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ABSTRACT
Relational Database Systems often support activities like
data warehousing, cleaning and integration. All these activ-
ities require performing some sort of data transformations.
Since data often resides on relational databases, data trans-
formations are often specified using SQL, which is based on
relational algebra. However, many useful data transforma-
tions cannot be expressed as SQL queries due to the lim-
ited expressive power of relational algebra. In particular,
an important class of data transformations that produces
several output tuples for a single input tuple cannot be ex-
pressed in that way. In this paper, we analyze alternatives to
process one-to-many data transformations using Relational
Database Management Systems, and compare them in terms
of expressiveness, optimizability and performance.

1. INTRODUCTION
In modern information systems, an important number of

activities rely, to a great extent, on the use of data trans-
formations. Well known applications are the migration of
legacy data, ETL (extract-transform-load) processes sup-
porting data warehousing, data cleaning processes and the
integration of data from multiple sources [25]. Declarative
query languages propose a natural way of expressing data
transformations as queries (or views) over the source data.
Due to the broad adoption of RDBMSs, the language of
choice is SQL, which is based on Relational Algebra (RA)
[12].

Unfortunately, the limited expressive power of RA hin-
ders the use of SQL for specifying important classes of data
transformations [3]. A class of data transformations that
may not be expressible in RA corresponds to the so called
one-to-many data transformations [10], which are character-
ized by producing several output tuples for each input tuple.
One-to-many data transformations are required for address-
ing certain types of data heterogeneities [33]. One familiar
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type of data heterogeneity arises when data is represented
in the source and in the target using different aggregation
levels. For instance, source data may consist of salaries ag-
gregated by year, while the target data consists of salaries
aggregated by month. In this case, the data transformation
that takes place is frequently required to produce several
tuples in the target relation to represent each tuple of the
source relation.

Currently, one-to-many data transformations are imple-
mented resorting to one of the following alternatives: (i)
using a programming language, such as C or Java, (ii) using
an ETL tool, which often requires the development of propri-
etary data transformation scripts; or (iii) using an RDBMS
extension like recursive queries [26] or table functions [15].

In this paper we investigate the adequacy of RDBMSs for
expressing and executing one-to-many data transformations.
Implementing data transformations in this way is attrac-
tive since the data is usually stored in an RDBMS. There-
fore, executing the data transformation inside the RDBMS
appears to be the most efficient approach. The idea of
adopting database systems as platforms for running data
transformations is not revolutionary (see, e.g., [20, 5]). In
fact, Microsoft SQL Server and Oracle, already include ad-
ditional software packages that provide specific support for
ETL tasks. But, as far as the authors are aware of, no
experimental work to compare alternative RDBMS imple-
mentations of one-to-many data transformations has been
undertaken.

The main contributions of our work are the following:

• we arrange one-to-many data transformations into sub-
classes using the expressive power of RA as dividing
line;

• we study different possible implementations for each
sub-class of one-to-many data transformations;

• we conduct an experimental comparison of alternative
implementations, identifying relevant factors that in-
fluence the performance and optimization potential of
each alternative.

The remainder of the paper is organized as follows: In Sec-
tion 2 we further motivate the reader and introduce the two
sub-classes of one-to-many data transformations by exam-
ple. In Section 3, we focus on the implementation possibili-
ties of the sub-classes of one-to-many data transformations.



The experimental assessment is carried out in Section 4. Re-
lated work is reviewed in Section 5 and Section 6 presents
the conclusions of the paper.

2. MOTIVATION
We now motivate the concept of one-to-many data trans-

formations by introducing two examples based on real-world
problems.

Example 2.1 : Consider a relational table LOANEVT that,
for each given loan, keeps the events that occur since the
establishment of a loan contract until it is closed. A loan
event consists of a loan number, a type and several columns
with amounts. For each loan and event, one or more event
amounts may apply. The field EVTYPE maintains the event
type, which can be OPEN when the contract is established, PAY
meaning that a loan installment has been payed, EARLY when
an early payment has been made, FULL means that a full pay-
ment was made, or CLOSED meaning that the loan contract
has been closed. In the target table named EVENTS, the same
information is represented by adding one row per event with
the corresponding amount. An event row is added only if the
amount is greater than zero.

