
The case for a Systematic Development of
Building Automation Systems

Paulo Carreira
IST and INESC-ID Lisboa

Taguspark Campus
Porto Salvo, Portugal

Email: paulo.carreira@ist.utl.pt

Vasco Amaral
CITI, Departamento de Informática,
Faculdade de Ciencias e Tecnologia

Universidade Nova de Lisboa, Portugal
Email: vasco.amaral@di.fct.unl.pt

Bruno Barroca
CITI, Departamento de Informática,
Faculdade de Ciencias e Tecnologia

Universidade Nova de Lisboa, Portugal
Email: bruno.barroca@di.fct.unl.pt

Abstract—It is widely acknowledged that Automated Demand
Response (ADR) is a key factor for the success of the Smart
Grid. However, for ADR to be realized to its full extent a
new generation of Building Automation Systems (BASs) will
have to be developed and the existing upgraded to leverage
dynamic tariff plans and curtailment calls sent from the grid. It
is well known that developing BASs is an involved matter, mostly
because application software is costly to develop and maintain.
In practice, this state of affairs is slowing the rise of innovative
solutions for ADR.

In recent years, software engineering practices such as Model-
Driven Engineering have been proposed as a means to alleviate
the problem of developing BASs, which we believe should be
presented to the Smart Grid community. This article presents
the main challenges of creating software for BASs (from a mod-
elling perspective), overviews the state-of-the-art and presents an
outlook on possible model-driven engineering techniques that can
be effectively applied to significantly improve the development of
BASs in the near future.

Index Terms—Model Driven Development; Domain Specific
Modeling Language; Smart Grid; Building Automation

I. INTRODUCTION

A Smart Grid (SG) is a computerized power grid that is
flexible enough to coordinate consumption with production
in real-time while accommodating highly intermittent power
sources like renewable energy, micro-generation, as well as re-
sponding to highly variable demand posed by the introduction
of plug-in electric vehicles [1]. This flexibility however, can
be hard to achieve in practice. The solution seems to lie in
Demand Response (DR), which consists of eliciting a greater
participation on the demand side by exposing consumers to
varying energy prices dependent both on production costs and
consumption needs. The premise is that in face of more precise
price signals customers will act with economic rationality [2]
to the incentive and engage in (i) performing demand shifting,
transferring their electric loads from high price periods to low
price off-peak periods or, otherwise (ii) in performing demand
reduction by cutting their loads or performing self-generation
whenever it makes economic sense to do so. However, DR
is being hindered by the fact that, apart from a few large
industrial consumers, most consumers do not actually react
to price variations [3].

A Smart Building (SB) is an automated building that
employs a number of technologies aiming at improving user

comfort and reduce different types of waste, in particular
in reducing energy consumption. The core of a SB is the
Building Automation System (BAS), a digital network of
electrical devices and appliances that may (i) respond more
adequately to the requirements of the user in a given instant,
for example automatically adjusting the room temperature to
the user’s desire or, (ii) reducing of energy consumption by,
e.g. switching loads based on occupancy or by performing
set-point relaxation among other techniques.

Automated DR (ADR) systems assist consumers in per-
forming DR by freeing them from the concerns of performing
demand shifting and demand reduction by controlling electric
loads automatically, and in price-responsive fashion [4], [3],
[5]. These systems receive tariff plans and curtailment calls
from the grid and send commands to the devices. Currently
available solutions for ADR are still very ad-hoc in nature,
i.e., they are highly dependent on the building and on its
particular equipment, the type of requests sent by the grid.
The response of the system and most idiosyncrasies of the
automation hardware being controlled are actually hard-coded
in the software. The net result are solutions that are expensive
to adapt to new buildings and lack the agility to evolve to
accommodate new requirements.

In order for an ADR systems to perform optimally, it needs
to access detailed information about the status of the devices,
information obtained from sensors regarding the status of the
building, and updated information regarding consumer require-
ments, which can be highly unpredictable. Creating such an
ADR system presents significant technical challenges require
a close cooperation of the Software Engineering, Automation
and Smart Grid communities. Only then it will be implemented
in a wide scale.

We foresee that the solution for ADR lies in a Building
Automation System (BAS) that can monitor the building and
control electrical loads to provide an optimal and automated
trade-off between two conflicting end-user requirements: user
comfort and energy prices [6]. In fact, it is expected that in
the coming years, BASs will play an important role in the
realization of the Smart Grid [7] both in (i) lowering the
energetic footprint of buildings—by intelligently controlling
electric devices based on various factors such as occupancy
or weather conditions,—and in (ii) promoting a more rational



use of energy by automatically scheduling devices or lower the
consumption periods. The outlook on a generalised installation
of BASs portrays significant social and economical impact [8],
[9]. Even international organisations and governments are
endorsing their adoption [10], [9], [11].

However, as we will see further, BASs are still expensive,
scaring away many potential adopters and, in practice, ham-
pering their widespread adoption [12]. The main factors that
contribute to the high costs of development and maintenance of
BAS are (i) the heterogeneity of communication protocols and
devices characteristics, (ii) the lack of a sound tool support to
deal with the complexities of the design and implementation of
a BAS and (iii) lack of tools that empower the non-technical
user to reconfigure, in some extent, the system behavior to
meet his needs (i.e.. end-user requirements).

