of work can be quite tedious, but nowadays proof-checking
tools provide a great degree of automation, automatically proving intermediate steps.
Larch Prover and Z/EVES are two examples of Proof Checkers that have been used with
success for verifying circuits and algorithms.

A Theorem Prover can be seen as a Proof Checker with higher degree of
automation. Ideally these tools should automatically exhibit a demonstration in any given
logic. Unfortunately due to the complexity of this kind of procedure this is not the case.
Theorem Provers provide less control over the proof, normally they request for user
guidance although they are supposed to do most of the work, whereas in the Proof
Checker case, the user should do the work and request for automation.

 Some of the existing tools can be seen as hybrids that act both as Proof Checkers
and Theorem Provers. Good examples of this are the tools ACL2 and PVS that are being
used with success for instance in circuit verification.

Model-Theoretic Methods
Model-Theoretical techniques appeared out of several developments in the late

1970s and early 1980s. Two main factors seemed to have attracted the focus of
researchers. Firstly, Pnueli proved that deciding the truth of a linear temporal formula
over a finite structure was decidable [Pnueli 77]. Secondly, the realization that many
concurrent programs could be seen as communicating finite-state machines. Together,
these two factors lead to a new approach to software verification that, until then, was
carried out by deductive techniques when possible, or with pencil and paper. This new
approach is based on the construction of the program’s state space followed by its
exhaustive exploration checking for the validity of a formula that represents a property.

The program’s state space can be roughly seen as the enumeration of all possible
configurations of the set of variables of the program. Each configuration of program
variables is called a state vector. A common representation of the system’s behavior is
taking each state vector as a node of a graph were each edge represents the possible
changes of state form vectors to vectors. When the program’s state space is finite we can

Specification
S

Program P Logic
representation of P

Semantic
mapping

Figure 1.2 – Deductive approach to software verification

9

use a technique called Model-Checking [Clarke & al. 94]. Model-Checking is the task of
checking for the validity of a formula ϕ of the specification S in a specific model.

In Figure 1.3, we can see a sketch of the Model-Checking procedure: Firstly, the
program is translated through an appropriate semantic mapping to a graph that represents
the behavior. Then, this graph is used as a model where formulas of specification S are to
be interpreted.

Early applications of this technique (or variants of it) can be dated between 1978-
1980 in the context of protocol validation [Brand & Joyner 78, Razouk & Estrin 80].
Shortly after in the early 1980s, Sifakis and his students started their work on the French
validation system CESAR. Somewhat simultaneously, Clarke and Emerson introduced
Temporal Logic Model-Checking algorithms as seen in [Clarke & Emerson 81] and
[Clarke & Emerson 82] that lead to the development of the Extended Model Checker (or
EMC) [Clarke & al. 86]. Holzmann in 1980 built the first general-purpose protocol
analyser [Holzmann 81]. The work of Sifakis, Clarke and Emerson and Holzmann lead to
three of the most popular verification tools today, respectively, CADP [Garavel 98],
SMV [McMillan 92] and SPIN [Holzmann 91].

Limitations of using Formal Verification techniques are twofold. Firstly, the
complexity involving the verification process can be exponential in the size of the
program, making it difficult or even impossible to verify many real-world systems.
Secondly, the use of verification tools still requires both familiarity with the problem
domain and acquaintance with the verification procedures. Understanding how the user
should interact with verification tools is currently a research topic, see e.g. [Valmari &
Setälä 95] or [Stevens & Stirling 98].

Specification
S

Program P

Semantic
mapping

Figure 1.3 – Finite-State approach to software verification

Program’s state space (model)

Chapter 2 – State Transition Systems and
Temporal Logic

The basis of Model-Theoretic verification is the creation of a finite model of the system
to be verified. The whole idea is to have a model that captures the evolution of the system
at some abstraction level and yet, simple and homogeneous enough to allow efficient
reasoning.

Transitions Systems (or TS) have been proposed to serve as models of systems
specifications that are constituted by states (represented as points) and transitions
(represented as arcs connecting the points). Two major classes of transition systems can
be found in literature: Those that attach information to states and those that attach
information to actions, respectively named, Kripke structures and Labeled Transition
Systems (or LTS).

These two classes of models reflect a distinction in specification languages. If the
language is based on data transformations, like, for example the imperative language
Pascal, then the models of specifications of that language are Kripke structures. One the
other hand, we have languages that do not care much about data. Instead these languages
are action (or event) oriented. The models of these languages are Labeled Transition
Systems. For a more extensive treatment of TS refer to [Arnold 94].

Having our model in hand, we want to know whether it has certain properties. We
are interested in analyzing the evolution of the system and verifying that it does not
perform incorrect computations and it does not take defective sequences of actions.

The use of a specialized language called Temporal Logic (or TL) for specifying
properties of computer programs, especially those that are concurrent and non-
terminating, was proposed by A. Pnueli in the 1970s [Pnueli 77]. His ideas have been
studied and extended by many researchers and today TL is an active area of research.
This effort has lead to proposals and to effective use of TL on almost every aspect of
concurrent programming, including design, specification, verification, composition and
automatic synthesis. To support these developments a great deal of theoretical machinery
was developed, leading among other results, to a variety of TLs.

To specify properties of reactive systems we need a logic that describes the
relative ordering of events in time. An obvious way of doing this would be introducing
special variables into a predicate logic to represent the instants at which the events occur.
Instead, we present a propositional family of TLs that can be used to specify properties
about state transition systems.

A multitude of TLs has been defined to specify and study the properties of
concurrent and reactive systems. Attempting to give a comprehensive presentation of the
existing temporal logic systems if far from the scope of this dissertation. Instead, we shall
concentrate on those that are meaningful for subsequent chapters. Occasionally however,

11

an extension or some other modification to a TL system may be presented. For a more
extensive treatment of the subject see [Emerson 91, Fagin & al. 95].

Using criteria similar to that of Transition Systems, TLs will be grouped in logics
that express properties on states and on actions. The two groups of temporal logics are
presented with a further distinction about linear-time and branching-time, preceded by a
presentation of the underlying Modal Logic. Linear-time logics allow us to express
properties concerning one individual execution path whereas Branching-time logics allow
us to express properties concerning tree executions. Tree executions are found in
transition systems where a state can possibly have several successor states

2.1 Transition systems

The transition systems that attach information to states are called Kripke structures and
are commonly used to interpret temporal logics like LTL or CTL.

Definition 2.1 A Kripke structure (or KS) is a 4-tuple M = (S, AP, L, Σ) where,
• S is a set of states.
• AP is a finite, nonempty set of atomic propositions.
• The mapping L: S → 2AP is called the proposition labeling.
• Σ⊆ S×S is a transition relation. An element (s1, s2)∈Σ is written as s1 → s2.

In the literature, when referring to KSs, states are often designated as worlds and
the transition relation Σ is often designated as accessibility relation. The set AP is
omitted in where it can be taken from the context.

A second class of transition systems, called Labeled Transition Systems attach
information to transitions instead of attaching information to states. Labeled Transition
Systems are frequently used as interpretation models for action logics like Henessy-
Milner logic [Hennessy & Milner 85] or ACTL [De Nicola & Vaandrager 91] and also
serve as models for process algebras like CSP [Hoare 85] or CCS [Milner 89], and
LOTOS [ISO 88].

Definition 2.2 A Labeled Transition System (or LTS) is a structure M = (S, A, Σ) where,
• S is a set of states.
• A is finite, non-empty set of actions.
• Σ ⊆ S×A×S is the transition relation. An element (s1, a, s2) ∈Σ is called a

transition and usually written as s1 →a s2. The transition s1 →a s2 means that,
from state s1, we can reach state s2 by performing action a.

Definition 2.3 A transition relation Σ is said to be nondeterministic, if for a given action
a, there exist states s1, s2 and s3 such that (s1, a, s2) ∈Σ and (s1, a, s3) ∈Σ and s1≠s2.
Otherwise, if for all states we have, (s1, a, s2) ∈Σ and (s1, a, s3) ∈Σ implies s2 = s3, the
transition relation is said to be deterministic. Informally, a nondeterministic relation
allows more than one labeled arrow →a starting at a given state, while a deterministic
relation allows only one.

12

Some more powerful temporal logics like the Mu-Calculus [Kozen 83] allow us to
express properties both about states and actions. These logics are naturally interpreted
over models that include information both about states and actions. A new version of
transition system is presented that can be regarded as a combination of the two previously
presented transition systems, KSs and LTSs.

Definition 2.4 A Mixed Labeled Transition System (or MLTS) is a 5-tuple M = (S, A,
AP, L, Σ) where,

• S is set of states.
• A is a set of actions.
• AP is a finite, nonempty set of atomic propositions.
• The mapping L: S → 2AP is called the proposition labelling.
• Σ ⊆ S×A×S is a transition relation.

2.2 Modal Logic

The class of Modal Logics was originally developed by philosophers to study different
“modes” of truth. We can give meaning to assertions of the form necessary p or possibly
p (necessary and possibly are called modalities). Further, an assertion p may be true in
the present moment and false in the next moment. The underlying framework used to
capture these notions is the one of worlds connected by an accessibility relation. Together
these can be represented by a Kripke structure. In each world w, a set of assertions holds,
and given a certain accessibility relation R, a different set of assertions hold in each
wi∈ R(w). If, given a world w, an assertion p holds in every world wi∈ R(w), then
necessary p holds in world w. Dually, if given a world w, an assertion p holds for some
world wi∈ R(w), then possibly p holds in world w. Usually the notation used is p (box
p) for ‘necessary p’ and p (diamond p) for ‘possibly p’. These concepts are illustrated
below for an accessibility relation R = {(w0, w1), (w0, w2)}.

In order to present a logic from a more formal point of view, one needs to present
a language, rules to construct formulas using the language and some way to tell what is
the meaning of a given formula (its semantics). Herein, we present the language of modal
logic (as a set of symbols), the grammar that produces formulas (as a set of rules) and the
mapping that gives meaning to formulas within Kripke structures. A deeper insight on
modal logic can be found in [Hughes & Cresswell 96].

w0

p
w2

p

w1

p

Figure 2.1 – A scenario where “box p”
is satisfied.

w0

p
w2

q

w1

p

Figure 2.2 – A scenario where “diamond
p” is satisfied.

13

Modal logic formulas are identified as follows:

Definition 2.5 The set of formulas of modal logic is recursively defined by the following
grammar, where p range over propositional variables like p, q, r … and ϕ over modal
formulas:

• ϕ ::= p | ¬ϕ | ϕ1⇒ϕ 2 | ϕ.

The absence of ϕ1∧ϕ 2, ϕ1∨ϕ 2, ϕ in the grammar definition is justified by the following
definitions:

• ϕ1∧ϕ 2 ≡ ¬ (ϕ1⇒¬ϕ 2)
• (ϕ1∨ϕ 2) ≡ ¬ϕ 1⇒ϕ 2
• ϕ ≡ ¬ ¬ϕ

In subsequent sections these simplifications to grammar presentations will be introduced
and explained when necessary.

Definition 2.6 We define the semantics of a modal logic formula ϕ with respect to a
Kripke structure (a model) M=(S, AP, L, Σ) inductively in the structure of ϕ. For a given
state s, is defined as a relation satisfying the following conditions:

• s0 p iff p∈ L(s0), for a propositional symbol ϕ;

• s ¬ϕ iff s ϕ;

• s ϕ1⇒ϕ 2 iff s ϕ1 implies s ϕ2;

• s ϕ iff for every s’∈ S such that (s,s’)∈ Σ, s’ ϕ;

2.3 Linear temporal logic

Temporal logic (or TL) can be seen as a specialization of modal logic in which the
accessibility relation is established between time points. The operator necessary is called
always and the operator possibly is called sometimes. In Linear Temporal Logic (or
LTL), each time point has only one successor.

Before we formally present the syntax of LTL we should consider the availability
of diverse notations concerning temporal operators. The equivalence between two of the
most common notations is shown below in Table 2.1.

Definition 2.7 The set of LTL formulas is defined through the following grammar, where
p is a propositional variable and ϕ is path formula:

• ϕ ::= p | ¬ϕ | ϕ ⇒ ϕ | Xϕ | ϕUϕ

14

 The operators G and F are defined through the following definitions:
• Fϕ ≡ trueUϕ
• Gϕ ≡ ¬F¬ϕ

Example 2.8 The formula GFp ∨ FGp means that either we have p infinitely often or
from some point on we have always p.

The reader can draw some intuition on the semantics of linear temporal operators
introduced above by looking at Figure 2.3.

Definition 2.9 Given a Kripke structure M=(S, AP, L, Σ), we define path as an infinite
sequence π=(s0, s1, …) of states such that ∀ i, (si,si+1)∈Σ .

Definition 2.10 We define suffix of a path π=(s0, s1, …, sj, …), as being the path π’= (sj,
sj+1, …), symbolically : πj.

Definition 2.11 The i-th state of a path π=(s0, s1, …) is denoted by π(i).

Definition 2.12 We define the semantics of a LTL formula ϕ with respect to a Kripke
structure M=(S, AP, L, Σ) inductively in the structure of ϕ. We write M, π ϕ to mean
that: “in structure M, the formula ϕ holds in path π”. When the structure M is understood,
we write π ϕ.

• π p iff p∈ L(π(0)), for a propositional symbol p;

• π ¬ϕ iff π ϕ;

• π ϕ1⇒ϕ 2 iff π ϕ1 implies π ϕ2;

• π Gϕ iff for every i∈ , πi ϕ;

• π Fϕ iff exits i∈ such that πi ϕ;

• π Xϕ iff π1 ϕ;

• π ϕ1Uϕ2 iff exists j such that (πj ϕ2 and for every k<j πk ϕ1).

Table 2.1

Possible readings

ϕ Gϕ Always ϕ; Globally ϕ

ϕ Fϕ Eventually ϕ; Sometime in the
future ϕ

Rϕ Xϕ Nexttime ϕ
ϕUψ ϕUψ ϕ Until ψ

15

The temporal operators ‘F’ and ‘G’ are obtainable from the operator ‘U’ as presented in
Definition 2.7.

2.3 Branching time logics

In branching-time temporal logics (or BTL) the underlying structure of time is a tree
instead of a linear sequence as in linear time logic. This means that we now allow more
than one possible future. In these trees we allow a node to have infinitely many
successors while requiring each node to have at least one successor. Branching over this
tree produces paths isomorphic to .

Computational tree logic (or CTL) defined by Clarke and Emerson [Clarke &
Emerson 81] constitutes one of the more representative systems within BTL systems.
Syntactically, it can be seen as an addition of two extra operators to LTL, A ("for all
futures”) and E (“for some future”) that are used to quantify over branches of a tree. We
present two logics CTL and CTL*. The latter is more expressive than the former as we
will see. Informally, CTL*, which is sometimes referred as full branching-time logic,
extends CTL by allowing Boolean combinations and nestings of linear-time operators.

The syntax of CTL may be obtained by combining the path quantifier operators A
and E to the existing X and U operators.

Gϕ - always ϕ

Fϕ - sometimes ϕ

Xϕ - nexttime ϕ

ϕUψ - ϕ until ψ

s0 s1 s2

…
sn

If ϕ holds at every state,
then Gϕ holds at s0

s0 s1 s2

…
sn

If ϕ holds at some states,
then Fϕ holds at s0

s0 s1 s2

…
sn

If ϕ holds at s1,
then Xϕ holds at s0

s0 s1 s2

…
sn

ϕ holds at s0, s1 and optionally
holds from s2 on. At s2, ψ starts
to hold (it was false until
there). From this point on,
ϕUψ does not hold anymore

Figure 2.3 – An intuition of semantics of the LTL operators.

16

Definition 2.13 The syntax of CTL formulas is defined by the following grammar, where
ϕ, ϕ1 and ϕ2 are state formulas, and ψ is a path formula:

• ϕ ::= p | ¬ϕ | ϕ1⇒ϕ 2 | Eψ | Aψ;
• ψ ::= Xϕ | ϕ1Uϕ2.

CTL* extends CTL by allowing Boolean combinations and nesting of the linear
operators X and U.

Definition 2.14 The syntax of CTL* formulas is defined by the following grammar where
also ψ1 and ψ2 are path formulas:

• ϕ ::= p | ¬ϕ | ϕ1⇒ϕ 2 | Eψ;
• ψ ::= ϕ | ¬ψ | ψ1⇒ψ 2 | Xψ | ψ1Uψ2.

The following definition is introduced
• Aψ ≡ ¬E¬ψ .

Also, the following abbreviations are common in literature:

• F��ϕ ≡ GFϕ.

• G��ϕ ≡ FGϕ.

The semantics of CTL and CTL* formulas is given as follows:

Definition 2.15 We define the semantics of a CTL formula ϕ with respect to a Kripke
structure M=(S, AP, L, Σ) inductively in the structure of ϕ. We write M,s ϕ to mean
that: “in structure M, the formula ϕ holds in state s” and M,π ϕ to mean that: “in
structure M, the formula ϕ holds in path π”. Since M is obvious in this context it will be
omitted. Let s0 be the initial state in the computation tree:

• s0 p iff p∈ L(s0), for a propositional symbol p;

• s0 ¬ϕ iff s0 ϕ;

• s0 ϕ1⇒ϕ 2 iff s ϕ1 implies s ϕ2;

• s0 Eψ iff exists path π=(s0, s1, …) such that π ψ in M;

• s0 Aψ iff for every path π=(s0, s1, …) such that π ψ in M;

• π Xϕ iff π1 ϕ;

• π ϕ1Uϕ2 iff exists j such that (πj ϕ2 and for every k<j, πk ϕ1).

The semantics of operators F and G is given below:

• π Gϕ iff for every i∈ , πi ψ;

• π Fϕ iff exists i∈ such that πi ϕ;

Definition 2.16 We define the semantics of a CTL* formula ϕ with respect to a Kripke
structure M= (S, AP, L, Σ) inductively in the structure of ϕ. We write M,s ϕ to mean
that: “in structure M, the formula ϕ holds in state s” and M, π ϕ to mean that: “in

17

structure M, the formula ϕ holds in path π”. Since M is obvious in this context it will be
omitted. Let s0 be the initial state in the computation tree:

• s0 ϕ iff ϕ∈ L(s0), for a propositional symbol ϕ;

• s0 ¬ϕ iff s0 ϕ;

• s0 ϕ1⇒ϕ 2 iff π ϕ1 implies π ϕ2;

• s0 Eϕ iff exists a path π=(s0, s1, …) such that π ϕ in M;

• s0 Aϕ iff for every path π=(s0, s1, …), π ϕ in M;

• π ϕ iff π=(s0, s1, …) and s0 ϕ;

• π ¬ψ iff π ψ;

• π ψ1⇒ψ 2 iff π ψ1 implies π ψ2

• π Xψ iff π1 ψ;

• π ψ1Uψ2 iff exists j such that (πj ψ2 and for every k<j, πk ψ1).

Sometimes we may wish to restrict the logics CTL and CTL* so that they cannot
express the existence of paths in a Kripke structure. Technically this can be achieved by
restricting the use the existential path quantifier ‘E’. This leads to logics where one can
only quantify universally over paths. One last remark must be made to possibility of
nesting universal quantifiers. We require formulas to be expressed in positive normal
form to avoid the appearance of existential quantifiers (through negation of universal
quantifiers).

Definition 2.17 A formula ϕ is said to be in the positive normal form if no universal
quantifier falls in the scope of a negation operator.

The logics obtained by this process are called Universal CTL (or ∀ CTL) and Universal
CTL* (or ∀ CTL*).

A comparative analysis of branching time versus linear time logics can be given now,
considering three different aspects:

• Expressiveness;
• Complexity;
• Suitability for behavior specification.

Expressiveness. Among the criteria for choosing some specification language,
expressiveness is central. By expressiveness we should understand the capacity to
describe certain classes of properties. The more classes of properties a language is able to
describe, the more expressive it is. From this viewpoint CTL and LTL are not directly
comparable. That is, each of them can define properties that the other can not. There are
classes of properties expressible in either language. In CTL we have quantification over
paths, this feature is absent in LTL and because of this we are unable to express the
notions of potentiality and inevitability in LTL. The notion of potentiality is obtained
through EFϕ formulas, meaning that, there is a path where ϕ holds at some point. The
notion of inevitability is obtained through AFϕ formulas, meaning that, in every path, ϕ

18

holds at some point. Conversely, and due to the syntactic restrictions imposed by CTL,
i.e., we cannot nest linear temporal operators, we are unable to express the class of
fairness properties. The Fairness properties include the notions of almost everywhere and
almost always. Almost everywhere can be expressed in LTL by a formula of the form
FGϕ, which means that, from some point on, we always verify ϕ. Whereas, almost
always, can be expressed by a formula of the form GFϕ, that means that, in all instants
we know that ϕ will hold. The logic CTL* subsumes both LTL and CTL allowing to
express all the above mentioned classes of properties.

Complexity. The CTL logic is less complex than LTL with respect to the time required
for evaluating a formula ϕ over a model M. Classical algorithms based on Büchi
automata are linear both on formula and model sizes for CTL. Whereas for LTL,
automata algorithms are exponential in the formula’s size and linear in the model’s size.
In the case of CTL*, the complexity is the same than that of LTL.

Suitability for behavior specification. This point has much to do with Expressiveness.
In LTL we can only express properties about individual computation paths. In CTL,
however, we can quantify over paths. For instance in LTL we can not distinguish the
behavior of a.(b[]c) and a.b[]a.c. This is, we can not write a property in LTL that will
hold in one of a.(b[]c) and a.b[]a.c and not hold in the other.

2.4 Hennessy-Milner Logic

Action based logics have been introduced as formalisms to characterise properties of
programs written in process algebras. Hennessy-Milner logic (or HML) [Hennessy &
Milner 85] is considered a standard representative of this class of logics. Its syntax and
semantics are given below.

Definition 2.18 The syntax of HML formulas is defined by the following grammar, where
a ∈ A represents an action, α, α1 and α2 are action formulas and ϕ, ϕ1 and ϕ2 are state
formulas.

• α ::= tt | a | ¬α | α1⇒ α2;
• ϕ ::= tt | ¬ϕ | ϕ1⇒ ϕ2 | [α]ϕ .

The symbols tt and ff are abbreviations for true and false respectively. For succinctness
the following definitions were used:

• ff ≡ ¬ tt
• 〈α〉 ≡ ¬ [α]¬ϕ .

Definition 2.19 We define the semantics of a HML formula ϕ with respect to LTS M= (S,
A, Σ) inductively in the structure of ϕ where F⊆ S is a set of sates and E⊆ A is a set of
actions in the following way:

• E tt iff for every a∈ A, a ∈ E;

• E a iff a∈ E;

• E ¬α iff A\E α;

19

• E α1⇒ α2 iff E α1 implies E α2;

• F tt iff for every s∈ S, s ∈ F;

• F ¬ϕ iff S\F �ϕ;

• F ϕ1⇒ϕ 2 iff F ϕ1 implies F ϕ2;

• F [α]ϕ iff F = {s1 : s1→as2 for every a∈ E’, for every s2∈ F’ where E’ α and

F’ ϕ};

Example 2.20 In HML we can express deadlock freedom with the following property
• ¬ ([tt]ff).

This means that there are no states without successor states.

2.5 Mu-Calculus

The Mu-calculus [Kozen 83] appears as an extension of PDL and HML. Hennessy-
Milner logic only allows expressing global properties and is too weak from a practical
point of view. Extending its assertions with recursive definitions constitutes a simple way
of greatly increasing its expressiveness.

Definition 2.21 The syntax of Mu-Calculus formulas is given by the following grammar
where a∈ A represents an action, p∈ AP is an atomic proposition, Y is a propositional
variable, α, α1, α2 are action formulas and ϕ, ϕ1 and ϕ2 are state formulas.

• α ::= tt | a | ¬α | α1⇒ α2;
• ϕ ::= tt | p | Y | ¬ϕ | ϕ1⇒ ϕ2 | [α]ϕ | µY.ϕ.

The greatest fixed point operator ν is defined as:
• νY.ϕ ≡ ¬µY. ϕ[¬Y/Y].

The definition of the Mu-Calculus semantics needs some further results. We can define
its semantics over MLTS, but if we restrict ourselves to a subset of the Mu-Calculus a
simpler structure is sufficient. If we skip actions, we can present the Mu-Calculus
semantics using a Kripke structure, whereas if we skip atomic propositions (i.e.
information on states), it is possible to define the Mu-Calculus semantics over a LTS.

Definition 2.22 A variable Y is said to be bound in formula ϕ if there is a sub-formula of
ϕ of the form µY.ϕ’ and Y occurs in ϕ’. A variable Y that is not bound in ϕ is said to be
free.

Definition 2.23 A formula ϕ is said to syntactically monotonic iff every bound variable
of ϕ is placed under an even number of negations.

Definition 2.24 An environment is a partial function ρ: Var → 2S, that associates a set of
states to each propositional variable Y.

20

 Definition 2.25 We define the Mu-Calculus semantics of a syntactically monotonic
formula ϕ with respect to a MLTS, M = (S, A, L, Σ) and environment ρ, inductively in
the structure of ϕ, where E is a set of actions and F a set of states, in the following way:

• E ρtt iff for every a∈ A, a ∈ E;

• E ρa iff a∈ E;

• E ρ¬α iff A\E ρ�α;

• E ρα1⇒ α2 iff E ρ α1 implies E ρα2;

• F ρtt iff for every s∈ S, s ∈ F;

• F ρp iff for every s∈ F, s∈ L(p);

• F ρY iif F=ρ(Y);

• F ρ¬ϕ iff S\F ρ ϕ;

• F ρϕ1⇒ϕ 2 iff F ρ ϕ1 implies F ρ ϕ2;

• F ρ[α]ϕ iff F={s1 : s1→as2 for for every a∈ A’, for every s2∈ S’ where A’ ρ α
and S’ ρϕ};

• F ρµY.ϕ iff ∩{S’⊆ S : S’’ ρ ϕ and S’’⊆ S’ }.

The Mu-calculus is an expressive formalism, allowing the translation of other TLs.
Historically, the Mu-Calculus as been used as a kind of “Assembly Language” where
CTL formulas were to be translated. Some verification tools like SMV take advantage of
these translations as explained in [McMillan 93]. A translation for CTL operators is given
in Table 2.2.

EXϕ 〈 tt〉ϕ
AXϕ 〈 tt〉 tt ∧ [tt]ϕ
E[ϕ1 U ϕ2] µY.(ϕ2 ∨ (ϕ1 ∧ 〈 tt〉Y))
A[ϕ1 U ϕ2] µY.(ϕ2 ∨ (ϕ1 ∧ 〈 tt〉 tt ∧ [tt]Y))

Table 2.2 – Translation of CTL operators into the Mu-Calculus.

21

2.6 Specification of properties using temporal logic

Experiments with program verification point to the use of about 70% of formulas of the
form AG¬ϕ . These temporal logic formulas are called safety formulas for they assert
about the system safety, this is, that the system never enters into a bad condition specified
by ϕ.

As with safety properties, we can also classify other kinds of properties, which
assert about the program good operation like response properties.

The hierarchy of temporal formulas can be displayed in a diagram like that of
Figure 4.1. This diagram can be found in [Manna & Pnueli 95]. Each node displays a
canonical formula of a certain kind (reactivity, response, persistence, obligation, safety
and guarantee). Edges define an inclusion relation between classes of properties
specifiable by formulas of a certain kind. For instance, the class of safety formulas is
included in the class of obligation formulas. Also a persistence formula is a reactivity
formula. Any formula ϕ is said to be a k-formula, where k ranges over the set of kinds
defined above, if it is equivalent to a canonical k-formula. Correspondingly, a k-property
is a property specifiable through a k-formula.

 Since we are working with propositional temporal logic, we can attach useful
propositions to certain distinguished states like, for example, init or terminate. The
following three types of propositions are often used in a concurrent system framework:

• at_l
• enabled_pi

• terminate
The at_l proposition holds in sates where the program is at control location l. Locations
can be simply understood as labels in the program about which we want to write our
properties. Technically, one can add to the program specification a control variable
whose domains are the location labels. The enabled_pi proposition is used to specify the
fact that the process pi is ready to make a transition. The terminate proposition will hold
in a location where the program the program terminates.

Definition 2.26 A program P is said to have (or enjoy) a property ϕ if all computations of
models of P are models of ϕ.

Safety properties
A safety property asserts that “nothing bad happens”. We illustrate this intuition

by pointing two of the most important safety properties of a concurrent system: mutual
exclusion and deadlock freedom.

Definition 2.27 Given a program P with n processes a mutual exclusion formula is
formula of the form G¬ (at_cs1 ∧ … ∧ at_csn) where for i∈ {1...n}, at_csi are predicates
meaning that the process pi is in the critical section.

A mutual exclusion formula states that, in a program P, its constituent processes
can never be at their critical sections simultaneously. Note that, in this rule the “nothing
bad” concept is “never at critical section simultaneously”.

22

Definition 2.28 Given a program P with n processes a deadlock freedom formula is
formula of the form G(enabled_p1 ∨ … ∨ enabled_pn) where for i∈ {1...n}, enabled_pi

are predicates meaning that the process pi is enabled.

The deadlock freedom formula encodes the fact the program P can always run, is
this context some process pi is always enabled. In other words, it is never the case that all
processes of P are disabled (meaning that we can there are no further transitions). For a
deadlock freedom formula, the “nothing bad” fact is “never disabled”.

The safety formulas presented above, mutual exclusion and deadlock freedom,
represent special cases of invariance properties. Safety properties can be divided in local
invariance and global invariance properties.

Definition 2.29 Given a program P, a local invariance formula is a formula of the form
G(at_l ⇒ ϕ).

Definition 2.30 Given a program P, a global invariance formula is a formula of the form
Gϕ.

Local invariance formulas mean that a property must hold when the program is at
some location. Whereas, global invariance formulas express properties that should hold
no matter where the program’s control is.

Guarantee properties
A guarantee property formula is specified as Fϕ. This formula states that at some

point the program will meet a state where ϕ holds.

Definition 2.31 Given a program P, a guarantee formula is a formula of the form Fϕ.

The intuition behind guarantee formulas is that, a program that enjoys a formula Fϕ,
guarantees that ϕ holds at least once. If, for instance, ϕ is related with an event, Fϕ sates
that the event must occur but guarantees no repetitions of it. Therefore, guarantee
formulas may be used to specify events that occur only once in the program’s lifetime,
such as termination.

Definition 2.32 Given a program P, and terminate a predicate identifying the program
termination states. A formula Fterminate, is a termination formula.

Obligation properties
Some properties can not be expressed by safety or guarantee formulas alone.

Obligation formulas take the form of conjunctions of pieces like: Gϕ1 ∨ Fϕ2, because of
the combination of safety and guarantee formulas. Noting that Gϕ1 ∨ Fϕ2 ≡ ¬ Fϕ1∨ Fϕ2,
we can write Fϕ1 ⇒ Fϕ2. This states that, if at some point during the program’s execution
ϕ1 has become true, then at some point, ϕ2 has become true or will certainly become true.

23

Definition 2.33 Given a program P, an obligation formula is a formula of the form i

^1..n} [Gϕ i� �Fψi], where ϕ i�and�ψi are also formulas.

Example 2.34 Lets suppose that, in the context of some program we want to ensure the
following relation between two variables x and y: F(x=1) ⇒ F(y=1). This means that if
x=1 sometime during the execution of the program, then, also y=1 holds during the
program’s execution. One may wrongly get the feeling that some ordering exists between
the assignments of x and y, in the sense that firstly x=1 and only after y=1. In fact this is
not the case, we are not stating with the above formula that: y=1 is a response to x=1, this
fact is captured by a different formula like F((x=1) ⇒ F(y=1) .

