
ONE-TO-MANY DATA TRANSFORMATION OPERATIONS
Optimization and execution on an RDBMS

Paulo Carreira
Faculty of Sciences, University of Lisbon, C6 - Piso 3, 1749-016 Lisboa, Portugal

paulo.carreira@tagus.ist.utl.pt

Helena Galhardas, João Pereira and Andrzej Wichert
INESC-ID, Avenida Prof. Cavaco Silva, Tagus Park, 2780-990, Porto-Salvo, Portugal

hig@inesc-id.pt, joao@inesc-id.pt, wichert@inesc-id.pt

Keywords: Data Warehousing, Data Cleaning, Data Integration, ETL, Query optimization

Abstract: The optimization capabilities of RDBMSs make them attractive for executing data transformations
that support ETL, data cleaning and integration activities. However, despite the fact that many
useful data transformations can be expressed as relational queries, an important class of data
transformations that produces several output tuples for a single input tuple cannot be expressed
in that way.
To address this limitation a new operator, named data mapper, has been proposed as an extension
of Relational Algebra for expressing one-to-many data transformations. In this paper we study
the feasibility of implementing the mapper operator as a primitive operator on an RDBMS. Data
transformations expressed as combinations of standard relational operators and mappers can be
optimized resulting in interesting performance gains.

1 INTRODUCTION

The setup of modern information systems
comprises a number of activities that rely, to a
great extent, in the use of data transformations
(Lomet and Rundensteiner, 1999). Well known
cases are the migration of legacy data, the ETL
processes that support data warehousing, data
cleaning processes and the integration of data
from multiple sources.

One natural way of expressing data transfor-
mations is to use a declarative query language
and to specify the data transformations as queries
(or views) over the source data. Because of the
broad adoption of RDBMSs, such language is of-
ten SQL, a language based on Relational Algebra
(RA). Unfortunately, due to its limited expressive
power (Aho and Ullman, 1979), RA alone cannot
be used to specify many important classes of data
transformations.

An important class of data transformations
that may not be expressible in RA are the so
called one-to-many data transformations (Car-
reira et al., 2006), that are characterized by pro-

ducing several output tuples for each input tu-
ple. One-to-many data transformations occur
normally due to the existence of data hetero-
geneities, i.e., due to the use of different repre-
sentations, of the same data of source and tar-
get schemas (Rahm and Do, 2000). For instance,
source data may consist of salaries aggregated by
year, while the target data consists of salaries ag-
gregated by month. Hence, each input row has to
be converted into multiple output rows, one for
each month. In this case, each input row corre-
sponds to at most twelve output rows. However,
expressing such data transformations as RA ex-
pressions is hampered by the fact such bound can-
not always be established a-priori. Consider the
following example:

Example 1.1 Consider the source relation
LOANS[ACCT, AM] (represented in Figure 1) that
stores the details of loans per account. Suppose
that LOANS data must be transformed into
PAYMENTS[ACCTNO, AMOUNT, SEQNO], the target
relation, according to the following requirements:

1. In the target relation, all the account num-



Relation LOANS Relation PAYMENTS

ACCT AM
12 20.00

3456 140.00
901 250.00

ACCTNO AMOUNT SEQNO
0012 20.00 1
3456 100.00 1
3456 40.00 2
0901 100.00 1
0901 100.00 2
0901 50.00 3

Figure 1: Illustration of an unbounded data-
transformation. (a) The source relation LOANS on the
left, and (b) the target relation PAYMENTS on the right.

bers are left padded with zeroes. Thus, the
attribute ACCTNO is obtained by (left) concate-
nating zeroes to the value of ACCT.

2. The target system does not support payment
amounts greater than 100. The attribute
AMOUNT is obtained by breaking down the
value of AM into multiple parcels with a maxi-
mum value of 100, in such a way that the sum
of amounts for the same ACCTNO is equal to
the source amount for the same account. Fur-
thermore, the target field SEQNO is a sequence
number for the parcel. This sequence number
starts at 1 for each sequence of parcels of a
given account.