Meanwhile, the scientific community in software engineer-
ing research, has found several solutions for dealing with the
inherent complexity of software systems and their develop-
ment. Ranging from agile development processes to model-
driven development approaches, these solutions aim to tackle
the complexity of heterogeneous software systems (where we
can include also BASs) by capturing the recurring patterns
in system development for a particular domain in order to
systematize and streamline the software’s development main-
tenance and configuration activities. These patterns can be
expressed and conceptually captured by means of Domain
Specific Languages (DSLs) which have the most appropriate
level of abstraction. Using DSLs, not only the system designers
can create affordable high quality BASs, but also the end-users
can configure their systems in a flexible and usable way.

In this paper we present on overview of the main challenges
of creating software for building automation and present an
overview of the recent developments in the field of Model-
Driven Engineering for creating BASs. Our manuscript is or-
ganized as follows: in Section II we present the background of
the Home and Building Automation domains and present their
main shortcoming and challenges in terms of modeling. Then,
in Section III, we overview the related work in terms of MDE
for solutions for creating BASs. In Section IV, we describe a
set of models and their respective relationships, resulting from
a preliminary analysis on the BAS’s development domain.
Finally, in Section V we present a short summary and main
conclusions.

II. BACKGROUND

A. Heterogeneity

Building Automation (BA) is a domain where many differ-
ent industry standards have been defined for device commu-
nication such as: BACNet, EIB / KNX, LON or Modbus, in
addition to many other proprietary solutions. Unfortunately,
there has been few consensus on reaching an unique standard
on this domain. Also, despite the fact that these platforms dis-
play similar functionalities, they are largely incompatible and
expensive to interface with each other [13], [14]. Integration
of different standards is even discouraged to favor customer
lock-in [15] (due to commercial reasons). It turns out that the

concept of a Smart Building is only fully realized to the extent
of the integration of its devices and subsystems. Integrating
devices of different platforms is frequently desirable since
a device of one platform can be better suited and cheaper
for a particular task. Without appropriate tools, however, this
integration calls for a manifold of detailed knowledge of
hardware and vendor-specific configuration tools that is not
cost effective for the supplier and thus, in practice, integration
is either very limited or not performed at all. Many buildings
already feature a number of sub-systems that can be automat-
ically controlled, such as HVAC, lighting, safety equipment,
among others. Consider the example of using data from the
building security system to turn off lights and reduce cooling
when occupants are not present. Usually these sub-systems
were built and deployed at different points in time during the
life of the building, by distinct suppliers and using different
standards leading to an heterogeneous BAS. Currently, each
of these sub-systems often operate isolated, because each
supplier is specialized in one technology, while lacking the
technical knowledge, and the commercial motivation to be of
assistance on any another technology. Conceivably, if a re-
usable and technology neutral description of BASs existed, as
buildings undergo changes (extensions and reconfigurations),
any supplier could (virtually) perform maintenance to the
existing BAS or integrate another solution in the existing BAS,
leading to an effective cost reduction. However, the current
industry practice is still far from this vision mainly because
there is still no agreed standard to describe the BAS in a
technology-neutral way.

B. Lack of sophisticated behavior

Another obstacle to the development and maintenance of
BASs is that implementing new behavior, i.e. new control logic
to coordinate BAS’s devices, is quite challenging [16], [17].
The development of new application software for embedded
devices as long been known to require significant technical
expertise. In BAS, the control logic ends up scattered through
multiple devices, specified as embeddable code using more
than one language, which along with proprietary configuration
files, becomes often too complex to manage and understand.
As a result of this poor engineering practice, changes are
costly and error-prone, and to be economically sound, many
BASs’ suppliers are forced to clip many essential features in
order to cope with their intrinsic complexity. Most automated
buildings arguably perform any kind of truly intelligent control
beyond set-point maintenance, daylight control and schedule
based actuation. Moreover, newly added functionalities often
interfere with each other, or display conflicting requirements
(e.g. saving energy conflicts with maximizing user comfort or
ensuring the correctness of control logic), and hence of the
system as whole, becomes challenging. Finally, if we need
to integrate existing BASs with other facilities and enterprise
management software packages, the problem becomes unman-
ageable, given the breath and complexity of the behaviour that
those BAS are required to display in this situation.



C. Insufficient user empowerment

In BASs, each sensor or actuator contains an electronic
interface that is responsible for, respectively, sensing electric
signals and sending the appropriate messages into the network
or, conversely reading data from the network and generat-
ing the appropriate electric signals. Each of these network
interfaces is known as a node. Nodes send messages into
the network that are received by other nodes, thus forming
a distributed network of devices running embedded software
applications.

In general, BAS do not considerably improve the comfort
of the building occupants, or live up to the expectations of
increased flexibility. BASs allow few customizations beyond
set-point adjustment, scenario configurations and definition of
schedules. Once the system is installed and commissioned, it
presents a fixed set of functionalities to the occupants of that
space. Any customization of both the structure (new devices)
and their behaviour, requires the intervention of the BAS
supplier to recommission the whole BAS configuration. In
practice, both occupants and the building owner are unable
to effectively take full control of their BAS.