Response properties
A response property asserts about the system responsiveness. System

responsiveness is the ability of a system (represented as a computer program) to give a
response to a stimulus (event).

Definition 2.35 A response formula is a formula reducible to a canonical formula GFϕ.

Reactivity
i ^1..n} [GFϕi� �FGψi@

Response
GFϕ

Persistence
FGϕ

Obligation
i ^1..n} [Gϕi� �Fψi@

Safety
Gϕ

Guarantee
Fϕ

Progress
properties

Safety
properties

Figure 2.4 – Hierarchy of temporal formulas proposed in
[Manna & Pnueli 95].

24

In the formula GFϕ we are stating that ϕ holds infinitely many times. A rather intuitive
way of thinking about response formulas is to consider the equivalent of the canonical
response formula: G(ϕ1 ⇒ Fϕ2) also known as the temporal implication formula.

Example 2.36 Lets consider the case where we have a program P that receives a reset
signal and resets its internal state by setting the variables x=0 and y=0. The formula that
captures the fact that “whenever P sees a reset signal, P resets its internal state” is
G((reset=true) ⇒ F(x=0 ∧ y=0)).

Persistence properties
Persistence formulas are used to sate properties about systems stabilization. In

other words, beyond some point the system enters in some defined situation and stays
like that forever.

Definition 2.37 A persistence formula is a formula reducible to a canonical formula
FGϕ.

We can look at a response formula in an equivalent way using the formula ϕ1 ⇒ FGϕ2.

Reactivity properties
A reactivity formula can be possibly seen as a more elaborate response formula.

In a response formula, we were guaranteeing response to only one stimulus. However,
with reactivity formulas, we want to ensure infinitely many responses but only when we
have infinitely many stimuli.

Definition 2.38 A reactivity formula is a formula reducible to a canonical formula FGϕ1

∨ GFϕ2.

We have presented a safety/progress classification of system properties. However,
another classification is commonly found in literature, the safety (or invariance)
properties versus the liveness (eventuality or progress) properties. Liveness properties are
informally associated to the sentence “something good may happen”. A liveness property
asserts about the eventual behavior of the system. Formally we can define safety and
liveness properties as follows:

Definition 2.39 We say that ϕ is a safety formula iff any infinite sequence σ that violates
ϕ, i.e. σ ¬ϕ , contains a finite prefix σ’=σ[0,k] where all extensions of σ’ violate ϕ.

Definition 2.40 We say that ϕ is a liveness formula iff any finite sequence σ can be
extended to an infinite sequence σ’ satisfying ϕ.

Although Gϕ captures the set of safety formulas, Fϕ does not capture all liveness
formulas. In fact, Fϕ is a live-guarantee formula, there are also live-obligation, live-
response, live-persistence and live-reactivity formulas [Manna & Pnueli 92]. A live-k
formula is a liveness formula that is also a k-formula. This observation motivates the
following claim:

25

Claim 2.41 The class of liveness formulas is contained in the class of progress formulas.

Reachability properties
Many interesting properties of a system can be stated as the reachability of a

given set of states. Examples of reachability properties are the safety properties: ‘A
system is safe if it never reaches undesired states’. This property is formalised in the form
init ⇒ ¬EFunsafe or equivalently init ⇒ AGsafe, where init, safe and unsafe are
propositions denoting sets of states.

Chapter 3 – Model-Checking

The Model-Checking process (or MC) is carried out in two phases. The first one consists
in obtaining the model of the system, given its specification. The second one explores the
model, checking for conformance with some previously specified property. Efficient MC
algorithms (linear in the size of the state-space) for finite-state systems have been
obtained for a number of logics. The problem of these algorithms appears when applying
MC even to moderate-size systems: We often witness a combinatorial explosion of the
state-space.

This chapter analyzes the limitations and virtues of MC tools. We start by
detailing the main phases of MC pointing out the possible sources for the state-explosion
problem. In order to cope with this problem, a number of optimization techniques and
algorithms are discussed. A classification of different kinds of systems is also presented
in an effort to understand what systems are less likely to be verified via MC. The chapter
ends with a survey on the features of some of the most popular MC tools.

3.1 Process overview

Along its life, a system receives stimuli, computes and acts (produces stimuli). We are
interested in verifying if a description of a system performs correct computations and
takes the right actions when stimulated in a specific manner. A way to verify the
correctness of a system’s specification is enumerating all possible behaviors of the
system and check their correctness. For example, the fragment if c then B1 else if d then
B2 else B3 has tree different behaviors B1, B2 and B3 depending on the values of c and d.
The evolution of the system (the next state from the current state) depends on the values
of the variables at that state4: in the example above, the state is consists of variables ‘c’
and ‘d’ that determine whether B1, B2 or B3 are executed, thus leading to a different state.

The question is, given a state, how do we compute the next state5? A primitive
solution could be providing an exhaustive enumeration of current-state/next-state relation
pairs. In practice however, this relation is induced from a set of rules that usually
constitute an operational semantics of the system specification language also describing
in a accurate way what happens to a state when a command is executed on it.

Starting from an initial state and using rules as described above, we can compute
all the reachable states of a system specification. Looking at states as vectors of variables,
the reachable state-space of a system is a subset of the vector space generated by all the
possible valuations of the variables in their respective domains.

4 It could be claimed this sentence is imprecise. What happens is that, in some languages, next-states do not
depend on values of variables but on stimuli from the environment. Process algebras are good examples.
5 Possibly a state may lead to more than one next-state.

27

Let us suppose that we are interested in verifying if in system S, is always the
case that x≥0. This is the same as checking if in every reachable state s of S, s~x≥0.
Properties about the system behavior can be written as properties of its reachable state
space. In the previous chapter we introduced mathematical frameworks both for
representing state spaces (Transition Systems) and for writing properties about them
(Temporal Logics). Temporal Logics can be used to write properties that concern the
relative ordering of events in time.

Below, in Figure 3.1, we present a sketch of the MC process. In it, the system
specification is translated into a graph representing its reachable state-space, which is
checked against a formula representing a desired property of the system. The Model-
Checking Engine (Checker) can be regarded as a form of search algorithm for graphs, it
stops yielding a yes or a no, meaning that the model satisfies the formula or not. Many of
these Checkers also provide a trace that can be used for debugging purposes if the model
does not satisfy the property formula. Technically this trace corresponds to a dump of the
stack of the graph search algorithm.

3.2 State space generation

One of the underlying principles of the MC process is the generation of reachable states
of a system. This can be done using a set of rules. These rules determine the flow
operation of the program under certain valuations of its variables or reactions to external
events. Starting from an initial state, and a program, applying the rules will produce new
states and subprograms. Applying again rules to subprograms and new states we obtain
more states and subprograms and so on. In the example of Figure 3.2, a very simple CSP
process that either performs infinitely many ‘a’ or performs finitely many ‘a’ and a ‘b’, a
‘c’ and exits is presented with the corresponding state space.

System
specification

Property
formula

Figure 3.1 – Sketch of the Model Checking verification procedure.

(reachable state space)

Checker

Yes/No

28

The reachable state-space relation of a program can be formalized as a Kripke
structure or a LTS on which properties can be evaluated. For the above example we have
a LTS like M=(S, A, Σ) where, S={l1, l2, l3, l4}, A={a, b, c, exit} and Σ={(l1,a,l1), (l1,b,l2),
(l2,c,l3), (l3,exit,l4)}.

Generating state-spaces exhaustively in a naïve way as presented above would be
impractical. For this reason, several techniques are employed. These techniques rely on
the use of intermediate representations like behavior expression graphs [Savola 95],
Petri-Nets [Garavel 89] or BDDs [Hu 95]. The use of these intermediate representations
allows the optimization of the state-space through the employment of graph
manipulation operations. More information about state space generation, can be found in
[Valmari 88, Krimm & Mounier 94, Kokkarinen 98].

The state explosion problem arises during the process of state-space generation. It
may have several origins. For example the number of parallel processes greatly
influences the size of the resulting state space. In a concurrent system the state-space is
known to be exponential in the number of parallel components. Two more sources of the
state explosion problem are the increase of external non-determinism through the use
variables representing inputs from the environment (which greatly increases the number
of successor states for each state) and the use of unbounded recursion, where a process
calls itself without performing any stop test.

3.3 Model-Checking approaches

Model-Checking techniques can be classified into two approaches: Temporal Logic
Model-Checking and Language Containment Checking. Temporal Logic Model-
Checking was pioneered by Clarke and Emerson [Clarke & Emerson 82]. Their algorithm
was polynomial in the size of the model (determined by the size of the program) and in
the size of the temporal logic formula. The algorithm consisted of a strategy to perform
the interpretation of the Temporal Logic formula by unfolding it over the underlying
model. Formally the strategy was based in semantic tableau which is a tree-like top-down

Figure 3.2 – A very simple CSP process and the corresponding state-
space. (1) Process definition. (2) The process state space.

test =def (a. test) [] (b. c. exit)(1)

test =def (a. test) [] (b. c. exit)

c. exit

b

a

c exit
(2)

 exit

l1

l2 l3 l4

29

proof constructed by successive instantiations of semantic proof rules. The proof rules
are presented with conclusions written below premisses. We call goal to a conclusion and
sub-goals to the premisses. References to this divide-and-conquer approach also called
truth simplification can be found in the work of Cleaveland and Stirling about MC of the
modal Mu-calculus [Cleaveland 90, Stirling 91]. In their book, Manna and Pnueli present
an algorithm for checking the satisfiability of Temporal Logic formulas [Manna and
Pnueli 95] also based in semantic tableau.
 We can characterize the behavior of a program by the sequences of actions it
performs. When a program is running, actions are performed in some ordered way
producing a language that may be recognized by an automaton. In fact many specification
languages are based on automata theory and programs are automata descriptions at some
level of abstraction. Moreover, many languages can be given semantics in terms of
automata.

In this setting, verifying that a specification behaves correctly is the same as
ensuring that the language recognized by the corresponding automaton is correct. For
example, in order to verify that a program P never performs action ‘a’ one could check
that a ∉ L(Ap) where Ap is the automaton representing the behavior of P.
Realistic systems are often accompanied by elaborated specifications that request for
language containment checking instead of simple word containment checking. We are
usually interested in ensuring properties that are modeled as cyclic patterns of behavior
like safety properties. A straightforward verification technique was proposed based on the
idea of language containment checking: Given a program P and a property ϕ, checking
that P enjoys property ϕ is the same as checking that L(Ap)⊆ L(Aϕ), where Ap and Aϕ are
the automaton representations of P and ϕ respectively.

For a more extensive treatment of the automata theoretical approach to
verification refer to [Kurshan 94].

The Algorithm
The algorithm for system verification using automata is based on language

containment checking. In practice the algorithm performs a language emptiness check
based on the result of Proposition 3.1.

Proposition 3.1 Given two automata A and B with L(A) ≠ ∅ , then L(A) ⊆ L(B) ⇒
L(A×B) ≠ ∅ . See [Kurshan 94] for more details.

The algorithm works as follows: Given a program P and a property ϕ, the first
step is obtaining the automaton Ap for the program P and the automaton A¬ϕ for ¬ϕ .
After, an emptiness check is performed on the product automaton Ap×A¬ϕ . In order to
verify whether L(Ap×A¬ϕ) ≠ ∅ , efficient algorithms exist that are based on searching
techniques6 as proposed in [Courcoubetis & al. 92]. The advantage of performing the
product is that Ap×A¬ϕ instead of Ap×Aϕ, is that the first automaton will only accept
rejecting sequences and there will be few of them or none if the program is correct.

6 Adapting distributed searching algorithms for language emptiness checking could constitute a
straightforward approach for a distributed verification architecture.

30

Infinite behavior
If a program stops, its behavior may be captured by a simple *-automaton, but if it

is non-stopping then we are in the presence of infinite behavior captured by infinite
languages that are generated by ω-automata like Büchi automata, Muller automata or
Rabin automata.

Expressiveness enhancements
Arbitrary long but finite behaviors may be modeled by *-automata. Infinite

behavior must be modeled using ω-automata, but they are as expressive as LTL logics
because they can only characterize linear behavior. Expressiveness enhancements
towards CTL branching-like properties require the use of yet another class of automata,
the tree-automata. For instance the formula AGEFp, which can be informally stated as
“no matter where you are it is possible to eventually get to an occurrence of p”, has no ω-
automaton counterpart. The usual results for *-automata and ω-automata may generalized
to tree-automata, in particular, language containment checking may be performed in
much the same way with the same complexity. A comprehensive treatment of the topic of
ω-automata and tree-automata if given in [Thomas 94].

Complexity of the algorithm
The complexity of the MC algorithm depends on the state space size and also on

the specification language. For example, if the specification language is LTL or CTL, the
algorithm is linear in the size of the model but exponential in the size of formula. As
highlighted above, the emptiness problem for ω-automata is decidable in linear time.
Relating the automata based approach to the Temporal Logic approach can be done
translating the temporal formula to an automaton, which is exponential in space. A
recent work [Daniele et al. 99] presents an improved algorithm for translating LTL
formulas into automata. However, we still run into automata with 2O(n) states in worst
case conditions, where n is the number of sub-formulas of the specification.

3.4 Optimizing the Model-Checking process

Implementing the Temporal Logic MC approach or the Automata based approach naïvely
can lead to some disappointment. The algorithms will reveal to be extremely ineffective
and of limited practical usefulness. Optimization techniques must be employed.

The first class of techniques try to optimize the exploration of the model, avoiding
its complete generation (on-the-fly techniques), avoiding its complete exploration
(partial-order techniques) or working with an abstraction of it (abstraction techniques).
A second class of techniques tries to improve the representation of state spaces (symbolic
techniques).

In practice, model-checking algorithms do not include a separate stage where the
state space is first generated before being analyzed. A technique denominated on-the-fly
state space exploration, evaluates the formula while simultaneously constructing the state
space. When a counterexample is found the procedure stops since there is no need to keep
on constructing the state-space. This technique has the potential of considerably reducing
the memory and time required in verification. Details can be found in [Courcoubetis & al.
92, Kurshan 94]. An implementation of the algorithm is proposed in [Gerth & al. 95].

31

Intuitively, the parallel composition of processes may result in a large number of
“equivalent” paths joining two states that only differ by some irrelevant ordering of
actions. This happens due to the many possible interleavings of concurrent behavior. The
notion of equivalent paths is different among specification languages. Some of these do
not distinguish between some sequences of actions, but others do. If executing transition
‘a’ after transition ‘b’ produces the same result as executing transition ‘b’ after transition
‘a’ then we say that ‘a’ and ‘b’ are independent. Based on this observation (that some
transition systems are commutative) we can define a relation between independent
transitions called independence relation.

Partial-order techniques aim to relieve the state explosion problem using the
concept of transition independence. Instead of expanding all transitions leaving from a
specific state, only a small subset is expanded according to some specific criteria. In the
end a reduced version of the state-space is generated. Different methods to achieve partial
order reduction are based, for example, in ample-sets [Peled 93] or stubborn sets
[Valmari 88]. A very good survey on the subject is presented in [Peled 98].

Abstraction techniques can greatly reduce the state-space by eliminating
information irrelevant to the property being verified, abstracting away unnecessary detail.
For example, if we want to prove a property like AG(x>0), then we can build an abstract
model based on two equivalence classes of states (those where x>0 and those where
¬ (x>0)). The use of abstraction was advanced in [Clarke & al. 94b] and can provide a
major source of reductions on state space sizes. However, this technique is not gaining
full acceptance because automatic ways of generating abstractions have not yet emerged.
Abstraction has even been regarded as impractical in software verification [Jackson & al.
94]. An application of abstraction techniques is reported in [Heitmeyer & Bharadwaj 97]

Other techniques to alleviate the state space size rely on efficient representations.
The representation strategy can adapt to the system being considered. There are two main
representation strategies: Symbolic or implicit state space representation and reachable
state space or explicit representation.

Symbolic state space representations have been used with great success in a
technique known as symbolic model checking by providing very compact representations
of state spaces. The Binary Decision Diagram (or BDD) [Bryant 86] is certainly the most
well known symbolic representation of a state space.

The usage of BDDs has been successful in industry [Clarke & al. 92] by allowing
the verification of a very complex hardware communication protocol. The work of
[Burch & al. 90] describes comprehensively this technique that has been generating
dozens of new results each year. Basically, a BDD is a representation of a Boolean
function. The information contained in each state is converted into a Boolean vector, and
the transition relation R(x,y) is viewed as function from Boolean vectors to Boolean
vectors. See [Kurshan 94] for more theoretic material on BDDs.

We can construct a BDD for a given Boolean function in the following way:
1. First, build a decision tree for the desired function, that obeys the following

constraints: 1.1) Along any path from the root to the leaf, no variable appears
more than once. 1.2) Along every path form the root to the leaf, the variables
should always appear in the same order.

2. The second step is to repeatedly applying the following two reduction rules:
2.1) Merge duplicate nodes (nodes with same label and same children). 2.2) If

32

both child pointers of a node point to the same child, one of the nodes (child
or parent) should be deleted, because one of them is redundant.

This procedure converts a binary decision tree into a binary directed acyclic graph,
which is a BDD as shown in Figure 3.5.

In fact, practical applications of BDDs do not construct binary decision trees but
generate them directly from higher level representations and manipulate them always on
their fully reduced form. In [Hu 95] it is explained how to build Boolean function
representations from high level descriptions.

The resulting BDD of any binary operation between two Boolean functions can be
computed in time proportional to the product of their underlying BDDs sizes. Evaluating
a BDD-represented function can be achieved in time linear to the number of variables.

Empirical evidence has shown that for the same classes of problems, the
introduction of BDDs has enabled a much larger set of systems to be verified. Their
advantages are that they are reasonably small7 and they can be directly manipulated to
effectively compute every Boolean operation. Despite their advantages some problems
persist: In some situations BDDs run slower and are more sensitive to implementation
patterns. They perform poorly in programs that, for example, make hard use of counters,
because counters yield very irregular state spaces. Another difficulty is the variable
ordering. As referred in [Hu & Dill 93] the size of the resulting BDD is very sensitive to
the way in which the variables are selected to build the diagram. Variable ordering can
make the difference between a linear and an exponential BDD and finding the optimal
ordering is an O(n23n) complex problem. Because of this, they have not yet replaced
explicit enumeration algorithms.

3.5 Classes of systems

Systems state-spaces can be quite different from one another. The reason for this to
happen is not only the presence of a particular specification but also the nature of the
system being specified. Some systems generate state-spaces with similar patterns and

7 Truth tables, for instance, have exponential size in the number of variables.

x

y y

z z
z z

0 1 1 0 1 0 0 1

0 1 10 110 0

1
0 1

0

10

x

y y

zz

0 1

0 1

0 011

0 0
1 1

Figure 3.5 – Presentation of a Binary Decision Diagram for the function f(x,y,z)= x xor y xor z. Part (a) shows the decision
tree for the function f(x,y,z) is shown. This tree can be reduced to the BDD as shown in part (b). Nodes represent decision

point and squares (leafs of the tree) represent resulting values.

(a) (b)

33

according to these patterns we can classify them in classes. However, comprehensive
references to systems classes have not been proposed yet, nor have state space patterns
of systems been studied in a systematic way. Below, the author advances a classification
of systems. The impact of the different classes of systems in their corresponding state
spaces is also appropriately outlined.

Systems can be classified as open systems and closed systems. An open system is
one that interacts with the environment. When constructing the state-space of an open
system, we often witness an explosion of the state space because of the nondeterminism
of external actions. For instance, a process with the following action c?x:int, that receives
a value on channel ‘c’ and stores it in variable ‘x’, can generate as many states as the
cardinality of the domain int. There are two ways of diminishing the uncertainty about
the data that can be stored in variable ‘x’. The first one is establishing lower and upper
bounds to receiving actions from the environment by enforcing a specification discipline
that promotes the use of guards, like for instance: c?x:int where (x>0 and x<10). The
second way is specifying the environment, but this is not always possible because
sometimes we do not know its working rules. By specifying the environment we can have
a better idea of what values are produced on a channel by using a type-inference
mechanism. This information can then be used to reduce the state space. For many
problems it is possible to specify the environment, leading to the so-called closed system.
Frameworks exist where specification of open systems is not possible. The specification
must always take the form Env || Sys8, where Env is the environment specification, Sys is
the system specification and ‘||’ is some composition operator.

In a loosely coupled system, there are not many actions being performed or
resources shared by more than one component (also called process) of a system. Because
of this, each component of the system can proceed somewhat independently from the
others causing the number of interleavings to grow very quickly in the number of
components. On the other hand, a system can be tightly coupled, meaning that almost
every action synchronizes with other parts of the system. This fact causes the number of
interleavings to be greatly reduced.

The majority of the existing verification frameworks only allow for the use of
very simple data types like Booleans, Integers and Enumerations. It is still not obvious
how to formally verify systems with complex data types like linked lists or trees. Systems
with complex data types produce much larger and irregular state spaces than those
systems using only simple data types.

Globality refers to the global shared use of resources between system
components. For example if there are many components accessing resources in a shared-
memory fashion we can have big state spaces. If we promote locality we reduce the
number of possible interleavings in resource accesses. Locality means that resources are
only visible to a limited number of sub-components of the system that are said to be in
their scope. This information can be used to greatly optimize the state-space generation
by allowing to abstract away from transitions that do not interfere with the property being
verified. Some references can be found in [Kokkarinen 98], in [Valmari 96, Krimm &

8 In some frameworks it is often referred that, from the point of view of one system component everything
else is the environment. If spec=P||Q||R, from R’s point o view spec=R||Env where Env=P||Q. This view
however, is not incompatible with the one presented above.

34

Mounier 97] techniques are presented for taking advantage of locality expressed using the
LOTOS hiding operator when generating LTSs.

Currently, the MC verification approach effort in industry is applied for the
verification of hardware systems and for the verification of software systems. Although
not dissociated, this reflects a distinction often referred in literature as hardware/software
systems dichotomy. This hardware/software MC dichotomy is caused due to differences
in the nature of the underlying systems architectures, such as:

• Hardware is mostly synchronous whereas software is mostly asynchronous.
• Very simple data types are used in hardware systems opposed to very complex

data types present in software.
• System variables are mostly global in hardware whereas in software the use of

locality is encouraged.
These peculiarities have great influence in the representation strategy and latterly, in the
algorithm. Different kinds of MC algorithms have been proposed that rely only on scarce
empirical observations about the systems nature. However, by pursuing the study of
classes of systems it is hoped to design MC algorithms better adapted to different kinds
of applications

3.6. Some of the existing verifiers

An overview on some of the existing verifiers is presented below. This is by no means a
comprehensive list but an attempt to describe some features of tools that the author
analyzed. A comparative analysis on some MC tools is given in [Dong & al. 99], where
substantial benchmarking is presented focusing in expressiveness aspects of their
corresponding specification languages.

CADP (CAESAR/ALDÉBARAN Development Package)
This toolset is suited for the verification of small to medium-sized systems like

communication protocols or distributed systems written in process languages [Garavel
98]. CADP is an open architecture, currently constituted of a toolbox and an Application
Programming Interface (API) that allows for further development of tools to interface
with the existing ones. The toolbox is constituted of compilers and verifiers. The
compilers translate systems specifications written in process languages into transition
systems represented by graphs. Compilers exist for ESTEREL, LOTOS and LUSTRE.
The underlying technology is comparison of labeled transition systems, i.e., equivalence
checking. The verifiers include Model-Checkers and equivalence checkers that compare
graphs up to some equivalence relation such as, for example, weak bisimulation.

KRONOS
The KRONOS tool [Yovine 97] aims at the verification of real-time hybrid

systems represented as timed-automata. Automata are described using an automata
description language and properties are specified in TCTL. Timed automata and timed
temporal logics underlay the principles of this tool. The MC algorithm [Yovine 98]
performs reachability analysis of timed-transition systems using on-the-fly techniques,
partial order techniques and BDDs.

35

Murϕ
The Murϕ verifier [Dill 96] has been used for hardware verification although it

has been reported to be also very effective in software verification [Dong & al. 99]. The
Murϕ description language is based on Chandy and Misra’s Unity language [Chandy &
Misra 88]. A system description consists of constant and variable declarations, procedure
declarations, rule definitions, a description of the start state and a collection of invariants.
Each rule is constituted of a guard and an action. Correctness requirements are written as
invariants, boolean expressions that must be true at given state. Whenever one of these is
violated an error message is displayed and an error trace generated. Properties in Murϕ
are written in a subset of LTL. The underlying technology is depth-first or breath-first to
systematically generate reachable states together with Symmetry reduction, Partial-Order
methods, replicated component abstraction, probabilistic algorithms and reversible rule
application.

SMV (Symbolic Model Verifier)
The SMV system [McMillan 92] has been used mainly in hardware verification

although it is claimed that this system can be used for software verification. The language
used by SMV can be seen as a system of equations to describe the next state and hence,
the transition relation as a finite Kripke structure. The underlying technology is Symbolic
Model-Checking [McMillan 93], the transition relation is represented implicitly by
Boolean formulas implemented by BDDs. The system properties are specified using
CTL, which are translated into Mu-Calculus. Computing the satisfaction of formulas over
the state space represented as BDDs is accomplished through fix-point computations as
presented in [Clarke & al. 86, Burch & al.90, Clarke & al. 92].

STeP (Stanford Temporal Prover)
The main goal of STeP [Bjørner & al. 96] is the specification and verification of

concurrent and reactive systems. Specifications are written in SPL (Simple Programming
Language) [Manna & Pnueli 92], a very expressive Pascal-like language with message-
passing primitives and parallel composition among other features. STeP is able to verify
both finite and infinite state systems by using Model-Checking and deductive methods
respectively. The properties are written using LTL.

SPIN
The SPIN verifier [Holzmann & Peled 96] is a Model-Checker for asynchronous

systems specified in the language PROMELA. PROMELA is a non-deterministic
guarded command language designed to specify protocols by modeling process
interaction and coordination. The language provides variables and general control flow
structures in the tradition of Dijkstra’s guarded command language and Hoare’s CSP.
The underlying technology of this tool is based automata on providing LTL model-
checking capability. Properties to be checked are represented as Büchi automata.
Reachability analysis is performed through a depth-first search and a single-pass, on-the-
fly verification algorithm coupled with partial order techniques.

36

UPPAAL
UPPAAL is a tool for the modeling, simulation and verification of real-time

systems [Larsen & al. 97]. Its theoretical foundations were presented in [Yi & al. 94]
where a restriction imposed of the property description language (a simpler version of
TCTL) seemed a shortcoming when compared to other tools that supported timed Mu-
Calculus. However, the option of simpler property language enabled for the verification
of much larger systems, which constitutes an ingredient of success for this tool. Timed
automata are described in a description language referred as the .ta format. The
underlying technology is on-the-fly symbolic model-checking of timed systems by
constraint checking.

Chapter 4 – The OBLOG specification language

In this chapter we propose a subset of an object-oriented language that has been be used
to develop high-level specifications. The OBLOG language was designed for the
development of large-scale information systems and evolved from studies in object logic
specification languages [Sernadas & Ehrich 91, Jungclaus & al. 91]. Since the full
OBLOG language used in industry contains far too many features for a first approach to
verification, we restrict to a simpler version of the language. Its semantics will be given
informally while presenting the syntax. Some notions needed for extracting syntactic
information about identifiers of our specifications are also presented. The chapter ends
with a presentation of the Alternating Bit Protocol.

4.1 Objects, Operations and Methods

In OBLOG, a system specification is a community of objects running in parallel. The
central constituting part of an object-oriented system is the object, which can be seen as
an abstraction of an entity with a public interface and an internal body. OBLOG objects
encapsulate a set of attributes and a set of operations as shown in Figure 4.1. The only
way one can change the object attributes is by requesting the object to perform
operations.

The state of an object is given by the set of values of the object’s attributes.
Changing the state of an object means changing the value of some attribute. Attribute
value changes are made through set and get operations defined in the object’s interface.

OBJECT

ATTRIBUTES

OPERATIONS

Figure 4.1 – Structure of an object and syntax of an object declaration

object ::= ‘object’ id ‘is’ attributes operations ‘end’

38

For example, the object ‘Point’ should provide the operation getX(out x:integer) in
order to allow other objects to access read the ‘Point.X’ attribute in read mode.

An operation may be carried out through several methods. Each method is
constituted of an enabling condition and a behavior component. Depending on the
valuations of the input parameters of an operation, different methods may be selected to
execute from the set of enabled methods. Every method has an enabling condition that
defines for which values of the input values of the operation the method is enabled. If a
method fails to execute then an alternative method is selected until one of them executes
successfully. If no method executes, we say that the operation failed to execute.

In Figure 4.3, a graphical representation of the structure of a method is given. A
method works as follows: If the enabling condition holds, then the behavior component is
executed under a context augmented with local variables.

A method executes successfully if its behavior component executes successfully.
If, on the other hand, the behavior component of a method fails then we say that the
method also fails.

4.2 Features left out of the OBLOG language

The simple version of OBLOG treated herein leaves out some features that can be found
in common programming languages. These features are Inheritance, Dynamic Creation
of Objects and Exception Handling.

The use of Inheritance in an object-oriented language encourages the reuse of
code; it supports development of software in a style called differential programming, in
which the developer builds a new object by stating the difference to a previous one. The
semantics of the OBLOG inheritance mechanism was not clear at the time of developing
this dissertation. The author investigated the semantics of inheritance mechanisms of
common object-oriented programming languages, which are based in Hailpern and
Nguyen object-oriented model [Hailper & Nguyen 87]. In this model, let us suppose that

OPERATION

METHOD1

…

METHODn

Figure 4.2 – Structure of an operation

METHOD

E
N

A
B

L
IN

G
C

O
N

D
IT

IO
N

BEHAVIOR
COMPONENT

Figure 4.3 – Structure of a method

LOCAL
VARIABLES

operation ::= ‘operation’ id ‘(‘ inparms ’,’ outparms ‘)’ methods
method ::= ‘method’ id ‘enabling’ boolexpr ‘local’ variabledecs ‘do’ bhexpression

Figure 4.4 – Syntax of operation and method declarations

39

an object ‘B’ inherits from an object ‘A’; the invocation of an operation of ‘B’ inherited
from ‘A’ will be forwarded from ‘B’ to ‘A’ which is the real implementer of the
operation. In OBLOG, the inheritance mechanism is somewhat more complex because it
involves the enrichment of behavior from the parent object in ways that are not easily
captured by the mechanisms just mentioned. The inheritance mechanism present in
OBLOG is studied in greater detail in [Andrade 99].

Features involving creation of new entities at run-time like dynamic allocation of
memory and dynamic creation of objects were also left out. Verification tools based on
MC technology do not allow the verification of systems with dynamic creation of
processes. Since we are coding objects as processes,9 we cannot verify systems with
dynamic creation of objects. This means that the number of objects is fixed in the lifetime
of the system.

Some object-oriented languages also provide a mechanism for handling
extraordinary events or conditions. This mechanism known as Exception Handling is not
treated in this work. The main reason is that the semantics of Exception Handling
involves dynamic creation of objects of type exception and the manipulation of object
references. Coding these features for MC verification tools is a subject further research.

4.3 Behavior Components

The behavior of an object is modeled by specifying behavior components. We shall use P
and Q to designate behavior components and C to designate a Boolean condition.
Behavior components can be of two kinds, atomic components and composite
components. An atomic component is an elementary action and a composite component
is an assembly of behavior components. Every behavior component is a producer and
consumer of information; it consumes a set I of input values and produces a set O of
output values.