The implementation of data transformations
similar to those requested for producing the tar-
get relation PAYMENTS of Example 1.1 is challeng-
ing, since the number of output rows, for each
input row, is determined by the value of the at-
tribute AM. In this case, the upper bound on the
number of output rows cannot be determined
by analyzing the data transformation specifica-
tion. We designate these data transformations
as unbounded one-to-many data transformations.
Other sources of unbounded data transforma-
tions exist like, for example, converting collection-
valued attributes of SQL:1999 (Melton and Si-
mon, 2002), where each element of the collection
is mapped to a new row in the target table. In the
context of data-cleaning, one commonplace trans-
formation is converting a list of elements encoded
as a string attribute.

Currently, one has to resort, either to a gen-
eral purpose programming language, to some fla-
vor of proprietary scripting of an ETL tool, or to
an RDBMS using recursive queries of SQL:1999
(Melton and Simon, 2002), or some sort of Per-
sistent Stored Modules (PSMs) (Garcia-Molina
et al., 2002, Section 8.2) like stored procedures
or table functions (Eisenberg et al., 2004).

To address the problem of expressing one-to-
many data transformations in a declarative and
optimizeable fashion, specialized relational oper-
ator named mapper was recently proposed as an
extension to RA (Carreira et al., 2006). Infor-
mally, a mapper is applied to an input relation
and produces an output relation. It iterates over
each input tuple and generates one or more out-
put tuples, by applying a set of domain-specific
functions. This way, it supports the dynamic cre-
ation of tuples based on a source tuple contents.

Although mappers appear implicitly in sys-
tems supporting schema and data transforma-
tions underlying ETL, data cleaning and data
warehousing (Galhardas et al., 2000; Raman and
Hellerstein, 2001; Cui and Widom, 2001; Amer-
Yahia and Cluet, 2004), as far as we know, their
execution and optimization has never been prop-
erly studied.

This paper studies the feasibility of extending
RDBMSs with the mapper operator. There are
several reasons to do so: First, implementing the
mapper operator as a relational operator opens
interesting optimization opportunities since ex-
pressions that combine the mapper operator with
standard RA operators can be optimized. Sec-
ond, many data transformations are naturally ex-
pressed as relational expressions, leveraging the
optimization strategies already implemented by
RDBMSs (Chaudhuri, 1998). Third, such ex-
tension further equips RDBMSs for data trans-
formation activities, broadening their applicabil-
ity in a wider range of data management activi-
ties. We remark that our idea of using RDBMSs
as data transformation engines is not revolution-
ary, see (Haas et al., 1999). Furthermore, several
RDBMSs like Microsoft SQL Server and Oracle
already include additional software packages spe-
cific for ETL tasks.

Our contributions are the following: (i) an
SQL-like concrete syntax for the mapper operator
accomplished by extending the select statement,
(ii) the study of several query rewriting possibili-
ties to be incorporated in the query optimizer and
(iii) an experimental validation of the usefulness
of implementing the mapper operator by compar-
ing its physical implementation with alternative
RDBMS solutions.

The rest of the paper is organized as follows.
Section 2 introduces the mapper operator and ex-
poses its concrete syntax by example. Then, in
Section 3 we discuss how to extend the query opti-
mizer to handle mappers. In Section 4, we report
on a series of experiments to ascertain the feasi-



bility of implementing the mapper operator and
finally Section 5 concludes.

2 THE MAPPER OPERATOR

The mapper operator is formalized as a unary
operator µF that takes a relation instance of the
source relation schema as input and produces a
relation instance of the target relation schema as
output. The operator is parameterized by a set F
of functions, which we designate as mapper func-
tions. The intuition is that each mapper func-
tion fAi

expresses a part of the envisaged data
transformation, focused on a non-empty set Ai of
attributes of the target schema. A key insight is
that, when applied to a tuple, a mapper function
can produce a set of values in the domain of its
target attributes Dom(Ai), rather than a single
value. Further details can be found in (Carreira
et al., 2005b).

