
ONE-TO-MANY DATA TRANSFORMATIONS
As Relational Operations

Paulo Carreira
Faculty of Sciences, University of Lisbon, C6 - Piso 3, 1749-016 Lisboa, Portugal

paulo.carreira@xldb.di.fc.ul.pt

Keywords: Data Warehousing, Data Cleaning, Data Integration, ETL, Query optimization

Abstract: Transforming data is a fundamental operation in data management activities like data integration,
legacy data migration, data cleaning, and extract-transform-load processes for data warehousing.
Since data often resides on relational databases, data transformations are often implemented as
relational queries that aim at leveraging the optimization capabilities of most RDBMSs.
However, due to the limited expressive power of Relational Algebra, several important classes of
data transformations cannot be specified as SQL queries. In particular, SQL is unable to express
data transformations that require the dynamic creation of several tuples for each tuple of the
source relation.
This paper proposes to address this class of data transformations, common in data management
activities, by extending Relational Algebra with a new relational operator named data mapper. A
starting contribution of this work consists of studying the formal aspects of the mapper operator
focusing on its formal semantics and expressiveness. A further contribution consists of supporting
a cost-based optimization of data transformations expressions combining mappers with standard
relational operators. To that end, a set of algebraic rewriting rules and different physical execution
algorithms are being developed.

1 INTRODUCTION

Data transformation is a fundamental step of
data management activities such as integration,
cleaning, migration and warehousing of data. In
these activities, data represented by a fixed source
schema must be transformed into a fixed target
data schema.

A frequent problem in this context is the exis-
tence of data heterogeneities, i.e., the use of differ-
ent representations of the same data in source and
target schemas (Rahm and Do, 2000). For ex-
ample: the use of different units of measurement
or the use of different representations for com-
pound data (e.g. multiple attributes represent-
ing day, month and year information vs a single
date attribute) ocur frequently. Another impor-
tant source of data heterogeneities is the represen-
tation of data according to different aggregation

levels (e.g. hourly vs daily). When the source
data represents an aggregation of the target data
(e.g., yearly aggregated data in the source and
monthly data in the target), the data transfor-
mation that has to take place needs to generate
several tuples for each source tuple. Let us hence-
forth designate this class of transformations as
one-to-many data transformations.

Consider a relation LOANS[ACCT, AM] (rep-
resented in Figure 1) that stores the de-
tails of loans requested per account. Sup-
pose LOANS data must be transformed into
PAYMENTS[ACCTNO, AMOUNT, SEQNO], the target re-
lation, according to the following requirements:

1. In the target relation, all the account num-
bers are left padded with zeroes. Thus, the
attribute ACCTNO is obtained by (left) concate-
nating zeroes to the value of attribute ACCT.

2. The target system does not support pay-



Relation LOANS Relation PAYMENTS

ACCT AM
12 20.00

3456 140.00
901 250.00

ACCTNO AMOUNT SEQNO
0012 20.00 1
3456 100.00 1
3456 40.00 2
0901 100.00 1
0901 100.00 2
0901 50.00 3

Figure 1: Illustration of an unbounded data-
transformation. (a) The source relation LOANS
on the left, and (b) the target relation PAYMENTS
on the right.

ment amounts greater than 100. The at-
tribute AMOUNT is obtained by breaking down
the value of attribute AM into multiple install-
ments with a maximum value of 100, in such
a way that the sum of amounts for the same
ACCTNO is equal to the source amount for the
same account. Furthermore, the target field
SEQNO is a sequence number for the install-
ment. This sequence number starts at 1 for
each sequence of installments of a given ac-
count.

The implementation of data transformations
similar to those requested for producing the tar-
get relation PAYMENTS is challenging, since solu-
tions to the problem involve the dynamic creation
of tuples based on the value of attribute AM.

The remainder of the paper is organized as
follows: Next, we present the problem statement
and enumerate the main contributions of the pa-
per. The research field of data transformations is
reviewed in Section 2. Section 3 briefly presents
the mapper operator, introducing the logical and
physical optimization issues. The current status
of the paper work is detailed in Section 4 and
Section 5 concludes.

