Execution of Data Mappers

Paulo Carreira
Oblog Consulting and FCUL
Rua da Barruncheira, 4
2795-477 Carnaxide, PORTUGAL

paulo.carreira@oblog.pt

ABSTRACT

Data mappers are essential operators for implementing data
transformations supporting schema mapping and integra-
tion scenarios such as legacy data migration, ETL processes
for data warehousing, data cleaning activities, and business
integration initiatives. Despite their widespread use, no for-
malization of this important operation has been proposed so
far. In this paper we propose the data mapper operator as
an extension to the relational algebra. We supply a set of
algebraic rewriting rules for optimizing queries that combine
standard relational operators with data mappers. Finally,
we propose algorithms for their efficient physical execution.

1. INTRODUCTION

Today’s business pace is bringing initiatives such as busi-
ness integration, ETL processes for data warehousing, data
cleaning activities, and legacy data migration into the cen-
ter of concerns of a growing number of companies. When
putting in place such initiatives, we often need to transform
data from a source schema into a target schema. As a re-
sult, we often encounter two well-known classes of problems,
schema heterogeneities and data heterogeneities. Schema
heterogeneities refer to differences between schema elements
representing the same data. This kind of heterogeneities
occur because distinct schema modeling formalisms (e.g.
Entity-Relationship (ER) wvs Hierarchical Modeling) exist,
different physical representations of the same logical concept
(e.g. alogical entity client represented as one physical table
vs many different tables are possible), or in the case of ER
models, different degrees of normalization are required for
optimization purposes. Data heterogeneities refer to differ-
ent representations of the same data. These heterogeneities
are caused by the following reasons: (i) different units of
measurement, (75) different abstraction levels (e.g. hourly
vs daily), (411) composition of data as attributes (e.g. a date
attribute may represent day, month and year information),
distinct representations of the same data domain (e.g. {true,
false} wvs {yes, no} for boolean values) or different data for-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IQIS 2004 Maison de la Chimie, Paris, France

(©2004 ACM 1-58113-902-0/04/0006 $5.00.

Helena Galhardas
INESC-ID and IST
IST Taguspark, Av. Prof. Cavaco Silva
2780-990 Porto Salvo, PORTUGAL

hig@inesc-id.pt

mats.

Schema integration and schema transformation techniques
are used to solve the problem of schematic heterogeneities.
Data integration and data transformation techniques are ap-
plied for handling data heterogeneities.

A natural form of performing schema and data transfor-
mations is to execute a sequence of SQL queries against
source data. These queries can be executed either by the
DBMSs if data resides in a database, or by some query en-
gine able to connect to the source data (e.g. ASCII or binary
files).

Query languages, in general, were not developed to repre-
sent complex transformations for solving schema and data
heterogeneities. In particular, SQL cannot express many of
the data and schema transformations necessary for trans-
forming data among relational databases [7]. Nevertheless,
due to the efficiency of the approach, solutions for han-
dling complex data transformations like Clio [14, 9] and
WOL [4] generate SQL queries. Since many interesting
data and schema transformations cannot be expressed by
SQL queries, collections of ad-hoc programs are developed
to complement them. As pointed out by [8], this approach is
not practical mainly because transformation programs can-
not be easily optimized that way. Furthermore, managing
and debugging data and schema transformations specified
with two different formalisms brings an extra cost. These
problems become acute as the number of transformations
grows. Intuitively, the more expressive the query language
is, the less ad-hoc programs need to be developed.

An important operator for schema and data transforma-
tion is the data mapper operator. Informally, a data mapper
applies to an input relation and produces an output relation.
It iterates over the input tuples, applies a set of specific-
domain functions and generates one or more output tuples.
This kind of operation appears implicitly in most languages
aiming at implementing schema and data transformations,
but has never been properly handled as a first-class oper-
ator, to the best of our knowledge. The mapper operation
as it is presented here has been implemented in the Data
Fusion tool [3].

