
On Handling One-to-Many Transformations in

Relational Systems

Paulo Carreira1, Helena Galhardas2, João D. Pereira2, and Andrzej Wichert2

1 Faculty of Sciences of the University of Lisbon, C6 - Piso 3, 1700 Lisboa, Portugal
paulo.carreira@xldb.di.fc.ul.pt

2 Technical University of Lisbon and INESC-ID, Avenida Prof. Cavaco Silva, Tagus
Park, 2780-990 Porto Salvo, Portugal

hig@inesc-id.pt, joao@inesc-id.pt, andreas.wichert@tagus.ist.utl.pt

Abstract. The optimization capabilities of RDBMSs make them attrac-
tive for executing data transformations that support ETL, data cleaning
and integration activities. Despite the fact that many useful data trans-
formations can be expressed as relational queries, an important class of
data transformations that produces several output tuples for a single
input tuple are not adequately supported by RDBMSs.
In this paper we address the issue of extending a RDBMS to include
the mapper operator. In particular, we propose an SQL-like syntax to-
gether with several logical optimizations involving relational operators
and the mapper. Finally, we experimentally compare the mapper opera-
tor with RDBMS implementations of one-to-many data transformations
and validate the logical optimizations proposed.

Key words: Data Warehousing, Data Cleaning, Data Integration, ETL,
Query optimization

1 Introduction

The setup of modern information systems comprises a number of activities that
rely, to a great extent, in the use of data transformations [21]. Well known
cases are legacy data migration, ETL (Extract, Transform, Load) processes that
support data warehousing, data cleaning processes and the integration of data
from multiple sources.

One natural way of expressing data transformations is to use a declarative
query language and to specify the data transformations as queries (or views) over
the source data. Because of the broad adoption of RDBMSs to store data un-
derlying the above mentioned activities, such language is often SQL, a language
based on Relational Algebra (RA). Unfortunately, due to its limited expressive
power [1], RA alone cannot be used to specify some important classes of data
transformations.

An important class of data transformations that may not be expressible in
RA are the so called one-to-many data transformations [5], that are character-
ized by producing several output tuples for each input tuple. One-to-many data

2 Paulo Carreira, Helena Galhardas, João D. Pereira, and Andrzej Wichert

transformations occur normally due to the existence of data heterogeneities, i.e.,
due to the use of different data representations, in source and target schemas
[25]. For instance, source data may consist of salaries aggregated by year, while
the target data consists of salaries aggregated by month. Hence, each input row
has to be converted into multiple output rows, one for each month. In this case,
each input row corresponds to at most twelve output rows. However, expressing
such data transformations as RA expressions is hampered by the fact that such
bound cannot always be established a-priori. Consider the following example:

Relation LOANS Relation PAYMENTS

ACCT AM

12 20.00

3456 140.00

901 250.00

ACCTNO AMOUNT SEQNO

0012 20.00 1

3456 100.00 1

3456 40.00 2

0901 100.00 1

0901 100.00 2

0901 50.00 3

Fig. 1. Illustration of an unbounded data-transformation. (a) The source relation
LOANS on the left, and (b) the target relation PAYMENTS on the right.

Example 1. Consider the source relation LOANS[ACCT, AM] (represented in Fig-
ure 1) that stores the details of loans per account. Suppose that LOANS data
must be transformed into PAYMENTS[ACCTNO, AMOUNT, SEQNO], the target relation,
according to the following requirements:

1. In the target relation, all the account numbers are left padded with zeroes.
Thus, the attribute ACCTNO is obtained by (left) concatenating zeroes to the
value of ACCT.

2. The target system does not support payment amounts greater than 100. The
attribute AMOUNT is obtained by breaking down the value of AM into multiple
parcels with a maximum value of 100, in such a way that the sum of amounts
for the same ACCTNO is equal to the source amount for the same account.
Furthermore, the target field SEQNO is a sequence number for the parcel. This
sequence number starts at 1 for each sequence of parcels of a given account.

The implementation of data transformations similar to those requested for
producing the target relation PAYMENTS of Example 1 is challenging, since the
number of output rows, for each input row, is determined by the value of the
source attribute AM. In this case, the upper bound on the number of output rows
cannot be determined by analyzing the data transformation specification. We
designate these data transformations as unbounded one-to-many data transfor-
mations. Other sources of unbounded data transformations exist like, for exam-
ple, converting collection-valued attributes of SQL:1999 [22], where each element
of the collection is mapped to a new row in the target table. In the context of

On Handling One-to-Many Transformations in Relational Systems 3

data-cleaning, one commonplace transformation is converting a list of elements
encoded as a string attribute into its atomic components.