Moreover, once installed and commissioned, the cost of
upgrade of a BAS is often very high. These systems cannot be
upgraded and easily connected to one another (at least in the
same way as the other modern consumer-level electronic de-
vices). Changing the behavior of the system or upgrading it by
adding new devices requires devices to be re-commissioned.
Re-commissioning can only be undertaken by a specialist with
the aid of tools specific to each fieldbus technology. In current
practice, there is no simple solution for the owner of a Smart
Home to bring in a new smart electronic device and integrate
it with the existing automation system.

III. CURRENT MODELS AND SOLUTIONS

Streamlining the development of Building Automation Sys-
tems is a complex and pervasive issue [16] that has been
targeted by computer scientists as well as industry consortia
through standards, development tools and languages. However,
as we will try to make clear, these initiatives have targeted
specific problems, resulted in a number of mostly isolated
solutions. The reasons for this state of affairs are multiple. On
the one hand, companies that develop automation hardware
see few economic benefits in comming toghether to develop
a unified methodology. On the other hand, and perhaps more
importantly, creating all-encompassing, principled and sound
methodologies for developing BASs have been hampered by
the highly heterogeneous nature of the problem, which requires
appropriate conceptual tools.

One promising solution to solve this issue lies in the
concept of Domain Specific Modeling (DSM), which as been
gaining momentum in the Computer Science community [18].
Domain models, or models, cater several benefits such as
enabling reuse—we can build libraries of models; enabling
rapid prototyping—components can be automatically built
from models (even from incomplete models); models are at
higher level of abstraction and are easier to appropriate by a

non-expert user; they are nearer to requirements and thus we
can adapt faster to requirements. Models can be analyzed for
consistency and the feed-back can be given to the user in a
meaningful fashion.

A. Dealing with Software complexity: Models vs. Complexity

In its essence, DSM’s goal is to tackle software/information
and hardware/physical systems’ complexity by modelling ev-
erything explicitly, at the most appropriate level(s) of abstrac-
tion using the most appropriate formalism(s) and simulating or
deriving the target systems automatically from those models.
With appropriate and simple (but not simpler) descriptions of
the intended system, it’s complexity can virtually be reduced
to a manageable level, hence unquestionably enhancing the
domain users’ productivity. In order to produce these descrip-
tion models, it is essential to provide precise (but still usable)
modelling formalisms so that they can be used to concisely
expresse both the problems and the solutions using by using
a specialized language, rendering the appropriate terms of the
application domain, known as a Domain Specific Language
(DSLs).

These simple high-level models expressed using these lan-
guages can be automatically translated into lower-level models
that represent the same original information albeit with more
detail. This automatic derivation (or approximation) is again
specified as a transformation model. In our case, lower-level
models are typically represented using languages that are
supported by the target fieldbus implementation platforms.

Recently, the introduction of Language Workbenches has
powered the rapid development of these kinds of DSLs by
providing a relatively inexpensive way of generating editors
and compiler tools for them. The language workbench is
a term coined in 2005 by Fowler to describe a new class
of software development tool, planned to build software
through a rich environment of multiple, integrated DSLs 1.
The underpinning idea of language workbenches is to build a
software system by identifying the various areas of that system
and using (perhaps defining and building) a DSL for each
area. Remarkably, language workbenches also apply DSM by
providing appropriate languages, called meta-models, in order
to enable the software language engineers to describe the
different facets of their new DSLs, and integrate them together
into a coherent whole. According to Fowler, to define DSLs,
the workbench supports:

• Defining the schema for a Semantic Model for the lan-
guage;

• Defining one or more rich editing environments for the
language;

• Defining the behavioural semantics for the language,
through some mix of interpretation and code generation;

In fact, language workbenches are what make these tools
prominent. Developers have been creating DSLs for decades,
but without dedicated comprehensive languages and tools, they

1http://martinfowler.com/bliki/LanguageWorkbench.html



could not break the inherent complexity of building a new lan-
guage. Language workbenches aim at taking this further: some
language workbenches support editing in regular text, others
use projection editors that support structured text that does not
need parsing, or graphical diagrams, or both. Moreover, DSM
combined with development methodologies driven by models
(MDD) has been successfully applied to several industrial
level projects, such as IP Telephony and call processing,
insurance products, or mobile phones [18]. Reasonably the
same concepts can be applied to the development of Building
Automation Systems.

B. Applications of Domain Specific Modeling in Building
Automation

We were looking for DSM solutions that can be applied
to tackle the particular problems identified in BAS’s develop-
ment: heterogeneity, advanced behaviour, and user empow-
erment. Actually, there is some evidence that the BA and
other related domains are gradually putting DSM into practice.
For instance, a domain that draws some similarities with
Building Automation is Industrial Automation (IA). DSM
techniques are used more thoroughly in IA than in BA. In
IA, Programmable Logic Controllers are programed using a
graphical DSL (called Ladder logic) for expressing manufac-
turing control logic. Also here, the goal of using DSLs is to
isolate engineers from the low level details.

