
Extending Relational Algebra to express one-to-many data
transformations

Paulo Carreira1 , Helena Galhardas2 , Antónia Lopes1 , João Pereira2

1 Faculty of Sciences of the University of Lisbon, C6 - Piso 3, 1700 Lisboa, Portugal

paulo.carreira@tagus.ist.utl.pt, mal@di.fc.ul.pt

2INESC-ID and Instituto Superior T́ecnico,
Avenida Prof. Cavaco Silva, Tagus Park, 2780-990 Porto Salvo, Portugal

hig@inesc-id.pt, joao@inesc-id.pt

Abstract. Application scenarios such aslegacy-data migration, ETL processes,
data cleaningand data-integrationrequire the transformation of input tuples
into output tuples. Traditional approaches for implementing these data trans-
formations enclose solutions asPersistent Stored Modules (PSM)executed by
an RDBMS or transformation code using a commercial ETL tool. Neither of
these solutions is easily maintainable or optimizable.
To take advantage of the optimization capabilities of RDBMSs, data transforma-
tions are often expressed as relational queries. However, the limited expressive
power of relational query languages like SQL hinder this approach. In par-
ticular, an important class of data transformations that produce several output
tuples for a single input tuple cannot be expressed as a relational query.
In this paper, we present the formal definition of a new operator nameddata
mapper operatoras an extension to the relational algebra to address this im-
portant class of data transformations. We demonstrate that relational algebra
extended with the mapper operator is more expressive than standard relational
algebra. Furthermore, we investigate several properties of the operator and
supply a set of algebraic rewriting rules that enable the logical optimization
of expressions that combine standard relational operators with mappers and
present their proofs of correctness.

1. Introduction

The setup of modern information systems comprises a number of activi-
ties that rely, to a great extent, in the employment of data transformations
[Lomet and Rundensteiner, 1999]. Well known cases are the migrations of legacy-
data, the ETL processes that support data warehousing, cleansing of data and the
integration of data from multiple sources. This situation leads to the development of data
transformation programs that must move data instances from a fixed source schema into
a fixed target schema.

One natural way of expressing data transformations is using a declarative query
language and specify the data transformations as queries (or views) over the source data.
Because of the broad adoption of RDBMSs, such language is often SQL, a language
based on Relational Algebra (RA). Unfortunately, due to its limited expressive power

[Aho and Ullman, 1979], RA alone cannot used to specify many important data transfor-
mations [Lakshmanan et al., 1996].

To overcome these limitations, several alternatives have been adopted for imple-
menting data transformations:(i) the implementation of data transformation programs
using a programming language, such as C or Java,(ii) the use of an RDBMS proprietary
language like Oracle PL/SQL; or(iii) the development of data transformation scripts
using a commercial ETL tool. However, transformations expressed this way are of-
ten difficult to maintain, and more importantly there is little possibility of optimization
[Carreira et al., 2005]. We remark that only recently an optimization technique for ETL
processes was proposed [Simitsis et al., 2005].

The normalization theory underlying the relational model imposes the organiza-
tion of data according to several relations in order to avoid redundancy and inconsistency
of information. In Codd’s original model, new relations are derived from the database
by selecting, joining and unioning relations. Despite the fact that RA expressions denote
transformations among relations, the notion that presided the design of RA (as noted by
[Aho and Ullman, 1979]), was that of retrieving data. This notion, however, is insuffi-
cient for reconciling the substantial differences in the representation of data that occur in
a context of fixed source and target schemas [Miller, 1998].

One such difference occurs when the source data is an aggregation of the target
data. For example, source data may consist of salaries aggregated by year, while the target
consists of salaries aggregated by month. The data transformation that has to take place
needs to produce several tuples in the target relation to represent each tuple of the source
relation. We designate these data transformations asone-to-many data mappings. As
we will demonstrate latter (in Section 3.2), this class of data transformations cannot be
expressed by standard RA.

In this paper, we propose an extension to RA to represent one-to-many data trans-
formations. There are two main reasons why we chose to extend RA. First, even though
RA is not expressive enough to capture the semantics of one-to-many mappings, we want
to make use of the provided expressiveness for the remaining data transformations. Sec-
ond, we intend to take advantage of the optimization strategies that are implemented by re-
lational database engines [Chaudhuri, 1998]. Our decision of adopting database technol-
ogy as a basis for data transformation is not completely revolutionary. Several RDBMSs,
like Microsoft SQL Server, already include additional software packages specific for ETL
tasks. However, to the best of our knowledge, none of these extensions is supported by
the corresponding theoretical background in terms of existing database theory. Therefore,
the capabilities of relational engines, for example, in terms of optimization opportunities
are not fully exploited for ETL tasks.

In the remainder of this section, we first present a motivating example to illus-
trate the usefulness of one-to-many data transformations. Following, in Section 1.2 we
highlight the contributions of this paper.

1.1. Motivating example

As already mentioned, there is a considerable amount of data transformations that require
one-to-many mappings. Here, we present a simple example, based on a real-world data
migration scenario, that has been intentionally simplified for illustration purposes.