Clearly, in the data transformation described in Exam-
ple 2.1, each input row of the table LOANEVT corresponds
to several output rows in the table EVENTS. See Figure 2.
Moreover, for a given input row, the number of output rows
depends on whether the contents of the columns CAPTL, TAX,
EXPNS, BONUS are positive. Thus, each input row can result
in at most four output rows. This means that there is a
known bound on the number of output rows produced for
each input row. We designate these data transformations
as bounded one-to-many data transformations. However, in
other one-to-many data transformations, such bound can-
not always be established a-priori as shown in the following
example:

Example 2.2: Consider the source relation LOANS[ACCT, AM]
(represented in Figure 2) that stores the details of loans
per account. Suppose LOANS data must be transformed into
PAYMENTS[ACCTNO, AMOUNT, SEQNO], the target relation, accord-
ing to the following requirements:

1. In the target relation, all the account numbers are left
padded with zeroes. Thus, the attribute ACCTNO is ob-
tained by (left) concatenating zeroes to the value of
ACCT.

2. The target system does not support payment amounts
greater than 100. The attribute AMOUNT is obtained by
breaking down the value of AM into multiple parcels with
a maximum value of 100, in such a way that the sum
of amounts for the same ACCTNO is equal to the source
amount for the same account. Furthermore, the target
field SEQNO is a sequence number for the parcel, ini-
tialized at one for each sequence of parcels of a given
account.

The implementation of data transformations like those for
producing the target relation PAYMENTS of Example 2.2 is
challenging, since the number of output rows, for each in-
put row, is determined by the value of the attribute AM.

Relation LOANEVT
LOANNO EVTYP CAPTL TAX EXPNS BONUS

1234 OPEN 0.0 0.19 0.28 0.1
1234 PAY 1000.0 0.28 0.0 0.0
1234 PAY 1250.0 0.30 0.0 0.0
1234 EARLY 550.0 0.0 0.0 0.0
1234 FULL 5000.0 1.1 5.0 3.0
1234 CLOSED 0.0 0.1 0.0 0.0

Relation EVENTS
LOANNO EVTYPE AMTYP AMT

1234 OPEN TAX 0.19
1234 OPEN EXPNS 0.28
1234 OPEN BONUS 0.1
1234 PAY CAPTL 1000
1234 PAY TAX 0.28
1234 PAY CAPTL 1250
1234 PAY TAX 0.30
1234 EARLY CAPTL 550
1234 FULL CAPTL 5000
1234 FULL TAX 1.1
1234 FULL EXPNS 5.0
1234 FULL BONUS 3.0
1234 CLOSED EXPNS 0.1

Figure 1: Illustration of a bounded one-to-many
data transformation: source relation LOANEVT for loan
number 1234 (at the top) and the corresponding tar-
get relation EVENTS (at the bottom).

Relation LOANS Relation PAYMENTS

ACCT AM

12 20.00
3456 140.00
901 250.00

ACCTNO AMOUNT SEQNO

0012 20.00 1
3456 100.00 1
3456 40.00 2
0901 100.00 1
0901 100.00 2
0901 50.00 3

Figure 2: Illustration of an unbounded data-
transformation: the source relation LOANS on the left
for loan number 1234, and the corresponding target
relation PAYMENTS on the right.

Unlike in Example 2.1, the upper bound on the number of
output rows cannot be determined by analysis of the data
transformation specification. We designate these data trans-
formations as unbounded one-to-many data transformations.
Other sources of unbounded data transformations exist: for
example converting collection-valued attributes of SQL 1999
[26], where each element of the collection is mapped to a dis-
tinct row in the target table. A common data transforma-
tion in the context of data-cleaning consists of converting
a set of values encoded as string attribute with a varying
number of elements into rows. This data transformation is
unbounded because the exact number of output rows can
only be determined by analyzing the string.

3. IMPLEMENTATION
Bounded one-to-many data transformations can be ex-

pressed as RA expressions. In turn, as we formally demon-
strate elsewhere [10], no relational expression is able to cap-
ture unbounded one-to-many data transformations. There-
fore, bounded data transformations can be implemented as
relational algebra expressions while unbounded one-to-many



1: insert into EVENTS (LOANNO, EVTYP, AMTYP, AMT)
2: select LOANNO, EVTYP, ’CAPTL’ as AMTYP, CAPTL
3: from LOANEVT
4: where CAPTL > 0
5: union all
6: select LOANNO, EVTYP, ’TAX’ as AMTYP, TAX
7: from LOANEVT
8: where TAX > 0
9: union all

10: select LOANNO, EVTYP, ’EXPNS’ as AMTYP, EXPNS
11: from LOANEVT
12: where EXPNS > 0
13: union all
14: select LOANNO, EVTYP, ’BONUS’ as AMTYP, BONUS
15: from LOANEVT
16: where BONUS > 0;

Figure 3: RDBMS implementation of Example 2.1
as an SQL union query.

data transformations have to be implemented resorting to
SQL 1999 recursive queries [26] or to SQL 2003 Persistent
Stored Modules (PSMs) [15]. We now examine these alter-
natives.