Skip
This component is also referred as inaction or null behavior. It does not consume

or produce any information.

skip ::= ‘skip’

Fail
The fail component causes immediate interruption of the current behavior

component and starts the closest alternative behavior component branch (Definition 3.1).
This component does not produce or consume any information.

fail ::= ‘fail’

Assert
The assert component causes a condition to be evaluated. If the condition

evaluates to false the assertion component behaves as a fail component; if the condition

9 As shown in chapters 5 and 6.

40

evaluates to true then the component behaves as a skip component. The information
consumed by the assert component is the set of variables of the condition.

assert ::= ‘assert’ boolexpr

Set
The set behavior component evaluates an expression and stores the resulting value

in a variable. It consumes the variables present in the expression expr and produces the
variable v.

set ::= ‘set’ id ‘<<’ expr

Send
The send behavior component is used to send values over an operation channel.

Send is synchronous, i.e., it blocks on the channel corresponding to an operation until
values are taken out from it. It consumes the variables present in the list exprs and
produces no information.

send ::= ‘send’ exprs ‘in’ id

Receive
The receive behavior component is used to receive values from an operation

channel. As its send counterpart it is also synchronous in the sense that it blocks until
information is sent on the operation channel. This component can also receive a failure
over an operation identifier behaving as fail. It consumes no information and produces
the information a variable list ids.

receive ::= ‘receive’ ids ‘in’ id

Composite components ‘aggregate’ atomic components to produce elaborate behavior
expressions. The consumption and production of information is the union of the variables
used by the aggregates.

Iteration
The iteration component behaves as common procedural languages, executing P

while C evaluates to true.

iteration ::= ‘while’ boolexpr ‘do’ bhcomponent

 Sequential composition
The sequential behavior component provides for the specification of sequential

behavior. Writing P;Q where P and Q are behavior components, means that Q will only
execute after P.

sequence ::= bhcomponent ‘;’ bhcomponent

41

Alternative composition
We are often interested in specifying what happens when a command fails. Using

alternative behavior components we may do it an elegant way. The fact that Q should
execute if P fails is written as ‘P alt Q’ .

alternative ::= bhcomponent ‘alt’ bhcomponent

Definition 3.1 Given a sequence of alternatively composed behavior components in the
form P1 alt … alt Pn we define Closest alternative behavior component branch as
being Pn-1 for Pn. P1 propagates the failure to its environment.

Local variables
Local variables allow for encapsulation of information exchange between

behavior expressions. Local variables have a scope that is constituted of a behavior
expression, it can be any behavior expression but to take advantage of it, it should in fact
be a composite behavior expression. Writing local v1:s1=i1, …, vn:sn=in in P

means that the variables v1,…,vn of sorts s1, …, sn are only visible inside P with initial
values i1, …, in.

local ::= ‘local’ variabledecs ‘in’ bhcomponent

Choice (OR) composition
The choice behavior component provides for the choice among a list of behavior

components in a CSP-like fashion. Writing or(bh1, …, bhn) can be expressed CSP
as bh1 [] ... [] bhn.

choice ::= ‘or(’ bhcomponents ‘)’

Alternative or (XOR) composition
The alternative or behavior component can be regarded as some kind of multiway

alternative behavior component. When one of the operands fail, say bhk, in xor(bh1, …,
bhk-1, bhk, bhk+1,…, bhn), the state is rolled back and the ‘xor’ component behaves
like xor(bh1, … bhk-1, bhk+1, …, bhn). Where bhk is left out. When no behavior
component is left, the ‘xor’ component fails.

xor ::= ‘xor(’ bhcomponents ‘)’

4.4 Some aspects of coding behavior components

In the task of isolating the subset of the language that is to be analyzed automatically,
many versions were investigated. The first reason is that some features are very difficult
to code and the scope of this work had to be reformulated. The second reason is that some
language constructs turned out to be expressible in terms of simpler ones. Due to this,
some core behavior components were isolated that also provided a deeper understanding
of the language features. For example the preconditioning behavior component is

42

primitive in the industrial version of the language, however in this simpler version it is
presented as syntactic sugar over the assert behavior component.

Another aspect is related to information about behavior components. In the earlier
versions of the translation rules presented in chapters 5 and 6, a type system for OBLOG
terms was presented in order to ease the task of obtaining information about terms. A
closer look revealed that the information needed could be easily given by a set of
auxiliary definitions. These definitions are presented below because they will be used in
forthcoming chapters.

Failure dynamics
The notion of failure is primitive in OBLOG. Although some languages also offer

the notion of failure (sometimes called exception), few of them provide an automatic roll-
back mechanism upon failure. The notion of failure in OBLOG comprehends two levels:
the level of behavior components and the level of methods. Instead of developing two
different mechanisms, an effort was put in finding a unifying mechanism onto which the
notion of failure of behavior components and methods could be coded.

When a behavior component fails, the failure is propagated until it is captured by
an alternative behavior component. The notion of failure propagation has to do with the
failure of a behavior component upon the failure of one of its sub-components – we say
that the sub-component propagated the failure to the ‘father’. A failure can be propagated
either directly or remotely. A direct failure propagation is the one that propagates
through composition operators (not through alt). For example, in a sequential
composition where R≡(P;Q), if P fails then R fails. By remote failure propagation, we
mean the transmission of failure on operation calls. When calling an operation, if the
operation fails, this information should be transmitted to the behavior component
performing the operation call. In order to model OBLOG synchronous operation calls we
extended the language with the syntactic sugar construct failon.

Syntactic sugar
The specifications are more readable if we introduce some syntactic sugar. We

start with pre and post conditioning and conditional blocks as follows:

pre C in P ≡ assert C; P

pos C in P ≡ P; assert C

if C then P else Q ≡ (pre C in P) alt Q

Another natural coding can be given to the synchronous call of a method as:

call op(inparms, outparms) ≡ send inparms in op; receive outparms in op

where receive is also potentially failing. It receives an extra parameter with failure
information. This is used to implement the remote failure mechanism described above.
Sending failure over an operation channel can be done using failon which is simply the
send behavior component augmented with one parameter that transmits the failure.

43

The list iparms contains expressions and the list oparms contains variables. Operations
can also be seen as a composition of simpler behavior components as:

operation op(iparms, oparms) method1 … methodn ≡ receive iparms in op;
local oparms in (method1 alt … alt methodn) alt failon op

Where each method is expanded as:

method mi enabling Ci local Varsi do Bi ≡ assert Ci local Varsi in (Bi;
send oparms in op)

The specification of the ABP is presented in Appendix B without syntactic sugar and
without syntactic sugar in Appendix C.

Obtaining information about OBLOG behavior components
The subsequent chapters present rules that rely on syntactic information about

behavior components that we define below. We start by defining the sets of identifiers
that are used for consumption of information and for storing the newly produced
information.

Definition 3.2 We define the set of identifiers consumed by a behavior component B
inductively in the structure of B, written I(B):

• I(skip) = I(fail) = ∅ .
• I(assert C) = I(C).
• I(set X << Expr) = I(Expr).
• I(send values in op) = I(values).
• I(receive values in op) = ∅ .
• I(P;Q) = I(P)∪ I(Q).
• I(P or Q) = I(P xor Q) =I(P)∪ I(Q).
• I(P alt Q) = I(P)∪ I(Q).
• I(while C do P) = I(C)∪ I(P).
• I(local v1:s1=i1,…,vn:sn=in in B) = I(B) – {v1,…,vn}

Definition 3.3 We define the set of identifiers produced by a behavior component B
inductively in the structure of B, written O(B):

• O(skip) = I(fail) = O(assert C) = ∅ .
• O(set X << Expr) = {X}.
• O(send values in op) = O(values).
• O(receive values in op) = ∅ .
• O(P;Q) = O(P or Q) = O(P xor Q) = O(P alt Q) = O(P)∪ O(Q).
• O(while C do P) = O(C)∪ O(P).
• O(local v1:s1=i1,…,vn:sn=in in B) = O(B) – {v1,…,vn}.

44

Definition 3.4 The set of variables used by a behavior component, written Vars(BhExp),
is defined as the union of the set of identifiers consumed and produced by the behavior
component.

Definition 3.5 We define the set of operation identifiers used by a behavior component B
inductively in the structure of B, written OP(B):

• OP(skip) = OP(fail) = OP(assert C) = OP(set X << Expr) = ∅ .
• OP(send values in op) = {op}.
• OP(receive values in op) = {op}.
• OP(P; Q) = OP(P)∪ OP(Q).
• OP(P or Q) = OP(P xor Q) = OP(P alt Q) = OP(P)∪ OP(Q).
• OP(while C do P) = OP(C)∪ OP(P).
• OP(local v1:s1=i1,…,vn:sn=in in B) = OP(B)

Every identifier must have some predefined sort. OBLOG expressions induce a sort
assignment mapping that assigns sorts to variable identifiers.

Definition 3.6 We define the sort assignment mapping of identifiers in a behavior
component B inductively in the structure of B, written SORT(B):

• SORT(skip) = SORT(fail) = SORT(assert C) = SORT(send values in
op) = ∅ .

• SORT(set X << Expr) = {Expr→s}, where s=SORT(X).
• SORT(receive v1:s1,…,vn:sn in op) = {v1→s1,…,vn→sn}.
• SORT(P; Q) = SORT(P or Q) = SORT(P)∪ SORT(Q).
• SORT(while C do P) = SORT(C)∪ SORT(P).
• SORT(local v1:s1=i1,…,vn:sn=in in B) = {v1→s1,…,vn→sn} ∪ SORT(B).

4.5 Specification of the Alternating Bit Protocol

The Alternating Bit Protocol [Bartlett & al. 69] is a simple link layer communication
protocol used in many verification case studies. In this protocol setup there are two
communicating objects named sender and receiver which offer the communicating
parties message sending and receiving services respectively (we do not intend to model
communicating parties here). Furthermore there exist two objects that represent
transmission and acknowledge lines.

The protocol can be summed up textually as follows: The sender transmits the
message and augments it with a bit. When the acknowledge signal arrives the sender
checks if the acknowledge bit is the same of the message that was sent, if it does not, it
ignores the acknowledgement. After some amount of time, if an acknowledgement does
not arrive, the sending party (using the protocol) re-transmits the message. If necessary
the message is retransmitted a third time and so on until an acknowledgement arrives.
The receiver recognizes a new message because the appended bit is different from the
one that it has got. If the bit is the same then it is a re-transmission, which the receiver
ignores. Otherwise, it sends an acknowledge and inverts its internal bit. Both the
transmission and acknowledge lines are unreliable in the sense that they may fail to
deliver their messages.

45

In the OBLOG implementation, the ‘sender’, the ‘transmission line’, the ‘receiver’ and
the ‘acknowledge line’ are objects. The communication is started when the user tries to
send a message. For this purpose, it should call the sender.accept operation of the ‘sender
object’. The message is received on the other side when a user tries to receive a message
from the receiver object by calling the receiver.deliver operation. The transmission
process is triggered in the sender.accept operation, which causes the ‘sender’ object to
request a further operation on the ‘transmission line’ calling transline.sendMessage
operation. The transmission line can fail or deliver the message, and if the message is
new to the ‘receiver’ then the corresponding acknowledge bit is sent throughout the
‘acknowledge line’.

sender
Transmission

line
Acknowledge line receiver

Accept SendMessage SendAcknowledge deliver
GetStatus ReceiveMessage ReceiveAcknowledge getStatus

Modeling communication lines failure
As outlined above, the ‘transmission line’ and the ‘acknowledge line’ are

unreliable communication lines. In our specification, this notion is explicitly coded in
state of the objects that represent communication lines. When a send operation is issued,
the communication line either fails, by setting the internal state to a special failure
constant, or succeeds by copying the message and the control bit into an internal memory
area composed of object state attributes. This non-deterministic effect is obtained by an
alternative composition of two assignment blocks using the OBLOG ‘or’ operator as
illustrated in Figure 4.6.

Handling message re-transmission
Several different versions of the ABP exist that use retransmission. The ‘sender’ waits for
some amount of time for the sent message to be acknowledged, after which it retransmits
the message. In practical applications, the retransmission process does not run forever in
situations where a message is always lost, but the sender object usually returns an error to

Table 4.5 – Summary of operations of the ABP objects

transmission line

acknowledge line

Figure 6.16 – Alternating bit protocol setup

receiversender

46

the user after some pre-fixed number of retransmissions. In the specification we
developed, we adopted a simple strategy of providing the ‘sender’ object and the
‘receiver’ object getStatus operations. These operations enable the user of these objects to
periodically query them for message acknowledge in the case of the ‘sender’ object or
new message was delivery in the case of the ‘receiver’ object. Given this setup, message
retransmission must be handled outside our specification.

operation sendMessage(in m : message, in b : bit)
method send
enabling true
do

or
((
 set lStatus << STATGOOD;
 set buffMsg << m;
 set buffBVal << b
)
 set lStatus << STATERROR;
)

Figure 4.6 – OBLOG specification of the SendMessage operation illustrating the non-
deterministic behavior of a communication line captured by the assignment to the variable

lStatus.

Chapter 5 – Process algebraic verification
approach to OBLOG specifications

In this chapter we present a verification procedure for the OBLOG object-oriented formal
specification language based on the translation to another specification language. The
translation will be performed to the ISO 8807 norm LOTOS process description language
[ISO 88].

The LOTOS language is based on the process algebras CSP and CCS with some
extensions. Several proposals of translation of object-oriented languages into process
algebras exist in the literature; an example is the semantics of the POOL object-oriented
language family given in terms of Milner’s π-calculus that can be found in [Walker 92]
and [Walker 95]. Although inspiring, the work of Walker can not be directly applied in
our setting because it makes use of the capability of sending names in channels present in
the π-calculus, a feature not present in LOTOS.

5.1 Technical framework

The LOTOS language is a message passing process algebra that combines and extends
features of both CSP [Hoare 85] and CCS [Milner 89]. Success stories of industrial
applications of LOTOS exist, namely, the specification of a portion of the Airbus Flight
Warning Computer that constitutes, at the time of writing, one of the largest existing
formal specifications. This specification was developed using the CADP toolset [Garavel
98], which is an environment for specification and verification using the LOTOS
language.

A LOTOS10 specification includes two parts: A data-type specification part and a
behavior specification part. The specification of data-types is done using the language
ACT-ONE [Ehrig & Mahr 85] whereas the behavior of the system is specified in LOTOS
in terms of processes, possibly consisting of several sub-processes (that are processes
themselves, see Figure 5.1). This enables the creation of specifications in a modular way.
The identifier process-id stands for the name of the process and gate-list
contains the names of the channels where externally observable actions are performed. A
process can also accept parameters in parameter-list and the functionality
part describes the finishing behavior of the process. If the process being described is non-
stopping then the functionality is specified as noexit. If, on the other hand, the system

10 LOTOS refers to the term Full LOTOS often found in literature. Full LOTOS is Basic LOTOS plus data-
types.

48

stops, yielding a list of values the functionality is specified as exit(S1,…,Sn). The
heart of a process is the behavior expression.

Aspects of LOTOS syntax and semantics
The semantics of executing LOTOS behavior expressions is obtained by

performing transitions. Thus, the execution of a process yields a LTS. Let us recall that a
transition takes the form of Figure 5.2 where Bh1 and Bh2 are behavior expressions and
‘a’ is an action. The intuitive notion behind transitions is that Bh1 performs action ‘a’ and
transforms itself in Bh2. Actions are events performed on gates.

An action can be considered visible meaning that the environment of the process
that produced it can synchronize with it, or invisible (denoted by the symbol ‘i’) meaning
that the action is invisible to the process environment. By using the hiding expression
(Table 5.1) we can turn actions invisible and control the level of abstraction of the system
being analyzed. If for instance we are interested in analyzing the communication
occurring among two concurrent processes we can concentrate on actions performed on
selected gates and abstract away from actions performed inside the processes behavior
expressions that do not directly interfere with the processes communication.

The communication mechanism for LOTOS processes is somewhat similar to
ADA’s rendezvous mechanism – when reaching the rendezvous point, the processes must
wait for every process in a selected group to also reach that point and only then they will
be unblocked to perform more actions. This mechanism often referred as multiway
synchronization is absent both is CSP and CCS.

In LOTOS, the parallel composition operator (also called synchronization
operator) contains a list of gates in which the processes must synchronize (where
processes perform synchronous actions). When two processes running in parallel engage
in performing an action in a gate selected in the parallel composition operator they must
do it simultaneously. Any other action is performed independently by each process.

process process-id[gate-list](parameter-list) : functionality :=

behavior-expression

where

process-declarations

endproc

Figure 5.1 – Template of LOTOS process specification.

Bh1 Bh2
a

Figure 5.2 – A transition executed by performing action ‘a’.

49

Processes in LOTOS also have a reserved gate ‘δ’ used to signal successful
terminations. Taking process P and Q, ‘a’ an action, gates g1, …, gn and h1, …, hn.We can
summarize the behavior expressions as in Table 5.1.

Behavior Expression Description Meaning

stop
stop the process No more transitions occur in the process.

exit
exit from the
current process

A transition is carried out performing action
on gate δ.

i; P
invisible action An invisible action is performed and then P.

a; P
visible action The visible action ‘a’ is performed and then

P.

P [] Q
choice Either an action of P is performed and then

P’, or an action of Q is performed and then
Q.

P|[g1, …,gn]|Q
synchronization An action ‘a’ performed on one of the gates

g1, …,gn causes the process P (respectively
Q) to block and wait for process Q
(respectively P) to perform an action on that
same gate.

P >> Q
sequence P until an action is performed on δ, then Q.

P [> Q
disabling P until Q is able to take action, then Q. If P

performs an action on δ, Q will not be able
to perform any action.

hide g1,…,gn in P
hiding Any actions occurring in one of the gates g1,

…,gn is invisible.

Pr[(h1,…,hn)/(g1,
…,gn)]

process
instantiation

Process P defined as Pr will run with gates
g1, …,gn are substituted by gates h1, …,hn.

Pr[g1,…,gn] := P
process
definition

Process P is defined referred as Pr[g1,…,gn].

Given a process defined as Pr[g1, ..., gn] =def P, we say that Pr[h1, ..., hn] is an
instantiation of Pr, denoting a behavior expression P where each hi replaces a gi. Actions
take the form gate!atom where atom is a closed expression without variables. The
notation gate?X is also used in LOTOS, but with a different meaning from the CCS
receive action11. In LOTOS the expression gate?variable is syntactic sugar for a choice
on actions like gate!atom1 [] … [] gate!atomn, where atom1, …, atomn range over the sort

11 Note that in CCS, the receive action (denoted by ‘?’) is symmetric to the send action (denoted by ‘!’),
i.e., CCS processes synchronize through send/receive action combinations. LOTOS process synchronize by
performing the same action simultaneously.

Table 5.1 – Summary of LOTOS behavior expressions.

50

of variable X. In the synchronization operator P|[g1, …, gn]|Q, if the set of gates of either
P or Q is included in {g1, …, gn} then P|[g1, …, gn]|Q can be written as P||Q. The
expression P|[]|Q can be written as P|||Q. We will also consider the existence of formal
variables and a behavior expression of the form [BoolExp]→BhExp where if
eval(BoolExp, Vars)=true, then BhExp. We will not present formal variables here due to
the lack of space, please refer to [Garavel 89].

The semantics of behavior expressions is given over labeled transition systems as
presented below in table 5.2. Let L be a LTS where L=(S, A, Σ) and gates g1, …, gn, h1,
…, hn ∈ Σ-{δ}. Also, let ‘a’ be an action such that a∈Σ∪ {i}.

Behavior Expression Assumptions Transitions

stop
(no transitions)

exit
exit →δ stop

i; P
i; P →i P

a; P
a; P →a P

P [] Q
(P →a R) ∨
(Q →a R)

P [] Q →a R

(P →a P’) ∧ a∉ {g1, ..., gn, δ} P […] Q →a P’ […] Q

(Q →a Q’) ∧ a∉ {g1, ..., gn, δ} P […] Q →a P […] Q’
P|[g1, …, gn]|Q

(P →a P’) ∧ (Q →a Q’) ∧
a∈ {g1, ..., gn,δ }

P […] Q →a P’ […] Q’

(P →a P’) ∧ a≠δ P>>Q →a P’>>Q
P >> Q

(P →δ P’) P>>Q →i Q
(P →a P’) ∧ a≠δ P[>Q →a P’[>Q
(P →δ P’) P[>Q →δ P’

P [> Q

(Q →a Q’) P[>Q →a Q’
P →a Q ∧ a∉ {g1, ..., gn} hide … in P →a Q

hide g1,…,gn in P P →a Q ∧ a∈ {g1, ..., gn} hide … in P →i Q
P →a Q ∧ a∉ {g1, ..., gn} P[(h1,…,hn)/(g1, …,gk)] →a

Q[(h1,…,hn)/(g1, …,gk)]P[(h1,…,hn)/(g1,
…,gk)]

P →a Q ∧ a=gi∈ {g1, ..., gn} P[(h1,…,hn)/(g1, …,gk)] →hi

Q[(h1,…,hn)/(g1, …,gk)]

Pr[g1,…,gk] := P
P[(h1,…,hn)/(g1, …,gk)] →a Q Pr[h1,…,hn] →a Q

Properties about the behavior of LOTOS processes in CADP can be specified in two
different ways. The first is trough logic specifications using a version of the Mu-Calculus
that does not allow expressing properties on states. The second is through behavioral
specifications.

Table 5.2 – Summary of the semantics of LOTOS behavior expressions.

51

The semantics of this version of the Mu-Calculus is the same as that of Chapter 2
but without propositions on actions.

Definition 5.1 We define the Mu-Calculus without propositions by the following
grammar where ‘a’ is an action, Y is a propositional variable, ϕ, ϕ1 and ϕ2 are state
formulas. The semantics of [-]ϕ is the same as [tt]ϕ.

• ϕ ::= tt | Y | ¬ϕ | ϕ1⇒ϕ 2 | [a]ϕ | [-]ϕ | µY.ϕ.

Additionally to the usual Boolean operators that can be obtained from ¬ϕ and ϕ1 ⇒ ϕ2,
there is also a number of other useful modal operators that can be defined such as the
greatest fixed-point operator νY.ϕ≡¬µY.¬ϕ , the always operator (in all paths, at every
moment, ϕ holds) defined as AGϕ≡νY.(P ∧ [-]Y), the potentially operator (in some path,
at some moment, ϕ holds) defined as EFϕ≡µY.(P ∨ 〈 -〉Y) and the inevitably operator (in
all paths, at some moment ϕ holds) defined as AFϕ≡µY.(P ∨ ([-]Y ∧ 〈 -〉 tt).

Behavioral specifications describe the expected behavior of the program viewed
as a black-box (i.e. observed from a certain abstraction level, for example, only
considering visible a subset of its actions). The properties expressed by behavior
specifications can be directly coded in LTSs or in any other language that can be
compiled to an LTS. After having both the program and the specification translated into
LTSs, the verification process consists in comparing the two LTSs to see if the transitions
taken by the program are related to the transitions taken by the specification12.

The logical specification approach and the behavior specification approach are
complementary. Some properties are easily specified in one of the approaches and not so
much with the other13. Logic specifications are often checked by tools using the
Temporal Logic Model-Checking techniques defined in Chapter 3, whereas behavioral
specifications are checked by tools using the Automata Theoretic techniques.

In the approach of behavioral specifications LTSs are compared according to a
class of relations based on the notion simulation relation. From this relation, different
notions of equality can be offered differing in the treatment of invisible actions
(processes internal actions) of the two LTSs. Before discussing the class of simulation
relations some notions need to be recalled.

An equivalence relation is a reflexive, transitive and symmetric relation. A
preorder is a transitive relation but does not need to be symmetric. An equivalence
relation (noted ≈) is said to be a congruence with respect to some function f, iff L1≈L1’∧
… ∧ Ln≈Ln’ imply f(L1,…,Ln)≈f(L1’,…,Ln’). Correspondingly, a preorder (noted õ) is said
to be a precongruence with respect to f, iff L1õL1’∧ … ∧ LnõLn’ imply
f(L1,…,Ln)õf(L1’,…,Ln’). The operators ‘||’ and ‘hide’ can be regarded as functions
between LTSs as presented in [Valmari 96] and [Krimm & Mounier 97]. Some of the
relations between LTSs have interesting properties, they are often congruencies or
precongruencies with respect to ‘||’ and ‘hide’ enabling a form of compositional
verification that we will analyse later. Equivalencies can be ranked according to their

12 This approach is intimately related to the automata theoretic verification procedure presented in Chapter
3, where the notion of transition taken by a program coincides with the notion of language accepted by a
LTS viewed as an automaton.
13 Experiments run by the author suggested that logical specifications are better suited for liveness
properties whereas behavioral specifications are better suited for safety properties.

52

capability to make distinctions between LTSs. We say that an equivalence ‘≈2’ weaker or
coarser than ‘≈1’, iff L1≈1L2 imply L1≈2L2. Furthermore, a relation between two LTSs is
said to preserve a property iff a property holding in L1 also holds for every LTS Li related
to L1 by some equivalence or preorder. Below we present a survey on three equivalence
relations that will be employed for verification later in this chapter. A good presentation
of various equivalence relations can be found in [Fernandez 88].

Strong Bisimilarity
Strong bisimilarity (also named bisimulation equivalence) is the strongest

equivalence relation (the one that distinguishes more LTSs) found in literature. For two
systems to be strongly bisimilar they must simulate each other as in Definition 5.2. We
can simply state that initial states must simulate each other, because the notion of
simulation is recursive. A state s1 of L1 simulates s2 of L2 if every outgoing transition of
s2 arrives at a state that can also be simulated by the ending state of an outgoing transition
from s1 with the same label. See [Milner 89].

Definition 5.2 Let L=(S, A, Σ) be an LTS with initial state s0∈ S. A binary relation ≈sb

⊆ S×S is a strong bisimulation, iff for every s, s1, s2∈ S such that s1≈sbs2 and every action
a∈Σ∪ {i} the following holds:

• If s1→as2, then there is an s’∈ S such that s≈sbs’ ∧ s2→as’.
• If s1→as2, then there is an s’∈ S such that s’≈sbs ∧ s1→as’.

Branching bisimulation
This relation (noted ≈bb) is weaker than strong bisimilarity. Moreover, whenever

the two LTS under comparison are livelock-free (they do not contain any circuit of
internal actions) this relation preserves liveness properties [Valmari 96]. Note that a
specification should be considered as a liveness property whenever the behavior it defines
must be eventually executed by the program. We write L1õbbL2 when each transition of
the form s1→as2 (where a≠i) is simulated by a sequence of transitions of the form
s2→i…→is2’’→as2’ where s1õbbs2’’and s1’õbbs2’. Transitions of the form s1→is2 are
simulated by a sequence s2→i…→is2’ or by staying in s2. Moreover, L1≈bbL2 iff L1õbbL2

and L2õbbL1.

Safety equivalence
Safety properties state that visible actions do not appear in an illegal order. This

relation (noted ≈se) relates two LTS that verify the same set of safety properties and is
weaker than branching bisimulation. Note that a specification can be considered as a
safety specification when it defines a super set of the expected behavior of the program.
In other words, the program can be considered safe whenever its behavior remains
included in the one defined in the specification. Safety equivalence does not preserve
liveness properties.

The CADP toolkit [Garavel 98] is composed of a LOTOS compiler that interfaces
with a number of verification tools for LTSs including a Model-Checker. The compiler,
named CAESAR, translates a restricted version of Full-LOTOS specifications into LTSs.

53

The specification is firstly pre-processed and translated into a simpler process
algebra called Sub-LOTOS which replaces LOTOS constructs with other semantically
equivalent ones. In a second stage, the Sub-LOTOS specification is represented by a Petri
net and the LTS is then generated by performing reachability analysis on an optimized
version of this Petri net representation. This tool does not support some ISO LOTOS
features involving dynamic creation of processes and gates, and recursive process
instantiation under parallel composition operators. CAESAR automatically detects these
violations after a detailed syntax and semantic analysis of the LOTOS specification.
Another tool named Aldébaran [Fernandez 88] can be connected with CAESAR and also
accepts LTSs in several formats generated by tools other than CAESAR. This tool can be
used to compare two LTSs according to several equivalence relations like strong
bisimulation, branching bisimulation and safety equivalence.

Other tools exist for the specification and animation of LOTOS specifications, but
few of them offer Model-Checking capabilities, an open format for LTS files and an API
as does CADP. It is worth mentioning the Finnish toolset named ARA Toolset, that
includes the ARA State Space Generator [Savola 95], a tool for generating LTSs from
LOTOS specifications and the ARA Comparator Tool that work closely like CAESAR
and Aldébaran respectively.

5.2 Translating OBLOG specifications into LOTOS

The translation of OBLOG specification into LOTOS is achieved by assigning a process
to each object and behavior component. An object will be modeled as a process that waits
for messages in a list of channels corresponding to the object operations (see Figure 5.3).
Behavior components are also modeled as processes, and their composition as
composition of processes. For example the sequential behavior component is modeled
using the ‘>>’ sequential composition of processes operator.

Object attributes are coded by a process that offers and accepts values for
attributes in special gates. This process runs in parallel with the object body process that
is constituted of the object operations. This scenario can be better understood by looking
at the following process algebraic-like equations, where attributes designates a local
memory process:

process stack[empty, push, pop, top] : noexit :=

...

where

...

endproc

Figure 5.3 – Skeleton of a Stack object coded in LOTOS.

54

object =def attributes || body
body =def (op1[]…[]opn); body

Operations are also coded as processes. Methods and behavior expressions are coded into
processes that send a Boolean atom through the δ gate. This atom named recover value is
necessary to keep track of the success of the execution of methods and behavior
expressions.

 Identifiers
It will be necessary to build new identifiers from old ones. In order to do this we

introduce the concept of renaming operator on identifiers and on sets of identifiers. A
further operation is defined that allows making the substitution of an identifier in a set of
identifiers.

Definition 5.5 Let I be a set of identifiers. The notation I|v is used to denote the set of
identifiers {idv : id ∈ I} where each idv is obtained concatenating the string v to id. Given
a set of identifiers I={i1, …, ik-1, ik, ik+1, …, in}, we define substitution of an identifier ik∈
I, by some symbol X, written I[X/ik] in the following way : if 1≤k≤n then I[X/ik] ≡ {i1, …,
ik-1, X, ik+1, …, in}.

Gate sets
We model behavior components as processes. Behavior components need to

communicate with their environments, for example asking for attribute values or calling
operations. For this reason each process corresponding to a behavior component must be
defined with a set of gates to access the object attributes and to invoke other objects
operations (by sending messages on this gates).

Definition 5.6 Given a behavior component bh, by gate set of bh (written GSet(bh)) we
mean the union of set of the gates obtained form the names of the operations and
attributes that bh accesses. More formally: GSet(bh)=OP(bh)∪ Vars(bh).

Behavior component identifiers
In our version of OBLOG, behavior components are unnamed (anonymous)

entities. In LOTOS every process declaration must have a name. For this reason, we will
use a mapping that assigns unique names to every behavior component. The mapping is
defined as Id: bhcomponent → ProcName. Where ProcName is the set of process names.

Backup and Restore templates
These templates are use to make the presentation of the semantics simpler and

will be used later in the rollback process in the semantics of alternative composition.

55

Definition 5.7 Given a set of attribute gates at1, …, atn and a gate ‘c’ we define backup
and restore templates in the following way:

• Backup(at1,…,atn, c) ≡ at1!READ?v1; …;atn!READ?vn; c!v1!…!vn
• Restore(at1,…,atn, c) ≡ c?v1?…?vn; at1!WRITE!v1;…;atn!WRITE!vn

where each vi is a variable used to hold the a value received or sent through a gate.