RelationLOANS RelationPAYMENTS

ACCT AM
12 20.00

3456 140.00
901 250.00

ACCTNO AMOUNT SEQNO
0012 20.00 1
3456 100.00 1
3456 40.00 2
0901 100.00 1
0901 100.00 2
0901 50.00 3

Figure 1. (a) On the left, the LOANSrelation and, (b) on the right, the PAYMENTS
relation.

EXAMPLE 1.1: Consider the source relationLOANS[ACCT, AM] (represented in Figure
1) that stores the details of loans requested per account. SupposeLOANSdata must be
transformed intoPAYMENTS[ACCTNO, AMOUNT, SEQNO], the target relation, according
to the following requirements:

1. In the target relation, all the account numbers are left padded with zeroes. Thus,
the attributeACCTNOis obtained by (left) concatenating zeroes to the value of
ACCT.

2. The target system does not support loan amounts superior to100. The attribute
AMOUNTis obtained by breaking down the value ofAMinto multiple instalments
with a maximum value of 100, such that, the sum of amounts for the sameACCTNO
is equal to the source amount for the same account. Furthermore, the target field
SEQNOis a sequence number for the instalment. This sequence number starts at
1 for each sequence of instalments of a given account.

The implementation of data transformations similar to those requested for produc-
ing the target relationPAYMENTSof Example 1.1 is challenging, since solutions to the
problem involve the dynamic creation of tuples based on the value of attributeAM.

1.2. Major contributions

This paper proposes to extend RA with themapperoperator, which significantly increases
its expressive power and, in particular, allows us to represent one-to-many data transfor-
mations. Informally, a mapper is applied to an input relation and produces an output
relation. It iterates over the input tuples and generates zero, one or more output tuples per
input tuple, by applying a set of domain-specific functions. This way, it supports the dy-
namic creation of tuples based on a source tuple contents. This kind of operation appears
implicitly in most languages aiming at implementing schema and data transformations
but, as far as we know, it has never been properly handled as a first-class operator. New
optimization opportunities arise when promoting the mapper to a relational operator. In
fact, expressions that combine the mapper operator with standard RA operators can be
optimized.

The main contributions of this paper are the following:

1. the formalization of a new primitive operator, nameddata mapper, that allows to
express one-to-many mappings;

2. a formal study of the expressive power of the mapper operator;
3. a set of provably correct algebraic rewriting rules for expressions involving the

mapper operator and relational operators, useful for optimization purposes.

The rest of this paper is organized as follows: Preliminary definitions are provided
in Section 2. The formalization of the mapper is presented in Section 3. Section 4 presents
the algebraic rewriting rules that enable the logical optimization of several expressions
involving the mapper operator. Finally, related work is summarized in Section 5 and
conclusions are presented in Section 6.

2. Preliminaries

A domainD is a set of atomic values. We assume a setD of domains and a setA of names
– attribute names – together with a functionDom : A → D that associates domains to
attributes. We will also useDom to denote the natural extension of this function to lists
of attribute names:Dom(A1, ..., An) = Dom(A1)× ...×Dom(An).

A relation schemaconsists of a nameR (the relation name) along with a listA =
A1, ..., An of distinct attribute names. We writeR(A1, ..., An), or simplyR(A), and calln
the degree of the relation schema. Its domain is defined byDom(A). A relation instance
(or relation, for short) ofR(A1, ..., An) is a finite setr ⊆ Dom(A1)× ...×Dom(An); we
write r(A1, ..., An), or simplyr(A). Each element ofr is called atupleor r-tupleand can
be regarded as a function that associates a value ofDom(Ai) with eachAi; we denote this
value byt[Ai]. Given a listB = B1, ..., Bk of distinct attributes inA1, ..., An, we denote
by t[B] the tuple〈t[B1], ..., t[Bk]〉 in Dom(B).

We will use the termrelational algebrato denote the standard notion as introduced
by [Codd, 1970]. The basic operations considered areunion, differenceandCartesian
productas well asprojection(πX , whereX is a list of attributes),selection(σC , whereC
is the selection condition) andrenaming(ρA→B, whereA andB are lists of attributes).

3. The mapper operator

In this section, we present the definition of the new mapper operator and define other
basic concepts. We assume two fixed relation schemasS(X1, ..., Xn) andT (Y1, ..., Ym).
We refer toS andT as the source and the target relation schemas, respectively.

A mapper is a unary operatorµF that takes a relation instance of the source relation
schema as input and produces a relation instance of the target relation schema as output.
The mapper operator is parameterized by a setF of special functions, which we designate
asmapper functions.

Roughly speaking, each mapper function allows one to express a part of the en-
visaged data transformation, focused on one or more attributes of the target schema. Al-
though the idea is to apply mapper functions to tuples of a source relation instance, it
may happen that some of the attributes of the source schema are irrelevant for the envis-
aged data transformation. The explicit identification of the attributes that are considered
relevant is then an important part of a mapper function. Mapper functions are formally
defined as follows.

DEFINITION 3.1: Let A be a non-empty list of distinct attributes inY1, ..., Ym. An
A−mapper functionconsists of a non-empty list of distinct attributesB in X1, ..., Xn

and a computable functionfA:Dom(B)→P(Dom(A)).

Let t be tuple of a relation instance of the source schema. We definefA(t) to be
the application of the underlying functionfA to the tuplet, i.e.,fA(t[B]).