3.1 Relational Algebra
Bounded one-to-many data transformations can be ex-

pressed as relational expressions by combining projections,
selections and unions at the expense of the query length.
Consider k to be the maximum number of tuples generated
by a one-to-many data transformation, and let the condi-
tion Ci encode the decision of whether the ith tuple, where
1 ≤ i ≤ k, should be generated. In general, given a source
relation s with schema X1, ..., Xn, we can define a one-to-
many data transformation over s that produces at most k
tuples for each input tuple through the expression

πX1,...,Xn

�
σC1(r)

�
∪ ... ∪ πX1,...,Xn

�
σCk (r)

�

To illustrate the concept, in Figure 3 we present the SQL
implementation of the bounded data transformation pre-
sented in Example 2.1 using multiple union all (lines 5, 9
and 13) statements. Each select statement (lines 2–4, 6–8,
10–12 and 14–16) encodes a separate condition and poten-
tially contributes with an output tuple. The drawback of
this solution is that the size of the query grows proportion-
ally to the maximum number of output tuples k that has to
be generated for each input tuple. If this bound value k is
high, the query becomes too big. Expressing one-to-many
data transformations in this way implies a lot of repetition,
in particular if many columns are involved.

3.2 RDBMS Extensions
We now turn to express one-to-many data transformations

using RDBMS extensions, namely, recursive queries and ta-
ble functions. Although these solutions enable expressing
both bounded and unbounded transformations, here we in-
troduce them for expressing unbounded transformations.

3.2.1 Recursive Queries
The expressive power of RA can be considerably extended

through the use of recursion [3]. Although the resulting
setting is powerful enough to express many useful one-to-
many data transformations, we argue that this alternative
undergoes a number of drawbacks. Recursive queries are
not broadly supported by RDBMSs, and they are difficult

1: with recpayments(digits(ACCTNO), AMOUNT, SEQNO,

2: REMAMNT) as

3: (select ACCT,

4: case when base.AM < 100 then base.AM

5: else 100 end,

6: 1,

7: case when base.AM < 100 then 0

8: else base.AM - 100 end

9: from LOANS as base

10: union all

11: select ACCTNO,

12: case when step.REMAMNT < 100 then

13: step.REMAMNT

14: else 100 end,

15: SEQNO + 1,

16: case when step.REMAMNT < 100 then 0

17: else step.REMAMNT - 100 end,

18: from recpayments as step

19: where step.REMAMNT > 0)

20: select ACCTNO, SEQNO, AMOUNT

21: from recpayments as PAYMENTS

Figure 4: RDBMS implementation of Example 2.2
as a recursive query in SQL 1999.

to optimize and hard to understand.
In Figure 4 we present a solution for Example 2.2 written

in SQL 1999. A recursive query written in SQL 1999 is di-
vided in three sections. The first section is the base of the
recursion that creates the initial result set (lines 3–9). The
second section, known as the step, is evaluated recursively
on the result set obtained so far (lines 11–19). The third
section specifies through a query, the output expression re-
sponsible for returning the final result set (lines 20–21). In
the base step, the first parcel of each loan is created and ex-
tended with the column REMAMNT whose purpose is to track
the remaining amount. Then, at each step we enlarge the
set of resulting rows. All rows without REMAMNT constitute
already a valid parcel and are not expanded by recursion.
Those rows with REMAMNT > 0 (line 19) generate a new row
with a new sequence number set to SEQNO + 1 (line 15) and
with remaining amount decreased by 100 (line 17). Finally,
the PAYMENTS table is generated by projecting away the extra
REMAMNT column.

Clearly, when using recursive queries to express data trans-
formations, the logic of the data transformation becomes
hard to grasp, specially if several functions are used. Even
in simple examples like Example 2.2, it becomes difficult to
understand how the cardinality of the output tuples depends
on each input tuple. Furthermore, a great deal of ingenuity
is often needed for developing recursive queries.