Another example are the languages designed for the Au-
tomation Control domain which are quite expressible: they
target aspects such as distribution (dSL [19]) and hierar-
chical abstraction behaviour specifications (Monaco [20]).
For instance Monaco, allows the specification of sequences
of events, handling of asynchronous events, exceptions and
errors, support writing reliable and correct programs that are
easy to maintain and understand.

DSLs can provide simple, intuitive descriptions of the
system. Several DSLs have been proposed for tackling dif-
ferent aspects of home and building automation. Namely
DomoML [21], HomeML for exchanging data about device
placement [22], HomeTL for modeling sequences of actions
in a home environment [23], HAAIS-DSL for decoupling
fiedlbus design from configuration and commissioning for
the development of home automation system [24]. DSL ap-
proaches have also been used in assisted design, i.e., en-
gineering environments that store recurring design patterns
and accelerate the design phase by suggesting the appropriate
device configurations to fulfill a particular requirement [25].

Nevertheless, given this state-of-the-art in DSM, we say that
BAS are still developed using low level languages and tools,
and lacking a principled development methodology (such as
MDD) which can enable a technology independent implemen-
tation of the systems’ requirements. A pertinent example is
the mapping of an on/off output port of a switch sensor of
some platform to the compatible on/off input port on a lamp
actuator of another platform [26], [27], [17]. In this case, it
is not even possible to specify a mapping to a push switch
sensor which only provides the push event. In our view, this

Building Model

User
Model

Policies
Model

Services 
Model

Grid 
Interaction 

Model

Figure 1. Requirements models uses distinct domain models to capture the
high-level behavior of the BAS. At the top, the services model describes the
control services available; then, the user model describes the organization
of the occupants, and finally the grid interaction model, describes how grid
pricing is mapped into energy saving requirements. The policy model, at
the center, brings together all previous models. At the bottom, a building
model specifies the aspects related to the building’s structure and space
characteristics; concepts underlying the upper models.

notion of compatibility is too restrictive and oversimplified
with respect to real world applications. There should a be a
way to create a new adapter that maps push events to on/off
events. The logic of the adapter should be (ideally) platform
neutral, in order to be applied in multiple platforms (e.g. by
translating switch events into on/off events); or composed with
other adapters, in order to create richer and more flexible
adapters. However, there were recently successfull attempts
to introduce MDD in the development of BAS [28], that
are able to explore the modeled similarities between different
BAS, in order to reuse tests. These promissing attempts clearly
demonstrate the potential of both DSM and MDD to reduce
BAS development’s complexity.

IV. REQUIREMENTS AND IMPLEMENTATION MODELS

In this section we overview how the different models can
be used in the development of a BAS. In practice, BASs
can developed using different models, while using a multi-
paradigm approach (also called viewpoints or perspectives),
enabling a collaborative way of development, by promoting
separation of concerns. Each paradigm model can be created
by different users, with different experts using different tools.
And then integrated. The models can be populated by different
domain experts. Part of the models can even be synthesized
from information provided by third-party systems.

We foresee a twofold approach that uses domain models (i)
at the requirements level, and (ii) at the implementation level to
assist the development and maintenance of a particular BAS.
A mapping has to be maintained a between these two levels
of models.

This separation of concerns into two levels has several
advantages. Firstly, requirement models are clearer by only
specifying what is the intended structure and behaviour of
the BAS, i.e., we do not specify how the BAS will ac-
tually work. As a result, the requirements models are no



longer embedded in the implementation, and therefore they
can be used for complex analysis such as completeness,
consistency, and behavioural checking independently of the
implementation. An implementation model can be further
replaced and evolve without the danger of losing important
building related knowledge (frequently embedded in the imple-
mentation/configuration of the system itself). Secondly, these
requirements specifications are developed at a higher level of
abstraction, nearer to the BAS’s end-users, which means that
some models may be developed by an expert who may have
significant knowledge of the intended system regarding the
interactions of the building and its occupants and services but,
nevertheless, has rather little knowledge about the technical
details of the BAS. Moreover, the requirements specification
can be used as a global model to enable the creation of
components that enable applications to interoperate.

As the building evolves and new devices are eventually
installed, these models should be updated accordingly. Once
formalized in the models that we propose, requirements will
display dependency relationships among them together with
the implementation models. This aspect is particularly benefi-
cial since it allows to perform impact analysis in an automated
fashion, and enables the creation of tools to perform what-if
analysis. For example, which spaces will be affected, or which
occupants will be affected, if a service must be changed; or
if a group of occupants has to be merged with another, what
preferences have to be revised; or even which spaces would
be affected if the system forced a certain energy consumption
profile on them. Finally, this model of requirements can be
used to extract useful quantitative metrics for planing purposes.