This paper proposes to extend the relational algebra with
the data mapper operator that significantly increases its ex-
pressive power by enabling, for instance, the dynamic cre-
ation of tuples based on a source tuple contents. Further-
more, expressions that combine the mapper operator with
standard relational algebra operators can be optimized. Our
contributions are the following:

e A formalization of the mapper operator;

Relation LOANS Relation PAYMENTS

ACCT AMT ACCTNO AMOUNT
12 20,00 0012 20,00
3456 140,00 3456 100,00
901 250,00 3456 40,00
0901 100,00

0901 100,00

0901 50,00

Figure 1: (a) On the left, the LOANS relation and, (b)
on the right, the relation PAYMENTS.

o A set of query rewriting rules for queries involving the
mapper operator;

e A highlight of physical execution algorithms for the
mapper operator.

Our paper is organized as follows: Section 2 gives the mo-
tivation for the use of the mapper operator. Some prelimi-
nary definitions are provided in Section 3. The formalization
of the mapper is given in Section 4. Section 5 presents the
algebraic rewriting rules for optimizing the mapper opera-
tor. A discussion of execution algorithms for the mapper
operator is given in Section 6. Conclusions and plans for
future work are presented in Section 7.

2. MOTIVATION

This section motivates the reader for the use of the map-
per operator. We present simple examples based on a real-
world data-migration scenario that has been intentionally
simplified for illustration purposes.

EXAMPLE 2.1: Consider the source relation LOANS[ACCT, AMT]
(represented in Figure 1) that stores the details of loans
requested per account. Suppose LOANS data must be trans-
formed into the target relation PAYMENTS[ACCTNO, AMOUNT] ac-
cording to the following requirements:

1. In the target relation, all the account numbers are left
padded with zeroes. Thus, the attribute ACCTNO is
obtained by concatenating zeroes to the value of ACCT.

2. The target system does not support loan amounts su-
perior to 100. The attribute AMOUNT is obtained by
breaking down the value of AMT into multiple parcels
with a maximum value of 100, in such a way that the
sum of amounts for the same ACCTNO is equal to the
source amount for the same account.

ExAMPLE 2.2: Consider the source relation CLIDATA[CACCT,
NAME, GDR, BTHDATE] that contains information about clients
(see Figure 2). This relation must be transformed into the
relation CLIMKT[CID, RANK] to support the marketing features
of a new client management system. The account numbers
of the relation LOANS in Example 2.1, are the client accounts
held by attribute CACCT of the relation CLIDATA. The trans-
formation rules must implement the following requirements:

1. The target attribute CID is directly mapped from the
source attribute CACCT.

Relation CLIDATA Relation CLIMKT

CACCT NAME GDR BTHDATE CID RANK
12 Assato, Amna F 19750304 3890 C
3890 rLawrence, Louis M 19840203 4567 A
4567 Springs, Alice F 19830507 5923 D
5923 Smith, John M 19670809 0901 D
0901 Wilson, Peter M 19450506 3453 B
3453 York, Susan F 19760203

Figure 2: (a) On the left, the CLIDATA relation and,
(b) on the right, the relation CLIMKT.

2. The attribute RANK holds marketing rank information
for each client. The value of this attribute is computed
from the source attributes GDR and BDATE as follows.
A female client is ranked A if it is less than 25 years
old, else it is ranked B. A male client less than 25 years
old is ranked C and D otherwise.

3. All clients with loans smaller than 100 units are not
enrolled in the marketing application.

The implementation of data transformations similar to
those requested for producing the target relations PAYMENTS
and CLIMKT is challenging. Solutions to the problem involve
the dynamic creation of tuples based on the value of at-
tribute AMT. The second problem consists of composing re-
lational algebra operators involving encoding complex deci-
sions.

Traditional approaches for implementing the required trans-
formations either consist of (i) a combination of SQL queries
with ad-hoc transformation programs written in a general
purpose language, (ii) writing a set of Persistent Stored
Modules (PSMs) to be executed by the DBMS or (%i:) using
an ETL tool. Each of these approaches poses a number of
drawbacks.

The use of a general purpose language is hindered by two
factors. First, these languages have a procedural nature as
opposed to the declarative nature of query languages. This
characteristic turns data transformations difficult to under-
stand and maintain. Second, apart from some static op-
timizations, transformation programs cannot be optimized.
The use of PSMs has two disadvantages. First, PSM pro-
grams have a number of procedural constructs that are not
amenable to optimization. Moreover, there are no elegant
solutions for expressing dynamic creation of instances using
PSMs. One needs to resort to intricate LOOP and INSERT
INTO statements.