1.1 Problem statement

To minimize development effort and maximize
performance, data transformations must be writ-
ten in a language that is declarative, optimiz-
able, expressive. Data transformations are of-
ten expressed as Relational algebra (RA) expres-
sions, which is a language that meets the two
former requirements. In fact, many usefull data
transformations can be naturally expressed as RA
queries. However, due to the limitations in the
expressive power of RA, relational queries are
insufficient for expressing many interesting data
transformations (Lakshmanan et al., 1996; Miller,

1998). In particular, RA is not capable of deriv-
ing new items (Paredaens, 1978) and thus, cannot
represent the class of one-to-many data transfor-
mations.

Currently, to develop one-to-many data trans-
formations, one has to resort, either to a gen-
eral purpose programming language, to some fla-
vor of proprietary scripting of an ETL tool, or
to a stored procedure written in the DBMS pro-
prietary programming language. In any case,
besides the inadequacy of these solutions to
express one-to-many data transformations con-
cisely, there is little possibility of leveraging the
dynamic optimization capabilities of the DBMS.

1.2 Contribution

This paper proposes a new operator named data
mapper which extends RA for expressing one-to-
many data transformations.

Since data transformations are often per-
formed by RDBMSs, or by tools and languages
that are also to based on RA to various extents,
the new operator is a general solution to express
one-to-many data transformations in these sys-
tems. In particular, by incorporating the mapper
operator, RDBMSs will be capable of efficiently
handling a new class of data transformations, en-
abling their use in a greater variety of data man-
agement activities that require data transforma-
tions.

An advantage of adressing the problem of one-
to-many data transformations through an oper-
ator is that it can be embedded in expressions
involving standard relational operators and also
be logically and physically optimized. To this
end, we envision a cost-based optimization of data
transformations expressed as a combination of
standard relational operators and mappers. We
propose (i) to formalize the mapper operator, (ii)
to study the formal properties of the mapper op-
erator focusing on its expressiveness and algebraic
properties, (iii) to develop alternative physical
execution algorithms, and (iv) to adapt current
cost-based query optimization techniques to han-
dle mappers.

2 DATA TRANSFORMATIONS

Data transformation is an old problem and
the idea of using a declarative language to spec-
ify such transformations has been proposed back
in the 1970’s with two prototypes, Convert (Shu



et al., 1975) and Express (Shu et al., 1977), both
aiming at data conversion.

To support the growing span of applications
of RDBMSs, several extensions to RA have been
proposed since its inception, mainly in the form
of new operators. Applications requiring data
transformations bring a new requirement to RA
as their focus is no more limited to the initial idea
of selecting information, but also involves the
production of new data items (Paredaens, 1978).

In the context of data cleaning, Potter’s Wheel
fold (Raman and Hellerstein, 2001) operator and
Ajax (Galhardas et al., 2000) map operator were
proposed for expressing one-to-many data trans-
formations. The Data Fusion tool (Carreira and
Galhardas, 2004) implements one-to-many data
transformations in the context of legacy-data mi-
grations. None of these, however, proposes an
extension of the relational algebra or addresses
logical and physical optimization issues.

Data transformations are also required in ETL
processes. To the best of our knowledge, in
most ETL tools, to express one-to-many data-
transformations, the user has to resort to some
form of ad-hoc scripting. Furthermore, the opti-
mization of ETL data transformations is a recent
effort (Simitsis et al., 2005).

When performing data integration, data has
to be transformed from the data sources to the
integrated database or vice-versa. TSIMMIS
MSL (Papakonstantinou et al., 1996) and Squir-
rel ISL (Zhou et al., 1996) are data integra-
tion languages whose main goal is to fusion data
from several sources. These languages, like oth-
ers for restructuring semi-structured data, e.g,
YAT (Cluet et al., 1998), and TransScm (Milo
and Zhoar, 1998), have their expressiveness re-
stricted to avoid potentially dangerous specifi-
cations (that may result in diverging computa-
tions). As a result, they cannot express the class
of one-to-many data transformations.