Currently, one has to resort, either to a general purpose programming lan-
guage, to some flavor of proprietary scripting supported by an ETL tool, or to an
RDBMS using SQL:1999 recursive queries [22], or some sort of Persistent Stored
Modules (PSMs) [15, Section 8.2] like stored procedures or table functions [11].

To address the problem of expressing one-to-many data transformations in
a declarative and optimizable fashion, a specialized relational operator named
mapper was recently proposed as an extension to RA [5]. Informally, a mapper
is applied to an input relation and produces an output relation. It iterates over
each input tuple and generates one or more output tuples, by applying a set of
domain-specific functions. This way, it supports the dynamic creation of tuples
based on a source tuple contents.

Although mappers appear implicitly in systems supporting schema and data
transformations underlying ETL processes, data cleaning and data warehousing
[13, 26, 9, 2], as far as we know, their execution and optimization has never been
properly studied. This paper addresses the issue of how to extend an RDBMS
to include the mapper operator. There are several reasons to do so: First, im-
plementing the mapper operator as a relational operator opens interesting opti-
mization opportunities since expressions that combine the mapper operator with
standard RA operators can be optimized. Second, many data transformations
are naturally expressed as relational expressions, leveraging the optimization
strategies already implemented by RDBMSs [7]. Third, such extension further
equips RDBMSs for data transformation activities, broadening their applicabil-
ity in a wider range of data management activities. We remark that our idea
of using RDBMSs as data transformation engines is not revolutionary, see [18].
Furthermore, several RDBMSs like Microsoft SQL Server and Oracle already
include additional software packages specific for ETL tasks. The contributions
of the mapper are the following:

1. An SQL-like concrete syntax for the mapper operator accomplished by ex-
tending the select statement;

2. The study of several query rewriting possibilities to be incorporated in the
query optimizer; and

3. An experimental validation the shows the usefulness of implementing the
mapper operator by comparing its physical implementation with alternative
RDBMS solutions.

The rest of the paper is organized as follows. Section 2 introduces the mapper
operator and exposes its concrete syntax by example. Then, in Section 3 we
discuss how to extend the query optimizer to handle mappers. In Section 4, we
report on a series of experiments to ascertain the feasibility of implementing the
mapper operator. Related work is reviewed in Section 5 and finally Section 6
presents the conclusions.

4 Paulo Carreira, Helena Galhardas, João D. Pereira, and Andrzej Wichert

2 The mapper operator

The mapper operator is formalized as a unary operator µF that takes a relation
instance of the source relation schema as input and produces a relation instance
of the target relation schema as output. The operator is parameterized by a set
F of functions, which we designate as mapper functions. The intuition is that
each mapper function fAi

expresses a part of the envisaged data transformation,
focused on a non-empty set Ai of attributes of the target schema. A key insight
is that, when applied to a tuple, a mapper function can produce a set of values
in the domain of its target attributes Dom(Ai), rather than a single value.

The mapper operator is formally defined as follows: Given a set of mapper
functions F = {fA1

, ..., fAk
}, the mapper of a relation s with respect to F ,

denoted by µF (s), is the relation instance of the target relation schema defined
by

µF (s)
def
= {t ∈ Dom(Y) | ∃u ∈ s s.t. t[Ai] ∈ fAi

(u), ∀1 ≤ i ≤ k} (1)

The formal semantics of the mapper presented above can be emulated with a
simple iterator-based execution model as follows: For each input tuple, perform
the evaluation of each mapper function and then compute the Cartesian product
of the results. The output relation is obtained by unioning all the tuples so
obtained.

We can express the data transformation of Example 1 by means of a map-
per µacct,amt, comprising two mapper functions. The function acct is the map-
per function that returns a singleton with the account number ACCT prop-
erly left padded with zeroes, while amt is a mapper function that produces
the attributes [AMOUNT,SEQNO], s.t., amt(am) is given by {(100, i) | 1 ≤ i ≤

(am/100)} ∪ {(am%100, (am/100) + 1) | am%100 6= 0}, where % represents the
modulus operation. For instance, if v is the source tuple (901, 250.00), the result
of evaluating amt(v) is the set {(100, 1), (100, 2), (50, 3)}. Given a source relation
s including v, the result of the expression µacct,amt(s) is another relation that
contains the set of tuples {〈’0901’, 100, 1〉, 〈’0901’, 100, 2〉, 〈’0901’, 50, 3〉}.