3.2.2 Persistent Stored Modules
Several RDBMSs support some form of procedural con-

struct for specifying complex computations. This feature is
primarily intended for storing business logic in the RDBMS
for performance reasons or to perform operations on data
that cannot be handled by SQL. Several database systems
support their own procedural languages, like SQL-PL in the
case of DB2 [22], TransactSQL in the case of Microsoft SQL
Server and Sybase [24], or PL/SQL in the case of Oracle [16].
These extensions, designated as Persistent Stored Modules
(PSMs), were introduced in the SQL 1999 standard [18, Sec-
tion 8.2]. A module of a PSM can be, among others, a proce-
dure, usually known as stored procedure (SP), or a function,
known as a user defined function (UDF).



1: create function LOANSTOPAYMENTS
2: return PAYMENTS TABLE TYPE pipelined is
3: ACCTVALUE LOANS.ACCT%TYPE;
4: AMVALUE LOANS.AM%TYPE;
5: REMAMNT INT;
6: SEQNUM INT;
7: cursor CLOANS is
8: select * from LOANS;
9: begin

10: open CLOANS;
11: loop
12: fetch CLOANS into ACCTVALUE, AMVALUE;
13: REMAMNT := AMVALUE;
14: SEQNUM := 1;
15: while REMAMNT > 100
16: loop
17: pipe row(PAYMENTS ROW TYPE(
18: LPAD(ACCTVALUE, 4, ’0’), 100.00, SEQNUM));
19: REMAMNT := REMAMNT - 100;
20: SEQNUM := SEQNUM + 1;
21: end loop
22: if REMAMNT > 0 then
23: pipe row(PAYMENTS ROW TYPE(
24: values (LPAD(ACCTVALUE, 4, ’0’),
25: REMAMNT, SEQNUM));
26: end if
27: end loop
28: end LOANSTOPAYMENTS

Figure 5: Possible RDBMS implementation of Ex-
ample 2.2 as a table function using Oracle PL/SQL.
The details concerning the creation of the sup-
porting row and table types PAYMENTS ROW TYPE and
PAYMENTS TABLE TYPE are not shown.

1: select *
2: from (LOANEVT
3: unpivot AMT for
4: AMTYPE in (’LOANNO’, ’EVTYP’, ’TAX’, ’EXPNS’, BONUS’))
5: where AMT > 0

Figure 6: Implementation of Example 2.1 using an
unpivot operation on SQL Server 2005.

Table functions extend the expressive power of SQL be-
cause they may return a relation. Table functions allow
recursion1 and make it feasible to generate several output
tuples for each input tuple. The advantages are mainly en-
hanced performance and re-use [33]. Moreover, complex
data transformations can be expressed by nesting UDFs
within SQL statements [33]. However, table functions are
often implemented using procedural constructs that hamper
the possibilities of undergoing the dynamic optimizations fa-
miliar to relational queries.

Besides table functions, other kinds of UDFS exist, like
user defined scalar functions (UDSFs), and user defined ag-
gregate functions (UDAFs) [21]. Still, SQL extended with
UDSFs and UDAFs may not be enough for expressing one-
to-many data transformations. First, calls to UDSFs need to
be embedded in an extended projection operator, which, as
discussed in Section 3.1, is not powerful enough for express-
ing one-to-many transformations. Second, UDAFs must be
embedded in aggregation operations, which can only repre-
sent many-to-one data transformations.

1Recursive calls of table functions are constrained in some
RDBMSs, like DB2.

An interesting aspect of PSMs is that they are powerful
enough to specify bounded as well as unbounded data trans-
formations. Figure 5 presents the implementation of the
data transformation introduced in Example 2.2 as a user de-
fined table function (TF), as proposed by the SQL 2003 [15].
The table function implementation written in PL/SQL has
two sections: a declaration section and a body section. The
first one defines the set of working variables that are used in
the procedure body and the cursor CLOANS (lines 7–8), which
will be used for iterating through the LOANS table. The body
section starts by opening the cursor. Then, a loop and a
fetch statement are used for iterating over CLOANS (lines
11–12). The loop cycles until the fetch statement fails to
retrieve more tuples from CLOANS. The value contained in
ACCTVALUE is loaded into the working variable REMAMNT (line
13). The value of this variable will be later decreased in
parcels of 100 (line 19). The number of parcels is controlled
by the guarding condition REMAMNT>0 (lines 15 and 22). An
inner loop is used to form the parcels based on the value of
REMAMNT (lines 15–21). A new parcel row is inserted in the
target table PAYMENTS for each iteration of the inner loop.
The tuple is generated through a pipe row statement that
is also responsible for padding the value of ACCTVALUE with
zeroes (lines 17–18 and 24–25). When the inner loop ends,
a last pipe row statement is issued to insert the parcel
that contains the remainder. The details concerning the
creation of the row and table types PAYMENTS ROW TYPE and
PAYMENTS TABLE TYPE are not presented.