A. Requirements models

Requirements make explicit the policies and preferences
of groups and individual occupants concerning the how the
services underlying each task can be downgraded to meet a
given energy saving target. They provide a statement (or a
specification of) what the BAS must do (liveness) and prevent
happening (safety). This specification has to be implemented
by the BAS. Some of the entities defined on each of the
presented requirement models have elements that are glued
together in the definition of policies in the policies model
(Figure 1). A task is defined by the occupancy of a space
during a given time interval and requiring a set of services on
that space during its duration. The BAS may use knowledge
about policies and preferences to optimize the building to cater
the services of each task with the lowest amount of energy.
In order to define these preferences, another four models must
be defined: the building model, that defines the spaces, along
with their relationships; the services model which defines
what services are available and how these services can be
downgraded to use less energy; the user model that defines pro-
files and relationships of individual and collective occupants
of the space and finally, the grid interaction model, which
describes how the specific grid pricing policies map to the
energy saving requirements. Next, we describe each of these
models in greater detail.

1) Building Model: The building model represents the
building’s spaces, their characteristics and relationships. In
practice, this model provides a hierarchical decomposition of
the building’s physical structure which can be used by several
building automation applications that are able to reason about
the building. Information regarding physical decomposition
can be used for different purposes such as guiding software
applications in the aggregation of data according to the phys-
ical structure or to predict which spaces can be affected as
a consequence of activating a service on a contiguous space.
Building models also feature information regarding materials,
room orientation and electrical installation. The electrical
installation displays the information regarding placement of
points of control and devices such as luminaries. Building
information is useful in the commissioning process of the
fieldbus network, for example, to determine the configuration
parameters of the daylight harvesting controller, and also to
create sophisticated controls for HVAC that take into account
building envelope parameters.

Querying the Building Models for the structure of the
building is a basic functionality required by most tools used
in building automation such as fieldbus commissioning appli-
cations, Centralised Technical Management tools and Energy
Management Systems. Yet there is no standard to exchange
building modeling information for these tools. Facilities Man-
agement, as a professional activity, has also been facing the
problem of interoperability of different software tools that sup-
port their activity such as Computerized Maintenance Manage-
ment and Computer-Aided Facilities Management tools [29].
The current state of industry practice in this are is to adopt the
Building Information Model, which was originally developed
for Architecture, Engineering and Construction (AEC) as a
standard [30].

2) Services Model: The services model specifies the ser-
vices that can be activated in a given space of the building
during a possibly long period of time. Under this perspective,
services are defined as influencing and being influenced by the
Environment Physical variables, which can be related to light
(luminance, glare), or be related to air (temperature, freshness),
etc. This specification is usually maintained by the System
Engineers during the construction of the BAS.

Another concern expressed in these service models is the
notion of goals that are to be achieved in a particular BAS
by means of tasks defined at the building level. Those can be
understood as having certain requirements in terms of these
services. Variants of the same service are defined that have
different quality and energy consumption requirements. The
relationship among variants of the same service is used to
determine how a service can be downgraded to save energy.

There are several approaches in Requirements Engineering
(RE) for obtaining requirements according to some specific
decomposition criteria (e.g., viewpoints or goals) that we
foresee as potentially interesting to be used as a base for
a modeling languages at the Services level. Goal-Oriented
Requirements Engineering (GORE) like KAOS[31], I*[32] use
goals and tasks to precisely elicit, develop, structure, specify,



analyze and negotiate requirements.
3) User Model: The user model describes the organic of

the occupants and their relationships as well as information
regarding their preferences and space usage constraints. The
organic of the occupants (or user profiles) describes how
groups or individuals relate to each other. These relationships
should be made explicit because they often entail sharing
and inheritance of preferences and constraints. For example,
a department may have a set of policies defined as constraints
that apply to all individuals belonging to a given user profile.
Individuals will inherit the preferences defined for the depart-
ment. However, certain individuals can be part of a special
profile group to which we can override the policies defined in
higher profile levels with new policies. Profile specifications
will also be composed of a set of task definitions which
characterises what are the most common tasks of a given
profile, and what are the expected building resources required
by them. Finally, from a BAS user model we should be able to
extract an occupancy model that details what are the expected
occupancy plan for a given room in the building, based not
only on recorded statistical information, but also on the users’
preferences expressed by means of users’ agendas etc. The
user model can play an active role in the dynamic activation of
energy management policies. The user profile schemas are, of
course, dependent on a particular organization, and therefore it
should be first defined by either the human resources director
or by the Facility Manager. During regular operation of the
BAS, each Occupant will dynamically change this model
according to its needs or preferences.

4) Grid Interaction Model: The grid interaction model
specifies how particular tariff plans and response agreements
are mapped into energy saving requirements. This model
describes a negotiation business process for energy bidding.
This model will be changed and adjusted as the Utility operator
offers new tariff plans on the market. In generic terms, the
output of this process is a schedule of intervals in the form
〈ti, tf , r〉, that associate an energy reduction requirement r
with the interval denoted by the initial and final instants
ti and tf , respectively. The energy reduction requirement
can be a discrete value, commonly understood by all actors,
such as NONE meaning unconstrained or regular operation,
MODERATE for savings with marginal disruption of business
or occupant comfort, MAX for a scenario of maximum achiev-
able savings possibly implying business changes or occupant
discomfort, and CRITICAL to be issued only on situations
of catastrophe that require power usage to be reduced to
an absolute minimum to prevent the shutdown of the power
network.