For some given input tuple t, the set of values returned by a mapper function
can be empty. When this happens, the function is acting as a filter and no tuple
corresponding to t will be reflected in the output. Different situations can cause
a mapper function to return an empty set. First, the function may not be able to
process correctly some ill-formed inputs. For example, an empty set is returned
as a default after the occurrence of a division by zero exception. Second, the
function may encode some constraint on input data, resulting in an explicit
rejection encoded as an empty set. Consider, for instance, a function returning
restaurant addresses corresponding to a Parisian zip code: this function will
return an empty set if it is invoked with a zip code corresponding, say, to a
government building.

On Handling One-to-Many Transformations in Relational Systems 5

select

select
�
�

�
 mapperfunc�

� ,
�
�

�

�

from
�
�

�
table �

�where
�
�

�
cond

�

Fig. 2. Syntax diagram of a simplified version of the select statement.

2.1 Concrete syntax

The mapper operator can be easily embedded into the SQL syntax by incorpo-
rating mapper functions as expressions into the select block. The main change
consists of replacing the standard list of columns and expressions that follow
the select keyword by a list of mapper functions as illustrated in Figure 2. The
relation to be used as input to the mapper operator is defined through the table
expression that comes after the from keyword. Coarsely speaking, such expres-
sion denotes a relation and consists of relation names and sub-select statements
combined through relational operators such as joins, unions, among others, ap-
plied to table names or sub-selects. Optionally, a filtering condition cond can
be specified after the where keyword. The input schema of the mapper is the
schema of the relation denoted by the table expression. The resulting schema of
the mapper is obtained by concatenating the columns of the mapper functions.
For clarity of presentation, aspects such as sorting, controlling duplicates, or
grouping and aggregation are not considered.

As illustrated in Figure 3, a mapper function can be a column name, an
expression, a function call or an inline mapper function definition. The existence
of an input column in the select clause denotes an identity mapper function.
Alternatively, a new name for the column in the output schema can be specified.

A mapper function call is identified by the map keyword followed by the
function name. In order to avoid clashing of the output column names of the
mapper function with the ones produced by other functions, the mapper function
call can be followed by the specification of new column names. These mapper
function must have been previously declared. The function is either a system
built-in function or a function defined by the user. We do not propose a spe-
cific syntax for declaring user defined mapper functions. User defined mapper
functions can be defined in mostly any language as long as it provides some
mechanism for returning multiple values. One example of such mechanism is the
pipe row statement of Oracle’s PL/SQL [12]. In this way, the mapper function
is specified outside the select statement using a more appropriate programming
language. This usage of mapper functions is aligned with the SQL syntax for
the computation of aggregates in the sense that aggregate functions like COUNT

or SUM are implemented elsewhere and then embedded in the select statement
as parameters of the aggregate operator.

Another way to define a mapper function consists of specifying inline an
anonymous function. This function is specified through the map keyword with

6 Paulo Carreira, Helena Galhardas, João D. Pereira, and Andrzej Wichert

mapperfunc

colname �

�as
�
�

�
colname

�

�

�expr as
�
�

�
colname

�map
�
�

�
func (

�
�

�
 colname�

� ,
�
�

�

�

)
�
�

�
�

�as
�
�

�
outputcols

�

�map
�
�

�
outputcols begin

�
�

�
body end

�
�

�

�

outputcols

col�

� (
�
�

�
 col�

� ,
�
�

�

�

)
�
�

�

�

Fig. 3. Syntax diagram of a mapper function specification.

the output column names that will contribute to the output schema, followed
by an inline specification of the function body within the begin...end block. In
the case of inline function specifications, the input columns do not need to be
specified. Instead, they are implicitly defined when the function implementation
body accesses the columns of the input relation.