The main drawback of PSMs is that they use a number
of procedural constructs that are not amenable to optimiza-
tion. Moreover, there are no elegant solutions for expressing
the dynamic creation of tuples using PSMs. One needs to
resort to intricate loop and pipe row statements (or in-
sert into statements in the case of a stored procedure) as
shown in Figure 5. From the description of Example 2.2, it
is clear that a separate logic is used to compute each of the
attributes. Nevertheless, in the PL/SQL code, the compu-
tation of ACCTNO is coupled with the computation of AMOUNT.
Thus, the logic to calculate ACCTNO is duplicated in the code.
This makes the code maintenance difficult and the code itself
hard to optimize.

3.2.3 Pivoting operations
The pivot and unpivot operators constitute an important

extension to RA, which were first natively supported by SQL
Server 2005 [27]. The pivot operation collapses similar rows
into a single wider row adding new columns on-the-fly [13].
In a sense, this operator collapses rows to columns. Thus,
it can be seen as expressing a many-to-one data transforma-
tion. Its dual, the unpivot operator transposes columns into
rows. Henceforth, the discussion focuses on the unpivot oper-
ator, since this operator can be used for expressing bounded
one-to-many data transformations.

In what concerns expressiveness, the unpivot operator does
not increase the expressive power of RA, since, as [13] ad-
mit, the unpivot operator can be implemented with multi-
ple unions. Its semantics can be emulated by employing
multiple union operations as proposed above for express-
ing bounded one-to-many data transformations through RA
(Section 3.1).

Nevertheless, expressing one-to-many data transformations
using the unpivot operator brings two main benefits compar-
atively to using multiple unions. First, the syntax is more



compact. Figure 6 shows how the unpivot operator can be
employed to express the bounded one-to-many data trans-
formation of Example 2.1. Second, data transformations ex-
pressed using the unpivot operator are more readily optimiz-
able using the logical and physical optimizations proposed
in [13].

4. EXPERIMENTS
We now compare the performance of the alternative im-

plementations of the one-to-many data transformations in-
troduced in Examples 2.1 and 2.2 using relational queries,
recursive queries, table functions and stored procedures. We
start by comparing the performance of each alternative to
address bounded and unbounded transformations. Then, we
investigate how the different solutions react to two intrinsic
factors of one-to-many data transformations. Finally, we
analyze the optimization possibilities of each solution.

We have tested the alternative implementations of one-to-
many data transformations on two RDBMSs henceforth des-
ignated as DBX and OEX2. The entire set of planned imple-
mentations is shown in Figure 7. Unbounded data transfor-
mations cannot be implemented as relational queries. Fur-
thermore, the class of recursive queries supported by the
OEX system is not powerful enough for expressing unbounded
data transformations. Additionally, due to limitations of
the DBX system, table functions could not be implemented.
Thus, to test another implementation across both systems,
bounded an unbounded data transformations were imple-
mented also as stored procedures. Finally unpivoting oper-
ations were not considered because both DBX and OEX do
not support them.

4.1 Setup
The tests were executed on a synthetic workload that con-

sists of input relations whose schemas are based on those
used in Examples 2.1 and 2.2, for bounded and unbounded
data transformations, respectively. Since the representation
of data types may not be the same across all RDBMS, spe-
cial attention must be given to record length. To equalize
the sizes of the input rows of bounded and unbounded data
transformations, a dummy column was added to the table
LOANS so that its record size matches the record size of the
table LOANEVT. We computed the average record size of each
input table after its load. Both LOANS and LOANEVT have
approximately 29 bytes in all experiments.

In addition, several parameters of both RDBMSs were
carefully aligned. Below, we summarize the main issues that
received our attention.