We are now in position the give the rule for translating OBLOG specification into
LOTOS specifications. The rules are given in a denotational way, having a set of
semantic preconditions on the left side.

Skip
The rule for skip is constituted of a process that always terminates successfully by

delivering false as recover value.

Fail
The rule for fail produces a process that provokes a recovery by signalling a true

on the δ gate.

Expression Evaluation
The expression evaluation process is intended to encapsulate the evaluation of an

expression. The values of the attributes A1, …, An are read and put into a set of variables
v1, …, vn. The resulting value is built from the evaluation of Expr, an expression using
only object attributes and local variables. Evaluating an expression never fails.

Denotation

Ä skip Å ≡
process pid : exit(Bool) :=
 exit(false)
endproc

Semantic pre-conditions

pid = Id(skip)

Denotation

Ä fail Å ≡
process pid : exit(Bool) :=
 exit(true)
endproc

Semantic pre-conditions

pid = Id(fail)

Denotation

Ä Expr Å ≡
process pid[gset]: exit(ExprType) :=
 A1!READ?v1:s1;…;An!READ?vn:sn;
 exit(Expr[vn/An])
endproc

Semantic pre-conditions:

pid = Id(Expr)
gset = GSet(Expr)
{A1, …, An} = I(Expr)
Si = SORT(Expr)(Ai)
ExprType = SORT(Expr)

56

Assert
The assert component is modeled as a process that evaluates the condition ‘C’ (a

Boolean expression) and then it behaves as skip (by sending false as recover value) or as
fail (by sending true as recover value). Note that the translation of the process performing
the evaluation of condition ‘C’, denoted by ÄExprÅ, is nested the in the where section
below, as a sub-process declarations. In subsequent rules we will also follow this pattern.

Set
The set component is modeled by a process that evaluates Expr and writes the

result in the state of the object. The gate ‘X’ is included in ‘gset’.

Send
The send component results in a process that evaluates all expressions used as

parameters and sends all values through the ‘opId’ gate.

Denotation

Ä assert C Å ≡
process pid[gset] : exit(Bool) :=
 pexpr[exprgset] >> accept bval in
 (
 [bval eq true] -> exit(true)
 []
 [bval eq false] -> exit(false)
)
where
 Ä Expr Å
endproc

Semantic pre-conditions

pid = Id(assert C)
pexpr = Id(Expr)
gset = GSet(assert C)
exprgset = GSet(C)

Denotation

Ä set X << Expr Å ≡
process pid[gset] : exit(Bool) :=
 pexpr[exprgset] >> accept
 rval in X!WRITE!result; exit(false)
where
 Ä Expr Å
endproc

Semantic pre-conditions

pid = Id(set […])
pexpr = Id(Expr)
gset = GSet(set […])
exprgset = GSet(Expr)

Denotation

Ä send Expr1, …, Exprn in opId Å ≡
process pid[gset] : exit(Bool) :=
 pexpr1[exprgset1] >> accept res1 in
 …
 pexprn[exprgsetn] >> accept resn in

opId!res1!…!resn; exit(false)
where
 Ä Expr1 Å
 …
 Ä Exprn Å
endproc

Semantic pre-conditions

pid = Id(send […])
pexpr1 = Id(Expr1)
…
pexprn = Id(Exprn)
gset = GSet(set […])
exprgset1 = GSet(Expr1)
…
exprgsetn = GSet(Exprn)

57

Receive
The receive component receives a set of formal variables from ‘opId’. This

component also receives an extra parameter ‘vr’ allowing to receive a remote recover
status. This feature is used to code synchronous calls with failure, this component fails if
it receives a recover value of true. If the recover value is false, the remaining values are
committed to a set of object attributes and/or local variables. An optimization could be
worked out: It is possible to discover channels that will never be used to transmit failure
information by type analysis on operation channels. We could then supply a different
coding for receiving in the channels, skipping the recover value test.

Iteration
The coding of the iteration behavior component consists in a process behaving as

a while loop operational semantics rule. This process evaluates ‘Expr’, and while it is
true behaves like ‘BhComp’. The denotation includes the nesting of ÄExprÅ and
ÄBhCompÅ. If ‘BhComp’ fails, the Iteration component also fails as illustrated by the code
fragment that evaluates the recover value of the process representing ‘BhComp’. Note
also that, like in other components, exprgset⊆ gset and bhcompgset⊆ gset.

Denotation

Ä receive v1, …, vn in opId Å ≡
process pid[gset] : exit(Bool) :=
 opId?v1:s1?…?vn:sn?vr:Srecover;
 (
 [vr eq true] -> exit(true)
 []
 [vr eq false]-> A1!WRITE!v1:s1;…;
An!WRITE!vn:sn; exit(false)
)
endproc

Semantic pre-conditions

pid = Id(receive […])
gset = GSet(receive […])
{A1, …, An} = O(Expr)
Si = SORT(receive […])(Ai)

Denotation

Ä while Expr do BhComp Å ≡
process pid[gset] : exit(Bool) :=
 pexpr[exprgset] >> accept bval in
 (
 [bval eq false] -> exit(false)
 []
 [bval eq true] -> bhcompid[bhcompgset]
>> accept rval1 in

[rval1 eq true] -> exit(true)
 []
 [rval1 eq false] -> pid[gset] >>
accept rval2 in exit(rval2)
)
where

 Ä Expr Å
 Ä BhComp Å
endproc

Semantic pre-conditions

pid = Id(while […])
pexpr = Id(Expr)
bhcompid = Id(BhComp)
gset = GSet(while […])
exprgset = GSet(Expr)
bhcompgset = GSet(BhComp)

58

Sequential Composition
The sequential composition component is coded by a process containing two sub-

processes. After exhibiting the behavior of the first sub-process corresponding to
ÄBhComp1Å, the main process checks whether it is needed to recover or not, if yes it sets
recover value to true, otherwise it executes ÄBhComp2Å and returns its recover value.

Alternative Composition
The alternative composition operator is coded by analyzing the recover value of

ÄBhComp1Å and using a backup/restore discipline. Firstly, the values of those variables
altered inside ‘BhComp1’ are backed up in the process denoted Backup(O(BhComp1), c)
that will run in parallel with the body of the alternative composition. After executing
ÄBhComp1Å its recover value is analyzed: if true this means that this component failed and
ÄBhComp2Å is executed after a restore process denoted Restore(O(BhComp1), c). As a first
attempt to code the alternative composition one might feel tempted to use the LOTOS
disabling operator ‘[〉 ’14, where ‘P [〉 Q’ means that P executes as long as Q is not enabled
to take any transitions. The strategy to use the disabling operator consists in sharing some

14 CSP interruption operator

Denotation

Ä BhComp1 ; BhComp2 Å ≡
process pid[gset] : exit(Bool) :=
 pid1[gset1] >> accept rval in

[rval1 eq true] -> exit(true)
 []

[rval1 eq false] -> pid2[gset2]
>> accept rval2 in exit(rval2)
where

 Ä BhComp1 Å
 Ä BhComp2 Å
endproc

Semantic pre-conditions

pid = Id(BhComp1 ; BhComp2)
pid1 = Id(BhComp1)
pid2 = Id(BhComp2)
gset = GSet(BhComp1 ; BhComp2)
gset1 = GSet(BhComp1)
gset2 = GSet(BhComp2)

Denotation

Ä BhComp1 alt BhComp2 Å ≡
process pid[gset] : exit(Bool) :=
 hide c in
 Backup(ogset1, c)|||
 (
 pid1[gset1] >> accept rval1 in

 [rval1 eq true] -> Restore(ogset1,

c); pid2[gset2] >> accept rval2 in
exit(rval2)
 []

 [rval1 eq false] -> exit(false)
)
where

 Ä BhComp1 Å
 Ä BhComp2 Å
endproc

Semantic pre-conditions

pid = Id(BhComp1 alt BhComp2)
pid1 = Id(BhComp1)
pid2 = Id(BhComp2)
gset = GSet(BhComp1 alt BhComp2)
gset1 = GSet(BhComp1)
gset2 = GSet(BhComp2)
ogset1 = O(BhComp1)

59

distinguished recovery channel ‘c’ among P and Q. When P signals its failure through ‘c’,
it automatically enables Q (and disables P by the semantics of ‘[〉 ’). However, because of
the semantics of this operator, many ‘undesirable’ transitions are produced. The LOTOS
compiler produces a transition of the form pi→aqinit for each transition pi→apj where qinit

is the starting state of the LTS representing Q and pi and pj are states of P.

Choice composition
The choice composition is coded in a straightforward way making use of the ‘[]’

operator. One of the processes is selected to run and the recover value is the one of the
process selected.

Denotation

Ä or (BhComp1 … BhCompn) Å ≡
process pid[gset] : exit(Bool) :=
 pid1[gset1]
 []
 …
 []
 pidn[gsetn]
where

 Ä BhComp1 Å
 …
 Ä BhCompn Å
endproc

Semantic pre-conditions

pid = Id(or […])
pid1 = Id(BhComp1)
…
pidn = Id(BhComp2)
gset = GSet(or […])
gset1 = GSet(BhComp1)
…
gsetn = GSet(BhCompn)

60

Local Variables
Local variables are coded as a process that synchronizes in gates that correspond

to variable names. The process is recursive and it is constituted of choices between
actions to read variables of the form VarName!READ!atom and actions to write new
values in variables of the form VarName!WRITE!newValVariable

Denotation

Ä local A1 : S1 = I1, …, An : Sn = In in BhComp Å ≡
 process pid[gset] : exit(Bool) :=
 hide A1,…,An, Break in
 (
 lvars[A1,…,An, Break](I1,…,In)|[A1,…,An]|
 (
 bhcompid[bhcompgset] >> accept
rval:Bool in

(
 Break!go;
 exit(rval)
)

where
 process lvars[{A1,…,An}|p]({A1:I1,…,An:In}|v) :
exit :=
 A1!WRITE?XA1:S1;
lvars[{A1,…,An}|p]({A1,…,An}|v[XA1/A1])
 []
 …
 []
 An!WRITE?XAn:Sn;
lvars[{A1,…,An}|p]({A1,…,An}|v[XAn/An])
 []
 A1!READ!V1; lvars[{A1,…,An}|p]({A1,…,An}|v)
 []
 …
 []
 An!READ!Vn; lvars[{A1,…,An}|p]({A1,…,An}|v)
 []
 Break; exit
 endproc
 Ä BhComp Å
endproc

Semantic pre-conditions

pid = Id (local […])
gset = GSet(local […])
bhcompid = Id (BhComp)
gsetbhcomp = GSet(BhComp)
Si = SORT(local […]) (Ai)

61

Alternative or (XOR) composition
The alternative or operator combines alt and or operators as described in Chapter

4. In order to code the successive elimination of those behavior components that failed,
we use a recursive process with a set of flags used as Boolean guards in a choice. When a
behavior component fails, the modified attributes are restored and the process starts again
with the flag ‘compi’ corresponding to the behavior component ‘BhCompi’ set to false.
This strategy leaves ‘BhCompi’ out from the next round. If in the end, all behavior
components fail, the alternative composition of all of them also fails.

Denotation

Ä xor (BhComp1 … BhCompn) Å ≡
process pid[gset] : exit(Bool) :=
 xorbody[gset](true,…,true)
where
 process xorbody[gset](comp1:Bool, …,
compn:Bool) : exit(Bool)
 [comp1 eq true] ->

hide c in
 Backup(ogset1, c)|[c]|
 (
 pid1[gset1] >> accept rval1 in
 [rval1 eq true] ->
 Restore(ogset1, c);
 xorbody[gset2](false, …, compn)

>> accept rval2 in exit(rval2)
 []

 [rval1 eq false] -> exit(false)
)

 []
 …
 []
 [compn eq true] ->

 hide c, r1 in
 Backup(ogsetn, c)|[c]|
 (
 pidn[gsetn] >> accept rval1 in
 [rval1 eq true] ->
 Restore(ogset1, c);
 xorbody[gset2](comp1, …, false)

>> accept rval2 in exit(rval2)
 []

 [rval1 eq false] -> exit(false)
)

 [(comp1 eq true) and … and (compn eq
true)] -> exit(true)
where

 Ä BhComp1 Å
 …
 Ä BhCompn Å
endproc

Semantic pre-conditions

pid = Id(xor […])
pid1 = Id(BhComp1)
…
pidn = Id(BhCompn)
gset = GSet(xor […])
gset1 = GSet(BhComp1)
…
gsetn = GSet(BhCompn)
ogset1 = O(BhComp1)
…
ogsetn = O(BhCompn)

62

Objects
We will code objects as processes representing the local memory constituted by

the attributes and running in parallel with another process that is a choice on operations.
After an operation is called and executed we return to the choice of operations again.

Denotation

Ä object
 attribute A1 : S1 = I1

 …
 attribute An : Sn = In

 operation OpId1 is […]
 …
 operation OpIdn is […]
 Å ≡
process pid[gset] : noexit :=
 lvars[A1,…,An](I1,…,In)|||
 (
 opid1[gsetop1]
 []
 …
 []
 opidn[gsetopn]
) >> accept rsilence:Bool in

pid[gset]
where
 process lvars[{A1,…,An}|p]({A1:I1,…,An:In}|v)
: noexit :=
 A1!WRITE?XA1:S1;
lvars[{A1,…,An}|p]({A1,…,An}|v[XA1/A1])
 []
 …
 []
 An!WRITE?XAn:Sn;
lvars[{A1,…,An}|p]({A1,…,An}|v[XAn/An])
 []
 A1!READ!V1; lvars[{A1,…,An}|p
]({A1,…,An}|v)
 []
 …
 []
 An!READ!Vn;
lvars[{A1,…,An}|p]({A1,…,An}|v)
 endproc
 Ä operation OpId1 is […] Å
 …
 Ä operation OpIdn is […] Å
endproc

Semantic pre-conditions

pid = Id(object […])
gset = GSet(object […])
gsetop1 = GSet(operation op1 […])
…
gsetopn = GSet(operation opn […])

63

System
The system process is obtained as the parallel composition of processes

corresponding to objects. The gates (opgi) included in each parallel composition operator
are obtained by a simple procedure of intersecting the union of gates of process P1, …, Pi

with the gates of the processes Pi+1, …, Pn, where n is the number of objects in the
system.

5.3 Case study – verifying the Alternating Bit Protocol

After translating the OBLOG program into a LOTOS specification (Apendix D) and
feeding the CADP toolset, we will check properties from the LOTOS specification using
a Temporal Logic Model-Checker.

The limitation of this method resides in the size of the LOTOS specifications
accepted by the CADP tools. Our experiments have shown that the translation of the ABP
protocol specification of Appendix C with the rules presented in Section 5.2, results in
more than 1000 lines of LOTOS code resulting in more than 3 million states. For this
reason, the LOTOS specification had to be divided and checked using a technique known
as compositional verification.

Verification framework
Since the LOTOS specification (a process P) obtained by translation from an

OBLOG specification results in a very large LTS, analysis via ‘brute force’ approach is
infeasible. Instead of verifying a property ϕ over the LTS produced from a process P≡P1 ||
… || Pn, we can verify ϕ over a smaller LTS resulting from Q≡Q1 || … || Qn. This process
Q is such that Q≈P, where ‘≈’ is an equivalence which preserves the property ϕ and Qi≈Pi

Concerning the specifications of properties in CADP, they are usually specified in
the Mu-Calculus although Temporal Logic macros are defined in order to alleviate the
notation. A limitation arising from the use of the hide operator, (not present in the tool
UPPAAL presented in Chapter 6) is that we can not examine the state of the object
directly. This introduces some obstacles in formalizing some properties related to the
object internal state. To work around this shortcoming some properties were restated.

Denotation

Ä object o1 [...] ... object on [...] Å ≡
process pid[gset] : noexit :=
 pid1[gset1]
 |[opg1]|
 …
 |[opgn-1]|
 pidn[gsetn]
where
 Ä object o1 [...] Å
 …
 Ä object on [...] Å
endproc

Semantic pre-conditions

pid = Id(object […]...[…])
gset = GSet(object […])
gset1 = GSet(operation op1 […])
…
gsetn = GSet(operation opn […])
opg1 = gset1 ∩ (gset2 ∪ … ∪ gsetn)
…
opgn-1 = (gset1 ∪ gsetn-1) ∩ gsetn

64

In order to verify the system Sys ≡ Psender || Packline || Ptransline || Preceiver, we
need to avoid the state-space explosion resulting from the parallel composition operators.
The idea is to avoid expanding the original LTS for Sys and to engage in producing a
reduced LTS compositionally. First, we independently produce and reduce modulo safety
equivalence, a separate LTS for each process. Second, we perform the parallel
composition of the reduced LTSs producing an LTS, which is equivalent to the original
for Sys according to safety equivalence.

The tool Aldébaran was used for two purposes. To minimize the LTSs obtained
from the LOTOS specifications using the CAESAR compiler and to perform the parallel
composition of the reduced LTSs. The properties were model-checked using the
EVALUATOR tool over the reduced LTS. Aldébaran also helped in earlier phases when
the LOTOS specification was translated by hand from the OBLOG ABP specification
(Appendix B and C). Behavioral specifications of the processes were developed and
Aldébaran was used as a Model-Checker providing counter examples that were used to
debug the translation framework and, in some cases, the ABP specification.

CADP was installed in a 450Mhz Pentium computer with 128MB of RAM
running the Linux operating system. Verification using compositional verification took
only about 2 minutes. Previous experiments without compositional verification, after
running an hour did not yield any answer.

Operation of a single component – the acknowledge line
Our ‘acknowledge line’ is a very simple component. Checking its correct operation

amounts to see if it exhibits two expected behaviors:
1. “The line may loose an acknowledge signal”
2. “The line correctly delivers the acknowledge signal in the absence of errors”

The first property states that an ‘ackline.getAcknowledge’ operation call can fail after
having sent an acknowledge signal by calling then ‘ackline.sendAcknowledge’ operation.
For this property we must check that:

Acklinespec ÷ ϕack where ,
ϕack1 ≡ EF(ackline.sendacknowledge(ai) ⇒ EF(ackline.getAcknowledge.fail=true))

Where ai is an acknowledge signal, either ‘0’ or ‘1’.

The second property cannot be verified directly because we cannot access the
internal state of the process in order to analyze the occurrence of an error in the
acknowledge line (if no error occurred then Ackline.lStatus=STATGOOD). The property
must be restated as the following reachability property: “From those states where the
‘acknowledge line’ reported to have no errors the acknowledge signal is inevitably
delivered correctly”. To verify this property we checked the following formula:

ϕack2 ≡ EF((ackline.sendacknowledge(ai) ∧ AF(ackline.getAcknowledge.fail=false)) ⇒
AF(ackline.getAcknowledge(ai))

65

Global Operation of the system
Another class of properties concerns the joint operation of the components. We

will now concentrate on the send-receive properties and abstract away from details of
individual components. We can verify the following properties.

• “A sent message can be lost and never received”
• “A sent message is always received if there is no error in the transmission line”
• “A received message is acknowledged to the sender if there is no error in the

acknowledge line”.

The first property states about the unreliability of the protocol. It states that a message
sent via ‘sender.accept’ may be lost and not received when we call ‘receiver.deliver’.
This property holds if:

Sysspec ÷ ϕ where,
ϕglobal1 ≡ EF(sender.accept(mi) ⇒ AF(receiver.deliver(mj) ∧

AF(receiver.getStatus(SAMEMESSAGE)))

For the second property, we need to find a way of characterizing the states where there
was no error in the transmission line. The transmission of a message from the ‘sender’ to
the ‘receiver’ objects involves a sequence of calls to the ‘transmission line’ which we can
observe and reason about. We will also restate property 2 as: “A message is always
received from states where: (2.1) the message is sent and (2.2) we inevitably get to states
where we observe a correct reception form the transmission line.”

ϕglobal2 ≡ AF((sender.accept(mi) ∧ AF(transline.receiveMessage.fail=false)) ⇒
AF(receiver.deliver(mi)))

The third property in conjunction with the second will close the send-receive-
acknowledge cycle of our protocol. As with the second property, we must also restate this
last one in order to capture the states where no error occurred in the acknowledge line as:
“A message is acknowledged to the sender from those states where calling
ackline.getAcknowledge does not fail”

ϕglobal3 ≡ AF(ackline.getAcknowledge.fail=false) ⇒
AF(sender.getStatus(SENTANDACK))

The properties written in CADP concert syntax can be found in Appendix E.

Other verification strategies in CADP
CADP is a very flexible tool allowing various forms of verification not

completely explored in this work. During the verification of the ABP, the task of
compositional verification outlined the utility of comparing specifications at different
levels of abstraction for verifying safety properties. This was due to the notable incidence
of violations of safety properties because implementations frequently exhibit behavior
that falls out of that one allowed by the more abstract specification. An error in the

66

translation of the alternative behavior component previously defined with the LOTOS
disabling operator was detected using behavioral specifications. Yet another related to
the local memory process was found and corrected. Some comments about different
forms of verification possible in CADP are mentioned below.

Behavior specifications. The use of behavior specifications is sometimes regarded as
an escape provided by those verification tools for process algebras like LOTOS that do
not offer Temporal Logic Model-Checkers. The strategy consists in using an abstract
specification to describe a superset of the behavior of the implementation and check if the
behavior of the implementation is contained in that previously defined superset (safety
checking). On the other hand one can specify a subset of the implementation behavior
and check that this behavior is in fact carried out by the implementation (liveness
checking). Both the specification and the implementation are specified using the same
language. The advantages are that some properties are very naturally specified in the
language of the implementation and that modeling of environments (see below) is made
easier. Disadvantages are usually related to checking liveness properties, which are often
more difficult to specify. A major strength of comparing behavior specifications appears
to be detecting errors in message sequencing. Experiments run in this project uncovered
some errors both in implementations and specifications.

Environment modeling. From a theoretical point of view, when we are verifying a
process P with a set of gates G we are admitting that the process P can receive any
possible sequence of messages through gates G. In fact, when verifying the process P
with a tool that enumerates the possible states of P like CADP, a huge number of states is
produced as result of this interleaving of messages sent by the environment to the process
via G. In this situation, we say that P is an open process. This approach is only feasible in
practical applications when the domains of the messages accepted in the gates are very
small, let us say 3 or 4 elements. For this reason we have to abstract the context in which
the process operates by modeling the environment with a process E and compose it with
P. Some strategies for building environment processes have been advanced, like using the
concept of message generators (processes that generate messages on gates). These
processes have a constraint section that allows incremental addition of constraints has the
analysis of the system progresses providing for the incremental specification approach of
the environment. The main limitation of this method is ensuring that the model of the
environment is general enough and that its is not hiding sequences that could lead our
system into undesirable states.

Test process. The use of the test process technique is advanced in Chapter 6 as
necessary for performing verification of some classes of properties in UPPAAL.
Literature related to CADP does not refer this approach although the author believes that
its use is straightforward. Safety properties can be coded inside the system specification
as special message detectors, i.e., processes that make progress when they detect unsafe
message sequences and take a special action, say sigfail. The verification task consists in
detecting whether the system takes sigfail actions. Liveness properties can be coded in a
similar way. A somewhat close approach is taken in the ARA Toolset [Savola 95] where
special actions exist to signal some types of failure of the system. The failure states are

67

directly coded in the system specification that is compared against a failure model via a
special notion of equivalence called failure equivalence by Antti Valmari [Valmari &
Tienari 95]. The Murϕ verifier [Dill 96] takes a similar approach, failure states are also
explicitly specified.

Chapter 6 – Verifying OBLOG specifications
using Communicating Automata

Model-Checking of real time systems has been intensively studied in the last few years
leading to the emergence of tools like HyTech [Henzinger & al. 95], Kronos [Olivero &
Yovine 93] and UPPAAL [Bengtsson & al. 95].

In this chapter, we propose a framework for verifying simple safety and liveness
properties of OBLOG programs using available verification tools for IO-Automata like
UPPAAL. The procedure consists in translating the specification of an object community
into a network of communicating timed-automata [Yi & al. 94] and checking properties
from it.

The OBLOG language is not a real-time specification language although there are
plans to extend it with time primitives. At the current state of affairs we are mainly
interested in taking advantage of the very efficient model checking algorithms present in
UPPAAL and not so much in verifying timing properties.

6.1 Technical framework

Concurrent communicating state machines are straightforward models of many real world
systems. It is common in industry to model concurrent systems as communities of
communicating processes whose internal structure is implemented with state machines.
This formalism forms the base of some specifications languages like SDL [ITU-T 94].

The tool UPPAAL, is a verification tool for closed real-time systems that has
proved to be successful in real world problems specified as networks of communicating
timed automata with variables [Larsen & al. 97, Kristoffersen & Petterson 95, Bengtsson
& al. 98]. The UPPAAL kernel consists of a collection of very efficient algorithms that
are used to perform reachability analysis over a model of the system being verified
[Larsen & al. 95, Larsen & al. 95b]. As a result, we are restricted to the verification of
reachability properties. The escape for this limitation resides in the technique of test
automata. A property ϕ is specified as a test automaton Tϕ, the system enjoys property ϕ
if the test automaton Tϕ never reaches any distinguished reject node when combined with
the system specification as Tϕ || S.

Verification tools like UPPAAL accept specifications of nets of Timed IO-
Automata as input. The framework of timed IO-Automata can be obtained in two ways,
1) a timed generalisation of classical IO automata like Mealy machines [Springintveld &
al. 97] or 2) as an IO version of Timed Automata like those of [Alur & Dill 94]. Alur and
Dill extended the standard finite-state automata with a finite collection of real-valued
clocks that proceed at the same rate and measure the elapsed time since they were reset.

69

Definition 6.1 Let K be a set real-valued clock identifiers. We define the set of clock
constraints over K, also written Φ(K), as being the set of formulas generated by the
grammar ϕ::= k≤c | c≤k | k<c | c<k | ϕ1∧ϕ 2, where c is a constant and k a clock variable.

Definition 6.2 A timed automaton is a tuple A=〈L, L0, Σ, K, I, E〉 where
• L is a finite set of locations (also called states or nodes)
• L0 ⊆ L is the set of initial locations
• Σ is a finite set of labels (also called actions)
• K is a finite set of clocks
• I is a mapping that assigns a clock constraint in Φ(K) (also called invariant

condition) to every location of L.
• E ⊆ L×Σ×2K×Φ(K)×L is called the set of switches. A switch 〈 l1, a, r, λ, l2〉

represents a transition from location l1 to location l2 by performing action a. r
is a clock constraint over K that specifies when the switch is enabled and the
set λ ⊆ K specifies the set of clocks to be reset.

Below, in Figure 6.1 we present an example of a timed automaton. The example
intends to model a very simple device – a timed ringer. The ringer should ring regularly
for 60 time units in specified intervals. When ringing, the user may push the stop-ringer
button or ear the ringer for 60 time units. The variable mclk is the main clock and rclk is the
ringer clock. The purpose of the first one is to start the ringer and the second measures
the elapsed time since the ringer started in order to stop it.

In order to have a more expressive language and ease the modelling task, an
extension of timed automata with more data types (like Integers and Booleans) is
introduced in the UPPAAL verification tool [Larsen & al. 97] extending Alur and Dill
initial model that only provided clock variables. One could argue that introducing
variables could cause the undecidability of the Model-Checking procedure if we allow
their domains to be infinite. However, upper and lower bounds on the variable domains
are established in order to guarantee the termination of the verification procedure.

When verifying OBLOG programs, we are not particularly interested in time but,
instead, in variables of sorts other than clocks. Because of this, a model of
communicating automata will be used, where time variables are abstracted away and
other sorts of variables are introduced as in Definition 6.3.

Program properties in UPPAAL must be specified using a restricted version of
TCTL based on [Larsen & al. 95] whose syntax is presented in Definition 6.4. Currently,
the UPPAAL model checker only allows specification of properties with nested of modal
operators for specifying reachability properties.

70

Definition 6.3 An extended time-abstracted automaton (or ETA) is a tuple A=〈L, li, lf, Σ,
V, E〉 where

• L is a finite set of locations (also called states or nodes)
• li ∈ L is the initial location
• lf ∈ L is the final location
• Σ is a finite set of labels (also called actions)
• V is a finite set of variables of different sorts.
• E ⊆ L×Σ×Γ(V)×2Λ(V)×L is called the set of switches. A switch 〈 l1, a, γ, λ, l2〉

represents a transition from location l1 to location l2 by performing action a, γ
is a constraint over V that specifies when the switch is enabled and the set λ is
a variable assignment in V specifies the new values for variables.

Definition 6.4 Assume K is finite set of clocks. The set of formulas over K is defined by
the following abstract syntax where c is a clock constraint over K, Ai is a component of
the system (an automaton) and l∈ L a location.

ϕ ::= ∀ β | ∃◊β
β ::= a | β1 ∧ β2 | ¬β
a ::= c | Ai at l

Intuitively ∀≈β means that β must be satisfied in every reachable state, ∃◊β means that β
should be satisfied in some reachable state. The atomic formulas are either propositions
over clock variables of the form x ~ y where ~ ∈ {<, ≤, ≥, >, =} or of the form Ai at l
meaning that the Automaton Ai reached location l.

As explained in [Bengtsson & al. 95], the above logic is a restriction of the one
presented in [Larsen & al. 95] and it is not possible to express some desirable properties
with it, for example bounded liveness properties. In UPPAAL the problem is overcome
unto so extent by using a technique known as test automata. Given a property ϕ to
Model-Check, the user should provide a test automaton for it. The test automaton Tϕ

run

rstop

mclk = tlimit – 60,
start-ringer!

rclk < 60, ring!

rclk = 59,
stop-ringer!

stopbutton?,
stop-ringer!

rclk := 0, mclk := 0

Figure 6.1 – A timed automaton example of ringer

ring

wait

rclk = 59

rclk < 60

mclk < tlimit - 60

71

should be such that the system specification S enjoys the property ϕ if S||Tϕ (S
interacting with Tϕ) never reaches any bad states of Tϕ. Constructing test automata from
temporal properties is a tedious and error-prone task. In the work of [Aceto & al. 98] a
process for automatic compilation of test automata form real-time logic formulas is
presented. Using this logic is possible to specify progress properties in a more elegant
way, skipping the need for the construction of test automata.

Experimental comparisons of UPPAAL with other tools have been carried out, as
shown in e.g. [Larsen & al. 95b]. These experiments showed that UPPAAL is not only
faster but is also able to verify systems with a higher number of processes. From the
technical point of view, both HyTech and Kronos first compute the state-space resulting
from the automata network before carrying out the verification process. Instead of doing
this, UPPAAL produces the state space on-the-fly. The difference is a time versus space
trade-off from which UPPAAL is earning the best share. First computing the state space
provides for the reuse of states, thus avoiding to compute the same state several times.
This approach has a high cost in terms of space. On the other hand, adopting on-the-fly
approaches enables the verification of properties computing only a small fraction of the
state-space.

Another issue is related with the expressiveness of the underlying logic: Kronos
documentation points for full TCTL support whereas UPPAAL documentation explicitly
refers the support of restricted versions of TCTL or timed Mu-calculus. Expressiveness is
sacrificed yielding a faster verification procedure. In a recent work, Aceto [Aceto & al.
98b] presented an expressive logic that goes beyond the reachability properties
expressible with the logic of Definition 6.4. A presentation on the full TCTL and timed
Mu-calculus can be found in [Henzinger & al. 92].

6.2 Translating OBLOG programs into IO-Automata

In the work of Yi [Yi & al. 94] a CCS-like algebra of processes with clocks is presented.
This algebra may serve as a formal description language for real-time communicating
systems. A procedure for translating this timed process algebra into communicating timed
automata is also presented deriving in this way a parallel composition operator for timed-
automata which can be used to construct more complex system descriptions from
components.