2.2 Specifying Filters

Filters are specified through the boolean expression of the where clause. Two
kinds of filters can be specified, (i) a-priori filters, that apply to each tuple of
the input relation, which are evaluated before the mapper and (ii) a-posteriori
filters that are evaluated on the output of the mapper and are used to limit the
mapper results. They are identified by sub-expressions defined over particular
sets of columns. Sub-expressions that are defined only over the columns of the
input relation define a-priori filters, while sub-expressions that are defined over
columns generated by the mapper functions define a-posteriori filters.

3 Optimization

While parsing a select block, as soon as a mapper function is found, the parser
knows that a mapper operator is present. In this case, upon parsing the query

On Handling One-to-Many Transformations in Relational Systems 7

1: select map acct(ACCT) as ACCTNO,
2: map amt(AM) as AMOUNT, SEQNO
3: from LOANS, ACCOUNTS
4: where ACCOUNTS.ACCTN = LOANS.ACCT
5: and ACCOUNTS.STATUS = ’O’
6: and AMOUNT < 50

Fig. 4. A query that selects small payments of open accounts by implementing a
mapper together with a-priori and a-posteri filters.

successfully, the parser identifies all the mapper functions being used and com-
putes the output schema of the mapper. The input schema of the mapper is
determined by the schema of input relations. Once the input schema is known,
the input columns specified for each mapper function can be validated. The fol-
lowing step consists in rewriting the filter condition into the conjunctive normal
form and validating it considering the input and output schemas. Then, each
conjunct is analyzed to decide whether it constitutes a candidate to an a-priori
or to an a-posteriori filter. In the query presented in Figure 4, the sub-expression
ACCOUNTS.STATUS = ’O’ defines an a-priori filter while AMOUNT < 50 defines an a-
posteriori filter.

We note also that in some situations it is not possible to clearly separate
these two kinds of filters. For example, if the condition is dependent on both in-
put and output columns of the mapper like e.g., AMOUNT < ACCOUNTS.WDRAWLIMIT,
where AMOUNT is an output attribute produced by a mapper function and
ACCOUNTS.WDRAWLIMIT is an attribute of the input relation. In these cases, the
predicate can only be evaluated after all the mapper functions, i.e., a-posteriori.

The specification of a-posteriori filters in the where clause opens an inter-
esting possibility of defining the condition using mapper functions. The sets of
values returned by mapper functions can be tested with set operators like in or
exists.

Moreover, whenever the input relation is defined through join operations,
some of the conjuncts can be immediately pushed down into the appropriate
join operators. Generically, the query plan that results from this process applies
an a-posteriori filter to a mapper operator. This mapper operator, in turn, is
evaluated over the input relation resulting from applying an a-priori filter to a
query sub-plan that represents the input relation.

This concept is illustrated in Figure 3, by applying the filter σAMOUNT < 50 to
the mapper µacct,amt which takes as input ACCOUNTSonACCOUNTS.ACCTN=LOANS.ACCTLOANS

that are not filtered by σACCOUNT.STATUS = ’O’. The plans so obtained are then
handed to the query optimizer where they undergo a sequence of rewritings
that turn them into equivalent ones that are more efficient to evaluate. Besides
the usual rewritings implemented by RDBMSs, others, specific to mappers can
be introduced. Some of these rewritings are interesting because they take direct
advantage of the mapper semantics. Herein, we briefly sketch the main ideas.
Please refer to [5] for further details about rewriting rules and their correspond-
ing proofs of correctness.

8 Paulo Carreira, Helena Galhardas, João D. Pereira, and Andrzej Wichert

σAMOUNT < 50

µacct,amt

σACCOUNTS.STATUS = ’O’

onACCOUNTS.ACCTN=LOANS.ACCT

ACCOUNTS LOANS

Fig. 5. Query plan representation for the query presented in Figure 4.

Projections A projection applied to a mapper is an expression of the form
πZ(µF (s)). Those mapper functions whose output attributes are not con-
tained in the list Z can be dropped from the mapper since the values that
they produce will not be available for subsequent operations. Thus,

πZ(µF (s)) = πZ(µF ′(s)) (2)

where F ′ = {fAi
∈ F | Ai contains at least one attribute in Z}.