I/O conditions An important aspect regarding I/O is that
all experiments use the same region of the hard-disk.
To induce the use of the same area of the disk, I/O
was forced through raw devices. The hard-disk is par-
titioned in cylinder boundaries as illustrated in Fig-
ure 8. The first partition is a primary partition for-
matted with Ext3 file system and journaling enabled
and is used for the operating system and RDBMS in-
stallations as well as for the database control files. The
second partition is used as swap space. The remaining

2Due to the restrictions imposed by DBMS licensing agree-
ments, the actual names of the systems used for this evalu-
ation will not be revealed.

partitions are the logical partitions accessed as raw de-
vices. These partitions handle data and log files. Each
RDBMSs accesses tablespaces created in distinct raw
devices. The first logical partition (/dev/hda5) han-
dles the tablespace named RAWSRC for input data; the
second logical partition (/dev/hda6) handles the ta-
blespace named RAWTGT for output data. The parti-
tion (/dev/hda7) is used for raw logging and finally
(/dev/hda8) is used as the temporary tablespace. To
minimize the I/O overhead, both input and output ta-
bles were created with PCTFREE set to 0. In addition,
the usage of kernel asynchronous I/O [6] was turned
off.

Block sizes In our experiments, tables are accessed through
full-table scans. Since there are no updates and no
indexed-scans, different block sizes have virtually no
influence in performance. The block size parameters
are set to the same value of 8KB. Since full table scans
use multi-block reads, we configure the amount of data
transferred in a multi-block read to 64K.

Buffers To improve performance, RDBMSs cache frequently
accessed pages in independent memory areas. One
such area is the which caches disk pages buffer pool
[14]. The configuration of buffer pools in DBX differs
from that of the OEX system. For our purposes, the
main difference lies in the fact that, in DBX, individual
buffer pools can be assigned to each tablespace, while
OEX uses one global buffer pool for all tablespaces. In
DBX, we assign a buffer pool of 4MB to the RAWSRC

tablespace, which contains the source data. In OEX
we set the size of the cache to 4MB.

Logging Both DBX and OEX use write-ahead logging mech-
anisms that produce undo and redo log [19, 28]. We
attempt to minimize the logging activity by disabling
logging on both in DBX and OEX experiments. How-
ever, we note that logging cannot be disabled in the
case of stored procedures because insert into state-
ments executed within stored procedures always gen-
erate log.

We measured the throughput, i.e., the amount of work
done per second, of the considered implementations of one-
to-many data transformations. Throughput is expressed as
the number of source records transformed per second and is
computed by measuring the response time for a data trans-
formation applied to an input table. The response time is
measured as the time interval that mediates the submission
of the data transformation implementation from the com-
mand line prompt and its conclusion. The interval that
mediates the submission of the request and the execution
by the system, known as reaction time, is considered ne-
glectable. The hardware used was a single CPU machine
(running at 3.4 GHz) with 1GB of RAM and Linux (kernel
version 2.4.2) installed.

4.2 Throughput comparison
To compare the throughput of the evaluated alternatives,

we executed their implementations on input relations with
increasing sizes. The results for both bounded and un-
bounded implementations, are shown in Figure 9. We ob-
serve that table functions are the most performant of the



Implementations of one-to-many data transformations
Bounded Unbounded

Relational Table Stored Recursive Table Stored

Query Function Procedure Query Function Procedure

DBX yes no yes yes no yes
OEX yes yes yes no yes yes

Figure 7: Different mechanisms used for implementing the one-to-many data transformations developed for
the experiments.

OS swap raw raw raw raw

hda1 hda2 hda5 hda6 hda7 hda8

58GB 2GB 25GB 25GB 25GB 25GB

Figure 8: Hard-disk partitioning for the experi-
ments

implementations. Then, implementations using unions and
recursive queries are considerably more efficient than stored
procedures. Figure 9b shows that the throughput is mostly
constant as the input relation size increases.

The low throughput observed in stored procedures is mainly
due to the huge amounts of redo logging activity incurred
during their execution. Unlike the remaining solutions, it
is not possible to disable logging for stored procedures. In
particular, the logging overhead monitored for stored proce-
dures is ≈ 118.9 blocks per second in the case of DBX and
≈ 189.2 blocks per second in the case of OEX. We may con-
clude that, if logging was disabled, stored procedures would
execute with a comparable performance to table functions.

4.3 Influence of selectivity and fanout
In one-to-many data-transformations, each input tuple

may correspond to zero, one, several output tuples. The
ratio of input tuples for which at least one output tuple is
produced is known as the selectivity of the data transforma-
tion. Similarly to [11], the average number of output tuples
produced for each input tuple is called fanout Different data
sets generating data transformations with different selectiv-
ities and fanouts have been used in our working examples.
These data sets produce predefined average selectivities and
fanouts. A set of experiments varying the selectivity and
fanout factors was put in place, to help understand the ef-
fect of selectivity and fanout on data transformations. The
results are depicted in Figure 10.