3 THE MAPPER OPERATOR

The mapper operator can be formalized as a
unary operator µF that takes a relation instance
of the source relation schema as input and pro-
duces a relation instance of the target relation
schema as output. The operator is parameterized
by a set F of special functions, which we desig-
nate as mapper functions. The intuition is that
each mapper function fAi expresses a part of the
envisaged data transformation, focused on a non-

empty set Ai of attributes of the target schema.
A key insight is that, when applied to a tuple,
a mapper function can produce a set of values
in the domain of its target attributes Dom(Ai),
rather than a single value.

Consider relation schemas X and Y. Further-
more, let Y = A1 · ... · Ak, where each Ai is a
set of schema attributes. Given a tuple u of a
source relation s(X), the expression µF ({u}) de-
notes the tuples t in Dom(Y ) such that, for every
set of attributes Ai, associate the values given by
fAi(s). Further details can be found in (Carreira
et al., 2005a). The mapper operator is formally
defined as follows: Given a set of mapper func-
tions F = {fA1 , ..., fAk

}, the mapper of s with
respect to F , denoted by µF (s), is the relation
instance of the target relation schema defined by

µF (s) def= {t ∈ Dom(Y ) | ∃u ∈ s s.t. t[Ai] ∈ fAi
(u),

∀1 ≤ i ≤ k}
The data transformation of the introductory

example can be expressed by means of a map-
per µacct,amt, with two mapper functions. The
function acct is the ACCT-mapper function that
returns a singleton with the account number
ACCT properly left padded with zeroes. The
function amt is the [AMOUNT,SEQNO]-mapper
function s.t., amt(am) is given by {(100, i) |
1 ≤ i ≤ (am/100)} ∪ {(am%100, (am/100) +

1) | am%100 6= 0}, where % represents the
modulus operation. For instance, if v is the
source tuple (901, 250.00), the result of evalu-
ating amt(v) is the set {(100, 1), (100, 2), (50, 3)}.
Given a source relation s including v, the
result of the expression µacct,amt(s) is an-
other relation that contains the set of tuples
{〈’0901’, 100, 1〉, 〈’0901’, 100, 2〉, 〈’0901’, 50, 3〉}.

3.1 Logical optimization

Better plans for queries involving mappers can be
achieved through the systematic application of a
new set of algebraic rewriting rules. One such
simple algebraic rewriting rule is µF (r on s) =
µF (r) on µF (s), if none of the mapper functions
in F produces duplicate values.

An important property that influences the
choice of a particular plan for binary operators, is
the expected number of tuples of each of its sub-
plans. Since mappers can generate several output
tuples for each input tuple, estimating the num-
ber of output tuples of a mapper is an interesting
problem. One way to approach the problem con-
sists of estimating the mapper fan-out factor. If a



mapper was never evaluated before, an interest-
ing question is how to find a good initial estimate
for its fan-out. We believe that in many situa-
tions the fan-out factors of mapper functions can
be combined to produce an initial answer. An-
other interesting observation is that when mapper
functions return empty sets, no output tuples are
produced. Thus, the mapper in some situations
may act as a filter, which turns selectivity into
another relevant factor. The already non-trivial
problem of optimizing queries with mappers can
be taken one step further. Mapper functions can
be expensive and due to data skewness, its cost
is subject to change at query-execution time.

3.2 Physical optimization

The formal semantics of the mapper equips it
with a simple iterator-based execution model as
follows: For each input tuple, perform the evalu-
ation of each mapper function and then compute
the Cartesian product of the results. The output
relation is obtained by unioning all the tuples so
obtained.

This simple model favors the integration of our
mapper operator in the query execution mecha-
nisms of an RDBMS. However, it turns out that
in the presence of expensive functions, like, e.g.,
string matching or check-digit computations, this
näıve execution of the mapper operator can be
very inefficient.