The mapper operator is formally defined as
follows: Given a set of mapper functions F =
{fA1 , ..., fAk

}, the mapper of a relation s with
respect to F , denoted by µF (s), is the relation
instance of the target relation schema defined by

µF (s) def= {t ∈ Dom(Y ) | ∃u ∈ s s.t.
t[Ai] ∈ fAi

(u), ∀1 ≤ i ≤ k}
(1)

We can express the data transformation of
Example 1.1 by means of a mapper µacct,amt,
comprising two mapper functions. The func-
tion acct is the mapper function that re-
turns a singleton with the account num-
ber ACCT properly left padded with zeroes,
while amt is a mapper function that pro-
duces the attributes [AMOUNT,SEQNO], s.t.,
amt(am) is given by {(100, i) | 1 ≤
i ≤ (am/100)} ∪ {(am%100, (am/100) + 1) |
am%100 6= 0}, where % represents the mod-

ulus operation. For instance, if v is the
source tuple (901, 250.00), the result of evalu-
ating amt(v) is the set {(100, 1), (100, 2), (50, 3)}.
Given a source relation s including v, the
result of the expression µacct,amt(s) is an-
other relation that contains the set of tuples
{〈’0901’, 100, 1〉, 〈’0901’, 100, 2〉, 〈’0901’, 50, 3〉}.

2.1 Concrete syntax

The mapper operator can be easily embedded into
the SQL syntax by incorporating mapper func-
tions as expressions into the select block. The

main change consists of replacing the the stan-
dard list of columns and expressions that follow
the select keyword with a list of mapper func-
tions. A mapper function can be identified by an
expression or, alternatively, by an inline specifi-
cation of a mapper function. A particular kind of
expression is a mapper function call. In this case,
the function is specified outside the select state-
ment using a more appropriate programming lan-
guage. We note that a similar assumption occurs
w.r.t. the computation of aggregates in SQL, in
the sense that aggregate functions like e.g., COUNT
or SUM, are implemented elsewhere and then em-
bedded in the select statement as parameters of
the aggregation operator. An inline mapper func-
tion is specified by a map clause followed by a
list of attributes. These attributes are the map-
per function’s attributes that contribute to the
schema of the output relation. The logic of the
mapper function in this case is enclosed within a
begin end block.

2.2 Filters

Filters are specified through the boolean expres-
sion of the where clause. Two kinds of filters
can be specified, (i) a-priori filters, that apply to
each tuple of the input relation, which are evalu-
ated before the mapper and (ii) a-posteriori filters
that are evaluated on the output of the mapper,
which are used to limit the mapper results. They
are identified by sub-expressions defined over par-
ticular sets of columns. Sub-expressions that are
defined only over the columns of the input rela-
tion define a-priori filters, while sub-expressions
that are defined over columns generated by the
mapper functions define a-posteriori filters.

3 OPTIMIZATION

While parsing a select block, as soon as map-
per function is found, the parser knows that a
mapper operator is present. In this case, upon
parsing the query successfully, the parser identi-
fies all the mapper functions being used and com-
putes the output schema of the mapper. The in-
put schema of the mapper is determined by the
schema of input relations. Once the input schema
is known, the input columns specified for each
mapper function can be validated. The following
step is to rewrite the filter condition into the con-
junctive normal form and validate it considering
the input and output schemas. Then, each con-



junct is analyzed to decide whether it constitutes
a candidate to an a-priori or to an a-posteriori
filter. In the query presented in Figure 2, the
sub-expression ACCOUNTS.STATUS = ’O’ defines an
a-priori filter while the sub-expression AMOUNT <

50 defines an a-posteriori filter.