Concerning selectivity, we observe on Figure 10a that higher
throughputs are obtained for smaller selectivities. This stems
from having less output tuples created when the selectivity is
smaller. The degradation observed is explained having more
output tuples produced and materialized at higher selectiv-
ities. Stored procedures degrade faster due to an increase in
the log generation.

With respect to the fanout factor, greater fanout factors
imply generating more output tuples for each input tuple
and hence I/O activity is directly influenced. To observe the
impact of this parameter, we increase the fanout factor from
1 to 32. Figure 10b illustrates the evolution of the through-
put for unbounded transformations. The throughput of all

implementations decreases because more time is spent writ-
ing the output tuples. In the case of recursive queries, more
I/O is incurred because higher fanouts increase the size of
the intermediate relations used for evaluating the recursive
query. Finally, for stored procedures, the more tuples are
written, the more log is generated.

4.4 Query optimization issues
The analysis of the query plans of the different implemen-

tations shows that the RDBMSs used in this evaluation are
not always capable of optimizing queries involving one-to-
many data transformations.

To validate this hypothesis, we contrasted the execution
of a simple selection applied to a one-to-many transforma-
tion, represented as σACCTNO>p(T (s)), with its corresponding
optimized equivalent, represented as T (σACCT>p(s)), where T
represents the data transformation specified in Example 2.2,
except that the column LOANS is directly mapped, and p is a
constant used only to induce a specific selectivity. We stress
that the optimized versions are obtained manually, by push-
ing down the selection condition. Figure 11a presents the
response times of the original and optimized versions im-
plemented as recursive queries and as table functions. We
observe that the optimized versions are considerably more
efficient that their corresponding originals.

We conjecture that the optimization handicap of RDBMSs
for processing one-to-many data transformations has to do
with the intrinsic difficulties of optimizing queries using re-
cursive functions and table functions. In fact, the optimiza-
tion of recursive queries is far from being a closed subject
[30]. In turn, table functions are implemented using proce-
dural constructs that hamper optimizability. Once the table
function makes use of procedural constructs, it is not pos-
sible to perform the kind of optimizations that relational
queries undergo. We have found that bounded one-to-many
data transformations take advantage of the logical optimiza-
tions built into the RDBMS when they are implemented
through a union statement. Applying a filter to a union is
readily optimized. The response time for of the experiment
was included in Figure 11a for comparison.

Another type of optimization that RDBMSs can apply in
one-to-many data transformations is the use of cache. This
factor is important to optimize the execution of queries that
use multiple union statements and therefore need to scan the
input relation multiple times. Likewise, recursive queries
perform multiple joins with intermediate relations. This
happens because the physical execution of a recursive query
involves performing one full select to seed the recursion and
then a series of successive union and join operations to un-
fold the recursion. As a result, these operations are likely to
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Figure 9: Throughput of data transformation implementations with different relation sizes. Fanout is fixed
to 2.0, selectivity fixed to 0.5, and cache size set to 4MB.

be influenced by the buffer cache size.
To evaluate the impact of the buffer pool cache size on

one-to-many transformations, we executed a set of exper-
iments varying the buffer pool size. The results, depicted
in Figure 11b, show that a larger buffer pool cache is most
beneficial for bounded data transformations implemented as
unions. This is explained by larger buffer pool caches reduce
the number of physical reads that required when scanning
the input relations multiple times. We also remark a distinct
behavior of the RDBMSs used in the evaluation as cache
size increases. The throughput in OEX increases smoothly
while in DBX there is sharp increase. This has to do with
the differences in cache the replacement policies of these
systems while performing table scans [14]. DBX uses the
least recently used (LRU) [29] to select the next page to be
replaced from the cache while the OEX system, according
to its documentation, uses a most recently used (MRU) re-
placement policy. The LRU replacement policy performs
quite poorly on sequential scans if the cache smaller than
the input relation. The LRU replacement policy purges the
cache when full table scans are involved and the size of the
buffer pool is smaller than the size of the table [23]. We
conclude that for small input tables using multiple unions is
the most advantageous alternative for bounded one-to-many
data transformations. However, in the presence of large in-
put relations, table functions are the best alternative since
they are invariant to cache size. This is due to the fact that
input relation being scanned only once. Stored procedure
implementations also scan the input relation only once but
are less performant due to logging.