Selections When applying a selection to a mapper, we can take advantage of
the fact that many attributes are mapped by arithmetic expressions. Some
expressions are simple identity functions. A selection σCAi

where CAi
is a

condition on the attributes produced by some mapper function fAi
∈ F , can

be pushed through a mapper. Hence,

σCAi
(µF (s)) = µF (σC′

Ai

(s)) (3)

where C′

Ai
is a rewritten condition that uses the attributes of the input

relation schema.
Joins It is often the case that mappers are applied to joins resulting in the

expression µF (r on s). Depending of the type of join being performed, the
output of the relation r on s can be very large. In these cases, whenever the
join is being performed in attributes mapped by identity mapper functions,
it is possible to use the rule

µF (r on s) = µF (r) on µF (s) (4)

where the mapper functions in F do not produce duplicate values.

3.1 Plan selection

The choice of a particular plan is governed by the minimization of a cost met-
ric. The cost of a mapper operator depends fundamentally on: (i) the costs of
evaluation each mapper function and (ii) on the cardinality of the input relation.

On Handling One-to-Many Transformations in Relational Systems 9

In order to estimate the cost of subsequent operators whose input is produced
by mappers, the cardinality of the output relation produced by a mapper also
needs to be estimated. Since mappers can generate variably multiple output
tuples for each input tuple, this estimation is an interesting problem in itself. One
way to approach it consists of estimating the average mapper fanout factor1. If a
mapper is being executed for the first time, an initial estimate for its fanout needs
to be computed. This can be done by combining the estimated fanout factors
of the mapper functions involved in the mapper operator. Another interesting
observation is that when mapper functions return empty sets, no output tuples
are produced. Thus, the mapper in some situations may act as a filter, which
turns the selectivity of the mapper into another relevant factor. Like fanout,
the initial mapper selectivity can also be estimated from the selectivities of
the mapper functions. For more details about the cost model for the mapper
operator, we refer the reader to [5].

4 Experiments

In this section, we analyze the performance of the mapper operator and con-
sider the gains obtained with the proposed logical optimizations. Our results
indicate that one-to-many data transformations can be evaluated substantially
faster than traditional database solutions like table functions or recursive queries.
Moreover, we shall see that the optimizations defined for mappers impart per-
formance gains that are not matched by traditional RDBMS solutions.

To that aim, we contrast implementations of the data transformation pro-
posed in Example 1 using the mapper operator with alternative implementations
developed as table functions and recursive queries using two leading commercial
RDBMSs. For more details on how to implement one-to-many transformations
using RDBMSs, please refer to [6]. The mapper operator was implemented on
top of the XXL DBMS library [30] which provides database query processing
and optimization functionalities.

The database implementations were tested on two systems henceforth des-
ignated as DBX and OEX2. The parameters of both RDBMSs were carefully
aligned and the same I/O conditions were enforced through the usage of the
same raw devices. The hardware used was a single CPU machine (running at 3.4
GHz), with 1GB main memory RAM, and Linux (kernel version 2.4.2) installed.
Concerning workload, a synthetic version of the input relation LOANS used in Ex-
ample 1 was employed. To equalize the record length on XXL, DBX and OEX,
a dummy column was added to the input table.

1 Similarly to [8], we designate the average cardinality of the output produced for each
input tuple by mappers and mapper functions as fanout.

2 Due to the restrictions imposed by the license agreements, the true names of the
systems under test cannot be revealed.

10 Paulo Carreira, Helena Galhardas, João D. Pereira, and Andrzej Wichert

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Mapper/XXL TF/DBX TF/OEX SP/DBX SP/OEX RQ/DBX

T
h

ro
u

g
h

p
u

t
[i

n
 r

ec
o

rd
s/

se
c]

Fig. 6. Average throughput of the different implementations of Example 1 tested with
input relation sizes varying from 100K to 5M rows graphed with standard deviation. No
query results are reported for recursive queries on the OEX system since the subset of
recursive queries supported by OEX is not powerful enough for expressing one-to-many
transformations.

4.1 Results

We compare throughput, i.e., the amount of work done per second, of the distinct
implementations of one-to-many data transformations. Throughput is expressed
as the ratio of source records transformed per second and it is computed by
measuring the response time of a data transformation that consists of reading the
input table, transforming it and materializing the output table. All the timings
reported were obtained with logging disabled.

In the first experiment, we intended to test the raw performance of the
mapper operator for the three distinct implementations. The results depicted
in Figure 6 show that one-to-many data transformations implemented with the
mapper operator are more than two times better than table functions over DBX,
which is the best alternative using RDBMSs. Since the amount of I/O incurred
by all the systems is similar, even considering the overhead of the RDBMSs by
comparison with XXL, we conjecture that one-to-many data transformations
implemented as mappers running inside the RDBMS are very efficient. We also
considered the implementations using stored procedures. However, it turns out
that the performance is quite poor because logging cannot be disabled during
their execution.