We adapt Yi’s ideas of structural description of real-time systems in a CCS-like
language to the OBLOG specification language. In our framework, objects and behavior
components describe automata. Composition of behavior components is modeled as
composition of automata.

It could be argued that translating OBLOG specification into CCS could
constitute an easier task than performing a translation to timed automata. A closer look at
OBLOG will reveal that a translation to CCS would raise more questions than it would
solve. It would be difficult to model the OBLOG notions of failure and alternative
behavior composition. Instead, the solution adopted was handcoding the notion of failure
and introducing a new composition operator between automata, the recovery composition
operator.

We will now introduce some preliminary notions that will be used to specify the
rules allowing the translation of OBLOG specifications into ETAs.

72

Distinguished no-action symbol
When labelling edges, it is be possible to specify that no action is taken. This is

accomplished through the distinguished action 0. Please note that this action is not the
same as the invisible action τ. By definition all nodes have an edge with label (tt, 0, ∅)
onto themselves.

Sequential composition operator ‘→’
Sequential composition of two automata means wiring the end state of the first to

the initial state of the second one. The behavior produced in this manner corresponds to
the sequential composition between OBLOG commands, “execute the first command and
then execute the second”.

Definition 6.5 Given two automata A1 and A2 we define sequential composition of A1

and A2, symbolically A1 → A2, in the following way: Let A1 = 〈L1, l1i, l1f , Σ1, V1, E1〉ρ1

and A2 = 〈L2, l2i, l2f , Σ2, V2, E2〉ρ2 then A1 → A2 = 〈L1 ∪ L2, l1i, l1f , Σ1 ∪ Σ2, V1 ∪ V2, E〉ρ,
where E = E1 ∪ E2∪ {(l1f, 0, tt, ∅ , l2i)} and ρ = ρ1 ∪ ρ2.

Recovery composition operator |ρ
When giving semantics to OBLOG alternative command constructs of the form P

alt Q, the idea is to produce an automaton that wires possible failure nodes (also named
recovery locations) of P to the start of Q. In Figure 6.4, a simplified sketch of this
procedure is shown. Grey nodes are used to represent the recovery locations like those of
assert commands.

Definition 6.6 Given two automata A1 and A2 and a set ρ of recovery locations, we
define recovery composition of A1 and A2, symbolically A1|ρ A2, in the following way: Let
A1 = 〈L1, l1i, l1f , Σ1, V1, E1〉ρ1 and A2 = 〈L2, l2i, l2f , Σ2, V2, E2〉ρ2 then A1|ρ A2 = 〈L1 ∪ L2,
l1i, l1f , Σ1 ∪ Σ2, V1 ∪ V2, E〉ρ2, where E = E1 ∪ E2 ∪ {(lr, 0, tt, ∅ , l2i), (l2f, 0, tt, ∅ , l1f)
such that lr∈ρ 1}.

When two automata A1 and A2 are composed with the recovery composition
operator, the recovery locations specified in ρ1 are instantiated with the automaton A2, in
the sense that the edges reaching recovery locations are wired to the initial location of A2.
Both final nodes of A1 and A2 are wired to a new final node (see Figure 6.4).

For simplicity we will omit the ρ symbol in 〈L, li, lf , Σ, V, E〉ρ when ρ=∅ .

Figure 6.3 – Automaton template for the sequential behavior component

A2A1

73

Operations associated memory
We further extend our model by associating a memory region with each

operation. This memory region is a set of variables that will be used to allow parameter
passing. These variables are associated with operations through a mapping that returns a
set of variables for each operation, defined as AssocMem:OP → 2VAR.

Backup automaton
In order to give semantics to alternative composition, constructs are needed to

backup data in order to code the notion of rollback. Rollback is coded using a backup-
restore discipline and will be detailed later in this document. We present the notion of
Backup automaton below:

l1

Figure 6.5 – Sketch of the Backup automaton

l2

v1’ := v1

…

vn’ := vn

(1) (P; assert C; Q; assert D; R) alt S

(2.1)

(2.2)

S

Figure 6.4 – Recovery composition operator procedure. (1) OBLOG
specification fragment. (2.1) representation of the first branch of the alt
command with two failure points. (2.2) representation of the second branch. (3)
automata representation of (1) with S being used to recover from (P; assert
C;Q; assert D; R)

P Q RDC

¬C ¬D

(3)

P Q R’

S

¬C ¬D

C D l2f

74

l

Figure 6.7 – Automaton for the skip behavior component

Definition 6.7 Given a vector of variables V, we define Backup automaton over V,
written Back(V), as being the automaton B = 〈{ l1, l2 }, l1, l2 , ∅ , V∪ V’, E〉 where V’ is a
set of fresh primed versions of the variables in V and E = {(l1, 0, tt, { v’ := v }, l2)} for
every v∈ V and v’∈ V’, the corresponding primed version of v.

Restore automaton
The dual notion of Backup automaton is the Restore automaton. This automaton

will be used later to restore the values of the variables to perform the rollback process.

Definition 6.8 Given a vector of variables V, we define the Restore automaton over V,
written Rest(V), as being the automaton R = 〈{ l1, l2 }, l1, l2 , ∅ , V∪ V’, E〉 where V’ is a
set of fresh primed versions of the variables in V and E = {(l1, 0, tt, { v := v’ }, l2)} for
every v∈ V and v’∈ V’, the corresponding primed version of v.

With the above notions we are now able to present the translation rules more
succinctly. We will start with the atomic components, skip, fail, assert, set, send, receive
and, the more elaborate components like iteration, sequence composition, alternative
composition, xor composition and or composition.

Skip
The skip component is composed of only one node. Optionally we could think of

coding skip without any nodes. This could cause some problems, for example, in the
alternative composition operator we would have to treat skip as a special case.

ÄskipÅ = 〈{l},l, l, ∅ , ∅〉

Fail
The presence of two extra nodes in the fail component is necessary in the context

of alternative composition. The coding could be done using only one node to introduce
the failure location but, as with skip, we would cause extra trouble in the rule for
alternative composition operator.

l1

Figure 6.6 – Sketch of the Restore automaton

l2

v1 := v1’
…

vn := vn’

l1

Figure 6.8 – Automaton for the fail behavior component

l3l2

75

ÄfailÅ = 〈{l1, l2, l3}, l1, l3, ∅ , E〉ρ where E = {(l1, 0, tt, ∅ , l3), (l1, 0, tt, ∅ , l2)}and
ρ={l2}.

Assert
The assert behavior component tests a condition C and then behaves as skip or as

fail depending on the truth value of C.

Äassert CÅ = 〈{l1, l2, l3}, l1, l3, ∅ , E〉ρ where E = {(l1, 0, C, ∅ , l3), (l1, 0, ¬C, ∅ , l2)},
V=Vars(C) and ρ={l2}.

Set

Äset x << exprÅ = 〈{l1,l2}, l1, l2, V, {(l1, 0, tt, {x:=expr}, l2)}〉 and V=Vars(set x <<
expr).

Send
The automaton for the send behavior component works as follows: It calls the

operation by synchronising on channel opcall, it then stores the values of the expressions
in the associated memory region of the operation and waits for the parameters to be read,
synchronising on the channel opparm.

Äsend exprlist in opÅ = 〈{l1,l2, l3}, l1, l3, {opcall!, opparm?}, V, E〉 , where vi ∈
AssocMem(op), expri ∈ exprlist and

• V = 4(Vars(expri) ∪ {vi});

l1

Figure 6.9 – Automaton for the assert behavior component

l3
C

l2

¬C

l1

Figure 6.10 – Automaton for the set behavior component

l2
x := expr

Figure 6.11 – Automaton for the send behavior component

l1 l2
opcall!,

v1 := expr1

…
vn := exprn

l3
opparm?

76

• E = 4({(l1, opcall!, tt, {vi := expri}, l2)}) ∪ {(l2, opparm?, tt, ∅ , l3)}.

Receive
The receive behavior component is the dual of the send component. The receive

component copies the values from the operation’s associated memory (ax) to the varlist
(vx) as below (where x∈ {1..n, recover}).

 Äreceive varlist in opÅ = 〈{l1,l2,l3,l4,l5}, l1, l4, {opcall?, opparm!}, V, E〉ρ, where vi ∈
varlist, ai ∈ AssocMem(op), ρ={l5}and:

• V = 4({vi}∪ {ai}) ∪ {vrecover, arecover};
• E = 4({(l1, opcall?, tt, {vi := ai}, l2)}) ∪ {(l2, opparm!, tt, ∅ , l3), (l3, 0, vrecover=ff,

∅ , l4), (l3, 0, vrecover=ff, ∅ , l5)}.

Coding the receive component involves a further peculiarity. A potential failure
may arise in case the component receives a failure notification from the operation. The
failure is reported in the extra parameter vrecover (recover value).

Iteration

Äwhile C do PÅ = 〈 L, l1, l2, Σ, V, E 〉 where ÄPÅ = A1 = 〈La, lai, laf, , Σa, Va, Ea〉 and

Figure 6.13 – Automaton template for the Iteration behavior component

l1 A1C

l2

¬C

Figure 6.12 – Automaton for the receive behavior component

l1 l2
opcall?,

v1 := a1

…
vn := an

Vrecover := arecover

l3
opparm!

l4

l5

Vrecover = ff

Vrecover = tt

77

L = {l1,l2}∪ La, Σ = Σa, V=Vars(C)∪ Va, E = {(l1, 0, C, ∅ , lai), (l1, 0, ¬C, ∅ , l2), (laf, 0,
tt, ∅ , l1)} ∪ Ea.

Sequential composition
The sequential composition behavior component may be obtained in

straightforward way as the sequential composition of two extended timed automata. If A1

= ÄPÅ and A2 = ÄQÅ then the template is the one of Figure 6.9.

ÄP;QÅ = ÄPÅ → ÄQÅ

Alternative composition
The alternative behavior component translation is somewhat elaborated. Let us

recall that the intended semantics of P alt Q is that “if P fails then Q should execute as
if P never executed”. In order to achieve this we must provide means for backing up and
restoring the data that will be used by Q.

ÄP alt QÅ = (Back(O(P)) → ÄPÅ) |ρ (Rest(O(P)) → ÄQÅ) where O(P) represents the
variables where the information produced P is stored as in Definition 3.3.

This semantic equation states that the operation of the alternative composition operator is
obtained as the recovery composition of the resulting automata of P and Q, backing up
the variables used by Q before executing P and restoring them in case of failure before
starting to execute Q.

Alternative or (XOR) composition
In the absence of failure, the xor behavior component behaves like a kind of

multiway CSP choice operator15. When one of the operands fails, say bhk, in xor(bh1,
…, bhk-1, bhk, bhk+1, …, bhn), the state is rolled back and the xor component behaves
like xor(bh1, …, bhk-1, bhk+1, …, bhn). When no behavior is left, the xor component
fails.

A schema like that of Figure 6.15 can emulate this. In the beginning, the set of
flags component1, …, componentn is reset. When a branch corresponding to a behavior
component is chosen, the flag componentk is set to true asserting that the behavior
component bhk has been selected. If bhk executes (represented by an automaton Ak) then
the control reaches location l3, otherwise is sent back to l2, but this time bhk is no longer

15In CSP the choice operator is binary. By a multiway choice operator we mean an n-ary (for n≥2) operator,
written in prefix notation as [](P1,…,Pn). The semantics of this operator is a generalization of the semantics
of the binary choice operator.

Figure 6.14 – Automaton template for the sequential behavior component

A2A1

78

Figure 6.15 – Automaton for the receive behavior component

l2

t1

An

¬component1

l3

l4

tn

A1

¬componentn

component1 ∧ … ∧ componentn

component1:= tt

componentn:= tt

l1

component1 := ff
…

componentn := ff
… …

R1

Rn
…

…

available because the guard ¬ componentk is false. After having failed to execute every
behavior component the xor component fails and reaches l4.

Each automaton Ak = 〈Lk, l1k, l2k, Σk, Vk, Ek〉 is obtained by appending the back up of data
modified by bhk with the automaton corresponding to bhk. Failure points of Ak should be
directed to another automaton Rk responsible for restoring the values modified within Ak.
Thus, Ak = Back(O(Bhk)) → ÄBhkÅ and Rk = Rest(O(Bhk)).

Äxor (op1, …, opn)Å = 〈L, l1, l3, Σ, V, E〉 ρ, where k∈ {1..n} and
• Ak = 〈Lak, laik, lafk, Σak, Vak, Eak〉 and Rk = 〈Lrk, lrik, lrfk, Σrk, Vrk, Erk〉 .
• L = {l1, l2, l3, l4} ∪ {t1, …, tn} ∪ La1 ∪ … ∪ Lan ∪ Lr1∪ … ∪ Lrn.
• Σ = Σa1 ∪ … ∪ Σan.
• V = {component1, …, componentn} ∪ Va1 ∪ … ∪ Van ∪ Vr1 ∪ … ∪ Vrn.
• E = E1 ∪ E2 where,

• E1 = {(l1, 0, tt, {componentk := ff}, l2), (l2, 0, ¬ componentk, ∅ , tk), (tk, 0,
tt, {componentk := tt}, laik), (lafk, 0, ∅ , ∅ , l3), (lrfk, 0, ∅ , ∅ , l2)« } for
k∈ {1..n}.

• E2 = {(lr, 0, tt, ∅ , lrik)} , for each location lr ∈ ρak.

Note that Σrk = ∅ .

Choice (OR) composition
In practice, the xor operator is often used as CSP choice operator. While

translating xor introduces a lot of unnecessary detail, the translation of a CSP-like or
operator is straightforward as shown below:

79

Äor (op1, …, opn)Å = 〈L, l1, l2, Σ, V, E〉 ρ, where k∈ {1..n} and
• Ak = 〈Lk, lik, lfk, Σk, Vk, Ek〉 ;
• L = {l1, l2} ∪ L1 ∪ … ∪ Ln;
• Σ = Σ1 ∪ … ∪ Σn;
• V = Va1 ∪ … ∪ Van;
• E = E1 ∪ … ∪ En ∪ {(l1, 0, tt, ∅ , lik), (lfk, 0, tt, ∅ , l2)}.

The Object level
Operations are composed to form objects. After initializing its attribute values, the

object waits for a message that will select an operation to run. When the operation
finishes, the object returns to a state where it is again ready to accept another message.
The resulting automaton can be seen as a choice composition of operations as illustrated
by the CSP process: offerOperations =def (op1 [] … [] opn); offerOperations where object
=def init; offerOperations.

Äobject oid is adec1, …, adecm op1, …, opnÅ = 〈L, l1, l3, Σ, V, E〉 , where for i ∈
{1..n}:

• ÄopiÅ = Ai = 〈Li, lii, lfi, , Σi, Vi, Ei〉 ;
• L = 4(Li) ∪ {l1, l2, l3};

l1

Figure 6.16 – Automaton template for the OR behavior component

A1

An

…
…

…
l2

l2

Figure 6.17 – Automaton template for the object composition operator

A1

An

…
…

…
l3

attr1 := i1
…

attrm := im

l1

80

• Σ = 4(Σi);
• V = 4(Vi);
• E = 4(Ei) ∪ {(l1, 0, tt, {attr1:=i1, …, attrm:=im}, l2)} ∪ 4({(l2, 0, tt, ∅ , lii), (lfi,

0, tt, ∅ , l3)}).

The system level
A community of objects forms a system. In OBLOG, objects work in parallel thus

easing the modeling task, i.e., an OBLOG specification can be seen as a network of ETAs
where each ETA corresponds to an object. In our setting, the network is constructed by
composing ETAs using the parallel composition operator between ETAs. A system S =
O1 … On will be coded as ÄO1 … OnÅ = ÄO1Å || … || ÄOnÅ.

6.3 Case study – verifying the Alternating Bit Protocol

In this section we explain the verification of properties in order that ensure the proper
operation of our specification of the ABP (Appendix F and Appendix G).

The specification of a protocol is essentially a specification of passive objects that
offer communication services. Because of this, and since we want to make assertions
about the correct progress of our system, we must cause the system progress by
interacting with it. In a more general framework, we must compose our system with an
environment and check that it exhibits a correct behavior upon environment stimuli.
Since we want to check progress properties, which are not specifiable in the UPPAAL
property language, we must cause the system evolution by calling objects operations.

Verification framework
Given a system specification Spec in UPPAAL we can only verify properties of

the form Spec ÷ ∀ ϕ or Spec ÷ ∃◊ϕ (see Definition 6.4). Taking into account that the
specification implicitly codes the initial state (formally init) by giving initial values to
every variable, every property specified with the UPPAAL temporal logic takes the form
Spec ÷ init ⇒ ∀ ϕ or Spec ÷ init ⇒ ∃◊ϕ , which apparently coincide with the
characterization of reachability properties.

The subtlety here is that, although UPPAAL allows for the verification of
reachability properties from the initial state, what we are really interested in, is specifying
reachability from states other than the system initial state. For example, we would like to
verify the property transmitI ⇒ ∀ ∃◊ receivei, where transmiti and receivei are formulas
characterizing states of successful transmission and reception, respectively and, ‘i’ ranges
over the domain of messages. We are not able to write such a formula in UPPAAL logic.
We can however, produce a special test automaton Tϕ to interact with the system as
introduced in Section 6.1. This automaton will test for a special condition like ¬ receivei

that will isolate the ‘bad states’ of the system. Then, we check that the test automaton
never reaches the ‘bad’ states, those where ¬ receivei (from transmiti) holds. This is not
sufficient for we must also ensure that the transmission and the reception are in fact
carried out. A straightforward way to do it is adding a special state named performed
such that Tϕ will reach this state only after having performed a transmit and a receive
operation, as shown if Figure 6.19.

What we will be doing is translating reachability properties into a combination of
UPPAAL reachability properties plus a test automaton. Constructing test automata

81

involves a certain degree of ingenuity. For that reason, we propose a systematic way of
doing this by using the template ElaborateTA(A,C) of Definition 6.9 where A is an
automaton corresponding to a program that will interact with our system specification
and C is a condition that defines a ‘bad’ situation of the system. When the test automaton
reaches the bad state this means that the system is also at some ‘bad’ state as depicted in
Figure 6.19. The safety property verification is attained through the verification of the
property ∀ ¬ (Tϕ at bad) together with the assurance of system progress by checking
∃◊ (Tϕ at performed).

Definition 6.9 Given an automaton A and a Boolean condition C we define the Test
Automaton for A with condition C as ElaborateTA(A, C) ≡ 〈L, l1, l2, Σ, V, E〉 where

• A = 〈La, lai, laf, Σa, Va, Ea〉 ;
• L = {lp, lb, lf }∪ La;
• Σ = Σa;
• V = Vars(C)∪ Va;
• E = {(laf, 0, tt, ∅ , lp), (lp, 0, C, ∅ , lb), (lp, 0, tt, ∅ , lf)} ∪ Ea.

System initial state System final states

Transmit
accomplished

Receive
accomplished

Test
automaton
operation

System
operation

Distinguished
bad states:
¬

Figure 6.19 – Interaction of a test automaton with a system
specification. The circles represent the state space reachable

by the system and by the test automaton.

Transmit and Receive
performed

Figure 6.18 – Automaton template for ElaborateTA. The edge lp stands for performed, lb
stands for bad and lf for final.

lp
A

C

lf

lb

82

After calling object operations we will need to test the output variables and reason about
operation failure. Output variables will be referenced in the usual fashion and the failure
of an operation call will make a special variable object.operation.fail to be set to true or
to false if the operation call succeeded. Object attributes are referenced as
object.attribute.

Operation of a single component – the acknowledge line
Our ‘acknowledge line’ is a very simple component. We propose checking the

following properties:
1. “The line may loose an acknowledge signal”
2. “The line correctly delivers the acknowledge signal in the absence of errors”

For the first property we can check whether a ‘ackline.getAcknowledge’ operation call
fails after having sent an acknowledge signal with ‘ackline.sendAcknowledge’. Using the
UPPAAL tool we check that in the program below:

Tϕ ≡ ElaborateTA(Äcall ackline.sendAcknowledge(0); call
ackline.getAcknowledge(ack)Å, false)

This property holds:

Tϕ||ABPSpec ÷ ∃◊ ((Tϕ at performed) ∧ (ackline.getAcknowledge.fail=true))

There is no need to test for bad states because we are interested in knowing if the
program denoted by Tϕ executes with success. The second property asserts something
about the good operation of the line. For that, we can call ‘ackline.getAcknowledge’ after
‘ackline.sendAcknowledge’ and check that no failure occurred and that the right
acknowledge signal was returned. We want to show that in our system:

ABPSpec ÷ (sendAcknowledgei ∧ ¬ (ackLine.lStatus=Error)) ⇒ ∀ ∃◊ getAcknowledgei

In UPPAAL we must do it as:

1) Tϕ ≡ ElaborateTA(Äcall ackline.sendAcknowledge(ack); call
ackline.getAcknowledge(ack2)Å, ¬ (ack=ack2) ∧ ¬ (ackline.lStatus=Error))

2) Tϕ||ABPSpec ÷ ∃◊ (Tϕ at performed)

3) Tϕ||ABPSpec ÷ ∀ ¬ (Tϕ at bad)

In UPPAAL syntax we have:
E<>(call_ackline_send_get.call_performed))

A[](not (call_ackline_send_get.call_bad))

If these properties hold then we know that: The test automaton never reaches a bad state,
i.e., a state where there no error occurred in the transmission and ¬ (ack=ack2). To
prevent this property to hold in cases where there is no progress, the liveness property 2)

83

above must also hold ensuring that the test automaton reaches the states precisely before
the ‘bad’ states (this is, the automaton gets to performed) and therefore also tests the
condition.

A small subtlety persists however. The program was written in some first order
fashion, using the ‘ack’ variable to mean ‘for any acknowledge value’. In practice the
variable is be instantiated to ‘0’ or to ‘1’ before calling the ‘ackline.sendAcknowledge’
operation. The variable ack2, is an output variable and will be instantiated by the program
(‘ack’ is an input variable).

Global operation of the system
Another class of properties refers to the joint operation of the components. We

will now concentrate on the send-receive properties and abstract away from the details of
individual components.

Let us first look at two properties on the unreliability of our protocol:
1. “A sent message can be lost and never received”
2. “A sent message is always received if there is no error in the transmission

line”
Both properties can be verified using the same program that sends a message through the
‘sender.accept’ operation and then tries to receive it through the ‘receiver.deliver’
operation. The ‘receiver.getStatus’ operation will allow the failure report of the receiver.
The symbols written in capital letters like SOMETHING and SAMEMESSAGE are
enumerations that can be found in Appendix B.

Tϕ ≡ ElaborateTA(Äcall sender.accept(SOMETHING); call receiver.deliver(m); call
receiver.getstatus(s)Å, false)

For the first property we must verify that:

Tϕ||ABPSpec ÷ ∃◊ ((Tϕ at performed) ∧ (s=SAMEMESSAGE))

In order to make our specification simpler we abstracted away the message contents. For
this reason, the message data type can only have two values: ‘NIL’ and ‘SOMETHING’.
After calling ‘receiver.deliver’ we must get ‘SOMETHING’ if the transmission line
worked correctly. Furthemore, the ‘receiver.getStatus’ operation will report that this
message is new. The property can by written as:

(sendi ∧ ¬ (transline.lStatus=Error)) ⇒ ∀ ∃◊ deliveri

In UPPAAL we must work around as:

1) Tϕ ≡ ElaborateTA(Äcall sender.accept(SOMETHING); call
receiver.deliver(m); call receiver.getstatus(s) Å, ¬ (s=NEWMESSAGE) ∧

¬ (transline.lStatus=Error))
2) Tϕ||ABPSpec ÷ ∃◊ (Tϕ at performed)

3) Tϕ||ABPSpec ÷ ∀ ¬ (Tϕ at bad)

84

To complete the sequence send-receive-acknowledge we are only missing the
following property: “A received message is acknowledged to the sender if there is no
error in the acknowledge line”. For that, we must add to our program a ‘send.getStatus’
operation call and check if the sent message was acknowledged. The operation call
‘receiver.getStatus’ is irrelevant for this property because the call to ‘receiver.deliver’
causes the acknowledge signal to be sent, so we will take it away. The property is verified
as before by constructing the test automaton and verifying two properties as follows:

1) Tϕ ≡ ElaborateTA(Äcall sender.accept(SOMETHING); call
receiver.deliver(m); sender.getstatus(s)Å, ¬ (s=NOACKNOWLEDGE) ∧

¬ (ackline.lStatus=Error))
2) Tϕ||ABPSpec ÷ ∃◊ (Tϕ at performed)

3) Tϕ||ABPSpec ÷ ∀ ¬ (Tϕ at bad)

Putting together the second and the third properties we have ensured that our protocol can
correctly deliver messages in the absence of errors.

Conclusion

With this work, the author hopes to have contributed towards the verification of software
systems, in particular for the verification of OBLOG specifications. Despite all the
limitations of currently available tools it is hopped that, taking into account the efforts
being put in this area, in the next few years we will witness a systematic employment of
these tools in a more pragmatic way. Only producing software will not suffice. As
customers get educated they will request for quality certified software. Thus, the
evolution of software engineering methodologies and production tools in the direction of
correctness appears as a natural route.

Use of tools and techniques
The tools used in this work are Model-Checkers, which theoretically operate

under the push-button principle. In practice however, it does not work so simply: On one
hand, the complexity of real systems is too high for current Model-Checkers, asking for
the employment of additional techniques like compositional verification. On the other
hand, the gap between the problem domain and the specification languages is too big, still
requiring the user to be an expert in formal specification and having a deep understanding
of the problem domain. This situation can be greatly minimized by embedding
verification tools into software development environments like OBLOG and providing an
intuitive interface to manage compositional verification. The translation frameworks
presented in chapters 5 and 6 from domain specific specification languages into low level
specification languages can be used to fill the above-mentioned gap between domain
languages and specification languages.

Specification of properties
The specification of properties is still done using Temporal Logic and Behavioral

Specifications. While Temporal Logic is a natural way of specifying properties for the
computer scientist, it is also a technicality that most users would like to see adapted to
their problem domain. This is possible through the predefinition of macros over temporal
logic operators for the most common properties. In turn, Behavioral Specifications are a
very powerful means of specifying safety properties. However, it suffers from the
drawback that the specification must be written in the same vocabulary as that of the
implementation, which is limiting when the specification is still too abstract. It is a fact
that specifications are also evolving themselves, being a subject of the spiral development
process. In this context, specifications could be given initially in a form of Temporal
Logic that could be refined until we have an acceptable specification of the system. The
refinement can consist in nesting Temporal Logic formulas by Behavioral Specifications.

Model-Checking technology
Many theoretical developments concerned with the optimizations of state-space

generation, representation and exploration have been pushing Model-Checking
technologies from academia to industry. One of the major sources of reduction of state
space-size is a technique called abstraction that relies in the synthesis of a smaller
abstract system from the initial one. It has been mentioned that the main obstacle for

86

application of this technique is that a way of automatically computing abstractions has
not yet emerged. The author believes that the solution resides in the development of a
specialized type analysis algorithm that outputs an abstraction of a program given a
program and a formula. An attempt to treat abstraction in this way is given in [Jackson &
al. 94]. Abstraction was informally used in the specification of the ABP to abstract away
from the contents of messages.

Yet another possible enhancement that can influence the translation of object-
oriented specifications is the development of more flexible parallel composition
operators. In our proposals for translation of OBLOG specifications, the community of
objects was coded using parallel composition of processes. A deeper insight into the
nature of concurrency in an object-oriented system will reveal differences to other
concurrent systems. For example, in a hardware system, all components run in parallel
and sometimes synchronize. In a somewhat different way, the flow of object-oriented can
be seen as a sequential chain of delegations (modeled by synchronous calls) where
concurrency appears as new threads of delegations. In most object-oriented systems there
is a very small number of active objects, being the majority passive objects. Putting apart
intra-method concurrency we can say that the system exhibits a behavior that can be
emulated by a system with as many processes as the number of active objects. We can
optimize the state-space generation by skipping a large number of meaningless transition
interleavings by using composition operators that regulate the degree of interference or
parallelism of the object in contact with the system. In [Krimm & Mounier 97] a parallel
composition operator called semi-composition is presented and used to allow on-the-fly
generation on state-spaces from LOTOS specifications. In a paper by Karisto [Karisto 97]
the idea of a more flexible parallel composition operator is explored as way to handle
data variables in LTSs.

The OBLOG language
It can be pointed out that the subset of the language is too narrow and is not

representative of the full OBLOG specification language. The approach taken in the
development of this work was not to advance a general theory to convert all OBLOG
specifications into another specification language. There are two main obstacles: The
first, is the absence of a formal semantics of the language. The second is that many
concepts of OBLOG can not be coded into the languages offered by the verification tools.
For example, the dynamic creation of objects has no apparent coding in the subset of
LOTOS supported by CADP. Some important object-oriented concepts like inheritance
have been left out. This dissertation intends to evaluate the capabilities of automatic
verification tools and to advance a first procedure for the verification of OBLOG
specifications.

Future work will consist in broadening the subset of specifications analyzable
automatically by systematically introducing codings for new concepts like, for example,
Exception Handling and Inheritance. Alternative composition should also be reviewed,
its semantics involves the rollback of the whole state of system and in our approach,
rollbacks were carried out only at the object level because coding the roll-back of the
whole system seemed too complex. It is expected to reach the decidability barrier with
the introduction of dynamic creation of objects. At this point, the integration of Model-
Checkers with Automated Theorem Provers must be considered.

87

As a last commentary, if we had a formal definition of the operational semantics
of the language we could have proved that our translation is correct by proving that the
following diagram commutes.

CADP and the LOTOS translation
The CADP toolset is very flexible, allowing the specifications to be given directly

in LTSs. One the other hand, LOTOS is a functional language such that, some concepts
can be coded in a straightforward way (e.g. method invocation) and others reveal to be
very difficult (e.g. roll-back). Although there is room for many optimizations, there will
always be unnecessary transition overhead as a result of the use of LOTOS as an
intermediate language. Given this, it appears that the development of an operational
semantics for OBLOG specifications allowing a translation directly to LTSs is a good
direction to pursue.

Another problem is the impossibility of stating properties about the internal state
of objects. This can be very useful for debug purposes and for the specification of some
reachability properties

In a case-study related to the LOTOS specification of the Airbus Flight Warning
Computer the problem of the ‘[〉 ’ disabling operator which has an interrupt-and-terminate
semantics versus interrupt-and-resume was also outlined. The solution followed was an
ad-hoc treatment expressing this behavior with a different language. Please note that we
also had a problem in using this operator as pointed in Chapter 5.

UPPAAL and the Communicating Automata translation
Although UPPAAL is a tool for analyzing timed systems, it also allows the

modeling of systems without clock variables. This tool is equipped with a high-
performance Model-Checking procedure based on reachability analysis. The performance
comes at a price; the specification of some classes of properties can be quite tricky –
Since we only have a subset of TCTL logic available. The specification of complex
properties must be given has a combination of a simple formula plus a test automaton.
How this can be done automatically is not obvious. In a recent paper [Aceto & al. 98]
proposed a procedure for generation of test automata from a version of the timed Mu-
Calculus. The impact of his contribution in this work was not analyzed in detail at the
time of writing.

OBLOG
SPECIFICATIONS

OPERATIONAL
SEMANTICS

LOTOS
SPECIFICATIONS

88

The language offered by UPPAAL is based on communicating automata with
shared memory. This allows the specification of reachability properties over the attributes
of objects but increases the complexity of message passing because the parameters of
operations can only be passed through synchronization on a shared memory area.