5) Policies Model: The policies model integrates the pre-
vious four models into describing how services can be down-
graded to meet a given energy saving requirement. This
model consists of a set of declarative rules that denote
degradation constraints defined by the Facility Manager. By
degradation constraints we mean the preferences of the users
when occupying the space to perform a given task (which
requires certain services to be available for that space) dur-

Space Occupant Facilitty Manager System Engineer

Building Model

User
Model

Policies
Model

Services 
Model

Grid 
Interaction 

Model
Automation

Model

Fieldbus
API

uses uses uses uses

uses uses

uses

usesuses

AEC Integrator

Figure 2. Domain Models required to develop BASs—actors involved
with their responsibilities and concept usage relations between models.—
Requirements models are rendered in white and implementation models are
rendered in gray. The Fieldbus API refers to a standard that is displayed in
the diagram for completeness sake.

ing a given time interval (e.g. PolicyRule = Usertask ×
Roomid × Intervaltime ×GridMode =⇒ Service) or define
what are the services available for each user’s task (e.g
PolicyRule = Usertask × Service), thus connecting user’s
tasks with service’s tasks. During the regular operation of
the BAS, these policy rules (along with the users’ occupancy
information) can be used to determine what commands should
be sent to each control system. In the background, these
constraints can be used to determine what services can be
downgraded to meet a given energy saving target on given
space during a given period. With these rules we can derive
traceability links between the different models in order to
perform impact analysis or to verify the consistency between
the user’s comfort requirements and the building’s energy
consumption requirements.

Moreover, the policies model can be used to perform
simulations by applying the same rule on modified space,
user models or energy saving requirements; or to predict the
services that will be needed for each space. This forecast
information can be used to either take advantage of demand-
shifting or to explore joint optimization.

B. Implementation Models

Implementation models are those that will assist in the
development of the BAS. For better understanding the role
of the different models involved and their use in the MDD
framework, we envisage three main actors corresponding to
three phases in the modeling activities. The first, phase con-
sisting of designing the system objects, control of devices,
their composition and orchestration as well definition of the
services to offer by the BA and building model (though this
last one has crosscutting information that is accessed by means
of a specific view to each actor), are all specified the by the
System Engineer; the second phase of the BA’s control policies
and GRID interaction is specified by the Facility Manager; and



finally, the individual’s preferences and profiles, declared by
the Occupant.

Following the MDD spirit, these models are themselves
artifacts that should dynamically facilitate the creation of
DSLs to constrain the space and services for both the User
and the Facility manager.

1) Automation Model: An automation model describes how
specific devices can be orchestrated to achieve the desired be-
haviors. Also, as some devices already have non-programmed
implicit behavior, the automation model will allow to encap-
sulate but still describe their relation with the world.

Instances of automation models will be used to implement
services specified in the Services models. Therefore the Ser-
vices declared at the Service Model level can be considered
abstractions focusing on the goals (the what), while the au-
tomation will be focused on the objects and their behavior (the
how). Altough this level is already close to the device objects
description, it still is at the modeling level and not at the code
implementation level, often created with a General Purpose
language. Therefore these models keep abstract notations and
constraints in terms of the Building automation Domain.

We can find some examples of modeling solutions that make
use of appropriate generators, for example, in the field of High
Energy Experimental Physics Instrumentation, for control of
elements in the detector machines. In CSML [33] we can
find a solution based on the definition of specific stereotypes
embedded in the UML models.

Specifications created with automation models are largely
independent of the fieldbus technology, since they abstract the
heterogeneity involved focusing on the common concepts, and
thus can be re-deployed without being changed. However, as
expected, these automation models will be dependent (or make
use) of the Building model.

2) Fieldbus API: As already mentioned, current BAS are
built using a wide range of technological solutions based
in field bus architectures that are very different in nature
(e.g different communication standards/protocols). This raises
a rather puzzling technological challenge to come up with
a BAS solution standard which is able to effectively deal
with the heterogeneity nature of BAS implementations, while
overcoming the customer lock-in legacy effect that has been
created by the incumbent BAS’ providers. Therefore, we
foresee the definition of an open standard for these kinds of
solutions, materialized in the form of an unified field bus
API which is able to interface and connect different BAS
architectures and their particular devices. During the BAS’
implementation phase, the BASs’ integrators should be able to
couple together existing solutions from several different BASs’
vendors with minimum effort. Following a MDD approach,
this API can be the base target of model transformations
that will automatically translate specified automation models
(by the system engineer) into API calls expressed in a given
general purpose language.

We feel that open nature of this devised API is the key
for the successfull wide-adoption of BAS (in terms of cost),
which in turn have a direct impact on the sucess of the SG. For

example, OPC2 and EPICS3 are, respectively, industrial and
academic projects aiming at providing open infrastructures for
accessing a range of different hardware. Although most of this
work stems from industrial automation, it is interesting under
the perspective of BASs because most underlying ideas can be
adapted to create an intermediate Open Standard for building
automation to which all integrators (or vendors) should be
compliant with.

C. Relations between models
As we show in Figure 2 we present the relations between

all the involved models, in the sense that the entities on each
source model needs to reference the used target model. The
following are some illustrating examples:

• User Model uses Building Model: In order to specify a
user profile, we should be able to indicate the expected
occupancy pattern according to the building map.