The total cost of evaluating a mapper can be
minimized by avoiding superfluous function eval-
uations. First, columns often have duplicate val-
ues. This suggests the use of caching techniques.
In the presence of potentially many functions and
tables with multi-million tuples, the choice of the
functions is an optimization problem in itself.
Second, some functions return empty sets. When
an empty set is found, no output tuples are pro-
duced for a given input tuple. Thus, there is no
need to evaluate the remaining functions. This
observation suggests an interesting strategy that
consists of evaluating the functions that are more
selective first.

4 CURRENT STATUS

Defining a new operator is a significant re-
search effort as it requires both theoretical and
practical insight. In such effort, two issues need
to be addressed forefront. The usefulness of the

operator needs to be validated and the class of
problems being solved has to be formally defined.

To address the first issue, we pursued a com-
mercial venture that resulted in the inclusion of
native support for one-to-many data transforma-
tions in a commercial tool (Carreira and Gal-
hardas, 2004). The tool is being used in several
real-world legacy-data migration projects that
corroborate the need for supporting one-to-many
data transformations.

Up to this moment, we have been able to put
forward a formal semantics for the new operator
that enabled us to perform a formal study of the
expressiveness of the operator. We developed the
formal demonstration that the mapper-extended
RA (MRA) is strictly more expressive than stan-
dard RA.

A formal definition of the class of one-to-many
data transformations is underway. We conjecture
that two sub-classes of one-to-many data trans-
formations exist: One comprising data trans-
formations expressible through RA and another
comprising those expressible only through MRA.

A set of algebraic rewriting rules for gener-
ating logical query plans involving mappers and
some standard relational operators have been de-
veloped together with their formal proofs of cor-
rectness (Carreira et al., 2005a). A first set of
rewriting rules for expressions involving mappers
and joins has also emerged. Currently, a set of
experiments is being conducted to determine the
factors that influence the effectiveness of the pro-
posed rewritings (Carreira et al., 2005b). Proto-
typical implementations for physical mapper op-
erator algorithms are being developed in Java us-
ing the XXL framework (van den Bercken et al.,
2000). These algorithms adapt ideas of memoiza-
tion and hybrid hashing proposed by (Hellerstein
and Naughton, 1996) to multiple functions.

5 CONCLUSIONS

In this work, we address the problem of
specifying one-to-many data transformations that
are frequently required in data integration, data
cleaning, legacy-data migration, and ETL scenar-
ios. Since one-to-many data transformations are
not expressible through standard RA queries, we
proposed the mapper operator. The new opera-
tor allows to naturally express one-to-many data
transformations, while extending the expressive
power of RA at the same time.

Up to now some operators have been pro-



posed for addressing the problem of expressing
one to many data-transformations (Cunningham
et al., 2004; Galhardas et al., 2001; Raman and
Hellerstein, 2001; Amer-Yahia and Cluet, 2004).
Although these operators show similarities with
mappers, most of them are only capable of ex-
pressing a subset of one-to-many transformations.

As data often resides in RDBMSs, data trans-
formations specified as relational expressions can
take direct advantage of their optimization ca-
pabilities. In this trend, several RDBMSs, like
e.g., Microsoft SQL Server, already include addi-
tional software packages specific for ETL tasks.
However, as far as we know, none of these ex-
tensions is supported by the corresponding theo-
retical background in terms of existing database
theory. Therefore, the capabilities of relational
engines, in terms of optimization opportunities
are not fully exploited in activities involving data
transformations, like ETL or data-cleaning.

REFERENCES

Amer-Yahia, S. and Cluet, S. (2004). A declar-
ative approach to optimize bulk loading into
databases. ACM Transactions of Database Sys-
tems, 29(2):233–281.

Carreira, P. and Galhardas, H. (2004). Efficient de-
velopment of data migration transformations. In
ACM SIGMOD Int’l Conf. on the Managt. of
Data.

Carreira, P., Galhardas, H., Lopes, A., and Pereira,
J. (2005a). Extending relational algebra to ex-
press one-to-many data transformations. In 20th
Brasillian Symposium on Databases SBBD’05.