On Handling One-to-Many Transformations in Relational Systems 11

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

R
es

po
ns

e
T

im
e

[in
 s

ec
on

ds
]

Predicate selectivity factor [in %]

mapper original
mapper optimized

table function original
table function optimized

Fig. 7. Evolution of response time of applying selections to one-to-many trans-
formations for increasing selectivity factors plotted in logarithmic scale. The map-
per’s original expression refers to σACCTNO>p(µacct,amt(s)), the mapper optimized ex-
pression refers to µacct,amt(σACCT>p(s)), the table function original expression refers
to σACCTNO>p(TFacct, amt(s)) and the table function optimized expression refers to
TFacct, amt(σACCT>p(s)). The size of the input relation s is fixed to 1M tuples.

In the second experiment, we analyzed the potential gains of logical optimiza-
tions like those suggested in Section 3. To that aim, we considered the evaluation
of the expression σACCTNO>p(µacct,amt(s)) together with its optimized equivalent
µacct,amt(σACCT>p(s)) obtained by pushing down the selection. The constant p was
used to induce different selectivities. Moreover, we consider that the function acct

performs a direct mapping, i.e., is an identity function. In Figure 7, we depict the
performance of the original and the optimized expressions with varying selectiv-
ities. We observe that smaller selectivities correspond to the highest gains of the
optimized expression over the original. For comparison, we draw the evolution of
the selection applied to one-to-many transformations implemented using table
functions on the OEX system, represented as σACCTNO>p(TFacct, amt(s)). The
performance of this solution is similar to the unoptimized version of mapper and
only for small selectivities. This is due to the fact that the whole relation is read
but few output tuples are generated.

Surprisingly, by analyzing the query plans generated by RDBMSs, we came
across the fact that, whenever table functions or recursive queries are used to
encode one-to-many data transformations, neither DBX nor OEX are capable of

12 Paulo Carreira, Helena Galhardas, João D. Pereira, and Andrzej Wichert

pushing down a selection on a directly mapped attribute. Hence, for comparison,
we also tested the corresponding optimized expression TFacct, amt(σACCT>p(s))
obtained manually. We observed that the manually optimized expression of the
table functions brings higher gains specially on relatively high selectivities. For
high selectivities, the response time of the original (non-optimized) RDBMS
solution increases sharply. We conjecture that this behavior has to do with id-
iosyncrasies of OEX related with the pipelining of the tuples resulting from the
table function into the selection operator.

5 Related Work

In order to support a growing range of applications of RDBMSs, several exten-
sions to RA have been proposed since its inception, mainly in the form of new
operators (like e.g., aggregates [20], recursivity [27], or OLAP operators [16]).

Recently, two leading commercial relational database systems have intro-
duced operators aiming at Business Intelligence applications. Both these op-
erators are capable of expressing one-to-many data transformations. The SQL
Server 2005 unpivot operator transposes columns into rows and can be used for
expressing one-to-many data transformations [10]. Oracle introduced the parti-

tioned outer join, which can be employed for expressing data densification op-
erations [17]. However, in both unpivot and partitioned outer join alternatives,
the number of output tuples is bound to the number of columns of the input
relation. In contrast, the mapper operator may generate an arbitrary number of
output tuples based on each input tuple’s contents.

To address the problem of efficiently extracting and loading data among
heterogeneous databases, [2] proposed that data undergoes a series of transfor-
mations expressed through RA operations extended with a grouping operator
and a map operator. A similar map operator is considered by [24] to model
expensive function calls for the purpose of optimizing queries with expensive
predicates. The main difference to the mapper operator is that the map operator
only performs one-to-one tuple transformations.

Three frameworks that utilize data transformations, namely, Potter’s Wheel
[26], Ajax [14] and Data Fusion [4], have also proposed operators for addressing
one-to-many data transformations. Potter’s Wheel fold operator is capable of
producing several output tuples for each input tuple. The main difference w.r.t.
the mapper operator lies in the number of output tuples generated. The fold

operator is similar to the unpivot referred above: the number of output tuples
generated for each input tuple is bounded. Both the Ajax map operator and
Data Fusion’s mapper are powerful enough to express one-to-many data trans-
formations that generate a number of output tuples that is dependent on each
input tuple content.