In this way, mapper functions describe how a specific part of the target data can be
obtained from the source data. The intuition is that each mapper function establishes how
the values of a group of attributes of the target schema can be obtained from the attributes
of the source schema. The key point is that, when applied to a tuple, a mapper function
produces a set of values, rather than a single value.

We shall freely usefA to denote both the mapper function and the function itself,
omitting the listB whenever its definition is clear from the context, and this shall not cause
confusion. We shall also useDom(fA) to refer to it. This list should be regarded as the
list of the source attributes declared to be relevant for the part of the data transformation
encoded by the mapper function. Notice, however, that even iffA is a constant function,
fA may be defined as being dependent on all the attributes of the source schema. The
relevance of the explicit identification of these attributes will be clarified in Section 4
when we present the algebraic optimization rules for projections.

Certain classes of mapper functions enjoy properties that enable the optimizations
of algebraic expressions containing mappers (see also Section 4). Mapper functions can
be classified according to(i) the number of output tuples they can produce, or according
to (ii) the number of output attributes. Mapper functions that produce singleton sets,
i.e., ∀(t ∈ Dom(X)) |fY (t)| = 1 are designatedsingle-valued mapper functions. In
contrast, mapper functions that produce multiple elements are said to bemulti-valued
mapper functions. Concerning the number of output attributes, mapper functions with one
output attribute are calledsingle-attributed, whereas functions with many output attributes
are calledmulti-attributed.

We designate byidentity mapper functionsthe single-valued functions defined as
fA : Dom(B) → P(Dom(A)) s.t. fA(t) = {t}. Notice that this is only possible when
Dom(B) = Dom(A).

As mentioned before, a mapper operator is parameterized by a set of mapper func-
tions. This set is proper for transforming the data from the source to the target schemas
if it specifies, in a unique way, how the values of every attribute of the target schema are
produced.

DEFINITION 3.2: A setF = {fA1 , ..., fAk
} of mapper functions is said to beproper(for

transforming the data of S into T) iff every attributeYi of the target relation schema is an
element of exactly one of theAj lists, for1 ≤ j ≤ k.

The mapper operatorµF puts together the data transformations of the input rela-
tion defined by the mapper functions inF . Given a tuples of the input relation,µF (s)
consists of the tuplest of Dom(Y) that, to each list of attributesAi, associate a list values
in fAi

(s). Formally, the mapper operator is defined as follows.

DEFINITION 3.3: Given a relations(X) and a proper set of mapper functionsF =
{fA1 , ..., fAk

}, themapperof s with respect toF , denoted byµF (s), is the relation in-
stance of the target relation schema defined by

µF (s)
def
= {t ∈ Dom(Y) | ∃u ∈ s s.t. t[Ai] ∈ fAi

(u),∀1 ≤ i ≤ k}

In order to illustrate this new operator, we revisit Example 1.1.

EXAMPLE 3.1: The requirements presented in Example 1.1 can be described by
the mapperµacct,amt, whereacct is an ACCT-mapper function that returns a single-
ton with the account numberACCTproperly left padded with zeroes andamt is the
[AMOUNT,SEQNO]-mapper function s.t.,amt(am) is given by

{(100, i) | 1 ≤ i ≤ (am/100)} ∪ {(am%100, (am/100) + 1) | am%100 6= 0}

where we have used/ and% to represent the integer division and modulus operations,
respectively.

For instance, ift is the source tuple(901 , 250.00), the result of evaluating
amt(t) is the set{(100 , 1), (100 , 2), (50 , 3)}. Given a source relations including
t, the result of the expressionµacct,amt(s) is a relation that contains the set of tuples
{〈’0901’ , 100 , 1〉, 〈’0901’ , 100 , 2〉, 〈’0901’ , 50 , 3〉}.

In order to illustrate the full expressive power of mappers, we present an example
of selective transformation of data.

EXAMPLE 3.2: Consider the conversion of yearly data into quarterly data. Let
EMPDATA[ESSN, ECAT, EYRSAL] be the source relation that contains yearly salary in-
formation about employees. Suppose we need to generate a target relation with schema
EMPSAL[ENUM, QTNUM, QTSAL], which maintains the quarterly salary for the employ-
ees with long-term contracts. In the source schema, we assume that the attributeEYRSAL
maintains the yearly net salary. Furthermore, we consider that the attributeECATholds
the employee category and that code’S’ specifies a short-term contract whereas’L’
specifies a long-term contract.

This transformation can be specified through the mapperµempnum,sal where
empnum is aENUM-mapper function that makes up new employee numbers (i.e., a Skolem
function [Hull and Yoshikawa, 1990]), andsal the[QTNUM, QTSAL]-mapper function

salQTNUM, QTSAL(ecat, eyrsal)

that generates quarterly salary data, defined as:

sal(ecat, eyrsal) =

{
{(i, eyrsal

4) | 1 ≤ i ≤ 4} if ecat = ’L’

∅ if ecat = ’S’

3.1. Properties of Mappers

We start to notice that in some situations, the mapper operator admits a more intuitive
definition in terms of the Cartesian product of the sets of tuples obtained by applying
the underlying mapper functions to each tuple of the input relation. More concretely, the
following proposition holds.