According to [13], the pivot operator processes the input
relation only once. As a result, it is not likely to be influ-
enced by buffer cache size, unlike the chaining of multiple
unions we present in Section 3.1

5. RELATED WORK
In Codd’s original model [12], RA expressions denote trans-

formations among relations. In the following years, the idea
of using a queries for specifying data transformations would
be pursued by two prototypes, Convert and Express [36,
37], shortly followed by results on expressivity limitations
of RA by [3, 31]. Many useful data transformations can be
appropriately defined in terms of relational expressions, if
we consider relational algebra equipped with a generalized
projection operator [38, p. 104]. However, this extension is
still weak to express unbounded one-to-many data transfor-
mations.

To support the growing range of RDBMS applications,
several extensions to RA have been proposed in the form of
new declarative operators and also through the introduction
of language extensions to be executed by the RDBMS. One
such extension, interesting for one-to-many transformations,
is the pivot operator [13], which is not influenced by buffer
cache size. However, the pivot operator cannot express un-
bounded one-to-many data transformations and, as far as
we know it is only implemented by SQL Sever 2005.

Recursive query processing was early addressed by [3],
and then by several works about recursive query optimiza-
tion, like, for example [35, 39]. There are also proposals for
extending SQL to handle particular forms of recursion [2],
like the Alpha Operator [1]. Despite being relatively well
understood at the time, recursive query processing was not
supported by SQL-92. By the time the SQL 1999 [26] was
introduced, some of the leading RDBMSs (e.g., Oracle, DB2
or POSTGRES) were in the process of supporting recursive
queries. As a result, these systems ended up supporting dif-
ferent subsets of recursive queries with different syntaxes.
Presently, the broad support of recursion still constitutes a
subject of debate [32].

The problem of specifying one-to-many data transforma-
tions has also been addressed in the context of data cleaning
and transformations by tools like Potter’s Wheel [34], Ajax
[17] and Data Fusion [7]. These tools have proposed opera-
tors for expressing one-to-many data transformations. Pot-
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Figure 10: Evolution of throughput for varying selectivities and fanouts over input relations with 1M tuples
and 4MB of cache: (a) shows the evolution for bounded transformations with increasing selectivity (fanout
set to 2.0) and (b) show the evolution for unbounded transformations with increasing fanout and (selectivity
fixed to 0.5). The corresponding unbounded and bounded variants display identical trends.

ter’s Wheel fold operator addresses bounded one-to-many
transformations, while Ajax and Data Fusion also imple-
ment operators for addressing also unbounded data trans-
formations.

Building on the above contributions, we recently proposed
the extension of RA with a specialized operator named data
mapper, which addresses one-to-many transformations [8,
9, 10]. The interesting aspect of this solution lies in that
mappers are declarative specifications of a one-to-many data
transformation, which can then be logically and physically
optimized.

6. CONCLUSIONS
We organized our discussion of one-to-many data trans-

formations into two groups representing bounded and un-
bounded data transformations. There is no general solu-
tion for expressing one-to-many data transformations using
RDBMSs. We have seen that although bounded data trans-
formations can be expressed by combining unions and se-
lections, unbounded data transformations require advanced
constructs such as recursive queries of SQL:1999 [26] and
table functions introduced in the SQL 2003 standard [15].
However, these are not yet supported by many RDBMSs.

We then conducted an experimental assessment of how
RDBMSs handle the execution of one-to-many data trans-
formations. Our main finding was that RDBMSs cannot, in
general, optimize the execution of queries that comprise one-
to-many data transformations. One-to-many data transfor-
mations expressed both as unions or as recursive queries
incur in unnecessary consumptions of resources, involving
multiple scans over the input relation and the generation of
intermediate relations, which makes them sensible to buffer
cache size. Table functions are acceptably efficient since
their implementation emulates an iterator that scans the in-
put relation only once. However, their procedural nature

blends logical and physical aspects, hampering dynamic op-
timization.

An additional outcome of the experiments was the iden-
tification of selectivity and fanout, two important factors
of one-to-many data transformations, that influence their
cost. Together with the input relation size, these factors
can be used to predict the cost of one-to-many data trans-
formations. This information can be exploited to take ad-
vantage when the cost-based optimizer chooses among alter-
native execution plans involving one-to-many data transfor-
mations.

In fact, we believe that one-to-many data transformations
can be logically and physically optimized when expressed
through a specialized relational operator like the one we
propose in [9, 10]. As future work, we plan to extend the
Derby [4] open source RDBMS to execute and optimize one-
to-many data transformations expressed as queries that in-
corporate this operator. In this way, we equip an RDBMSs
to be used not only as data store but also as data transfor-
mation engine.
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