Clio [23] is a tool aiming at the discovery and specification of schema map-
pings. It has the ability to generate SQL queries for data transformations from
schema mappings. However, the class of data transformations supported by Clio
is induced by select-project-join queries. As we demonstrate in [5], these queries

On Handling One-to-Many Transformations in Relational Systems 13

are not powerful enough for addressing the class of one-to-many data transfor-
mations.

One-to-many data transformations also arise in the context of ETL pro-
cesses. To the best of our knowledge, in most ETL tools, to express one-to-many
data-transformations, the user has to resort to some form of ad-hoc scripting.
Furthermore, the optimization of ETL data transformations is a recent effort.
Recently, [28] has proposed the optimization of ETL workflows as a global state-
space search problem. In our approach, we use local optimization, since an ETL
transformation program must be represented by a set of extended relational
algebra expressions to be optimized one at a time.

6 Conclusions

In this paper, we focused on the feasibility of incorporating a specialized oper-
ator for handling one-to-many data transformations in RDBMSs. This exten-
sion is attractive, not only because one-to-many data transformations cannot
be expressed using relational algebra but also because data usually resides in a
RDBMS. We outlined the concrete syntax for this operator and then examined
how a query optimizer can be extended to consider more advantageous execution
plans in the presence of mappers. To test our ideas we analyzed experimentally
different implementations of one-to-many data transformations using mappers
and contrasted them with traditional implementations using table functions and
recursive queries using two industry-leading RDBMSs.

The experiments showed that a native implementation of the mapper opera-
tor outperformed the best RDBMS solution by almost three times. We have also
observed that RDBMSs do not in general perform very simple but highly valu-
able optimizations when table functions and recursive queries are used. Thus, we
posit that one-to-many data transformations expressed by combining standard
relational operators and mappers constitute a valid alternative.

The simple iterator-based semantics of the mapper operator enables efficient
executions of one-to-many data transformations and favors an easy integration
into the query processor of a database system. Towards physical optimization,
we are developing different execution algorithms for the mapper operator. These
algorithms take advantage of input duplicate values by employing caching tech-
niques and hybrid-hashing proposed by [19]. Additionally, we consider incorpo-
rating the mapper operator in Apache Derby open source RDBMS [3].

One limitation of our work is that, despite the effort to configure the different
systems so that they run in similar conditions, the alignment of these configu-
rations lacks quantification. To address this shortcoming, we consider running
TPC-H [29] loads on the different systems in order to obtain a metric for com-
paring their corresponding configurations.

14 Paulo Carreira, Helena Galhardas, João D. Pereira, and Andrzej Wichert

References

1. A. V. Aho and J. D. Ullman. Universality of Data Retrieval Languages. In Pro-
ceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, pages 110–119. ACM Press, 1979.

2. S. Amer-Yahia and S. Cluet. A Declarative Approach to Optimize Bulk Loading
into Databases. ACM Transactions of Database Systems, 29(2):233–281, 2004.

3. Apache. Derby homepage. http://db.apache.org/derby, 2005.
4. P. Carreira and H. Galhardas. Efficient Development of Data Migration Transfor-

mations. In Proceedings of the ACM SIGMOD International Conference on the
Management of Data, 2004.

5. P. Carreira, H. Galhardas, A. Lopes, and J. Pereira. One-to-many Transforma-
tion Through Data Mappers. Data and Knowledge Engineering Journal (DKE),
Elsevier Science, 2006.

6. P. Carreira, H. Galhardas, J. Pereira, F. Martins, and M. J. Silva. On the Per-
formance of One-to-many Data Transformations. In Proc. of the 5th International
Workshop on Quality in Databases at VLDB (QDB’2007), 2007.

7. S. Chaudhuri. An Overview of Query Optimization in Relational Systems. In
Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS ’98), pages 34–43. ACM Press, 1998.

8. S. Chaudhuri and K. Shim. Query Optimization in the Presence of Foreign Func-
tions. In Proceedings of the International Conference on Very Large Data Bases
(VLDB’93), pages 529–542, 1993.

9. Y. Cui and J. Widom. Lineage Tracing for General Data Warehouse Transforma-
tions. In Proceedings of the International Conference on Very Large Data Bases
(VLDB’01), 2001.