1: select map acct(ACCT) as ACCTNO,
2: map amt(AM) as AMOUNT, SEQNO
3: from LOANS, ACCOUNTS
4: where ACCOUNTS.ACCTN = LOANS.ACCT
5: and ACCOUNTS.STATUS = ’O’
6: and AMOUNT < 50

Figure 2: A query that selects small payments of open
accounts by implementing a mapper together with a-
priori and a-posteri filters.

We note also that in some situations it is not
possible to clearly separate these two kinds of
filters. For example, if the condition is depen-
dent on both input and output columns of the
mapper like e.g., AMOUNT < ACCOUNTS.WDRAWLIMIT,
where AMOUNT is an output attribute produced by
a mapper function and ACCOUNTS.WDRAWLIMIT is an
attribute of the input relation. In these cases, the
predicate can only be evaluated after all the map-
per functions, i.e., a-posteriori.

The specification of a-posteriori filters in the
where clause opens an interesting possibility of
defining the condition using mapper functions.
The sets of values returned by mapper functions
can be tested with set operators like in or exists.

Moreover, whenever the input relation is de-
fined through join operations, some of the con-
juncts can be immediately pushed down into
the appropriate join operators. Generically, the
query plan that results from this process applies
an a-posteriori filter to a mapper operator. This
mapper operator, in turn, is evaluated over the
input relation resulting from applying an a-priori
filter to a query sub-plan that represents the in-
put relation. This concept is illustrated in Fig-
ure 3. Therein, the filter σAMOUNT < 50 is applied to
the mapper µacct,amt which takes as input the tu-
ples of ACCOUNTSonACCOUNTS.ACCTN=LOANS.ACCTLOANS that
are not filtered by σACCOUNT.STATUS = ’O’. The plans
so obtained are then handed to the query opti-
mizer where they undergo a series of rewritings
that turn them into equivalent ones that are more
efficient to evaluate. Besides the usual rewrit-
ings implemented by RDBMSs, others, specific
to mappers can be introduced. Some of these
rewritings are interesting because they take direct
advantage of the mapper semantics. Herein, due
to space limitations, we briefly sketch the main

σAMOUNT < 50

µacct,amt

σACCOUNTS.STATUS = ’O’

onACCOUNTS.ACCTN=LOANS.ACCT

ACCOUNTS LOANS

Figure 3: Query plan representation for the query
presented in Figure 2.

ideas. Please refer to (Carreira et al., 2005b; Car-
reira et al., 2006) for details about rewriting rules
and their corresponding proofs of correctness.

Projections A projection applied to a mapper is
an expression of the form πZ(µF (s)). Those
mapper functions whose output attributes are
not contained in the list Z can be dropped
from the mapper since the values that they
produce will not be available for subsequent
operations. Thus,

πZ(µF (s)) = πZ(µF ′(s)) (2)

where F ′ = {fAi
∈ F | Ai contains at least

one attribute in Z}.
Selections When applying a selection to a map-

per, we can take advantage of the fact that
many attributes are mapped by arithmetic ex-
pressions. Some are even simple identity func-
tions. A selection σCAi

where CAi
is a condi-

tion on the attributes produced by some map-
per function fAi

∈ F , can be pushed through
a mapper. Hence,

σCAi
(µF (s)) = µF (σC′

Ai
(s)) (3)

where C ′
Ai

is a rewritten condition that uses
the attributes of the input relation schema.

Joins It is often the case that mappers are
applied to joins resulting in the expression
µF (r on s). Depending of the type of join be-
ing performed the output of the relation r on s
can be very large. In these cases, whenever the
join is being performed in attributes mapped
by identity mapper functions, it is possible to
use the rule

µF (r on s) = µF (r) on µF (s) (4)

where the mapper functions in F do not pro-
duces duplicate values.



3.1 Plan selection

The choice of a particular plans is governed by
the minimization of a metric of cost. The cost
of a mapper operator depends fundamentally on
the costs of evaluation each mapper function and
on the cardinality of the input relation. For more
details about the cost model for the mapper op-
erator, please refer to (Carreira et al., 2006).