PROPOSITION1: Given a relations(X) and a proper set of mapper functionsF =
{fA1 , ..., fAk

} s.t.A1 · ... · Ak = Y ,

µF (s) =
⋃
u∈s

fA1(u)× ...× fAk
(u).

PROOF

µF (s) = {t ∈ Dom(Y) | ∃u ∈ s s.t. t[Ai] ∈ fAi
(u), ∀1 ≤ i ≤ k}

=
⋃
u∈s

{t ∈ Dom(Y) | t[Ai] ∈ fAi
(u),∀1 ≤ i ≤ k}

=
⋃
u∈s

fA1(u)× ...× fAk
(u)

This alternative way of definingµF (s) is also important because of its operational
flavor, equipping the mapper operator with atuple-at-a-timesemantics. When integrating
the mapper operator with existing query execution processors, this property plays an im-
portant role because it means the mapper operator admits physical execution algorithms
that favor pipelined execution [Graefe, 1993].

The task of devising an algorithm that computes data transformation through map-
pers becomes straightforward: if every underlying mapper function only involves adjacent
attributes of the target relation schema and in the same order (i.e.,A1 · ... ·Ak = Y), then
it is just to compute the Cartesian product as stated by the proposition; in the other sit-
uations, after calculating the Cartesian product, it is necessary to exchange the elements
of each tuple so they become in the correct order. Obviously, this algorithm relies on the
computability of the underlying mapper functions and builds on concrete algorithms for
computing them.

Furthermore, the fact that the calculation ofµF (s) can be carried out tuple by tuple
clearly entails the monotonicity of the mapper operator. The proof of this proposition can
be found in [Carreira et al., 2005].

PROPOSITION2: The mapper operator ismonotonic, i.e., for every pair of relations
s1(X) ands2(X) s.t. s1 ⊆ s2, µF (s1) ⊆ µF (s2).

3.2. Expressive power of mappers

Concerning the expressive power of the mapper operator, two important questions are
addressed. First, we compare the expressive power of relational algebra (RA) with its ex-
tension by the set of mapper operators, henceforth designated asM-relational algebraor
simplyMRA. Second, we investigate which standard relational operators can be simulated
by a mapper operator.

It is not difficult to recognize that MRA is more expressive than standard RA.
It is obvious that part of the expressive power of mapper operators comes from the fact
that they are allowed to use arbitrary computable functions. In fact, the class of mapper
operators of the formµ{f}, wheref is a single-valued function, is computationally com-
plete. This implies that MRA is computational complete and, hence, MRA is not a query
language like standard RA.

The question that naturally arises is if MRA is more expressive than the relational
algebra with a generalized projection operatorπL where the projection listL has elements
of the formYi ← f(A), whereA is a list of attributes inX1, ..., Xn andf is a computable
function.

With generalized projection, it becomes possible to define arbitrary computations
to derive the values of new attributes. Still, there are MRA-expressions whose effect is
not expressible in RA, even when equipped with the generalized projection operator. We
shall useRA-gpto designate the extension of RA extended with generalized projection.

The additional expressive power results from the fact that mapper operators use
functions that map values into sets of values and, thus, are able to produce a set of tuples
from a single tuple. For some multi-valued functions, the number of tuples that are pro-
duced depends on the specific data values of the source tuples and does not even admit an
upper-bound.

Consider for instance a database schema with relation schemasS(NUM) and
T(NUM, IND) , s.t. the domain ofNUMand IND is the set of natural numbers. Lets
be a relation with schemaS. The cardinality of the expressionµ{f}(s), wheref is an
[NUM,IND] -mapper function s.t.f(n) = {〈n, i〉 : 1 ≤ i ≤ n}, does not (strictly) de-
pend on the cardinality ofs. Instead, it depends on the values of the concretes−tuples.
For instance, ifs is a relation with a single tuple{〈x〉}, the cardinality ofµ{f}(s) depends
on the value ofx and does not have an upper bound.

This situation is particularly interesting because it cannot happen in RA-gp.

PROPOSITION3: For every expressionE of the relational algebra RA-gp, the cardinality
of the set of tuples denoted byE admits an upper bound defined simply in terms of the
cardinality of the atomic sub-expressions ofE.

PROOF This can be proved in a straightforward way by structural induction in the struc-
ture of relational algebra expressions. Given a relational algebra expressionE, we denote
by |E| the cardinality ofE. For every non-atomic expression we have:|E1 ∪ E2| ≤
|E1|+ |E2|; |E1 − E2| ≤ |E1|; |E1 × E2| ≤ |E1| × |E2|; |πL(E)| ≤ |E|; |σC(E)| ≤ |E|.

Hence, it follows that:

PROPOSITION4: There are expressions of the M-relational algebra that are not express-
ible by the relational algebra RA-gp on the same database schema.

Another aspect of the expressive power of mappers, that is interesting to address,
concerns the ability of mappers for simulating other relational operators. In fact, we
will show that renaming, projection and selection operators can be seen as special cases

of mappers. That is to say, there exist three classes of mappers that are equivalent, re-
spectively, to renaming, projection and selection. From this we can conclude that the
restriction of MRA to the operators mapper, union, difference and Cartesian product is as
expressive as MRA.