Comparing the two approaches
We have presented a translation strategy for two different languages. One of them

is a functional process algebraic language whereas the other is an automata-based shared
memory like language with synchronization. In trying to establish a comparative analysis
of the suitability of them to code OBLOG specifications it must be remarked that these
languages are different in nature. Some aspects of object-oriented technology are better
coded using a functional style while other could benefit from a shared memory style.
UPPAAL provides a lower level language than LOTOS. Both languages offer
synchronization but in different ways: LOTOS synchronization uses a multiway
rendezvous mechanism and while UPPAAL follows the thread of process algebraic
languages with symmetric synchronization. The net effect of this is that, for example,
coding broadcast is straightforward in LOTOS and elaborate in UPPAAL. Yet another
aspect of this difference has to do with the verification of components when detached
from the system. The difference is motivated by the semantics of the two languages: A
LOTOS specification is always able to perform actions on channels unless we force its
synchronization with another process. In UPPAAL an action on a channel can only be
taken if there is a process offering the symmetric action. If we are interested in verifying
the progress of a LOTOS process, the semantics of the language automatically induces an
environment process which always agrees on every observable action that the first one is
trying to take. In turn, an UPPAAL process with actions only progresses if we provide
the specification of an environment with symmetric actions.

Concerning data-types, CADP presented a very powerful setting for the
specification of abstract data-types with the language ACT-ONE. UPPAAL offered only
integers and enumerated types

The verification of properties using CADP sometimes took times ranging form 30
seconds to 15 minutes approximately, while UPPAAL took times ranging from 10
seconds to 3 or 4 minutes at most. The explanation for this difference is related both with
the technology of the tools and with the coding of OBLOG specifications into each one.
CADP is more flexible and offers more powerful specification logic than UPPAAL, so its
natural to think that CADP is not as performing as UPPAAL. Please note that UPPAAL
documentation explicitly refers that expressiveness was sacrificed for speed. On the other
hand there are aspects related to the target language: The LOTOS language is a higher
level language than the language of Communicating Automata. Thus, when translating to
Communicating Automata we are in some sense ‘nearer’ to LTSs than when translating
to LOTOS. Furthermore, because of the functional qualities of LOTOS we had to code
the state of objects as a process running in parallel with the object body, which seems to
have introduced a lot of overhead. Yet another aspect is the coding of failure and
rollback, this feature is absent is both languages and had to be emulated by means of
backup and restores. This emulation is introducing an overhead that was not quantified in
this work. A deeper insight should be carried out into this subject since it can confirm the
necessity of producing LTSs directly form OBLOG. Although Communicating model of

89

flat shared memory model is not the best way to code object states, it seems to have
worked better in our setting.

References
[Aceto & al. 98]

Luca Aceto, Augusto Bergueno and Kim G. Larsen, “Model Checking via Reachability Testing
for Timed Automata.”, In Proceedings of the 4th International Workshop on Tools and algorithms
for the construction and Analysis of Systems. Gulbenkian Foundation, Lisbon , Portugal, 31,
March, 2nd April, 1996. LNCS 1384, pages 263-280, Bernhard Steffen (Ed.).

[Aceto & al. 98b]
Luca Aceto, Patricia Bouyer, Augusto Burgueño and Kim G. Larsen,“The Power of Reachability
Testing for Timed Automata”, In Proceedings of Foundations of Software Technology and
Theoretical Computer Science, December 17--19, 1998, Chennai, India.

[Andrade & Sernadas 96]
Luis Filipe A. Andrade and A. Sernadas, “Banking and Management Information System
Automation”, In proceedings of the 13th world congress of the International Federation of
Automatic Control, San Francisco, USA, 1996, Volume L., pp. 113-136. Elsevier Sience.

[Andrade 99]
Luis Filipe A. Andrade, “An Object-Oriented and Transformational Approach for Software
Development”, Ph.D. Thesis, in preparation.

[Arnold 94]
André Arnold, “Finite Transition Systems”, Prentice-Hall International Series in Computer
Science, 1994.

[Bartlett & al. 69]
K. A. Bartlett, R. A. Scantlebury and P. T. Wilkinson, “A Note of Reliable Full-Duplex
Transmission over Half-Duplex Links”, Communications of ACM 12(5) pp. 260-261, 1969.

[Bengtsson & al. 95]
Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson and Wang Yi. “UPPAAL - a
Tool Suite for Automatic Verification of Real-Time Systems.”, In Proceedings of the 4th
DIMACS Workshop on Verification and Control of Hybrid systems, New Brunswick, New Jersey,
22-24 October, 1995.

[Bengtsson & al. 98]
Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, Wang Yi and Carsten Weise,
“New Generation of UPPAAL.”, In proceedings of the International Workshop on Software Tools
for Technology Transfer. Aalborg, Denmark, 12 - 13 July, 1996.

[Bjørner & al. 96]
Nikolaj Bjørner, Anca Browne, Eddi Chang, Michael Colón, Arjun Kapur,, Zhoar Manna, Henny
B. Sipma and Tomás E. Uribe, “STeP – The Stanford Temporal Prover”, Computer Science
Department, Stanford University, Stanford California 94305 USA, 1996.

 [Brand & Joyner 78]
D. Brand and W. H. Joyner Jr., “Verification of Protocols Using Symbolic Execution”, Computer
Networks, 2, pg. 351-360, 1978.

[Bryant 86]
R. E. Bryant, “Graph Based Algorithms for Boolean Function Manipulation”, IEEE Transactions
on Computers, C-5, pp. 677-691, 1986.

91

[Burch & al. 90]
J. R. Burch, E . M. Clarke, K. L. McMillan, D. L. Dill and L. J. Hwang, “Symbolic Model
Checking: 1020 Sates and Beyond.”, Logic in Computer Science, 1990.

[Chandy & Misra 88]
K. Mani Chandy and Jayadev Misra, “Parallel Program Design A foundation”, Addison-
Wesley 1988.

[Clarke & Emerson 81]
E. M. Clarke and E. A Emerson, “Characterizing properties of Parallel programs as Fixed-
Points”, 7th Colloquium on Automata Languages and Programming. Vol. 85 of LNCS, Springer-
Verlag, 1981.

[Clarke & Emerson 82]
E. M. Clarke and E. A Emerson, “Design and Synthesis of Synchronization Skeletons Using
branching Time Temporal Logic”, Logics of Programs Workshop Proceedings, Yorktown
Heights, NY, USA. pg. 52-71, Vol. 131 of LNCS, Springer-Verlag, 1982.

[Clarke & al. 86]
E. M. Clarke, E. A. Emerson, A. P. Sistla, “Automatic Verification of Finite-State Concurrent
Systems Using Temporal Logic Specifications”, ACM Transactions on Programming Languages
and Systems, pg. 244-263, Vol. 8, No. 2, April 1986.

[Clarke & al. 92]
E. M. Clarke, J. R. Burch, O. Grumberg, D. E. Long and K. L. McMillan, “Automatic Verification
of Sequential Circuit Designs”, Phil. Trans. R. Soc. London, 339, 105-120, 1992.

[Clarke & al. 94]
E. M. Clarke, O. Grumberg and D. Long, “Verification Tools for Finite-State Concurrent
Systems”, In “A decade of Concurrency: Reflections and Perspectives”, volume 803 of LNCS,
Springer-Verlag 1994.

[Clarke & al. 94b]
E. M. Clarke, O. Grumberg and D. Long, “Model Checking and Abstraction”, In Proceedings of
Programming Languages (POPL), 1994.

 [Cleaveland 90]
Rance Cleaveland, “Tableau-Based Model Checking in the Propositional Mu-Calculus”, Acta
Informatica 27, pp. 725-747, Springer-Verlag, 1990

[Courcoubetis & al. 92]
C. Courcoubetis, M. Vardi, P. Wolper and M. Yannakakis, “Memory-Efficient algorithms for the
verification of Temporal Properties”, Formal Methods in System Design 1-275-288, 1992.

[Daniele & al. 99]
Marco Daniele, Fausto Giunchiglia and Moshe Y. Vardi, “Improved Automata Generation for
Linear Temporal Logic”, In CAV’99 Conference on Automated Verification, vol. 1633 of LNCS,
Springer-Verlag 1999.

[De Nicola & Vaandrager 90]
Rocco De Niccola and Fritz W. Vaandrager, “Action versus State Based Logics for Transition
Systems”, In proceedings Ecole de Printemps on Semantics of Concurrency, vol. 469 of LNCS,
pp. 407-419. Springer Verlag, 1990.

92

[Dill 96]
David. L. Dill, “The Murϕ verification system”, In Computer Aided Verification. 8th International
Conference, pp. 390-3, 1996.

[Dong & al. 99]
Yifei Dong, Xioqun Du, Y. S. Ramakrishna, C. R. Ramakrisnan, I. V. Ramakrisnan, Scott A.
Smolka, Oleg Sokolsky, Eugene W. Stark and David S. Warren, “Fighting Livelock in the i-
Protocol: A Comparative Study of Verification Tools”, In Proceeding of the 5th International
conference on Tools and algorithms for the Construction and Analysis of Systems, Amsterdam,
Holland 1999, LNCS 1579, Springer-Verlag.

[Ehrig & Mahr 85]
H. Ehrig and B. Mahr, “Fundamentals of algebraic Specifications, Volume I”, Springer-Verlag,
1985.

[Emerson 94]
E. allen Emerson, “Temporal and Modal Logic”, Handbook of Theoretical Computer Science,
Vol. B, Formal Methods and Semantics, Chapter 16, Elsevier Science publishers, MIT Press,
1994.

[ESA 96]
European Space Agency, “ARIANE 5 Flight 501 Failure”, Report by the Inquiry Board,
http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html, Paris, 1996 July 19.

[Fagin & al. 95]
Ronald Fagin, Joseph Y. Halpern, Yoram Moses, Moshe Y. Vardi, “Reasoning About
Knowledge”, MIT Press, 1995.

[Fernandez 88]
Jean-Claude Fernandez, “Aldébaran: Users Manual”, Technical Report Spectre C14, LGI-IMAG
Grenoble, 1988.

[Fernandez 89]
Jean-Claude Fernandez, “Aldébaran: A tool for verification of communicating processes”,
Technical Report Spectre C14, LGI-IMAG Grenoble, 1989.

[Fernandez 90]
Jean-Claude Fernandez and Laurent Mounier, “Verifying Bisimulations ‘On the Fly’ ”,
Proceedings of the 3rd International Conference on Formal Description Techniques, FORTE’90
Madrid, Spain, pp. 91-105, NH, Nov. 1990.

[Fisher & Ladner 77]
M. J. Fisher and R.E. Ladner, “Propositional Modal Logic of Programs”, Proceedings of 9th ACM
annual symp. on Theory of Computing. pp. 286-297, 1977.

[Fisher & Ladner 79]
M. J. Fisher and R.E. Ladner, “Propositional Modal Logic of regular Programs”, J. Comput.
System Science, 18 (2), pp. 194-211, 1979.

[Garavel 89]
Hubert Garavel, “Compilation et Vérification des programmes LOTOS”, Thèse de Dotorat,
Université Joseph Fourier (Grenoble), November 1989.

93

[Garavel 98]
Hubert Gravel, “OPEN/CAESAR: An Open Software Architecture for Verification Simulation
and Testing”, In Proceeding of the 4th International conference on Tools and algorithms for the
Construction and Analysis of Systems, Lisbon, Portugal 1998, LNCS 1384, Springer-Verlag.

[Gerth & al. 94]
R. Gerth, D. Peled, M. Y. Vardi, P. Wolper, “Simple On-the-fly Automatic Verification of Linear
Temporal Logic”, In Proceedings of PSTV’95, Protocol specification testing and verification,
Chapmann & Hall, Warsaw Poland, 1995.

[Hailpern & Nguyen 87]
Brent Hailpern and V. Nguyen, “A model for object-based inheritance”, In Bruce Shriver and
Peter Wegner, editors, Research Directions in Object-Oriented Programming, pages 147-164.
Computer Systems Series. MIT Press, 1987.

[Havelund & al. 99]
Klaus Havelund, Kim G. Larsen and Arne Skou, “Formal Verification of a Power Controller
Using the Real-Time Model Checker UPPAAL”, Accepted for presentation at 5th International
AMAST Workshop on Real-Time and Probabilistic Systems.

[Heitmeyer & Bharadwaj 97]
Constance Heitmeyer and Ramesh Bharadwaj, “Model Checking Complete Requirements
Specifications Using Abstraction”, Naval Research Laboratory, Washington , DC 20375-5320,
USA, November 10, 1997.

[Henziger & al. 92]
T. A. Henzinger, Z. Nicollin, J. Sifakis and S. Yovine, “Symbolic Model Checking for Real-Time
Systems”, In Logic in Computer Science, 1992.

[Henzinger & al. 95]
T. A. Henzinger, P. H. Ho and H. Wong Toi, “HyTech: The next generation”, In proc. of the 16th

Real-Time Systems Symposium, RTSS’95. IEEE Computer Society press, 1995.

[Hoare 85]
Charles A. R Hoare, “Communicating Sequential Processes.”, Prentice-Hall 1985.

[Holzmann 82]
Gerard J. Holzmann, “A Theory for Protocol Validation”, IEEE Transactions on Computers,
C31(8), pp. 730-738, August 1982.

[Holzmann 91]
Gerard J. Holzmann, “Design and Validation of Computer Protocols”, Prentice-Hall, 1991.

[Holzmann & Peled 96]
Gerard J. Holzmann and D. Peled, “The state of SPIN”, In Computer Aided Verification
(CAV’96), Vol. 1102 of LNCS, Springer-Verlag, July 1996.

[Hu & Dill 93]
Alan J. Hu and David L. Dill, “Reducing BDD Size by Exploiting Functional Dependencies,'' 30th
ACM/IEEE Design Automation Conference, 1993, pp. 266-271.

[Hu & al. 93]
Alan J. Hu, David L. Dill, Andreas J. Drexler, and C. Han Yang, “Higher-Level Specification and
Verification with BDDs,'', Computer Aided Verification: Fourth International Workshop, 1992,
reprinted in Lecture Notes in Computer Science Vol. 663, Springer-Verlag, 1993.

94

[Hu 95]
Alan J. Hu, “Techniques for Efficient Formal Verification Using Binary Decision Diagrams”,
Ph.D. Thesis, Stanford University, December 1995.

[Hughes & Cresswell 96]
G. E. Hughes and M. J. Cresswell, “A new introduction to Modal Logic”, Routledge and T.J.
Press, 1996.

[ISO 88]
International Organization for Standardizatio, “ISO/IEC. LOTOS – A Formal Description
Technique Based on the Temporal Ordering of Observational Behavior. International Standard
8807”, – Information Processing Systems – Open Systems Interconnection, Genève, September
1998.

[ITU-T 94]
International Telecommunication Union, “Specification and Description Language (SDL)”, Z.100
norm, ITU-T, June 1994.

[Jackson & al. 94]
Daniel Jackson, Somesh Jha and Craig A. Damon, “Faster Model Checking of Software
Specifications by Eliminating Isomorphs”, In Proceedings of Programming Languages (POPL),
1994.

[Jungclaus & al 91]
R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas, “Object-Oriented Specification of
Information Systems: The TROLL Language”, Informatik-Bericht 94-03, TU Braunschweig,
1994.

[Karisto 97]
Konsta Karsisto, “A More Flexible Parallel Composition Operator”, Proceedings of the Fifth
Symposium on Programming Languages and Software Tools, Jyväskylä, Finland, June 1997,
University of Helsinki, Department of Computer Science, Series of Publications C, Report C-
1997-37, pp. 13-23.

[Kozen 83]
D. Kozen, “Results on the propositional Mu-Calculus”, Theoretical Computer Science 27, pg.
333-354, North-Holland, 1983.

[Kokkarinen 98]
Ilka Kokkarinen, “A Verification-Oriented Theory of Data in Labeled Transition Systems.”,
Dr.Tech. Thesis, Tampere University of Technology, Publications 234, Tampere 1998.

[Krimm & Mounier 97]
Jean-Pierre Krimm and Laurent Mounier, “Compositional State Space Generation from Lotos
Programs”, Technical Report RR97-01, VERIMAG, January 1997.

[Kristoffersen & Petterson 95]
Kåre J. Kristoffersen and Paul Petterson, “Modelling and Analysis of a Steam Generator using
UPPAAL”, In Proceedings of the 7th Nordic Workshop on Programming Theory, 1-3, November
1995.

[Kurshan 94]
Robert P. Kurshan, “Computer-Aided Verification of Coordinating Processes – The Automata
Theoretic Approach”, Princeton Series in Computer Science, 1994.

95

[Larsen & al. 95]
Kim G. Larsen, Paul Pettersson and Wang Yi, “Diagnostic Model-Checking for Real-Time
Systems.” , In Proceedings of the 4th DIMACS Workshop on Verification and Control of Hybrid
Systems, New Brunswick, New Jersey, 22-24 October, 1995.

[Larsen & al. 95b]
Kim G. Larsen, Paul Pettersson and Wang Yi, “Compositional and Symbolic Model-Checking of
Real-Time Systems.”, In Proceedings of the 16th IEEE Real-Time Systems Symposium, Pisa,
Italy, 5-7 December, 1995.

[Larsen & al. 97]
Kim G. Larsen, Paul Pettersson and Wang Yi, “UPPAAL in a Nutshell”, In Springer International
Journal of Software Tools for Technology Transfer, 1(1-2), December 1997, pages 134-152.

[Manna & Pnueli 92]
Zohar Manna and Amir Pnueli, “The Temporal Logic of Reactive and Concurrent Systems
(specification)”, Springer-Verlag, 1992.

[Manna & Pnueli 95]
Zohar Manna and Amir Pnueli, “Temporal Verification of Reactive (safety)”, Springer-Verlag,
1995.

[McMillan 92]
Keneth L. McMillan, “The SMV system”, Carnegie-Mellon University, February 2, 1992.

[McMillan 93]
Keneth L. McMillan, “Symbolic Model Checking”, Kluwer Academic Publishers, 1993.

[Milner 89]
Robin Milner, “Communication and Concurrency”, Prentice-Hall International Series in
Computer Science, 1989.

[Mateescu 98]
Radu Mateescu, “Vérification des Propriétes temporelles des programmes parallèles”, Ph.D.
Thesis, Institut National Polytechnique de Grenoble, April 10, 1998.

[Moreira 94]
Ana M. D. Moreira, “Rigorous Object-Oriented Analysis”, Ph.D. Thesis. Department of
Computing Science and Mathematics, University of Stirling, November 1994.

[NASA 97]
National Aeronautics and Space Administration, Office of Safety and Mission Assurance, “Formal
Methods Specification and Analysis Guidebook for the Verification of Software and Computer
Systems Vol. II”, NASA-GB-001-97, May 1997.

[Olivero & Yovine 93]
Antonio Olivero and Sergio Yovine, “Kronos: A toolset for verifying real-time systems. User’s
guide and reference manual”, VERIMAG, Grenoble, France, 1993.

[Peled 93]
Doron Peled, “all from one and one for all: On model checking using representatives”, In 5th

International Conference on Computer-Aided Verification, Elounda, Greece, Vol. 697 of LNCS,
pp. 164-177, 1993.

96

[Peled 98]
Doron Peled, “Ten Years of Partial Order Reduction”, In Proceeding of the 4th International
conference on Tools and algorithms for the Construction and Analysis of Systems, Lisbon,
Portugal 1998, Vol. 1384 of LNCS, Springer-Verlag.

[Pnueli 77]
Amir Pnueli, “The Temporal Logic of Programs”, Proc. 18th IEEE Annual Symposium on
Foundations of Computer Science, pg. 46-57, 1977.

[Pressman 97]
R. S. Pressman, “Software Engineering – A practitioner’s approach, 4th edition”, McGraw-Hill
International Editions, 1997.

[Razouk & Estrin 80]
B. Razouk and G. Estrin, “Modeling and Verification of Communication Protocols in SARA : the
X21 interface”, IEEE transactions on Computers, C-29 (12), pg. 1038-1052, 1980.

[Savola 95]
Reijo Savola, “A State Space Generation Tool for LOTOS Specifications.”, VTT Publications
241, Technical Research Centre of Finland (VTT), Espoo, Finland 1995, 107 p.

[Springintveld & al. 97]
Jan Springintveld, Frits Vaandrager and Pedro R. D’Argenio, “Testing Timed Automata”,
Technical Report CSI-R9712, Computing Science Institute, University of Nijmegen, August 1997.
also available as CTIT Technical Report 97-17, Centre for Telematics and Information
Technology, University of Twente, September 1997.

[Sernadas & Ehrich 91]
Amilcar Sernandas and H.-D. Ehrich,, “What is an Object, After All?”, Object Oriented
Databases: Analysis, Design and Construction. R. Meersman, W. Kent, S. Koshla, eds. North-
Holland, Amsterdam 1991.

[Stevens & Stirling 98]
Pedrita Stevens and Colin Stirling, “Practical Model Checking Using Games”, In Proceeding of
the 4th International conference on Tools and algorithms for the Construction and Analysis of
Systems, Lisbon, Portugal 1998, Vol. 1384 of LNCS, Springer-Verlag.

[Stirling & Walker 91]
Colin Stirling and David Walker, “Local Model Checking in the modal mu-calculus”, Theoretical
Computer Science 89, pp. 161-177, Elsevier 1991.

[Thomas 94]
Wolfgang Thomas, “Automata on Infinite Objects”, Handbook of Theoretical Computer Science,
Vol. B, Formal Methods and Semantics, Chapter 4, Elsevier Science Publishers, MIT Press, 1994.

[Valmari 88]
Antti Valmari, “State Space Generation: Efficiency and Practicality.”, PhD Thesis, Tampere
University of Technology Publications 55, 1988, 169p.

[Valmari & Tienari 95]
Antti Valmari & Martti Tienari, “Compositional Failure-Based Semantic Models for Basic
LOTOS.”, Formal Aspects of Computing (1995) 7: 440-468. also Tampere University of
Technology, Software Systems Laboratory, Report 16, Tampere, Finland, July 1993, 25 p.

97

[Valmari 96]
Antti Valmari, “Compositionality in State Space Verification Methods.”, Invited talk, Application
and Theory of Petri Nets 1996, 17th International Conference, Osaka, Japan, June 1996,
Proceedings, Vol. 1091 of LNCS, Springer-Verlag 1996, pp. 29-56.

[Walker 92]
D. Walker, “π-Calculus Semantics of Object-Oriented Programming Languages”, Theoretical
Aspects of Computer Software, LNCS 526, pg. 532-547, Springer-Verlag, 1992.

[Walker 95]
D. Walker, “Objects in the π-Calculus”, Information and Computation 116, pg. 253-271,
Academic Press Inc., 1995.

[Winskel 91]
Glyn Winskel, “A note on Model Checking the modal ν-calculus”, Theoretical Computer Science
83, pp. 157-167, Elsevier 1991.

[Wolczko 88]
Mario I. Woczko, “Semantics of Object-Oriented Languages”, Ph.D. Thesis, University of
Manchester, March 1988.

[Yi & al. 94]
Wang Yi, Paul Pettersson and Mats Daniels, “Automatic Verification of Real-Time
Communicating Systems by Constraint Solving.”, In Proceedings of the 7th International
Conference on Formal Description Techniques, Berne, Switzerland 4-7 October, 1994.

[Yovine 97]
Sergio Yovine, “A Verification Tool for Real-Time Systems”, Springer International Journal of
Software Tools for Technology Transfer, Vol. 1, N. ½, October 1997.

[Yovine 98]
Sergio Yovine, “Model Checking Timed Automata”, Lectures on Embedded Systems, G
Rozenberg and F. W. Vaanndrager Ed., LNCS Vol. 1494, Springer Verlag, October 1998.

Appendix A – Syntax of the OBLOG specification
language

Table of non-terminals

Non-terminal Description
alternative An alternative composition of behavior components
atomicbhcomponent An atomic behavior component (one of skip, fail, assert, set,

...)
attribute Attribute of an object
attributes List of attributes of an object
assert Assert condition
bhcomponent Can be either an atomic behavior component or a composite one

bhcomponentlist A sequence of behavior components
choice A choice of two or more behavior components
compositebhcomponent A composite behavior component
fail Fail component
id An identifier, a sequence of characters
ids A list of identifiers
initval The initial value given in a variable declaration or attribute

declaration
inparms Input parameters of an operation
iterate Iterate component
local Local variable component
method A method
methods List of methods
operation A operation with header and methods
operations A list of operations
outparms Output parameters in an operation
receive Receive component
send Send component
sequence Sequential composition component
set Set component
skip Skip component
sort The sort of a variable, e.g., Boolean, Integer, ...
variabledec A variable declaration
variabledecs List of declarations of variables
xor Xor behavior component

99

Grammar

object ::= ‘object’ id ‘is’ attributes operations ‘end’
attributes ::= {attribute}*
attribute ::= id ‘:’ sort ‘=’ initval

operation ::= ‘operation’ id ‘(‘ inparms ’,’ outparms ‘)’ methods
operations ::= operation | {operation ‘,’ }* operation

ids ::= id | {id ‘,’ }* id
variabledec ::= id ‘:’ sort ‘=’ initval
variabledecs ::= variabledec | {variabledec ‘,’ }* variabledec

inparm ::= ‘in’ id
inparms ::= inparm | {inparm ‘,’ }* inparm
outparm ::= ‘out’ id
outparms ::= iparm | {outparm ‘,’}* outparm

method ::= ‘method’ id ‘enabling’ boolexpr ‘local’ variabledecs
methods ::= {outparm ‘,’}+

bhcomponent ::= atomicbhcomponent | compositebhcomponent
atomicbhcomponent ::= skip | fail | assert | set | send | receive
compositebhcomponent ::= iterate | sequence | alternative | choice | local | xor
bhcomponents ::= bhcomponent | { bhcomponent ‘,’ }* bhcomponent

skip ::= ‘skip’
fail ::= ‘fail’
assert ::= ‘assert’ boolexpr
set ::= ‘set’ id ‘<<’ expr
send ::= ‘send’ exprlist ‘in’ id
receive ::= ‘receive’ ids ‘in’ id
iteration ::= ‘while’ boolexpr ‘do’ bhcomponent
sequence ::= bhcomponent ‘;’ bhcomponent
alternative ::= bhcomponent ‘alt’ bhcomponent
local ::= ‘local’ variabledecs ‘in’ bhcomponent
choice ::= ‘or(’ bhcomponents ‘)’
xor ::= ‘xor(’ bhcomponent ‘,’ bhcomponents ‘)’

100

Appendix B – Initial OBLOG specification of the
ABP

// sndstatus = enum (NOTSENT = 0, SENTNOACK = 1, SENTANDACK = 2)
// rcvstatus = enum (NOMESSAGE = 0, NEWMESSAGE = 2, SAMEMESSAGE = 2)
// linestatus = enum (STATERROR = 0, STATGOOD = 1)
// message = enum (NIL = 0, SOMETHING = 1)
// bit = enum (0, 1)

object sender

attribute bval : bit = 0;
attribute statval : sndstatus = NOTSENT;

operation accept(in m : message)
method sendMessage
enabling true
do

call transline.sendMessage(m, bval);

operation getStatus(out s : status)
method returnStatus
enabling true
local b : bit = 0;
do

call ackline.receiveAcknowledge(b);
pre b = bval in

(
set bval << ¬bval;
set statval << SENTANDACK;

)
alt

set statval << SENTNOACK;
set s << statval;

end

object transline

attribute buffMsg : message = NIL;
attribute buffBval : bit = 0;
attribute lStatus : linestatus = STATGOOD;

operation sendMessage(in m : message, in b : bit)
method send
enabling true
do

or

101

((
set lStatus << STATGOOD;
set buffMsg << m;
set buffBVal << b

)
set lStatus << STATERROR;

)

operation getMessage(out m : message, out b : bit)
method send
enabling lStatus = STATGOOD;
do

set m << buffMsg;
set b << buffBVal;

end

object ackline

attribute buffBval : bit = 0;
attribute lStatus : linestatus = STATGOOD;

operation sendAcknowledge(in b : bit)
method send
enabling true
do

or
(

(
set lStatus << STATGOOD;
set buffBVal << b

)
set lStatus << STATERROR;

)

operation receiveAcknowledge(out b : bit)
method send
enabling lStatus = STATGOOD
do

set b << buffBVal

end

object receiver

attribute bval : bit = 1;
attribute statval : rcvstatus = NOMESSAGE;

operation deliver(out m : message)
method deliverAndAcknowlege
enabling status = NEWMESSAGE
local msgparm : message = NIL, bparm : bit = 0;
do

102

call transline.getMessage(msgparm, bparm);
pre b ≠ bval in

(
call ackline.sendAcknowledge(b);
set m << msgparm;
set bval << bparm;
set statval << NEWMESSAGE;

)
alt

set statval << SAMEMESSAGE

operation getStatus(out s : rcvstatus)
method returnStatus
enabling true
do

set s << statval;

end

103

Appendix C – Syntactic sugar free specification of
the ABP

object sender

attribute bval : bit = 0;
attribute statval : sndstatus = NOTSENT;

receive m : message in accept
// sendMessage
(

assert true;
send m, bval in transline.sendMessage;
receive in transline.sendMessage;
send in accept;

)
alt

failon accept;

receive in getStatus; // out s : sndstatus
local s : status = NOTSENT in
(
// returnStatus

assert true;
local b : bit in
(

send in ackline.getAcknowledge;
receive b : bit in ackline.getAcknowledge;
assert b = bval;
(

set bval << ¬bval;
set statval << SENTANDACK;

)
alt

set statval << SENTNOACK;
set s << statval;

);
send s in getStatus;

)
alt

failon getStatus;

end

object transline

104

attribute buffMsg : message = NIL;
attribute buffBval : bit = 0;
attribute lStatus : linestatus = STATGOOD;

receive m : message, b : bit in sendMessage;
// send
(
assert true;

(
or
(

(
set lStatus << STATGOOD;
set buffMsg << m;
set buffBVal << b

)
set lStatus << STATERROR;

)
)

send in sendMessage;
)
alt

failon sendMessage;

receive in receiveMessage; //out m : message, out b : bit
local m : message = NIL, b : bit = 0 in

(
//send

assert lStatus = STATGOOD;
(

 set m << buffMsg;
set b << buffBVal

);
send m, b in receiveMessage
)
alt

failon receiveMessage;

end

object ackline

attribute buffBval : bit = 0;
attribute lStatus : linestatus = STATGOOD;

receive b : bit in sendAcknowledge
// send
(

105

assert true;
or
(

(
 set lStatus << STATGOOD;
 set buffBval << b;
)
set lStatus << STATERROR;

)
send in sendAcknowledge;

)

alt
failon sendAcknowledge;

receive in getAcknowledge //out b : bit
local b : bit = 0 in
(
// receive

assert lStatus = STATGOOD;
set b << buffBval

send b in getAcknowledge;
)
alt

failon getAcknowledge;
end

object receiver

attribute bval : bit = 1;
attribute statval : rcvstatus = NOMESSAGE;

receive in deliver; //out m : message
local m : message = NIL in
(
// deliverAndAcknowlege

assert true;
(

send in transline.receiveMessage;
receive msgparm, bparm in

transline.receiveMessage;
assert bparm ≠ bval;
(

send bparm in ackline.sendAckowledge;
receive in Ackline.SendAcknowledge;
set m << msgparm;
set bval << bparm;
set statval << NEWMESSAGE;