Carreira, P., Galhardas, H., Pereira, J., and Lopes, A.
(2005b). Data mapper: An operator for expres-
siong one-to-many data transformations. In 7th
Int’l Conf. on Data Warehousing and Knowledge
Discovery, DaWaK ’05, volume 3589 of LNCS.
Springer-Verlag.

Cluet, S., Delobel, C., Siméon, J., and Smaga, K.
(1998). Your mediators need data conversion!
In ACM SIGMOD Int’l Conf. on the Managt. of
Data.

Cunningham, C., Graefe, G., and Galindo-Legaria,
C. A. (2004). PIVOT and UNPIVOT: Optimiza-
tion and Execution Strategies in an RDBMS. In
Proceedings of the International Conference on
Very Large Data Bases (VLDB’04), pages 998–
1009. Morgan Kaufmann.

Galhardas, H., Florescu, D., Shasha, D., and Simon,
E. (2000). Ajax: An extensible data cleaning
tool. ACM SIGMOD Int’l Conf. on Managt. of
Data, 2(29).

Galhardas, H., Florescu, D., Shasha, D., Simon, E.,
and Saita, C. A. (2001). Declarative data clean-
ing: Language, model, and algorithms. In Proc.
of the Int’l Conf. on Very Large Data Bases
(VLDB’01).

Hellerstein, J. M. and Naughton, J. F. (1996).
Query execution techniques for caching expen-
sive methods. ACM SIGMOD Int’l Conf. on
Managt. of Data.

Lakshmanan, L. V. S., Sadri, F., and Subramanian,
I. N. (1996). SchemaSQL - A Language for
Querying and Restructuring Database Systems.
In Proc. Int’l Conf. on Very Large Databases
(VLDB’96), pages 239–250.

Miller, R. J. (1998). Using schematically heteroge-
neous structures. Proc. of ACM SIGMOD Int’l
Conf. on the Managt. of Data, 2(22):189–200.

Milo, T. and Zhoar, S. (1998). Using schema match-
ing to simplify heterogeneous data translation.
In Proc. of the Int’l Conf. on Very Large Data
Bases (VLDB’98).

Papakonstantinou, Y., Garcia-Molina, H., and Ull-
man, J. (1996). MedMaker: A Mediator System
Based on Declarative Specifications. In Proc.
Int’l. Conf. on Data Engineering.

Paredaens, J. (1978). On the expressive power of the
relational algebra. Information Processing Let-
ters, 7(2):107–111.

Rahm, E. and Do, H.-H. (2000). Data Cleaning:
Problems and current approaches. IEEE Bul-
letin of the Technical Comittee on Data Engi-
neering, 24(4).

Raman, V. and Hellerstein, J. M. (2001). Potter’s
Wheel: An Interactive Data Cleaning System.
In Proc. of the Int’l Conf. on Very Large Data
Bases (VLDB’01).

Shu, N. C., Housel, B. C., and Lum, V. Y. (1975).
CONVERT: A High Level Translation Definition
Language for Data Conversion. Communic. of
the ACM, 18(10):557–567.

Shu, N. C., Housel, B. C., Taylor, R. W., Ghosh,
S. P., and Lum, V. Y. (1977). EXPRESS: A Data
EXtraction, Processing and REStructuring Sys-
tem. ACM Transactions on Database Systems,
2(2):134–174.

Simitsis, A., Vassiliadis, P., and Sellis, T. K. (2005).
Optimizing etl processes in data warehouses. In
Proc. of the 21st Int’l Conf. on Data Engineer-
ing, ICDE 2005.

van den Bercken, J., Dittrich, J. P., and Seeger, B.
(2000). XXL: A prototype for a library of query
processing algorithms. In Proc. of the ACM
SIGMOD Int’l Conf. on Managt. of Data. ACM
Press.

Zhou, G., Hull, R., and King, R. (1996). Generat-
ing Data Integration Mediators That Use Ma-
terialization. Journal of Intelligent Information
Systems, 6(2/3):199–221.