Renaming and projection can be obtained through mapper operators over identity
mapper functions.

RULE 1: LetS(X1, ..., Xn) andT (Y1, ..., Ym) be two relation schemas s.t.Y is a sublist of
X and lets be a relation instance ofS(X). The termπY1,...,Ym(s) is equivalent toµF (s)
whereF = {fY1 , ..., fYm} and, for every1 ≤ i ≤ m, fYi

is the identity function over
Dom(Yi).

PROOF

πY1,...,Ym(s) = {t[Y1, ..., Ym] | t ∈ s}
= {t ∈ Dom(Y) | ∃u ∈ s s.t. u[Yi] = t[Yi], ∀1 ≤ i ≤ m}
= {t ∈ Dom(Y) | ∃u ∈ s s.t. u[Yi] ∈ {t[Yi]}, ∀1 ≤ i ≤ m}
becausefYi

is the identity onDom(Yi)

= {t ∈ Dom(Y) | ∃u ∈ s s.t. u[Yi] ∈ fYi
(t), ∀1 ≤ i ≤ m}

= µfY1
,...,fYm

(s)

RULE 2 : Let S(X1, ..., Xn) and T (Y1, ..., Yn) be two relation schemas, such that,
Dom(X) = Dom(Y) and let s be a relation instance ofS(X). Then, the term
ρX1,...,Xn→Y1,...,Yn(s) is equivalent toµF (s) where F = {fY1 , ..., fYn} and, for every
1 ≤ i ≤ n, fYi

is the identity mapper function overDom(Yi).

PROOF

ρX1,...,Xn→Y1,...,Yn(s)

= {t ∈ Dom(Y) | ∃u ∈ s s.t. u[Xi] = t[Yi],∀1 ≤ i ≤ n}
= {t ∈ Dom(Y) | ∃u ∈ s s.t. u[Xi] ∈ {t[Yi]},∀1 ≤ i ≤ n}
becausefYi

is the identity onDom(Yi)

= {t ∈ Dom(Y) | ∃u ∈ s s.t. u[Xi] ∈ fYi
(t),∀1 ≤ i ≤ n}

= µfY1
,...,fYn

(s)

Since mapper functions may map input tuples into empty sets (i.e., no output
values are created), they may act as filtering conditions which enable the mapper to behave
not only as a tuple producer but also as a filter.

RULE 3: Let S(X1, ..., Xn) be a relation schema,C a condition over the attributes of
this schema ands(X) a relation. There exists a setF of proper mapper functions for
transformingS(X) into S(X) s.t. the termσC(s) is equivalent toµF (s).

PROOF It suffices to show howF can be constructed fromC and prove the equivalence
of σC andµF . Let F be{fX1 , ..., fXn} where each mapper functionfXi

is defined by the
function with signatureDom(X) → P(Dom(Xi)) s.t.

fXi
(t) =

{
{t[Xi]} if C(t)

∅ if ¬C(t)

We have,

µF (s) = {t ∈ Dom(X) | ∃u ∈ s s.t. t[Xi] ∈ fXi
(u),∀1 ≤ i ≤ n}

by the definition offXi

= {t ∈ Dom(X) | ∃u ∈ s s.t. t[Xi] ∈ {u[Xi] s.t. C(u)}, ∀1 ≤ i ≤ n}
= {t ∈ Dom(X) | ∃u ∈ s s.t. t[Xi] = u[Xi] and C(u), ∀1 ≤ i ≤ n}
= {t ∈ Dom(X) | ∃u ∈ s s.t. t = u and C(u)}
= {t ∈ Dom(X) | t ∈ s s.t. C(t)}
= σC(s)

4. Algebraic optimization rules

Algebraic rewriting rules are equations that specify the equivalence of two algebraic
terms. Through algebraic rewriting rules, queries presented as relational expressions can
be transformed into equivalent ones that are more efficient to evaluate. In this section we
present a set of algebraic rewriting rules that enable the logical optimization of relational
expressions extended with the mapper operator.

One commonly used strategy in query rewriting aims at reducing I/O cost by
transforming relational expressions into equivalent ones that, from an operational point
of view, minimize the amount of information passed from operator to operator. Most al-
gebraic rewriting rules for query optimization proposed in literature fall into one of the
following two categories. Either they push the operators that reduce the cardinality of
the source relations to be evaluated as early as possible (this is the case of the rules for
pushing selections) or they avoid propagating attributes that are not used by subsequent
operators (this the case of rules forpushing projections).

In the following, we adapt these classes of algebraic rewriting rules to the mapper
operator.

4.1. Pushing selections to mapper functions

When applying a selection to a mapper we can take advantage of the mapper seman-
tics to introduce an important optimization. Given a selectionσCAi

applied to a mapper
µfA1

,...,fAk
, this optimization consists of pushing the selectionσCAi

, whereCAi
is a condi-

tion on the attributes produced by some mapper functionfAi
, directly to the output of the

mapper function. Rule 4 formalizes this notion.

RULE 4: Let F = {fA1 , ..., fAk
} be a set of multi-valued mapper functions, proper for

transformingS(X) into T (Y). Consider a conditionCAi
dependent on a set of attributes

Ai such thatfAi
∈ F . Then,

σCAi
(µF (s)) = µF\{fAi

}∪{σCAi
◦fAi

}(s)

where(σCAi
◦ fAi

)(t) = {fAi
(t) | CAi

(t)}.