In order to estimate the cost of operators
whose input is produced by mappers, the cardi-
nality of the output relation produced by a map-
per also needs to be estimated. This estimation,
is an interesting problem in itself, because map-
pers can generate variably multiple output tuples
for each input tuple. One way to approach this
issue consists of estimating the average mapper
fanout factor1. If a mapper is being executed for
the first time, an initial estimate for its fanout
needs to be computed. This can be done by com-
bining the estimated fanout factors of the mapper
functions involved in the mapper operator. An-
other interesting observation is that when map-
per functions return empty sets, no output tuples
are produced. Thus, the mapper in some situa-
tions may act as a filter, which turns the selec-
tivity of the mapper into another relevant factor.
Like fanout, the initial mapper selectivity can also
be estimated from the selectivities of the mapper
functions.

4 EXPERIMENTS

In this section we analyze the performance of
the mapper operator and consider the gains ob-
tained with the proposed logical optimizations.
Our results indicate that one-to-many data trans-
formations can be evaluated substantially faster
than traditional database solutions like table
functions or recursive queries. Moreover, we shall
see that the optimizations defined for mappers
impart performance gains that are not matched
by traditional RDBMS solutions.

To that aim, we contrast alternative imple-
mentations of the data transformation proposed
in Example 1.1 using the mapper operator with
alternative implementations developed as table
functions and recursive queries using two lead-
ing commercial RDBMSs. For more details on

1Similarly to (Chaudhuri and Shim, 1993), we des-
ignate the average cardinality of the output produced
for each input tuple by mappers and mapper func-
tions as fanout.

Figure 4: Average throughput of the different imple-
mentations of Example 1.1 tested with input relation
sizes varying from 100K to 5M rows graphed with
standard deviation. No query results are reported for
recursive queries on the OEX system since the subset
of recursive queries supported by OEX is not powerful
enough for expressing one-to-many transformations.

how to implement one-to-many transformations
using RDBMSs, Please refer to (Carreira et al.,
2005a). The mapper operator was implemented
top of the XXL DBMS library (van den Bercken
et al., 2001) which provides database query pro-
cessing and optimization functionalities.

The database implementations were tested on
two systems henceforth designated as DBX and
OEX2. The parameters of both RDBMSs were
carefully aligned and the same I/O conditions
were enforced through the usage of the same raw
devices. The hardware used was a single CPU
machine (running at 3.4 GHz), with 1GB main
memory RAM, and Linux (kernel version 2.4.2)
installed. Concerning workload, a synthetic ver-
sion the input relation LOANS used in Example 1.1
was employed. To equalize the record length
on XXL, DBX and OEX, a dummy column was
added to the input table.

4.1 Results

We compare throughput, i.e., the amount of work
done per second, of the distinct implementations
of one-to-many data transformations. Through-
put is expressed as the ratio of source records
transformed per second and it is computed by
measuring the response time of data transfor-
mation that consists of reading the input table,
transforming it and materializing the output ta-
ble. All the timings reported were obtained with
logging disabled.

In the first experiment, we intended to test the
raw performance of the mapper operator for the
three distinct implementations. The results de-
picted on Figure 4 shows that one-to-many data
transformations implemented with the mapper
operator is more than 2 times better than table
functions over DBX, which is the best alterna-
tive using RDBMSs. Since the amount I/O in-
curred by all the systems is similar, even consid-
ering the overhead of the RDBMSs by comparison
with XXL, we conjecture that one-to-many data
transformations implemented as mappers running
inside the RDBMS are very efficient. We also
considered the implementations using stored pro-
cedures. However, it turns out that the perfor-

2Due to the restrictions imposed by the license
agreements, the true names of the systems under test
cannot be revealed.