• Automation Model uses Building Model and Service
Model: The Automation model will reference the services
declared in the Service Model, expressing that a given
component or orchestration in the Automation model
can implement a declared service in the Service Model,
within a given building location.

• Services Model uses Building Model: Each service defi-
nition in the Service Model describes on which building
location the specified service will be active.

• Policies Model uses Building Model, User Model, Grid
Interaction Model and Services Model: The rules ex-
pressed in the Policies can ultimately reference all the
existing requirement models.

However, having the above described relations, we can fore-
see the realization of all the uses relations depicted in Figure 2
in many different ways. In a MDD perspective, these relations
can ultimately be realized by means of model transformations
which can ultimately be bi-directional. In fact, any of the
proposed models are artifacts than can be either designed by
the respective actors, or automatically generated by means
of model transformations. Having a model transformation for
specifying the automated generation of models can be useful
to optimize and automatize further evolutions of the system in
a controlled fashion.

In one direction, transformations can be used to realize
the link between both the specified requirement models (i.e
it includes the Building Model and configurations from the
Policy and Service Models) and the implementation models
(i.e.. Automation Model). Automated generation by means of
model transformations can also link the Automation model
with the underlying API—if we have a metamodel of the
general purpose language on which the required API calls are
expressed. In the opposite direction, changes in the existing
implementation models can (for instance) be automatically
transformed into new constraints updating the previous exist-
ing requirement models. That is the case when new equipment

2OLE for Process Control: http://www.opcfoundation.org
3Experimental Physics and Industrial Control System, Argonne National

Laboratory: http://www.aps.anl.gov/epics



introduces new behaviour in the underlying automation model,
and this behaviour is in turn translated into new services or
even new policy rules which then have to be checked for
consistency against the existing user’s defined policy rules.

V. CONCLUSION

This paper focuses on Building Automation Systems and,
based on the current state-of-the-art, highlights what we be-
lieve to be the major reasons for their limited success so far.
BAS’ application software is costly to develop and maintain.
This fact becomes more clear given the heterogeneity of
solutions in BAS, the multiplicity of standards and proprietary
solutions, and the continuous need for user empowerment
during the system’s life cycle.

We argue that a possible approach is to bring Software
Engineering techniques like MDD and DSM approaches to
this domain. These techniques have been successful in other
domains to tackle the development of systems with similar
complexity.

Finally, we indicated what is the required information to
develop BAS solutions while tackling all of the identified
problems. Also we gave a deeper insight on the nature of
this information in terms of requirement and implementation
models, and established a relation between them by means of
model transformations. With appropriate modeling and meta-
modeling tools, these models can be soundly integrated in
practice in a future systematic and integrated framework.

VI. ACKNOWLEDGMENTS

This work was developed in the context of the follow-
ing research institutions: INESC-ID and CITI fund PEst-
OE/EEI/UI0527/2011 Centro de Informática e Tecnologias da
Informação (CITI/FCT/UNL) - 2011-2012

REFERENCES

[1] A. Ipakchi and F. Albuyeh, “Grid of the future,” IEEE Power and Energy
Magazine, vol. 7, no. 2, pp. 52–62, 2009.

[2] A. K. David and Y. Z. Li, “Consumer rationality assumptions in the real
time pricing of electricity,” IEE Proceedings-Generation, Transmission
and Distribution, vol. 139, no. 4, pp. 315–322, 1992.

[3] N. Hopper, C. Goldman, and B. Neenan, “Demand Response from Day-
Ahead Hourly Pricing for Large Customers,” The Electricity Journal,
vol. 19, no. 3, pp. 52–63, 2006.

[4] S. Braithwaite, Residential TOU Price Responce in the Presence on
Interactive Communication Equipment. Springer, 2000, ch. 22, pp.
359–373.

[5] A. Faruqui and S. Sergici, “Household response to dynamic pricing
of electricity – a survey of the empirical evidence,” SSRN eLibrary
Working Paper Series, 2010.

[6] S. Kilicote and M. A. Piette, “Advanced Control Technologies And
Strategies Linking Demand Response And Energy Efficiency,” in Procs
of Int’l Conf. for Evaluation of Building Operations (ICEBO ’05), 2005.

[7] A. S. Massoud and B. Wollenberg, “Toward a Smart Grid: Power
delivery for the 21st century,” IEEE Power and Energy Magazine, vol. 3,
no. 5, pp. 34–41, 2005.

[8] IEA, “The Power to Choose – Demand Response in Liberalised Elec-
tricity Markets,” OECD International Energy Agency, Tech. Rep., 2003.

[9] B. Bach, D. Wilhelmer, and P. Palensky, “Smart buildings, smart cities
and governing innovation in the new millennium,” 2010.

[10] W. B. C. for Sustainable Development, “Transforming the Market:
Energy Efficiency in Buildings,” WBCSD, Tech. Rep., 2009.

[11] C. Goldman, M. Reid, R. Levy, and A. Silverstein, “Coordination of En-
ergy Efficiency and Demand Response,” Berkeley National Laboratory,
Tech. Rep., Jan. 2010.