PROOF

σCAi
(µF (s)) = {t ∈ Dom(Y) | t ∈ µF (s) and CAi

(t[Ai])}
= {t ∈ Dom(Y) | ∃u ∈ s s.t. t[Aj] ∈ fAj

(u),

and CAi
(t[Ai]),∀1 ≤ j ≤ k}

= {t ∈ Dom(Y) | ∃u ∈ s s.t. (t[Aj] ∈ fAj
(u) if j 6= i) or

(t[Aj] ∈ {v ∈ fAj
(u) | CAj

(u)} if j = i), ∀1 ≤ j ≤ k}
= {t ∈ Dom(Y) | ∃u ∈ s s.t.

(t[Aj] ∈ fAj
(u) if j 6= i) or

(t[Aj] ∈ σCAi
(fAj

(u)) if j = i), ∀1 ≤ j ≤ k}
= µF\{fAi

}∪{σCAi
◦fAi

}(s)

The benefits of Rule 4 can be better understood at the light of the alternative def-
inition for the mapper semantics in terms of a Cartesian product presented in Section
3.1. Intuitively, it follows from Proposition 1, that the Cartesian product expansion gener-
ated byfA1(u)× ...× fAk

(u) can produce duplicate values for some set of attributesAi,
1 ≤ i ≤ k. Hence, by pushing the conditionCAi

to the mapper functionfAi
, the condition

will be evaluated fewer times. This is especially important if we are speaking of expen-
sive predicates, like those involving expensive functions or sub-queries (e.g., evaluating
the SQLexistsoperator). See, e.g., [Hellerstein, 1998] for details.

Furthermore, note that whenCAi
(t) does not hold, the functionσCAi

(fAi
)(t) re-

turns the empty set. Considering the Cartesian product semantics of the mapper operator
presented in Proposition 1, once a function returns the empty set, no output tuples will be
generated. Thus, we may skip the evaluation of all mapper functionsfAj

, such thatj 6= i.
Physical execution algorithms for the mapper operator can take advantage of this opti-
mization by evaluatingfAi

before any other mapper function1. Even in situations where
neither expensive functions or expensive predicates are present, this optimization can be
employed as it alleviates the average cost of the Cartesian product, which depends on the
cardinalities of the sets of values produced by the mapper functions.

4.2. Pushing selections through mappers

An alternative way of rewriting expressions of the formσC(µF (s)) consists of replacing
the attributes that occur in the conditionC with the mapper functions that compute them.
Suppose that, in the selection conditionC, attributeA is produced by the mapper function
fA. By replacing the attributeA with the mapper functionfA in conditionC we obtain an
equivalent condition.

In order to formalize this notion, we first need to introduce some notation. Let
F = {fA1 , ..., fAk

} be a set of mapper functions proper for transformingS(X) into T (Y).
The function resulting from the restriction offAi

to an attributeYj ∈ Ai is denoted by
fAi

↓ Yj. Moreover, given an attributeYj ∈ Y , F ↓ Yj represents the functionfAi
↓ Yj

s.t.Yj ∈ Ai. Note that, becauseF is a proper set of mapper functions, the functionF ↓ Yj

exists and is unique.
1The reader may have remarked that this optimization can be generalized to first evaluate those functions

with higher probability of yielding an empty set. This issue is fundamentally the same as the problem of
optimal predicate orderingaddressed in [Hellerstein, 1998].

RULE 5: Let F = {fA1 , ..., fAk
} be a set of single-valued mapper functions, proper for

transformingS(X) into T (Y). LetB = B1 · ... · Bk be a list of attributes inY ands a
relation instance ofS(X). Then,

σCB
(µF (s)) = µF (σC[B1,...,Bk←F↓B1,...,F↓Bk](s))

whereCB means thatC depends on the attributes ofB, and the condition that results from
replacing every occurrence of eachBi byEi is represented asC[B1, ..., Bn ← E1, ..., En].

This rule replaces each attributeBi in the conditionC by the expression that de-
scribes how its values are obtained. Often, the attributes used in the condition of a selec-
tion are generated either by(i) identity mapper functions or(ii) constant mapper functions.
Please refer to [Carreira et al., 2005] for the proof of this rule.

4.3. Pushing projections

A projection applied to a mapper is an expression of the formπZ(µF (s)). If F =
{fA1 , ..., fAk

} is a set of mapper functions, proper for transformingS(X) into T (Y),
then an attributeYi of Y such thatYi 6∈ Z, (i.e., that is not projected byπZ) is said to be
projected-away. Attributes that are projected-away suggest an optimization. Since they
are not required for subsequent operations, the mapper functions that generate them do
not need to be evaluated. Hence they can, in some situations, be forgotten. More con-
cretely, a mapper function can be forgotten if the attributes that it generates are projected-
away. Rule 6 makes this idea precise. The proofs of rules 6 and 7 are presented in
[Carreira et al., 2005].