Using an ETL tool does not solve the problem either. To
the best of our knowledge, no ETL tool provides native sup-
port for all the functionalities of the mapper operator we
propose. Some ETL tools (e.g Sagent [11] and Datastage
[1]), provide an extensive library of predefined functions.
However, none of them allow expressing dynamic creation
of records. This involves either (i) writing complex pro-
prietary language scripts or (i) coding external functions.
Furthermore, they impose a clear separation between rela-
tional queries and data transformations, thus disabling any
optimizations of sequences of data transformation operators
and relational operators.

These three approaches for implementing the data map-
per functionalities are commonly used in real world projects.

In research, two efforts, Potter’s Wheel [10] and Ajax [5],
have proposed operators for data transformation and clean-
ing purposes that are very similar to the data mapper. Pot-
ter’s Wheel format operator also applies a function to each
tuple of the source relation. However, Potter’s Wheel gener-
ates exactly one output tuple for each input tuple, whereas
our mapper operator can generate many. Ajax map oper-
ator introduces the idea of exceptions not handeled by our
mapper operator. Ajax map operator also allows to specify
a selection condition applied to each input tuple. In our
case, we rely on composing the mapper operator with the
relational selection operator.

3. PRELIMINARIES

A domain D is a set of constants. The set D is a finite
set of domains. The cartesian product (or simply product)
of domains Dy, ..., Dy, written D; X ... X D,,, is the set of all
elements of the form (ci, ..., cn) where each ¢; is a constant
of D;. Let S be a set. The set formed by all possible subsets
of S, is denoted by P(S).

A relation R is a finite subset of the product of one or
more domains. Given a relation R, the number of domains
that participate in the relation R is called the arity of R.
If RC D;i X ... X Dy, then arity(R) = n. Each element of
a relation is called a tuple. A tuple (ci, ..., cn) of a relation
R is called an R-tuple. Each constant ¢; is said to be a
component of the tuple. The name of a component is called
an attribute.

We assume a set A of attributes. Attributes are associated
to domains through a mapping Dom : A — D such that,
given an attribute A € A, D4 is a domain D € D called
domain of A. A set of attributes is called a relation schema.
Given a relation R C D; X ... X D, and its relation schema
S = {A1, ..., An} we write R[A1, ..., An] to indicate that the
relation schema of R is S. A subset K C S of attributes
that uniquely designate each tuple of R is called a key of R.

We assume the usual relational algebra operators (see [13]
or [6] for a detailed introduction): Union; intersection; dif-
ference and cartesian product; as well as extended projection
represented as 7z, where L is a set containing (i) attributes
and (71) expressions; selection represented as o¢, where C is
the selection condition; grouping represented as yg,r, where
G is the set of grouping attributes and L is the set of aggre-
gate functions. Attributes to which aggregate functions are
applied are called aggregate attributes.

4. MAPPER OPERATOR

A mapper, is a unary operator pr that takes one relation
R[X1, ..., X,] as input and produces one relation S[Ayq, ..., Ag]
as output. This operator is subscripted by a set F' of func-
tions, designated as mapper functions. Each mapper func-
tion is subscripted with an attribute of S. We first introduce
the notion of mapper function in Definition 4.1.

DEFINITION 4.1: Given an relation R[Xy,..., X,] and an
attribute A, such that A is not an attribute of R, a map-
per function from R-tuples into A is defined as a function
fA:DX1 X ... X DXn—)P(DA). The set .DX1 X ... X DX" is
the domain of the mapper function fa and is represented by
DfA |

When applied to a tuple, a mapper function produces a

set of values. Given an R-tuple ¢, fa(t) is a set of values
contained in Dj.

Mapper functions can be classified according to the follow-
ing criteria: A function that returns a single value can be
seen as a particular case of a mapper function that returns
a singleton set. A mapper function is called a single-valued
function iff it produces a singleton as output for any tuple
of the domain, i.e.,

V(t€ Dy, | falt) = 1

A mapper function whose outputs are not singletons is said
to be multi-valued.