)
alt

106

set statval << SAMEMESSAGE;
)
send m in deliver
)
alt

failon deliver;

receive in getStatus; // out s : rcvstatus
local s : rcvstatus = NOMESSAGE in
(
// returnStatus

assert true;
set s << statval;
send s in getStatus

)
alt

failon accept;

end

107

Appendix D – LOTOS specifications of the ABP

ABPLIB

library
 BOOLEAN,
 NATURAL
endlib

type
 dtype
is
 sorts
 dtype
 opns
 dval (*! constructor *) : -> dtype
endtype

type
 bit
is Boolean
 sorts
 bit
 opns
 0 (*! constructor *),
 1 (*! constructor *) : -> bit
 not : bit -> bit
 eq : bit, bit -> Bool
 neq : bit, bit -> Bool
 eqns
 forall x,y : bit
 ofsort bit
 not(0) = 1;
 not(1) = 0;
 ofsort Bool
 x eq x = true;
 0 eq 1 = false;
 1 eq 0 = false;
 x neq y = not(x eq y);
endtype

type
 sndstatus
is Boolean
 sorts
 sndstatus
 opns
 NOTSENT (*! constructor *),
 SENTNOACK (*! constructor *),
 SENTANDACK (*! constructor *) : -> sndstatus
 eq : sndstatus, sndstatus -> Bool
 eqns
 forall x,y : sndstatus
 ofsort Bool
 x eq x = true;
 NOTSENT eq SENTNOACK = false;
 NOTSENT eq SENTANDACK = false;
 SENTNOACK eq SENTANDACK = false;
 x eq y = y eq x;
(*
SENTNOACK eq NOTSENT = false;
 SENTANDACK eq NOTSENT = false;
 SENTANDACK eq SENTNOACK = false;*)
endtype

type
 rcvstatus
is
 sorts
 rcvstatus
 opns
 NOMESSAGE (*! constructor *),
 NEWMESSAGE (*! constructor *),
 SAMEMESSAGE (*! constructor *) : -> rcvstatus
endtype

type
 linestatus
is Boolean
 sorts
 linestatus
 opns
 STATERROR (*! constructor *),
 STATGOOD (*! constructor *) : -> linestatus
 eq : linestatus, linestatus -> Bool
 eqns
 forall x : linestatus
 ofsort Bool
 x eq x = true;
 STATERROR eq STATGOOD = false;
 STATGOOD eq STATERROR = false;
endtype

type
 message
is Boolean
 sorts
 message

108

 opns
 NIL (*! constructor *),
 SOMETHING (*! constructor *) : -> message
 eq : message, message -> Bool
 eqns
 forall x : message
 ofsort Bool
 x eq x = true;
 NIL eq SOMETHING = false;
 SOMETHING eq NIL = false;
endtype

type
 access
is
 sorts
 access
 opns
 READ (*! constructor *),
 WRITE (*! constructor *) : -> access
endtype

type
 recover
is
 sorts
 recover
 opns
 NORECOVER (*! constructor *),
 GO (*! constructor *) : -> recover
endtype

109

acklineabst – An example of a behavioural specification used for debugging

specification acklineabst[asa,aga] : noexit

library
 ABPLIB
endlib

behavior
 acklinesafety[asa,aga](0 of Bit)
where

(*
 *
 * ACKLINESAFETY
 *
 *)

process acklinesafety[asa, aga](b:bit) : noexit :=
 asa?bval:Bit; asa!false; acklinesafety[asa,aga](bval)
 []
 aga;
 (
 aga!b!false; acklinesafety[asa,aga](b)
 []
 aga!(0 of bit)!true; acklinesafety[asa,aga](b)

)
endproc

endspec

110

ackline

specification ackline[asa,aga] : noexit

library
 ABPLIB
endlib

behavior
 ackline[asa,aga]
where

(*
 *
 * ACKLINE
 *
 *)

process ackline[asa, aga] : noexit :=
hide buffBval, lStatus in
(
 acklineStatus[buffBval, lStatus](0 of bit, STATERROR)
 |[buffBval, lStatus]|
 acklineOperations[asa, aga, buffBval, lStatus]
)
where
 process acklineStatus[buffBval, lStatus](buffBvalv:bit, lStatusv:linestatus) : noexit :=
 buffBval!WRITE?XbuffBval:bit; acklineStatus[buffBval, lStatus](XbuffBval, lStatusv)
 []
 lStatus!WRITE?XlStatus:linestatus; acklineStatus[buffBval, lStatus](buffBvalv, XlStatus)
 []
 buffBval!READ!buffBvalv; acklineStatus[buffBval, lStatus](buffBvalv, lStatusv)
 []
 lStatus!READ!lStatusv; acklineStatus[buffBval, lStatus](buffBvalv, lStatusv)
 endproc (* acklineStatus *)

 process acklineOperations[asa, aga, buffBval, lStatus] : noexit :=
 (
 opasa[asa, buffBval, lStatus]
 []
 opaga[aga, buffBval, lStatus]
)
 >> accept rval: Bool in
 (* silence operation failures *)
 (* We can place a stub here *)
 acklineOperations[asa, aga, buffBval, lStatus]
 where
 process opasa[asa, buffBval, lStatus] : exit(Bool) :=
 (* receive in sendAcknowledge *)
 receiveinsendAcknowledge[asa] >> accept b:bit in
 (* or *)
 (
 orop1[buffBval, lStatus](b)
 []
 orop2[lStatus]
)
 >>
 (* ; *)
 accept rval : Bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 sendinsendacknowledge[asa] >> accept rval:Bool in
 exit(rval)
 where
 process receiveinsendAcknowledge[asa] : exit(bit) :=
 asa?b:bit; exit(b)
 endproc (* receiveinsendAcknowledge *)
 process orop1[buffBval, lStatus](b:bit) : exit(Bool) :=
 (* sets *)
 setlStatus[lStatus] >> accept rval:Bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 setbuffBval[buffBval](b) >> accept rval:Bool in exit(rval)
 where
 process setlStatus[lStatus] : exit(Bool) :=
 lStatus!WRITE!STATGOOD; exit(false)
 endproc (* setlStatus *)
 process setbuffBval[buffBval](b:bit) : exit(Bool) :=
 buffBval!WRITE!b; exit(false)
 endproc (* sebufBval *)
 endproc (* orop1 *)
 process orop2[lStatus] : exit(Bool) :=
 (* set lStatus << STATERROR *)
 lStatus!WRITE!STATERROR; exit(false)
 endproc (* orop2 *)
 process sendinsendacknowledge[asa] : exit(Bool) :=
 asa!false; exit(false)
 endproc (* sendinsendaacknowledge *)
 endproc
 process opaga[aga, buffBval, lStatus] : exit(Bool) :=
 hide break, b in
 (
 lvars[b, break](0 of Bit)
 |[b, break]|
 (
 opagabody[aga, b, buffBval, lStatus] >>
 accept rval:Bool in
 (
 break!dval;
 exit(rval)
)
)
)

111

 where
 process lvars[b, break](bv:bit) : exit(Bool) :=
 b!WRITE?Xb:bit; lvars[b, break](Xb)
 []
 b!READ!bv; lvars[b, break](bv)
 []
 break?dummy:dtype; exit(false)
 endproc (* lvars *)
 process opagabody[aga, b, buffBval, lStatus] : exit(Bool) :=
 hide c,r1 in
 (
 (buffBval!READ?bval:bit; c!bval; exit(false))
 |||
 (
 (
 receiveingetAcknowledge[aga] >> accept rval:Bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 (* assert lStatus = STATGOOD *)
 assert[lStatus] >> accept rval:bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 (* sets *)
 sets[b, buffBval] >> accept rval:bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 (* send b in getAcknowledge *)
 sendingetAcknowledge[aga, b] >> accept rval:bool in
 [rval eq true] ->
 (
 (* alt failon getacknowledge *)
 c?bval:bit; buffBval!WRITE!bval;
 failongetacknowledge[aga] >> accept rval2:Bool in
 exit(rval2)
)
 []
 [rval eq false] -> exit(false)
)
)
)
 where
 process receiveingetAcknowledge[aga] : exit(Bool) :=
 aga; exit(false) (* perigo *)
 endproc (* receiveingetAcknowledge *)
 process assert[lStatus] : exit(Bool) :=
 pexpr[lStatus] >> accept lstatusv:linestatus in
 (
 [lstatusv eq STATGOOD] -> exit(false)
 []
 [lstatusv eq STATERROR] -> exit(true)
)
 where
 process pexpr[lStatus] : exit(linestatus) :=
 lStatus!READ?lval:linestatus; exit(lval)
 endproc (* pexpr *)
 endproc
 process sets[b, buffBval] : exit(Bool) :=
 setb[b, buffBval]
 where
 process setb[b, buffBval] : exit(Bool) :=
 pexpr[buffBval] >> accept bval:bit in
 b!WRITE!bval; exit(false)
 where
 process pexpr[buffBval] : exit(bit) :=
 buffBval!READ?bval:bit; exit(bval)
 endproc (* pexpr *)
 endproc (* setb *)
 endproc (* sets *)
 process sendingetAcknowledge[aga, b] : exit(Bool) :=
 pexpr[b] >> accept bval:bit in
 aga!bval!false; exit(false)
 where
 process pexpr[b] : exit(bit) :=
 b!READ?bval:bit; exit(bval)
 endproc (* pexpr *)
 endproc (* sendingetAcknowledge *)
 process failongetAcknowledge[aga] : exit(Bool) :=
 aga!0 of bit!true; exit(false)
 endproc (* failongetAcknowledge *)
 endproc (* opagabody *)
 endproc (* optaga *)
 endproc (* acklineOperations *)
endproc (* ackline *)

endspec

112

transline
specification transline[trm,tsm] : noexit

library
 ABPLIB
endlib

behavior
 transline[tsm,trm]
where

(*
 *
 * TRANSLINE
 *
 *)

process transline[tsm, trm] : noexit :=
hide buffMsg, buffBval, lStatus in
(
 translineStatus[buffMsg, buffBval, lStatus](NIL, 0 of bit, STATGOOD)
 |[buffMsg, buffBval, lStatus]|
 translineOperations[tsm, trm, buffMsg, buffBval, lStatus]
)
where
 process translineStatus[buffMsg, buffBval, lStatus](buffMsgv:message, buffBvalv:bit, lStatusv:linestatus) : noexit
:=
 buffMsg?XbuffMsg:message; translineStatus[buffMsg, buffBval, lStatus](XbuffMsg, buffBvalv, lStatusv)
 []
 buffBval?XbuffBval:bit; translineStatus[buffMsg, buffBval, lStatus](buffMsgv, XbuffBval, lStatusv)
 []
 lStatus?XlStatus:linestatus; translineStatus[buffMsg, buffBval, lStatus](buffMsgv, buffBvalv, XlStatus)
 []
 buffMsg!buffMsgv; translineStatus[buffMsg, buffBval, lStatus](buffMsgv, buffBvalv, lStatusv)
 []
 buffBval!buffBvalv; translineStatus[buffMsg, buffBval, lStatus](buffMsgv, buffBvalv, lStatusv)
 []
 lStatus!lStatusv; translineStatus[buffMsg, buffBval, lStatus](buffMsgv, buffBvalv, lStatusv)
 endproc (* translineStatus *)

 process translineOperations[tsm, trm, buffMsg, buffBval, lStatus] : noexit :=
 (
 optsm[tsm, buffMsg, buffBval, lStatus]
 []
 optrm[trm, buffMsg, buffBval, lStatus]
) >> accept rval: Bool in
 (* silence operation failures *)
 (* We can place a stub here *)
 translineOperations[tsm, trm, buffMsg, buffBval, lStatus]
 where
 process optsm[tsm, buffMsg, buffBval, lStatus] : exit(Bool) :=
 (* receive in sendMessage *)
 receiveinsendmessage[tsm] >> accept m:message, b:bit in
 (* or *)
 (
 orop1[buffBval, buffMsg, lStatus](m, b)
 []
 orop2[lStatus]
)
 >>
 (* ; *)
 accept rval : Bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 sendinsendmessage[tsm] >> accept rval:Bool in
 exit(rval)
 where
 process receiveinsendmessage[tsm] : exit(message, bit) :=
 tsm?m:message?b:bit; exit(m,b)
 endproc (* receiveinsendMessage *)
 process orop1[buffBval, buffMsg, lStatus](m:message, b:bit) : exit(Bool) :=
 (* sets *)
 setlStatus[lStatus] >> accept rval:Bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] -> setbuffMsg[buffMsg](m) >> accept rval:Bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] -> setbuffMsg[buffMsg](m) >> accept rval:Bool in
 setbuffBval[buffBval](b) >> accept rval:Bool in exit(rval)
 where
 process setlStatus[lStatus] : exit(Bool) :=
 lStatus!STATGOOD; exit(false)
 endproc (* setlStatus *)
 process setbuffMsg[buffMsg](m:message) : exit(Bool) :=
 buffMsg!m; exit(false)
 endproc (* setbuffMsg *)
 process setbuffBval[buffBval](b:bit) : exit(Bool) :=
 buffBval!b; exit(false)
 endproc (* sebufBval *)
 endproc (* orop1 *)
 process orop2[lStatus] : exit(Bool) :=
 (* set lStatus << STATERROR *)
 lStatus!STATERROR; exit(false)
 endproc (* orop2 *)
 process sendinsendmessage[tsm] : exit(Bool) :=
 tsm!false; exit(false)
 endproc (* sendinsendmessage *)
 endproc
 process optrm[trm, buffMsg, buffBval, lStatus] : exit(Bool) :=
 hide break, m,b in
 (
 lvars[m, b, break](NIL, 0 of Bit)

113

 |[m, b, break]|
 (
 optrmbody[trm, m, b, buffMsg, buffBval, lStatus] >>
 accept rval:Bool in
 (
 break!dval;
 exit(rval)
)
)
)
 where
 process lvars[m, b, break](mv:message, bv:bit) : exit(Bool) :=
 m?Xm:message; lvars[m, b, break](Xm, bv)
 []
 b?Xb:bit; lvars[m, b, break](mv, Xb)
 []
 m!mv; lvars[m, b, break](mv, bv)
 []
 b!bv; lvars[m, b, break](mv, bv)
 []
 break?dummy:dtype; exit(false)
 endproc (* lvars *)
 process optrmbody[trm, m, b, buffMsg, buffBval, lStatus] : exit(Bool) :=
 hide c, r1 in
 (
 (buffMsg?mval:message; buffBval?bval:bit; c!mval!bval; exit(false))
 |||
 (
 (* receive in receivemessage *)
 receiveinreceivemessage[trm] >> accept rval:Bool in
 (* assert lStatus = STATGOOD *)
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 assert[lStatus] >> accept rval:bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 (* sets *)
 sets[m, b, buffMsg, buffBval] >> accept rval:bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 (* send b in getAcknowledge *)
 sendinreceivemessage[trm, m, b] >> accept rval:bool in
 [rval eq true] ->
 (
 (* alt failon getacknowledge *)
 c?bval:bit; buffBval!bval;
 failonreceivemessage[trm] >> accept rval2:Bool in
 exit(rval2)
)
 []
 [rval eq false] -> exit(false)
)
)
 where
 process receiveinreceivemessage[trm] : exit(Bool) :=
 trm; exit(false)
 endproc (* receiveinsendMessage *)
 process assert[lStatus] : exit(Bool) :=
 pexpr[lStatus] >> accept lstatusv:linestatus in
 (
 [lstatusv eq STATGOOD] -> exit(false)
 []
 [lstatusv eq STATERROR] -> exit(true)
)
 where
 process pexpr[lStatus] : exit(linestatus) :=
 lStatus?lval:linestatus; exit(lval)
 endproc (* pexpr *)
 endproc (* assert *)
 process sets[m, b, buffMsg, buffBval] : exit(Bool) :=
 setm[m, buffMsg] >> accept rval:Bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] -> setb[b, buffBval] >> accept rval:Bool in
 exit(rval)
 where
 process setm[m, buffMsg] : exit(Bool) :=
 pexpr[m] >> accept mval:message in
 buffMsg!mval; exit(false)
 where
 process pexpr[m] : exit(message) :=
 m?mval:message; exit(mval)
 endproc (* pexpr *)
 endproc (* setm *)
 process setb[b, buffBval] : exit(Bool) :=
 pexpr[b] >> accept bval:bit in
 buffBval!bval; exit(false)
 where
 process pexpr[b] : exit(bit) :=
 b?bval:bit; exit(bval)
 endproc (* pexpr *)
 endproc (* setb *)
 endproc (* sets *)
 process sendinreceivemessage[trm, m, b] : exit(Bool) :=
 pexpr1[m] >> accept mval:message in
 pexpr2[b] >> accept bval:bit in
 trm!mval!bval!false; exit(false)
 where
 process pexpr1[m] : exit(message) :=
 m?mval:message; exit(mval)
 endproc (* pexpr1 *)
 process pexpr2[b] : exit(bit) :=
 b?bval:bit; exit(bval)
 endproc (* pexpr2 *)
 endproc (* sendinreceivemesssage *)

114

 process failonreceivemessage[trm] : exit(Bool) :=
 trm!NIL!0 of Bit!true; exit(false)
 endproc (* failonreceivemessage *)
 endproc (* optrmbody *)
 endproc (* optrm *)
 endproc (* translineOperations *)
endproc (* transline *)

endspec

115

sender
specification sender[sam, sgs, tsm, trm, asa, aga] : noexit

library
 ABPLIB
endlib

behavior
 sender[sam, sgs, tsm, aga]
where

(*
 *
 * SENDER
 *
 *)

process sender[sam, sgs, tsm, aga] : noexit :=
hide bval, statval in
(
 senderStatus[bval, statval](0 of bit, NOTSENT)
 |[bval, statval]|
 senderOperations[sam, sgs, tsm, aga, bval, statval]
)
where
 process senderStatus[bval, statval](bvalv:bit, statvalv:sndstatus) : noexit :=
 bval!WRITE?Xbval:bit; senderStatus[bval, statval](Xbval, statvalv)
 []
 statval!WRITE?Xstatval:sndstatus; senderStatus[bval, statval](bvalv, Xstatval)
 []
 bval!READ!bvalv; senderStatus[bval, statval](bvalv, statvalv)
 []
 statval!READ!statvalv; senderStatus[bval, statval](bvalv, statvalv)
 endproc (* senderStatus *)

 process senderOperations[sam, sgs, tsm, aga, bval, statval] : exit :=
 (
 opsam[sam, tsm, bval, statval]
 []
 opsgs[sgs, aga, bval, statval]
)
 >> accept rval: Bool in
 (* silence operation failures *)
 (* We can place a stub here *)
 senderOperations[sam, sgs, tsm, aga, bval, statval]

 where
 process opsam[sam, tsm, bval, statval] : exit(Bool) :=
 (* receive in accept *)
 receiveinaccept[sam] >> accept m:message in
 (* parte1 do alt *)
 op1[sam, tsm, bval](m) >> accept rval:Bool in
 (
 [rval eq true] ->
 (
 failonAccept[sam] >> accept rval:Bool in
 exit(false)
)

 []
 [rval eq false] -> exit(false)
)
 where
 process receiveinaccept[sam] : exit(message) :=
 sam?m:message; exit(m)
 endproc (* receiveinaccept *)
 process op1[sam, tsm, bval](m:message) : exit(Bool) :=
 (* ; send m, bval in transline.sendMessage *)
 sendintranslineSendMessage[tsm, bval](m) >> accept rval : Bool in
 ([rval eq true] -> exit(true)
 []
 [rval eq false] ->
 (* ; receive in transline.sendMessage *)
 receiveintranslSendMessage[tsm] >> accept rval:Bool in
 (
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 (* ; send in accept *)
 (
 sendinAccept[sam] >> accept rval:Bool in
 exit(rval)
)
)
)
 where
 process sendintranslineSendMessage[tsm, bval](m:message) : exit(Bool) :=
 pexpr[bval] >> accept bvalv:bit in
 tsm!m!bvalv; exit(false)
 where
 process pexpr[b] : exit(bit) :=
 b!READ?bval:bit; exit(bval)
 endproc (* pexpr *)
 endproc
 process receiveintranslSendMessage[tsm] : exit(Bool) :=
 tsm?rval:Bool; exit(rval)
 endproc
 process sendinAccept[sam] : exit(Bool) :=
 sam!false;exit(false)
 endproc
 endproc (* op1 *)
 process failonAccept[sam] : exit(Bool) :=
 sam!true;exit(true)
 endproc
 endproc (* opsam *)

116

 process opsgs[sgs, aga, bval, statval] : exit(Bool) :=
 hide break, s in
 (
 lvars[s, break](NOTSENT)
 |[s, break]|
 (
 opsgsbody[sgs, aga, s, bval, statval] >>
 accept rval:Bool in
 (
 break!dval;
 exit(rval)
)
)
)
 where
 process lvars[s, break](sv:sndstatus) : exit(Bool) :=
 s!WRITE?Xs:sndstatus; lvars[s, break](Xs)
 []
 s!READ!sv; lvars[s, break](sv)
 []
 break?dummy:dtype; exit(false)
 endproc (* lvars *)
 process opsgsbody[sgs, aga, s, bval, statval] : exit(Bool) :=
 (* receive in getStatus *)
 receiveingetStatus[sgs] >> accept rval:Bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 (
 (* ; send in ackline.getAcknowledge *)
 sendinacklinegetAcknowledge[aga] >> accept rval : Bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 (* ; receive b in ackline.getAcknowledge *)
 (receiveinacklinegetAcknowledge[aga] >> accept b:Bit, rval:Bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 (* assert b = bval *)
 (assert[bval](b) >> accept rval:Bool in
 [rval eq true] -> (*trocar*)
 (
 setstatvalnoack[statval]
)
 []
 [rval eq false] ->
 (
 sets[bval, statval]
)
) >> accept rval:Bool in
 (* set s << statlval *)
 ([rval eq true] -> exit(true)
 []
 [rval eq false] -> setsstatval[s, statval] >> accept rval:Bool in
 (* sendingetstatus *)
 (
 [rval eq true] -> exit(true)
 []
 [rval eq false] -> sendingetStatus[sgs, s]
)
)

)
 (* fail on getstatus *)
 (* -- ignored --*)
) >> accept rval:Bool in
 (
 [rval eq true] -> failongetstatus[sgs]
 []
 [rval eq false] -> exit(false)
)
 where
 process receiveingetStatus[sgs] : exit(Bool) :=
 sgs; exit(false) (* isto poderia //// dar porcaria!!! *)
 endproc (* receiveingetStatus *)
 process sendinacklinegetAcknowledge[aga] : exit(Bool) :=
 aga; exit(false)
 endproc (* sendinacklinegetAcknowledge *)
 process receiveinacklinegetAcknowledge[aga] : exit(Bit, Bool) :=
 aga?b:Bit?rval:Bool; exit(b,rval)
 endproc (* receiveinacklinegetAcknowledge *)
 process assert[bval](b:Bit) : exit(Bool) :=
 pexpr[bval] >> accept bvalv:Bit in
 (
 [bvalv neq b] -> exit(true)
 []
 [bvalv eq b] -> exit(false)
)
 where
 process pexpr[bval] : exit(Bit) :=
 bval!READ?bvalv:Bit; exit(bvalv)
 endproc (* pexpr *)
 endproc
 process sets[bval, statval] : exit(Bool) :=
 setbval[bval] >> accept rval:Bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 setstatval[statval] >> accept rval:Bool in exit(rval)
 where
 process setbval[bval] : exit(Bool) :=
 pexpr[bval] >> accept bvalv:Bit in
 bval!WRITE!not(bvalv); exit(false)
 where
 process pexpr[bval] : exit(Bit) :=
 bval!READ?bvalv:Bit; exit(bvalv)
 endproc (* pexpr *)

117

 endproc (* setbval *)
 process setstatval[statval] : exit(Bool) :=
 statval!WRITE!SENTANDACK; exit(false)
 endproc (* setstatval *)
 endproc (* sets *)
 process setstatvalnoack[statval] : exit(Bool) :=
 statval!WRITE!SENTNOACK; exit(false)
 endproc (* setstatvalnoack *)
 process setsstatval[s, statval] : exit(Bool) :=
 pexpr[statval] >> accept svalv:sndstatus in
 s!WRITE!svalv; exit(false)
 where
 process pexpr[sval] : exit(sndstatus) :=
 sval!READ?svalv:sndstatus; exit(svalv)
 endproc (* pexpr *)
 endproc (* setsstatval *)
 process sendingetStatus[sgs, s] : exit(Bool) :=
 pexpr[s] >> accept svalv:sndstatus in
 sgs!svalv!false; exit(false)
 where
 process pexpr[sval] : exit(sndstatus) :=
 sval!READ?svalv:sndstatus; exit(svalv)
 endproc (* pexpr *)
 endproc (* sendingetStatus *)
 process failongetStatus[sgs] : exit(Bool) :=
 sgs!NOTSENT!true; exit(false)
 endproc (* failongetStatus *)
 endproc (* opsgsbody *)
 endproc (* optsgs *)
 endproc (* senderOperations *)
endproc (* sender *)

endspec

118

receiver
specification sender[rdr, rgs] : noexit

library
 ABPLIB
endlib

behavior
receiver[rdr, rgs, trm, asa]

where

(*
 *
 * RECEIVER
 *
 *)

process receiver[rdr, rgs, trm, asa] : noexit :=
hide bval, statval in
(
 receiverStatus[bval, statval](0 of bit, NOMESSAGE)
 |[bval, statval]|
 receiverOperations[rdr, rgs, trm, asa, bval, statval]
)
where
 process receiverStatus[bval, statval](bvalv:bit, statvalv:rcvstatus) : noexit :=
 bval!WRITE?Xbval:bit; receiverStatus[bval, statval](Xbval, statvalv)
 []
 statval!WRITE?Xstatval:rcvstatus; receiverStatus[bval, statval](bvalv, Xstatval)
 []
 bval!READ!bvalv; receiverStatus[bval, statval](bvalv, statvalv)
 []
 statval!READ!statvalv; receiverStatus[bval, statval](bvalv, statvalv)
 endproc (* receiverStatus *)

 process receiverOperations[rdr, rgs, trm, asa, bval, statval] : exit :=
 (
 oprdr[rdr, trm, asa, bval, statval]
 []
 oprgs[rgs, statval]
)
 >> accept rval: Bool in
 (* silence operation failures *)
 (* We can place a stub here *)
 receiverOperations[rdr, rgs, trm, asa, bval, statval]
 where
 process oprdr[rdr, trm, asa, bval, statval] : exit(Bool) :=
 hide break, m in
 (
 lvars[m, break](NIL)
 |[m, break]|
 (
 oprdrbody[rdr, trm, asa, m, bval, statval] >>
 accept rval:Bool in
 (
 break!dval;
 exit(rval)
)
)
)
 where
 process lvars[m, break](mv:message) : exit(Bool) :=
 m!WRITE?Xm:message; lvars[m, break](Xm)
 []
 m!READ!mv; lvars[m, break](mv)
 []
 break?dummy:dtype; exit(false)
 endproc (* lvars *)
 process oprdrbody[rdr, trm, asa, m, bval, statval] : exit(Bool) :=
 (* receive in deliver *)
 receiveindeliver[rdr] >> accept rval:Bool in
 (* ; send in transline.receiveMessage *)
 sendintranslineReceiveMessage[trm, bval] >> accept rval : Bool in
 (
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 (* ; receive msgparm, bparm in transline.receiveMessage *)
 (
 receiveintranslineReceiveMessage[trm] >> accept msgparm:message, bparm:bit, rval:Bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 (* ; assert bparm =/= bval *)
 (assert[bval](bparm) >> accept rval:Bool in
 (
 [rval eq true] ->
 (
 (* set statval << samemessage *)
 setstatvalsamemessage[statval]
)
 []
 [rval eq false] ->
 (
 (* send bparm in ackline.sendAcknowledge *)
 sendinacklinesendack[asa](bparm) >> accept rval: Bool in
 (
 [rval eq true] -> exit(false)
 []
 [rval eq false] -> receiveinacklinesendack[asa] >> accept rval:Bool in
 (
 [rval eq true] -> exit(false)
 []
 [rval eq false] -> sets[m, bval, statval](msgparm, bparm)
)

119

)
) >> accept rval:Bool in
 (
 [rval eq true] -> exit(true)
 []
 [rval eq false] -> sendminDeliver[m, rdr] >> accept rval:Bool in
 exit(rval)
)
)

)
)
)
 where
 process receiveinDeliver[rdr] : exit(Bool) :=
 rdr; exit(false)
 endproc (* receiveinDeliver *)
 process sendintranslineReceiveMessage[trm, bval] : exit(Bool) :=
 trm; exit(false)
 endproc (* sendintranslineReceiveMessage *)
 process receiveintranslineReceiveMessage[trm] : exit(message, bit, Bool) :=
 trm?m:message?b:bit?rval:Bool; exit(m,b,rval)
 endproc (* receiveintranslineReceiveMessage *)
 process assert[bval](b:Bit) : exit(Bool) :=
 pexpr[bval] >> accept bvalv:Bit in
 (
 [bvalv eq b] -> exit(true)
 []
 [bvalv neq b] -> exit(false)
)
 where
 process pexpr[bval] : exit(Bit) :=
 bval!READ?bvalv:Bit; exit(bvalv)
 endproc (* pexpr *)
 endproc (* assert *)
 process sets[m, bval, statval](msgparm:message, bparm:bit) : exit(Bool) :=
 setm[m](msgparm) >> accept rval:Bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] -> setbval[bval](bparm) >> accept rval:Bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 setstatval[statval] >> accept rval:Bool in exit(rval)
 where
 process setm[m](msgparm:message) : exit(Bool) :=
 m!WRITE!msgparm; exit(false)
 endproc (* setm *)
 process setbval[bval](bparm:bit) : exit(Bool) :=
 bval!WRITE!bparm; exit(false)
 endproc (* setbval *)
 process setstatval[statval] : exit(Bool) :=
 statval!WRITE!NEWMESSAGE; exit(false)
 endproc (* setstatval *)
 endproc (* sets *)
 process setstatvalsamemessage[statval] : exit(Bool) :=
 statval!WRITE!SAMEMESSAGE; exit(false)
 endproc (* setstatvalsamemessage *)
 process sendinacklinesendack[asa](bparm:bit) : exit(Bool) :=
 asa!(bparm of bit); exit(false)
 endproc (* pexpr *)
 process receiveinacklinesendack[asa] : exit(Bool) :=
 asa?rval:Bool; exit(rval)
 endproc (* pexpr *)
 process sendminDeliver[m, rdr] : exit(Bool) :=
 pexpr[m] >> accept mv:message in
 rdr!mv!false; exit(false)
 where
 process pexpr[m] : exit(message) :=
 m!READ?mval:message; exit(mval)
 endproc (* pexpr *)
 endproc (* sendminDeliever *)
 endproc (* oprdrbody *)
 endproc (* oprdr *)

 process oprgs[rgs, statval] : exit(Bool) :=
 (* receive in getStatus *)
 receiveingetStatus[rgs] >> accept rval:Bool in
 [rval eq true] -> exit(true)
 []
 [rval eq false] ->
 (* ; send s in getStatus *)
 sendsingetStatus[rgs, statval]
 where
 process receiveinGetStatus[rgs] : exit(Bool) :=
 rgs; exit(false)
 endproc (* receiveinDeliver *)
 process sendsingetStatus[rgs, s] : exit(Bool) :=
 pexpr[s] >> accept svalv:rcvstatus in
 rgs!svalv!false; exit(false)
 where
 process pexpr[sval] : exit(rcvstatus) :=
 sval!READ?svalv:rcvstatus; exit(svalv)
 endproc (* pexpr *)
 endproc (* sendingetStatus *)
 endproc (* optrgs *)
 endproc (* receiverOperations *)
endproc (* receiver *)

endspec

120

Appendix E – Summary of properties verifyed
with CADP

Property CADP concret Syntax
pot(<"ASA !0">T => pot(<"AGA
!0 !TRUE">T))