RULE 6: Let F = {fA1 , ..., fAk
} be a set of mapper functions, proper for transform-

ing S(X) into T (Y). Let Z and Z ′ be lists of attributes inY and let s be a rela-
tion instance ofS(X). Then,πZ(µF (s)) = πZ(µF ′(s)), whereF ′ = {fAi

∈ F |
Ai contains at least one attribute inZ}.

EXAMPLE 4.1 : Consider the mapperµacct,amt defined in Example 3.1. The
expressionπAMOUNT(µacct,amt(LOANS)) is equivalent toπAMOUNT(µamt(LOANS)). The
acct mapper function is forgotten because theACCOUNTattribute was projected-
away. Conversely, neither of the mapper functions can be forgotten in the expression
πACCTNO, SEQNO(µacct,amt(LOANS)).

Concerning Rule 6, it should be noted that ifZ = A1 · ... · Ak (i.e, all attributes
are projected), thenF ′ = F (i.e., no mapper function can be forgotten).

Another important observation is that attributes that are not used as input of any
mapper function need not be retrieved from the mapper input relation. Thus, we may
introduce a projection that retrieves only those attributes that are relevant for the functions
in F ′.

RULE 7: Let F = {fA1 , ..., fAk
} be a set of mapper functions, proper for transforming

S(X) into T (Y). Lets be a relation instance ofS(X). Then,µF (s) = µF (πN(s)), where
N is a list of attributes inX, that only includes the attributes inDom(fAi

), for every
mapper functionfAi

in F .

RULE 8: Let F = {fA1 , ..., fAk
} be a set of mapper functions proper for transforming

SR(X, Y) into T (Z). Let s and r be relation instances with schemasS(X) andR(Y)
respectively. If there existZR andZS, such that,ZR · ZS = Z, and two disjoint subsets
FR ⊆ F andFS ⊆ F of mapper functions, proper for transforming, respectively,S(X)
into TR(ZR) andR(Y) into TS(ZS) thenµF (s× r) = µFS

(s)× µFR
(r).

5. Related work

Over the years, several extensions of RA, (like e.g., aggregates [Klug, 1982] for data con-
solidation, or controlled recursion for solving problems like the classicalbills-of-material
[Melton and Simon, 2002]) have been introduced, enhancing the expressive power of RA
to support new applications.

Data transformation is an old problem and the idea of using a query language to
specify such transformations has been proposed back in the 1970’s with two prototypes,
Convert [Shu et al., 1975] and Express [Shu et al., 1977], both aiming at data conversion.

More recently, three efforts, Potter’s Wheel [Raman and Hellerstein, 2001], Ajax
[Galhardas et al., 2001] and Data Fusion [Carreira and Galhardas, 2004], have proposed
operators for data transformation and cleaning purposes. Potter’s Wheelfold operator is
capable of producing several output tuples for each input tuple. The main difference w.r.t.
the mapper operator lies in the number of output tuples generated. In the case of thefold
operator, the number of output tuples is bound to the number of columns of the input
relation, while the mapper operator may generate an arbitrary number of output tuples.

The semantics of the Ajaxmap operator represents exactly a one-to-many map-
ping. Unlike our data mapper, the Ajax operator allows the specification of a selection
condition applied to each input tuple. The semantics of the Ajaxmap operator represents
exactly a one-to-many mapping, but it has not been proposed as an extension of the re-
lational algebra. Consequently, the issue of semantic optimization, as we propose in this
paper, has not been addressed for the Ajaxmap. Data Fusion implements the seman-
tics of the mapper operator as it is presented here. However, the current version of Data
Fusion is not supported by an extended relational algebra as we propose.

Solutions for restructuring semi-structured data [Suciu, 1998] like WOL
[Davidson and Kosky, 1997], YAT [Cluet and Siméon, 1997], and TransScm
[Milo and Zhoar, 1998] aim at transforming both schema and data. These systems
use Datalog-style rules in their specification languages. Their expressiveness is restricted
to avoid potentially dangerous specifications (that may result in diverging computations).
As a result, they cannot express the dynamic creation of tuples.

Clio [Miller et al., 2001] is a tool aiming at the discovery and specification of
schema mappings. It has the ability to generate SQL queries for data transformations
from schema mappings. However, the class of data transformations supported by Clio is
induced byselect-project-joinqueries. Recent work on Clio [Fagin et al., 2003] proposed
to perform the transformation of data instances from a source schema into a target schema
based on source-to-target schema dependencies, but their semantics ofuniversal solutions
is not powerful enough to entail the class of one-to-many transformations we propose to
tackle in this document.

6. Conclusions and future work

This paper addresses the problem of expressing one-to-many data transformations that
frequently arise in legacy-data migrations, ETL processes, data cleaning and data inte-
gration scenarios. Since these transformations cannot be expressed as RA expressions,
we have proposed a new operator named data mapper that is powerful enough to express
them.

We then presented a simple semantics for the mapper operator and proved that
RA extended with the mapper operator is more powerful than standard RA. Interesting
properties of mappers were described. We showed that mappers admit a tuple-a-time
semantics, which indicates that non-blocking physical execution algorithms for this op-
erator can be implemented. We also showed that mappers subsume standard relational
operators like projection, renaming and selection. Then, a set of standard algebraic op-
timization rules for pushing projections and selections through mappers, that enable the
logical optimization of relational queries extended with mappers were proposed together
with their corresponding proofs of correctness.