10. C. Cunningham, G. Graefe, and C. A. Galindo-Legaria. PIVOT and UNPIVOT:
Optimization and Execution Strategies in an RDBMS. In Proceedings of the In-
ternational Conference on Very Large Data Bases (VLDB’04), pages 998–1009.
Morgan Kaufmann, 2004.

11. A. Eisenberg, J. Melton, K. Kulkarni J.-E. Michels, and F. Zemke. SQL:2003 has
been published. Proceedings of the ACM SIGMOD Record, 33(1):119–126, 2004.

12. S. Feuerstein and B. Pribyl. Oracle PL/SQL Programming. O’Reilly & Associates,
4th edition, 2005.

13. H. Galhardas, D. Florescu, D. Shasha, and E. Simon. AJAX: An Extensible Data
Cleaning Tool. Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2(29), 2000.

14. H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C. A. Saita. Declarative Data
Cleaning: Language, Model, and Algorithms. In Proceedings of the International
Conference on Very Large Data Bases (VLDB’01), 2001.

15. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems – The Complete
Book. Prentice-Hall, 2002.

16. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-
low, and H. Pirahesh. Data Cube: A Relational Aggregation Operator Generaliz-
ing Group-By, Cross-Tab, and Sub-Totals. Data Mining and Knowledge Discovery,
1(1):29–53, 1997.

17. A. Gupta, S. Subramanian, S. Bellamkonda, T. Bozkaya, N. Folkert, L. Sheng, and
A. Witkowski. Data Densification in a Relational Database System. In Proc. of the
2004 ACM SIGMOD International Conference on Management of Data (SIGMOD
’04), pages 855–859. ACM, 2004.

On Handling One-to-Many Transformations in Relational Systems 15

18. L. M. Haas, R. J. Miller, B. Niswonger, M. T. Roth, P. M. Schwarz, and E. L.
Wimmers. Transforming Heterogeneous Data with Database Middleware: Beyond
Integration. IEEE Data Engineering Bulletin, 22(1):31–36, 1999.

19. J. M. Hellerstein. Optimization Techniques for Queries with Expensive Methods.
ACM Transactions on Database Systems, 22(2):113–157, 1998.

20. A. Klug. Equivalence of Relational Algebra and Relational Calculus Query Lan-
guages Having Aggregate Functions. Journal of the ACM, 29(3):699–717, 1982.

21. D. Lomet and E. A. Rundensteiner, editors. Special Issue on Data Transformations,
volume 22. IEEE Data Engineering Bulletin, 1999.

22. J. Melton and A. R. Simon. SQL:1999 Understanding Relational Language Com-
ponents. Morgan Kaufmann Publishers, Inc., 2002.

23. R. J. Miller, L. M. Haas, M. Hernandéz, C. T. H. Ho, R. Fagin, and L. Popa. The
Clio Project: Managing Heterogeneity. SIGMOD Record, 1(30), 2001.

24. T. Neumann, S. Helmer, and G. Moerkotte. On the Optimal Ordering of Maps,
Selections, and Joins under Factorization, 2005.

25. E. Rahm and H.-H. Do. Data Cleaning: Problems and Current Approaches. IEEE
Bulletin of the Technical Committee on Data Engineering, 24(4), 2000.

26. V. Raman and J. M. Hellerstein. Potter’s Wheel: An Interactive Data Cleaning
System. In Proceedings of the International Conference on Very Large Data Bases
(VLDB’01), 2001.

27. M.-C. Shan and M.-A. Neimat. Optimization of Relational Algebra Expressions
Containing Recursion Operators. In Proceedings of the 19th Annual Conference on
Computer Science (CSC’91), pages 332–341. ACM, 1991.

28. A. Simitsis, P. Vassiliadis, and T. K. Sellis. Optimizing ETL Processes in Data
Warehouses. In Proceedings of the 21st International Conference on Data Engi-
neering (ICDE’05), 2005.

29. TPC. Benchmark H Standard Specification. http://www.tpc.org, 1999.
30. J. van den Bercken, J. P. Dittrich, J. Kräamer, T. Schäafer, M. Schneider, and

B. Seeger. XXL – A Library Approach to Supporting Efficient Implementations
of Advanced Database Queries. In Proceedings of the International Conference on
Very Large Data Bases (VLDB’01), 2001.