EF(ackline.sendacknowledge(ai) ⇒
EF(ackline.getAcknowledge.fail=true))

pot(<"ASA !1">T => pot(<"AGA
!0 !TRUE">T))
pot((<"ASA !0">T) AND
inev(<"AGA !0 !FALSE”>)) =>
inev(<”AGA !0 !FALSE”>)

EF((ackline.sendacknowledge(aI) ∧
AF(ackline.getAcknowledge.fail=false)) ⇒

AF(ackline.getAcknowledge(aI))
pot((<"ASA !1">T AND
inev(<"AGA !0 !FALSE”>)) =>
inev(<”AGA !1 !FALSE”>))
pot(<"SAM !NIL">T => inev(
<"RGM !SOMETHING !FALSE">T AND
inev(<"RGS !SAMEMESSAGE
!FALSE">T)))

EF(sender.accept(mi) ⇒
AF(receiver.deliver(mj) ∧

AF(receiver.getStatus(SAMEMESSAGE))) pot(<"SAM !SOMETHING">T =>
inev(<"RGM !SOMETHING
!FALSE">T AND inev(<"RGS !NIL
!FALSE">T)))
inev((<"SAM !NIL">T AND
inev(<"TRM !NIL !FALSE">T)) =>
inev(<"RDR !NIL !FALSE">T)))

AF((sender.accept(mi) ∧
AF(transline.receiveMessage.fail=false)) ⇒

AF(receiver.deliver(mi)))
inev((<"SAM !SOMETHING">T AND
inev(<"TRM !SOMETHING
!FALSE">T)) => inev(<"RDR
!SOMETHING !FALSE">T)))

AF(ackline.getAcknowledge.fail=false) ⇒
AF(sender.getStatus(SENTANDACK))

(<"SAM !NIL">T AND inev(<"RDR
!NIL">T)) => inev(<"SGS
!SENTANDACK !FALSE">T))

121

Appendix F – UPPAAL .ta specification of the
ABP

//
// UPPAAL automata version of the alternating bit protocol
//

//sndstatus = enum : NOTSENT = 0, SENTNOACK = 1, SENTANDACK = 2
//rcvstatus = enum : NOMESSAGE = 0, NEWMESSAGE = 1, SAMEMESSAGE = 2
//linestatus = enum : STATERROR = 0, STATGOOD = 1
//message = enum : NIL = 0, SOMETHING = 1
//bit = enum : false = 0, true = 1
//recover = enum : no = 0, yes = 1

///
// SENDER data area //
///

// Attributes
int sr_bval;
int sr_statval;

// Channels
urgent chan sam_call, sam_parm;
urgent chan sgs_call, sgs_parm;

// AssocMem(sender.accept)
// IN-parms
int in_sam_m;
// OUT-parms
int out_sam_recover;

// AssocMem(sender.getStatus)
// IN-parms
// OUT-parms
int out_sgs_s;
int out_sgs_recover;

// LocalMem(sender.getStatus)
// LOCAL-parms
int local_sgs_s;
int local_sgs_b;
int local_sgs_recover;

///
// TRANSLINE data area //
///

// Attributes
int tl_buffMsg;
int tl_buffBVal;
int tl_lstatus;

// Channels
urgent chan tsm_call, tsm_parm;
urgent chan trm_call, trm_parm;

// AssocMem(transline.sendMessage)
// IN-parms
int in_tsm_m;
int in_tsm_b;
// Out-parms
int out_tsm_recover;

// AssocMem(transline.receiveMessage)
// IN-parms
// OUT-oparms
int out_trm_m;
int out_trm_b;
int out_trm_recover;

// LocalMem(transline.receiveMessage)
// LOCAL-parms
int local_trm_m;
int local_trm_b;

// For the test boxes
//
int tl_recover_status;

///
// ACKLINE data area //
///

// Attributes
int al_buffBval;
int al_lstatus;

// Channels
urgent chan asa_call, asa_parm;
urgent chan aga_call, aga_parm;

// AssocMem(ackline.sendAcknowledge)
// IN-parms
int in_asa_b;
// Out-parms

122

int out_asa_recover;

// AssocMem(ackline.getAcknowledge)
// IN-parms
// OUT-oparms
int out_aga_b;
int out_aga_recover;

// LocalMem(ackline.getAcknowledge)
// LOCAL-parms
int local_aga_b;

// For the test boxes
//
int al_recover_status;

///
// RECEIVER data area //
///

// Attributes
int rr_bval;
int rr_statval;

// Channels
urgent chan rdr_call, rdr_parm;
urgent chan rgs_call, rgs_parm;

// AssocMem(receiver.deliver)
// IN-parms
// OUT-parms
int out_rdr_m;
int out_rdr_recover;

// AssocMem(receiver.getStatus)
// IN-parms
// OUT-parms
int out_rgs_s;
int out_rgs_recover;

// LocalMem(receiver.deliver)
// LOCAL-parms
int local_rdr_m;
int local_rdr_msgparm;
int local_rdr_bparm;
int local_rdr_recover;

// LocalMem(receiver.getStatus)
// LOCAL-parms
int local_rgs_s;

///
// SENDER object module //
///

process sender {
 state

sr_init,
sr_main,

 sam_entry_l1, sgs_entry_l1,
sam_entry_l2, sgs_entry_l2,
sam_entry_l3, sgs_entry_l3,
sam_send_l1 , sam_send_l2, sam_send_l3,
sam_receive_l2, sam_receive_l3,

 sgs_send_l1, sgs_send_l2, sgs_send_l3,
sgs_receive_l1, sgs_receive_l2, sgs_receive_l3,
sgs_receive_l4, sgs_receive_l5,
sgs_assert_l1, sgs_assert_l2, sgs_assert_l3,
sgs_setbval , sgs_setstatval,
sgs_sets_l1, sgs_sets_l2, sgs_setstatval_noack,
sgs_sendgs_l1 , sgs_sendgs_l2, sgs_sendgs_l3,
sgs_failon_l1, sgs_failon_l2, sgs_failon_l3,
sam_sendinaccept_l1, sam_sendinaccept_l2,
sr_end;

 init sr_init;
 trans

sr_init -> sr_main {
assign

sr_bval := 0,
sr_statval := 0;

},
 // operation dispacher
 sr_main -> sam_entry_l1 {
 },
 sr_main -> sgs_entry_l1 {
 },

 ///////////////////
 // ACCEPT
 ///////////////////

// receive in SendMessage
sam_entry_l1 -> sam_entry_l2 {

 sync sam_call?;
 },
 sam_entry_l2 -> sam_entry_l3 {
 sync sam_parm!;
 },
 // assert true -- simplifyed!
 sam_entry_l3 -> sam_send_l1 {

},
// send m, bval in transline.sendMessage
sam_send_l1 -> sam_send_l2 {

sync tsm_call!;
assign in_tsm_m := in_sam_m, in_tsm_b := sr_bval;

123

},
sam_send_l2 -> sam_send_l3 {

sync tsm_parm?;
},
// receive in transline.sendMessage
sam_send_l3 -> sam_receive_l2 {

sync tsm_call?;
},
sam_receive_l2 -> sam_receive_l3 {

sync tsm_parm!;
},
sam_receive_l3 -> sam_sendinaccept_l1 {

sync sam_call!;
},
sam_sendinaccept_l1 -> sam_sendinaccept_l2 {

sync sam_parm?;
},
sam_sendinaccept_l2 -> sr_end {
},

////////////////////
// GETSTATUS
////////////////////

// receive in getMessage
sgs_entry_l1 -> sgs_entry_l2 {

 sync sgs_call?;
 },
 sgs_entry_l2 -> sgs_entry_l3 {
 sync sgs_parm!;
 },

sgs_entry_l3 -> sgs_send_l1 {
},
// send in ackine.getAcknowledge
sgs_send_l1 -> sgs_send_l2 {

 sync aga_call!;
 },
 sgs_send_l2 -> sgs_send_l3 {
 sync aga_parm?;
 },

sgs_send_l3 -> sgs_receive_l1 {
},
// receive b in ackline.getAcknowledge
sgs_receive_l1 -> sgs_receive_l2 {

 sync aga_call?;
 },
 sgs_receive_l2 -> sgs_receive_l3 {
 sync aga_parm!;

assign
local_sgs_b := out_aga_b,
local_sgs_recover := out_aga_recover;

 },
// Its OK!
sgs_receive_l3 -> sgs_receive_l4 {

guard local_sgs_recover == 0; // NOERROR
},
// Gotta recover!
sgs_receive_l3 -> sgs_receive_l5 {

guard local_sgs_recover == 1;
},
sgs_receive_l5 -> sgs_failon_l1 {
},
// assert b = bval
sgs_receive_l4 -> sgs_assert_l1 {
},
// good !
sgs_assert_l1 -> sgs_assert_l2 {

guard local_sgs_b == sr_bval;
},
sgs_assert_l1 -> sgs_assert_l3 {

guard local_sgs_b > sr_bval;
},
sgs_assert_l1 -> sgs_assert_l3 {

guard local_sgs_b < sr_bval;
},
// set bval << not bval
sgs_assert_l2 -> sgs_setbval {

assign sr_bval := 1 - sr_bval;
},
// set statval << SENTANDACK
sgs_setbval -> sgs_setstatval {

assign sr_statval := 2; // SENTANDACK
},
sgs_setstatval -> sgs_sets_l1 {
},
// alt part ...
// set statval << SENTNOACK
sgs_assert_l3 -> sgs_setstatval_noack {

assign sr_statval := 1; // SENTNOACK
},
sgs_setstatval_noack -> sgs_sets_l1 {
},
// set s << statval
sgs_sets_l1 -> sgs_sets_l2 {

assign local_sgs_s := sr_statval;
},
// send s in getStatus
sgs_sets_l2 -> sgs_sendgs_l1 {
},
sgs_sendgs_l1 -> sgs_sendgs_l2 {

 sync sgs_call!;
assign out_sgs_s := local_sgs_s;

 },
 sgs_sendgs_l2 -> sgs_sendgs_l3 {
 sync sgs_parm?;
 },

// goto end:
sgs_sendgs_l3 -> sr_end {

124

},
// alt
// failon getStatus
sgs_failon_l1 -> sgs_failon_l2 {

 sync sgs_call!;
assign out_sgs_recover := 1; // The system is in failure state!

 },
 sgs_failon_l2 -> sgs_failon_l3 {
 sync sgs_parm?;

},
sgs_failon_l3 -> sr_end {
},
// Loopback
sr_end -> sr_main {
};

}

///
// TRANSLINE object module //
///

process transline {
 state

tl_init,
tl_main, tl_end,

 tsm_entry_l1, trm_entry_l1,
 tsm_entry_l2, tsm_entry_l3,
 trm_entry_l2, trm_entry_l3,

tsm_or_l1, tsm_or_l2,
 tsm_setlstatus1_l1, tsm_setlstatus2_l1, tsm_setlstatus2_l2,

tsm_setBuffMsg_l1,
tsm_setBuffBVal_l1, tsm_setBuffBVal_l2,
tsm_failon_l1, tsm_failon_l2, tsm_failon_l3,

 tsm_send_l1, tsm_send_l2, tsm_send_l3,
trm_assert_l1, trm_assert_l2, trm_assert_l3,

 trm_setm_l1, trm_setb_l1, trm_setb_l2,
 trm_send_l1, trm_send_l2, trm_send_l3,

trm_failon_l1, trm_failon_l2, trm_failon_l3,
tr_end;

 init tl_init;
 trans

tl_init -> tl_main {
assign

tl_buffBVal := 0,
tl_lstatus := 1;

},
 // operation dispacher
 tl_main -> tsm_entry_l1 {
 },
 tl_main -> trm_entry_l1 {
 },

 ///////////////////
 // SENDMESSAGE
 ///////////////////

// receive in SendMessage
tsm_entry_l1 -> tsm_entry_l2 {

 sync tsm_call?;
 },
 tsm_entry_l2 -> tsm_entry_l3 {
 sync tsm_parm!;
 },
 // assert true -- simplifyed!
 // OR
 tsm_entry_l3 -> tsm_or_l1 {

},
// -- To member 1

 tsm_or_l1 -> tsm_setlstatus1_l1 {
},
// -- To member 2

 tsm_or_l1 -> tsm_setlstatus2_l1 {
},
//

 // OR
// FirstMember

 //
 // set lstatus << STATGOOD
 tsm_setlstatus1_l1 -> tsm_setBuffMsg_l1 {
 assign tl_lstatus := 1; // 1 = STATGOOD
 },

// set buffMessage << m
 tsm_setBuffMsg_l1 -> tsm_setBuffBVal_l1 {
 assign tl_buffMsg := in_tsm_m;
 },
 // set buffBval << m
 tsm_setBuffBVal_l1 -> tsm_setBuffBVal_l2 {
 assign tl_buffBVal := in_tsm_b;
 },
 tsm_setBuffBVal_l2 -> tsm_or_l2 {
 },
 //
 // OR
 // Second Member
 //
 // set lstatus << STATERROR
 tsm_setlstatus2_l1 -> tsm_setlstatus2_l2 {

 assign tl_lstatus := 0; // 0 = STATERROR
},
tsm_setlstatus2_l2 -> tsm_or_l2 {
},
//
tsm_or_l2 -> tsm_send_l1 {
},

125

 // send in SendMessage
 tsm_send_l1 -> tsm_send_l2 {
 sync tsm_call!;

 assign out_tsm_recover := 0;
 },
 tsm_send_l2 -> tsm_send_l3 {
 sync tsm_parm?;
 },
 tsm_send_l3 -> tl_end {
 },

////////////////////
// GETMESSAGE
////////////////////

// receive in getMessage
trm_entry_l1 -> trm_entry_l2 {

 sync trm_call?;
 },
 trm_entry_l2 -> trm_entry_l3 {
 sync trm_parm!;
 },

trm_entry_l3 -> trm_assert_l1 {
},
// assert lstatus = STATGOOD
trm_assert_l1 -> trm_assert_l2 {

guard tl_lstatus == 1; // STATGOOD
},
trm_assert_l1 -> trm_assert_l3 {

guard tl_lstatus < 1; //
},
// Its ok!
trm_assert_l2 -> trm_setm_l1 {
},
// It fails
trm_assert_l3 -> trm_failon_l1 {
},

 // set m << buffMessage
 trm_setm_l1 -> trm_setb_l1 {
 assign local_trm_m := tl_buffMsg;
 },
 // set b << buffBval
 trm_setb_l1 -> trm_setb_l2 {
 assign local_trm_b := tl_buffBVal;
 },

trm_setb_l2 -> trm_send_l1 {
 },

// send in SendMessage
 trm_send_l1 -> trm_send_l2 {
 sync trm_call!;

 assign out_trm_m := local_trm_m,
 out_trm_b := local_trm_b,
 out_trm_recover := 0;

 },
 trm_send_l2 -> trm_send_l3 {
 sync trm_parm?;
 },
 trm_send_l3 -> tr_end {
 },

// failon receiveMessage
 trm_failon_l1 -> trm_failon_l2 {
 sync trm_call!;

assign out_trm_recover := 1;
},

 trm_failon_l2 -> trm_failon_l3 {
 sync trm_parm?;
 },
 trm_failon_l3 -> tr_end {
 },

tr_end -> tl_end {
},
// LoopBack
tl_end -> tl_main {
};

}

///
// ACKLINE object module //
///

process ackline {
 state

al_init,
al_main, al_end,

 asa_entry_l1, aga_entry_l1,
 asa_entry_l2, asa_entry_l3,

aga_entry_l2, aga_entry_l3,
asa_or_l1, asa_or_l2,

 asa_setlstatus1_l1, asa_setlstatus2_l1, asa_setlstatus2_l2,
asa_setBuffMsg_l1,
asa_setBuffBVal_l1, asa_setBuffBVal_l2,
asa_failon_l1, asa_failon_l2, asa_failon_l3,

 asa_send_l1, asa_send_l2, asa_send_l3,
aga_assert_l1, aga_assert_l2, aga_assert_l3,

 aga_setm_l1, aga_setb_l1, aga_setb_l2,
 aga_send_l1, aga_send_l2, aga_send_l3,

aga_failon_l1, aga_failon_l2, aga_failon_l3,
asa_end;

 init al_init;
 trans

al_init -> al_main {
assign

al_buffBval := 0,
al_lstatus := 1;

126

},
 // operation dispacher
 al_main -> asa_entry_l1 {
 },
 al_main -> aga_entry_l1 {
 },

 ////////////////////////
 // SENDACKNOWLEDGE
 ////////////////////////

// receive in SendAcknowledge
asa_entry_l1 -> asa_entry_l2 {

 sync asa_call?;
 },
 asa_entry_l2 -> asa_entry_l3 {
 sync asa_parm!;
 },
 // assert true -- simplifyed!
 // OR
 asa_entry_l3 -> asa_or_l1 {

},
// -- To member 1

 asa_or_l1 -> asa_setlstatus1_l1 {
},
// -- To member 2

 asa_or_l1 -> asa_setlstatus2_l1 {
},
//

 // OR
// FirstMember

 //
 // set lstatus << STATGOOD
 asa_setlstatus1_l1 -> asa_setBuffBVal_l1 {
 assign al_lstatus := 1; // 1 = STATGOOD
 },
 // set buffBval << b
 asa_setBuffBVal_l1 -> asa_setBuffBVal_l2 {
 assign al_buffBval := in_asa_b;
 },
 asa_setBuffBVal_l2 -> asa_or_l2 {
 },
 //
 // OR
 // Second Member
 //
 // set lstatus << STATERROR
 asa_setlstatus2_l1 -> asa_setlstatus2_l2 {

 assign al_lstatus := 0; // 0 = STATERROR
},
asa_setlstatus2_l2 -> asa_or_l2 {
},
//
asa_or_l2 -> asa_send_l1 {
},

 // send in SendAcknowledge
 asa_send_l1 -> asa_send_l2 {
 sync asa_call!;

 assign out_asa_recover := 0;
 },
 asa_send_l2 -> asa_send_l3 {
 sync asa_parm?;
 },
 asa_send_l3 -> asa_end {

},
asa_end -> al_end {

 },

////////////////////
// GETACKNOWLEDGE
////////////////////

// receive in getMessage
aga_entry_l1 -> aga_entry_l2 {

 sync aga_call?;
 },
 aga_entry_l2 -> aga_entry_l3 {
 sync aga_parm!;
 },

aga_entry_l3 -> aga_assert_l1 {
},
// assert lstatus = STATGOOD
aga_assert_l1 -> aga_assert_l2 {

guard al_lstatus == 1; // STATGOOD
},
aga_assert_l1 -> aga_assert_l3 {

guard al_lstatus < 1; // not good
},
// Its ok!
aga_assert_l2 -> aga_setb_l1 {
},
// It fails
aga_assert_l3 -> aga_failon_l1 {
},

 // set b << buffBval
 aga_setb_l1 -> aga_setb_l2 {
 assign local_aga_b := al_buffBval;
 },
 aga_setb_l2 -> aga_send_l1 {
 },

// send in GetAcknowledge
 aga_send_l1 -> aga_send_l2 {
 sync aga_call!;

 assign out_aga_b := local_aga_b,
 out_aga_recover := 0;

 },

127

 aga_send_l2 -> aga_send_l3 {
 sync aga_parm?;
 },
 aga_send_l3 -> al_end {
 },

// failon getAcknowledge
 aga_failon_l1 -> aga_failon_l2 {
 sync aga_call!;

assign out_aga_recover := 1;
},

 aga_failon_l2 -> aga_failon_l3 {
 sync aga_parm?;
 },
 aga_failon_l3 -> al_end {
 },

// LoopBack
al_end -> al_main {
};

}

///
// RECEIVER object module //
///

process receiver {
 state

rr_init,
rr_main,

 rgs_entry_l1, rdr_entry_l1,
rgs_entry_l2, rdr_entry_l2,
rgs_entry_l3, rdr_entry_l3,
rgs_send_l1 , rgs_send_l2, rgs_send_l3,
rgs_receive_l2, rgs_receive_l3,

 rdr_send_l1, rdr_send_l2, rdr_send_l3,
rdr_receive_l1, rdr_receive_l2, rdr_receive_l3,
rdr_receive_l4, rdr_receive_l5,
rdr_assert_l1, rdr_assert_l2, rdr_assert_l3,
rdr_setbval , rdr_setstatval,
rdr_sendm_l1, rdr_sendm_l2, rdr_sendm_l3, rdr_setstatval_samemsg,
rdr_sendb_l2 , rdr_sendb_l3, rdr_setmsgparm,
rdr_failon_l1, rdr_failon_l2, rdr_failon_l3,
rgs_sets,
rr_end;

 init rr_init;
 trans

rr_init -> rr_main {
assign

rr_statval := 0,
rr_bval := 1;

},
 // operation dispacher
 rr_main -> rgs_entry_l1 {
 },
 rr_main -> rdr_entry_l1 {
 },

////////////////////
// DELIVER
////////////////////

// receive in deliver
rdr_entry_l1 -> rdr_entry_l2 {

 sync rdr_call?;
 },
 rdr_entry_l2 -> rdr_entry_l3 {
 sync rdr_parm!;
 },

rdr_entry_l3 -> rdr_send_l1 {
},
// send in transline.receiveMessage
rdr_send_l1 -> rdr_send_l2 {

 sync trm_call!;
 },
 rdr_send_l2 -> rdr_send_l3 {
 sync trm_parm?;
 },

rdr_send_l3 -> rdr_receive_l1 {
},
// receive msgparm, bparm in transline.receiveMessage
rdr_receive_l1 -> rdr_receive_l2 {

 sync trm_call?;
 },
 rdr_receive_l2 -> rdr_receive_l3 {
 sync trm_parm!;

assign
local_rdr_msgparm := out_trm_m,
local_rdr_bparm := out_trm_b,
local_rdr_recover := out_trm_recover;

 },
// Its OK!
rdr_receive_l3 -> rdr_receive_l4 {

guard local_rdr_recover == 0; // NOERROR
},
// Gotta recover!
rdr_receive_l3 -> rdr_receive_l5 {

guard local_rdr_recover == 1;
},
rdr_receive_l5 -> rdr_failon_l1 {
},
// assert bparm =/= bval
rdr_receive_l4 -> rdr_assert_l1 {
},
// Bad !
rdr_assert_l1 -> rdr_assert_l2 {

guard local_rdr_bparm == rr_bval;

128

},
// Good !
rdr_assert_l1 -> rdr_assert_l3 {

guard local_rdr_bparm > rr_bval;
},
rdr_assert_l1 -> rdr_assert_l3 {

guard local_rdr_bparm < rr_bval;
},
// send b in ackline.sendAcknowledge
rdr_assert_l3 -> rdr_sendb_l2 {

sync asa_call!;
assign in_asa_b := local_rdr_bparm;

},
rdr_sendb_l2 -> rdr_sendb_l3 {

sync asa_parm?;
},
// set m << msgparm
rdr_sendb_l3 -> rdr_setmsgparm {

assign local_rdr_m := local_rdr_msgparm;
},
// set bval << bparm
rdr_setmsgparm -> rdr_setbval {

assign rr_bval := local_rdr_bparm;
},
// set statval << NEWMESSAGE
rdr_setbval -> rdr_setstatval {

assign rr_statval := 1; // NEWMESSAGE
},
rdr_setstatval -> rdr_sendm_l1 {
},
// alt part ...
// set statval << SAMEMESSAGE
rdr_assert_l2 -> rdr_setstatval_samemsg {

assign rr_statval := 2; // SAMEMESSAGE
},
rdr_setstatval_samemsg -> rdr_sendm_l1 {
},
// send m in deliver
rdr_sendm_l1 -> rdr_sendm_l2 {
 sync rdr_call!;

assign out_rdr_m := local_rdr_m;
 },
 rdr_sendm_l2 -> rdr_sendm_l3 {
 sync rdr_parm?;
 },

// goto end:
rdr_sendm_l3 -> rr_end {
},
// alt
// failon deliver
rdr_failon_l1 -> rdr_failon_l2 {

 sync rdr_call!;
assign out_rdr_recover := 1; // The system is in failure state!

 },
 rdr_failon_l2 -> rdr_failon_l3 {
 sync rdr_parm?;

},
rdr_failon_l3 -> rr_end {
},

///////////////////
 // GETSTATUS
 ///////////////////

// receive in SendMessage
rgs_entry_l1 -> rgs_entry_l2 {

 sync rgs_call?;
 },
 rgs_entry_l2 -> rgs_entry_l3 {
 sync rgs_parm!;
 },
 // assert true -- simplifyed!
 // set s << statval

rgs_entry_l3 -> rgs_sets {
assign local_rgs_s := rr_statval;

},
 rgs_sets -> rgs_send_l1 {
 },

// send s in getStatus
rgs_send_l1 -> rgs_send_l2 {

sync rgs_call!;
assign out_rgs_s := local_rgs_s;

},
rgs_send_l2 -> rgs_send_l3 {

sync rgs_parm?;
},
rgs_send_l3 -> rr_end {
},
// Loopback
rr_end -> rr_main {
};

}

129

Appendix G – UPPAAL .ta specification of test
automata and properties
//
// Test automata for the verification of progress properties
//

///
// PROGRAM //
// call ackline.sendAcknowledge(0); //
// call ackline.getAcknowledge(out_aga_b, out_aga_recover) //
///

process call_ackline_send0_get {
state

call_l1, call_l2, call_l3, call_l4, transmit0,
call_l6, call_l7, call_l8, call_performed, call_bad;

init
call_l1;

trans
call_l1 -> call_l2 {

sync asa_call!;
},
call_l2 -> call_l3 {

sync asa_parm?;
assign

in_asa_b := 0;
},
call_l3 -> call_l4 {

sync asa_call?;
},
call_l4 -> transmit0 {

sync asa_parm!;
},
transmit0 -> call_l6 {

sync aga_call!;
},
call_l6 -> call_l7 {

sync aga_parm?;
},
call_l7 -> call_l8 {

sync aga_call?;
},
call_l8 -> call_performed {

sync aga_parm!;
//assign

//al_recover_status := out_aga_recover;
},
call_performed -> call_bad {

guard out_aga_b > 0, // ack =/= ack2 c/ ack=0
al_lstatus == 1; // ackline.lStatus == STATGOOD

};
}

///
// PROGRAM //
// call ackline.sendAcknowledge(1); //
// call ackline.getAcknowledge(out_aga_b, out_aga_recover) //
///

process call_ackline_send1_get {
state

call_l1, call_l2, call_l3, call_l4, transmit0,
call_l6, call_l7, call_l8, call_performed, call_bad;

init
call_l1;

trans
call_l1 -> call_l2 {

sync asa_call!;
},
call_l2 -> call_l3 {

sync asa_parm?;
assign

in_asa_b := 1;
},
call_l3 -> call_l4 {

sync asa_call?;
},
call_l4 -> transmit0 {

sync asa_parm!;
},
transmit0 -> call_l6 {

sync aga_call!;
},
call_l6 -> call_l7 {

sync aga_parm?;
},
call_l7 -> call_l8 {

sync aga_call?;
},
call_l8 -> call_performed {

sync aga_parm!;
//assign

//al_recover_status := out_aga_recover;
},
call_performed -> call_bad {

guard out_aga_b < 1, // ack =/= ack2 c/ ack=1
al_lstatus == 1; // ackline.lStatus == STATGOOD

};

130

}

//
// PROPERTIES
// E<>(call_ackline_send0_get.call_performed and
// (out_aga_recover==1))
// E<>(call_ackline_send1_get.call_performed and
// (out_aga_recover==1))
//

//
// PROPERTIES
// E<>(call_ackline_send0_get.call_performed)
// E<>(call_ackline_send1_get.call_performed
//
// A[](not call_ackline_send0_get.call_bad)
// A[](not call_ackline_send1_get.call_bad)
//

///
// PROGRAM //
// call sender.accept(1); //
// call receiver.deliver(out_rdr_m, out_rdr_recover); //
// call receiver.getStatus(out_sgs_s) //
///

process call_accept_deliver_getstatus {
state

call_l1, call_l2, call_l3, call_l4, call_l5,
call_l6, call_l7, call_l8, call_l9, call_l10,
call_l11, call_l12, call_performed, call_bad;

init
call_l1;

trans
call_l1 -> call_l2 {

sync sam_call!;
},
call_l2 -> call_l3 {

sync sam_parm?;
assign

in_sam_m := 1;
},
call_l3 -> call_l4 {

sync sam_call?;
},
call_l4 -> call_l5 {

sync sam_parm!;
},
call_l5 -> call_l6 {

sync rdr_call!;
},
call_l6 -> call_l7 {

sync rdr_parm?;
},
call_l7 -> call_l8 {

sync rdr_call?;
},
call_l8 -> call_l9 {

sync rdr_parm!;
},
call_l9 -> call_l10 {

sync rgs_call!;
},
call_l10 -> call_l11 {

sync rgs_parm?;
},
call_l11 -> call_l12 {

sync rgs_call?;
},
call_l12 -> call_performed {

sync rgs_parm!;
},
call_performed -> call_bad {

 guard
 out_rgs_s < 1, // s=/=NEWMESSAGE <
 tl_lstatus == 1; // tl_lStatus=STATGOOD

},
 call_performed -> call_bad {
 guard
 out_rgs_s > 1, // s=/=NEWMESSAGE >
 tl_lstatus == 1; // tl_lStatus=STATGOOD

};
}

//
// PROPERTIES
// E<>(call_accept_deliver_getstatus.call_performed)
// A[](not call_accept_deliver_getstatus.call_bad)
//

///
// PROGRAM //
// call sender.accept(1); //
// call receiver.deliver(out_rdr_m, out_rdr_recover); //
// call sender.getStatus(out_sgs_s) //
///

process call_send_deliver_acknowledge {
state

call_l1, call_l2, call_l3, call_l4, call_l5,
call_l6, call_l7, call_l8, call_l9, call_l10,
call_l11, call_l12, call_performed, call_bad;

init
call_l1;

trans
call_l1 -> call_l2 {

sync sam_call!;

131

},
call_l2 -> call_l3 {

sync sam_parm?;
assign

in_sam_m := 1;
},
call_l3 -> call_l4 {

sync sam_call?;
},
call_l4 -> call_l5 {

sync sam_parm!;
},
call_l5 -> call_l6 {

sync rdr_call!;
},
call_l6 -> call_l7 {

sync rdr_parm?;
},
call_l7 -> call_l8 {

sync rdr_call?;
},
call_l8 -> call_l9 {

sync rdr_parm!;
},
call_l9 -> call_l10 {

sync sgs_call!;
},
call_l10 -> call_l11 {

sync sgs_parm?;
},
call_l11 -> call_l12 {

sync sgs_call?;
},
call_l12 -> call_performed {

sync sgs_parm!;
},
call_performed -> call_bad {

 guard
 out_sgs_s < 1, // s=/= SENTNOACK <
 al_lstatus == 1, // al_lStatus=STATGOOD
 tl_lstatus == 1; // tl_lStatus=STATGOOD

},
 call_performed -> call_bad {
 guard
 out_sgs_s > 1, // s=/= SENTNOACK >
 al_lstatus == 1, // al_lStatus=STATGOOD
 tl_lstatus == 1; // tl_lStatus=STATGOOD ;
}
//
// PROPERTIES
// E<>(call_send_deliver_acknowledge.call_performed)
// A[](not call_send_deliver_acknowledge.call_bad)
//

system sender, receiver, transline, ackline, call_send_deliver_acknowledge;