Consider a relation R[Xi,...,X,]. A mapper function
fa(Xu, ..., Xn) = {c} that assigns a constant to an attribute
is called a constant assignment of ¢ to A. A mapper function
fa(Xy, ..., Xn) = {X;} that returns the value of an attribute
of the mapper input relation is called a renaming of X; to
A. The identity mapper function idgr, x; is defined as a func-
tion fx,(Xi,..., Xn) = {X;} that projects the attribute X;.
Whenever R is understood from the context we write the
identity mapper function simply as idx; .

For simplicity we often write mapper functions as sub-
scripts of the mapper operator. For example, given a re-
lation R[X,Y, Z] we write pux+v—a(R) as a shorthand for
pfa (R), where fa(X,Y,Z) = {X + Y}. Having presented
the concepts underlying mapper functions, we are now able
to define precisely the mapper operator.

DEFINITION 4.2: Let F = {fa,,..., fa, } be mapper func-
tions and R[Xi,..., Xy] be a relation. Then, a mapper pr
over R represents a relation S[A4, ..., A;] that contains all k-
tuples obtained by combining, through a cartesian product,
the values produced by each mapper function f4, (¢) applied
to all tuples t of relation R. Formally,

pr(R) € far(8) X oo X fa, ().

tER

The arity of a mapper is given by the number of mapper
functions in F. The relation R is the input (or source)
relation of the mapper, and the relation S is the output (or
target) relation of the mapper. O

The target relation contains the union of all generated
tuples for each tuple in the input relation. We note that the
cardinality of the resulting relation can be greater than the
cardinality of the input relation.

We are assuming that, no functional dependencies exist
on the attributes of the target relation. Extending the map-
per operator for specifying transformations that produce
relations with functionally dependent attributes is work in
progress.

EXAMPLE 4.1: The requirements presented in Example 2.1,
can be implemented by the mapper pocct,amt. The map-
per function acct:Dager X Dawr—ACCTNO returns the account
number ACCT properly left padded with zeroes. The mapper
function amt is defined as amt:Dacer X Daur—AMOUNT, and
returns a set of parcels not greater than 100 and whose sum
is AMT. Concretely, if ¢ is the tuple t = (901, 250,00), the re-
sult of applying amt(t) is the set {100,100,50}. Given tuple
t, the corresponding transformed tuples are obtained from
acct(t) x amt(t), i.e., {70901’} x {100,100,50}. A possible
implementation for the amt function previously described in
Example 2.1 can be found in [2]. O

ExXAMPLE 4.2: The first two requirements specified in Ex-
ample 2.2 can be implemented by the mapper picid,rank- The
mapper function cid returns the value of the attribute CACCT
unmodified. The mapper function rank encapsulates: (%)
the computation of the client age based on the attribute
BTHDATE and (%3) the appropriate decisions to rank the client
according to his age and gender. The last requirement in-
volves a join operator with the LOANS relation to obtain the
loan amount for this client, and a selection operator to verify
that the amount is not smaller than 100. O

Definition 4.3 introduces to notion of monotonic mapper
that will be useful later in Section 5.7.

DEFINITION 4.3: A mapper pr is monotonic iff given two
relations T and U with the same schema, T" C U implies
pr(T) C pr(U).

THEOREM 4.1: All mappers operators are monotonic.

PROOF. We want to show that, T C U implies pr(T) C
pur(U). Given deterministic functions F, by the definition of
mapper (Definition 4.2), it follows that V(t € T'), pr({t}) C
pr(T). By hypothesis t € U, and thus, V(t € T), ur({t}) C
pr(U). Hence, pr(T) C pr(U). U

S. ALGEBRAIC RULES

This section presents a set of algebraic rewriting rules that
enables algebraic optimizations of relational expressions ex-
tended with the mapper operator.