[12] C. Reinisch, M. J. Kofler, F. Iglesias, and W. Kastner, “Thinkhome en-
ergy efficiency in future smart homes,” EURASIP Journal on Embedded
Systems, 2011.

[13] W. Kastner, G. Neugschwandtner, S. Soucek, and H. Newmann, “Com-
munication systems for building automation and control,” Proceedings
of the IEEE, vol. 93, no. 6, pp. 1178–1203, Jun. 2005.

[14] K. Wacks, “Home systems standards: achievements and challenges,”
IEEE Communications Magazine, vol. 40, no. 4, pp. 152–159, Apr. 2002.

[15] D. Snoonian, “Smart buildings,” IEEE Spectrum, vol. 40, no. 8, pp.
18–23, Aug. 2003.

[16] F. Praus, W. Granzer, and W. Kastner, “Enhanced Control Application
Development in Building Automation,” in 7th IEEE International Con-
ference on Industrial Informatics, Jun. 2009, pp. 390–395.

[17] M. Jimenez, F. M. Rosique, P. Sanchez, B. Alvarez, and A. Iborra,
“Habitation: A Domain-Specific Language for Home Automation,” IEEE
Software, vol. 26, no. 4, pp. 30–38, 2009.

[18] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling. Wiley-IEEE
Computer Society Press, March 2008.

[19] B. D. Wachter, T. Massart, and C. Meuter, “dSL: An Environment
with Automatic Code Distribution for Industrial Control Systems,” in
Principles of Distributed Systems, ser. LNCS, M. Papatriantafilou and
P. Hunel, Eds. Springer-Verlag, 2004, vol. 3144, pp. 226–233.

[20] H. Prähofer, D. Hurnaus, C. Wirth, and H. Mössenböck, “Monaco: A
DSL Approach for Programming Automation Systems,” in Procs. of the
Software Engineering Conference (SE’2008), Feb. 2008, pp. 242–256.

[21] V. Miori, L. Tarrini, M. Manca, and G. Tolomei, “An Open Standard
Solution for Domotic Interoperability,” IEEE Transactions on Consumer
Electronics, vol. 52, no. 1, pp. 97–103, Feb. 2006.

[22] C. D. Nugent, D. D. Finlay, R. J. Davies, H. Y. Wang, H. Zheng,
J. Hallberg, K. Synnes, and M. D. Mulvenna, “homeML – An Open
Standard for the Exchange of Data Within Smart Environments,” in
Pervasive Computing for Quality of Life Enhancement, ser. LNCS,
T. Okadome, T. Yamazaki, and M. Makhtari, Eds., vol. 4541. Springer-
Verlag, 2008, pp. 121–129.

[23] A. Rugnone, E. Vicario, C. Nugent, M. Donnelly, D. Craig, C. Paggetti,
and E. Tamburini, “HomeTL: A visual formalism, based on temporal
logic, for the design of home based care,” in IEEE International
Conference on Automation Science and Engineering, 2007, pp. 747–
752.

[24] P. J. Clemente, J. M. Conejero, J. Hernández, and L. Sánchez, “HAAIS-
DSL: DSL to develop Home Automation and Ambient Intelligence
Systems,” European Conference on Computer Systems, 2009.

[25] H. Dibowski, J. Ploennigs, and K. Kabitzsch, “Automated Design
of Building Automation Systems,” IEEE Transactions on Industrial
Electronics, vol. 57, no. 11, pp. 3606–3613, 2010.

[26] C. Reinisch, W. Granzer, F. Praus, and W. Kastner, “Integration of
heterogeneous building automation systems using ontologies,” in 34th
Annual Conf. of IEEE on Industrial Electronics, 2008, 2008, pp. 2736–
2741.

[27] D. Bonino, E. Castellina, F. Corno, and M. Liu, “Technology indepen-
dent interoperation of domotic devices through rules,” in IEEE 13th
International Symposium on Consumer Electronics, May 2009, pp. 971–
975.

[28] J. M. Conejero, P. J. Clemente, R. Rodrı́guez-Echeverrı́a, J. Hernández,
and F. Sánchez-Figueroa, “A model-driven approach for reusing tests
in smart home systems,” Personal and Ubiquitous Computing, vol. 15,
no. 4, pp. 317–327, 2011.

[29] A. Lewis and D. Riley, “Defining High Performance Buildings for Oper-
ations and Maintenance,” International Journal of Facility Management,
2010.

[30] C. Eastman, P. Teicholz, R. Sacks, and K. Liston, BIM Handbook:
A Guide to Building Information Modeling for Owners, Managers,
Designers, Engineers and Contractors. John Wiley & Sons, 2008.

[31] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed re-
quirements acquisition,” in Science of Computer Programming, 1993,
pp. 3–50.

[32] E. S. K. Yu, “Social modeling and i*,” in Conceptual Modeling:
Foundations and Applications, 2009, pp. 99–121.

[33] K. Zagar, M. Plesko, M. Sekoranja, G. Tkacik, , and A. Vodovnik, “The
control system modeling language,” in Procs. of the 8th Int’l Conf. on
Accelerators and Large Experimental Physics Control Systems, 2001.