We strongly believe that current relational database technology enhanced with the
mapper operator will provide a powerful data transformation engine. We have been devel-
oping and experimenting different physical execution algorithms for the mapper operator.
We aim at providing both logical and physical optimization strategies to the query opti-
mizer specially tailored for data transformations. We plan to incorporate this technology
in the newer versions of the Ajax data cleaning tool and in Data Fusion, a legacy-data mi-
gration tool that has been used commercially in two large-scale data migration projects.

References

Aho, A. V. and Ullman, J. D. (1979). Universality of data retrieval languages. InProc.
of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, pages 110–119. ACM Press.

Carreira, P. and Galhardas, H. (2004). Efficient development of data migration transfor-
mations. InACM SIGMOD Int’l Conf. on the Managment of Data, Paris, France.

Carreira, P., Galhardas, H., Lopes, A., and Pereira, J. (2005). Extending the relational
algebra with the Mapper operator. DI/FCUL TR 05–2, Department of Informatics,
University of Lisbon. URLhttp://www.di.fc.ul.pt/tech-reports .

Chaudhuri, S. (1998). An overview of query optimization in relational systems. InPODS
’98: Proc. of the ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database
Systems, pages 34–43. ACM Press.

Cluet, S., Delobel, C., Siḿeon, J., and Smaga, K. (1998). Your mediators need data
conversion! InACM SIGMOD Int’l Conf. on the Managment of Data, pages 177–188.

Cluet, S. and Siḿeon, J. (1997). Data integration based on data conversion and restruc-
turing. Extended version of [Cluet et al., 1998].

Codd, E. F. (1970). A relational model of data for large shared data banks.Communic. of
the ACM, 13(6):377–387.

Davidson, S. B. and Kosky, A. (1997). Wol: A language for database transformations
and constraints. In Gray, A. and Larson, P.-Å., editors,Proc. of the 13th Int’l Conf. on
Data Engineering, pages 55–65. IEEE Computer Society.

Fagin, R., Kolaitis, P. G., Miller, R. J., and Popa, L. (2003). Data Exchange: Semantics
and Query Answering. InProc. 8th Int’l Conf. on Database Theory (ICDT). IEEE
Computer Society.

Galhardas, H., Florescu, D., Shasha, D., Simon, E., and Saita, C. A. (2001). Declarative
data cleaning: Language, model, and algorithms. InProc. of the Int’l Conf. on Very
Large Data Bases (VLDB’01).

Graefe, G. (1993). Query evaluation techniques for large databases.ACM Computing
Surveys, 2(25).

Hellerstein, J. M. (1998). Optimization techniques for queries with expensive methods.
ACM Transactions on Database Systems, 22(2):113–157.

Hull, R. and Yoshikawa, M. (1990). Ilog: Declarative creation and manipulation of object
identifiers. InProc. Int’l Conf. on Very Large Databases (VLDB’90), pages 455–468.

Klug, A. (1982). Equivalence of relational algebra and relational calculus query languages
having aggregate functions.Journal of the ACM, 29(3):699–717.

Lakshmanan, L. V. S., Sadri, F., and Subramanian, I. N. (1996). SchemaSQL - a Language
for Querying and Restructuring Database Systems. InProc. Int’l Conf. on Very Large
Databases (VLDB’96), pages 239–250.

Lomet, D. and Rundensteiner, E. A., editors (1999).Special Issue on Data Transforma-
tions. IEEE Data Engineering Bulletin.

Melton, J. and Simon, A. R. (2002).SQL:1999 Understanding Relational Language
Components. Morgan Kaufmann Publishers, Inc.

Miller, R. J. (1998). Using Schematically Heterogeneous Structures.Proc. of ACM SIG-
MOD Int’l Conf. on the Managment of Data, 2(22):189–200.

Miller, R. J., Haas, L. M., Hernandéz, M., Ho, C. T. H., Fagin, R., and Popa, L. (2001).
The Clio Project: Managing Heterogeneity.SIGMOD Record, 1(30).

Milo, T. and Zhoar, S. (1998). Using schema matching to simplify heterogeneous data
translation. InProc. of the Int’l Conf. on Very Large Data Bases (VLDB’98).

Raman, V. and Hellerstein, J. M. (2001). Potter’s Wheel: An Interactive Data Cleaning
System. InProc. of the Int’l Conf. on Very Large Data Bases (VLDB’01).

Shu, N. C., Housel, B. C., and Lum, V. Y. (1975). CONVERT: A High Level Translation
Definition Language for Data Conversion.Communic. of the ACM, 18(10):557–567.

Shu, N. C., Housel, B. C., Taylor, R. W., Ghosh, S. P., and Lum, V. Y. (1977). EX-
PRESS: A Data EXtraction, Processing and REStructuring System.ACM Transactions
on Database Systems, 2(2):134–174.

Simitsis, A., Vassiliadis, P., and Sellis, T. K. (2005). Optimizing ETL processes in data
warehouses. InProc. of the 21st Int’l Conf. on Data Engineering (ICDE).

Suciu, D. (1998). An overview of semistructured data.SIGACTN: SIGACT News (ACM
Special Interest Group on Automata and Computability Theory), 29(4):28–38.