Figure 5: Evolution of response time of ap-
plying selections to one-to-many transformations
for increasing selectivity factors plotted in loga-
rithmic scale. The mapper’s original expression
refers to σACCTNO>p(µacct,amt(s)), the mapper op-
timized expression refers to µacct,amt(σACCT>p(s)),
the table function original expression refers to
σACCTNO>p(TFacct, amt(s)) and the table function op-
timized expression refers to TFacct, amt(σACCT>p(s)).
The size of the input relation s is fixed to 1M tuples.

mance is quite poor because logging cannot be
disabled during their execution.

In the second experiment, we analyzed the
potential gains of logical optimizations like
those suggested in Section 3. To that aim,
we considered the evaluation of the expression
σACCTNO>p(µacct,amt(s)) together with its opti-
mized equivalent µacct,amt(σACCT>p(s)) obtained
by pushing down the selection. The constant p
was used to induce different selectivities. More-
over, we consider that the function acct performs
a direct mapping, i.e., is an identity function. In
Figure 5, we depict the performance of both the
original and the optimized expressions with vary-
ing selectivities. We observe that smaller selectiv-
ities correspond to the highest gains of the opti-
mized expression over the original. For compari-
son, we draw the evolution of the selection applied
to one-to-many transformations implemented us-
ing table functions on the OEX system, repre-
sented as σACCTNO>p(TFacct, amt(s)). The perfor-
mance of this solution is similar to the unopti-
mized version of mapper and only for small se-
lectivities. This is due to the fact that the whole
relation is read but few output tuples are gener-
ated.

Surprisingly, by analyzing the query plans
generated by RDBMSs, we came across the
fact that, whenever table functions or recursive
queries are used to encode one-to-many data
transformations, neither DBX nor OEX are ca-
pable of pushing down a selection on a directly
mapped attribute. Hence, for comparison, we
also tested the corresponding optimized expres-
sion TFacct, amt(σACCT>p(s)) obtained manually.
We observed that the manually optimized expres-
sion of the table functions bring higher gains spe-
cially on relatively high selectivities. For high se-
lectivities, the response time of the original (non-
optimized) RDBMS solution increases sharply.
We conjecture that this behavior has to do with
idiosyncrasies of OEX related with the pipelin-

ing of the tuples resulting from the table function
into the selection operator.

5 CONCLUSION

In this paper we focused on the feasibility of
incorporating a specialized operator for handling
one-to-many data transformations on RDBMSs.
This extension is attractive, not only because
one-to-many data transformations cannot be ex-
pressed using relational algebra but also because
data usually resides in an RDBMS. We outlined
the concrete syntax for this operator and then
examined how a query optimizer can be extended
to consider more advantageous execution plans
in the presence of mappers. To test our ideas
we analyzed experimentally different implemen-
tations of one-to-many data transformations us-
ing mappers and contrasted them with traditional
implementations using table functions and recur-
sive queries using two industry-leading RDBMSs.
To the best of our knowledge, this is the first ex-
perimental assessment of one-to-many data trans-
formations on RDBMSs.

The experiments showed that a native imple-
mentation of the mapper operator outperformed
the best RDBMS solution by almost 3 times. We
have also observed that RDBMSs do not in gen-
eral perform even very simple but highly valu-
able optimizations when table functions and re-
cursive queries are used. Thus, we posit that one-
to-many data transformations expressed by com-
bining standard relational operators and mappers
constitute a valid alternative.

The simple iterator-based semantics of the
mapper operator enables efficient executions of
one-to-many data transformations and favors an
easy integration into the query processor of a
database system. Towards physical optimiza-
tion, we are developing different algorithms for
the mapper operator to take advantage of du-
plicate values by employing caching techniques
and hybrid-hashing proposed by (Hellerstein,
1998). Additionally, we consider incorporat-
ing the mapper operator in Apache Derby open
source RDBMS (Apache, 2005).

One limitation of our work is that, despite the
effort to configure the different systems so that
they run in similar conditions, the alignment of
these configurations lacks quantification. To ad-
dress this shortcoming we consider running TPC-
H (TPC, 1999) loads on the different systems in
order to obtain a metric for comparing their re-



spective configurations.

REFERENCES

Aho, A. V. and Ullman, J. D. (1979). Universality
of data retrieval languages. In Proc. of the 6th
ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Lang., pages 110–119.
ACM Press.

Amer-Yahia, S. and Cluet, S. (2004). A declar-
ative approach to optimize bulk loading into
databases. ACM Transactions of Database Sys-
tems, 29(2):233–281.

Apache (2005). Derby homepage.
http://db.apache.org/derby.

Carreira, P., Galhardas, H., Lopes, A., and Pereira, J.
(2005a). Extending the relational algebra with
the Mapper operator. DI/FCUL TR 05–2, De-
partment of Informatics, University of Lisbon.
URL http://www.di.fc.ul.pt/tech-reports.

Carreira, P., Galhardas, H., Lopes, A., and Pereira,
J. (2006). One-to-many transformation through
data mappers. Data and Knowledge Engineering
Journal (DKE), Elsevier Science.

Carreira, P., Galhardas, H., Pereira, J., and Lopes, A.
(2005b). Data mapper: An operator for expres-
siong one-to-many data transformations. In 7th
Int’l Conf. on Data Warehousing and Knowledge
Discovery, DaWaK ’05, volume 3589 of LNCS.
Springer-Verlag.

Chaudhuri, S. (1998). An overview of query optimiza-
tion in relational systems. In PODS ’98: Proc. of
the ACM Symp. on Principles of Database Sys-
tems, pages 34–43. ACM Press.

Chaudhuri, S. and Shim, K. (1993). Query optimiza-
tion in the presence of foreign functions. In Proc.
of the Int’l Conf. on Very Large Data Bases
(VLDB’93), pages 529–542.

Cui, Y. and Widom, J. (2001). Lineage tracing
for general data warehouse transformations. In
Proc. of the Int’l Conf. on Very Large Data
Bases (VLDB’01).

Eisenberg, A., Melton, J., Michels, K. K. J.-E., and
Zemke, F. (2004). SQL:2003 has been published.
ACM SIGMOD Record, 33(1):119–126.

Galhardas, H., Florescu, D., Shasha, D., and Simon,
E. (2000). Ajax: An extensible data cleaning
tool. ACM SIGMOD Int’l Conf. on Management
of Data, 2(29).

Garcia-Molina, H., Ullman, J. D., and Widom, J.
(2002). Database Systems – The Complete Book.
Prentice-Hall.

Haas, L. M., Miller, R. J., Niswonger, B., Roth,
M. T., Schwarz, P. M., and Wimmers, E. L.
(1999). Transforming heterogeneous data with
database middleware: Beyond integration. IEEE
Data Engineering Bulletin, 22(1):31–36.

Hellerstein, J. M. (1998). Optimization techniques for
queries with expensive methods. ACM Transac-
tions on Database Systems, 22(2):113–157.

Lomet, D. and Rundensteiner, E. A., editors (1999).
Special Issue on Data Transformations, vol-
ume 22. IEEE Data Engineering Bulletin.

Melton, J. and Simon, A. R. (2002). SQL:1999 Un-
derstanding Relational Language Components.
Morgan Kaufmann Publishers, Inc.

Rahm, E. and Do, H.-H. (2000). Data Cleaning:
Problems and current approaches. IEEE Bul-
letin of the Technical Comittee on Data Engi-
neering, 24(4).

Raman, V. and Hellerstein, J. M. (2001). Potter’s
Wheel: An Interactive Data Cleaning System.
In Proc. of the Int’l Conf. on Very Large Data
Bases (VLDB’01).

TPC (1999). Benchmark H standard specification.
http://www.tpc.org.

van den Bercken, J., Dittrich, J. P., Kräamer, J.,
Schäafer, T., Schneider, M., and Seeger, B.
(2001). XXL A library approach to supporting
efficient implementations of advanced database
queries. In Proc. of the Int’l Conf. on Very Large
Data Bases (VLDB’01).