In general, algebraic rewriting rules aim at reducing I/O
cost. A relational expression is transformed into an equiv-
alent one that minimizes the amount of information passed
from operator to operator. A well-known strategy consists
of evaluating the operators that reduce the cardinality of
the source relations as early as possible. This operation is
achieved by pushing selections and pushing grouping. An-
other strategy consists of avoiding to propagate attributes
that are not used by subsequent operators, known as pushing
projections. On a distributed query processing environment
we are also interested in executing the operators the nearest
as possible of the data site to minimize transmission costs.
In what concerns mappers, mapper composition and mapper
decomposition are two classes of important rewriting rules
useful for a distributed environment. Composition of map-
pers, allows mappers to be composed together and executed
as a single mapper at a site. The decomposition of mappers
allows a mapper to be splitted into composeable mappers
that can be executed at distinct sites.

5.1 Pushing selections

In order to push a selection through a mapper we need to
rewrite the selection condition. For example, consider the
expression oy >2(px2_,y(R)). The selection condition is ex-
pressed in terms of attributes of the mapper output relation.
In order to push the selection condition oy 2 over the map-
per ix2_,y, we need to rewrite it according to the attributes
of the mapper input relation. In this simple case we obtain
the equivalent expression px2_,v(0x<_3 vx>vz(R)). In
general, to perform this kind of rewriting is an undecidable
problem. However, by analyzing the problem closely, we
can identify particular cases that make it possible to push
selections through mappers. If a selection o¢ is independent

from the mapper then it can be safely pushed through the
mapper.

RULE 5.1: Given a mapper pur, and a selection oc, if
C does not contain an attribute generated by any mapper
function in F'; the following equivalence can be established:

oc(pr(R)) = pr(oc(R))

Often, mapper functions are renamings. Consider the re-
naming function p, induced by a mapper pr. Technically,
renamings can be identified by the static analysis of the
mapper functions. For example, by renaming the attributes
of the condition A < B we may rewrite the expression
ca<B(px—a,y—B(R)) a8 ux—a,y—»B(ox<y(R)).

RuLE 5.2: Given a mapper pur and a selection o¢, in
which all attributes of C' are mapped by renaming functions
of F. Let p(C) be a condition equivalent to C expressed with
the attributes of the mapper input relation. The following
equivalence is obtained:

oc(pr(R)) = pr(osc)(R))

Another important observation is that many mapper func-
tions are constant assignments of some constant ¢ to an at-
tribute A. In these cases, we can replace the attributes of the
condition C with the constants of the constant mapper func-
tions and produce an equivalent condition. This condition:
(i) is faster to evaluate !, and (ii) may reduce drastically
the number of input tuples. For example, in the expression
oa<B(pux—a,10—8(R)) attribute B replaced by the constant
10 to obtain the equivalent expression pgx - 4,10- B (0x <10(R))-

RULE 5.3: Let C[A +—] represent the new condition where
the attribute A is replaced by the constant c¢. Given a map-
per pr containing a mapper function fa, that assigns a con-
stant ¢ to the attribute A, we can write the equivalence:

oc(pr(R)) = pr(ocrasc (R))
O

Rule 5.3 can be further generalized. Suppose that a selec-
tion condition C' maintains an attribute A that is produced
by a mapper function f4. By replacing the attribute A with
the mapper function f4 in condition C we obtain an equiva-
lent condition. Consider the expression oa<10(px+v—a(R)).
Attribute A can be expanded with the corresponding map-
per function to obtain px+ty—a(ox+y<io(R))

RULE 5.4: Given a mapper pr, where F' contains a single-

valued mapper function f4, we can write:

oc(pr(R)) = pr(ooracs ,1(R))
o

!Comparing with constants is, in principle, faster than com-
paring with memory locations holding values of attributes.

This rewriting rule adds an extra computation cost by
evaluating the mapper function twice, once in the selection
condition and another in the mapper. However, this rule
plays an important role for optimizing mappers with many
computation intensive mapper functions. Consider the case
of a selection condition C involving a mapper function fa
and a mapper with many attributes generated by expensive
mapper functions. Depending on the number of tuples fil-
tered by the condition C, the cost of evaluating fa twice
is neglectable when compared with the cost of producing a
tuple (that will ultimately be discarded) evaluating all the
mapper functions.

5.2 Pushing the grouping operator

The grouping operator yg,r can be pushed through a
mapper pur resulting in potentially huge reductions on the
number of tuples passed to the mapper. Consider the ex-
pression Y comrn) (KX —A,v—B,fo (R)), where fc is a po-
tentially expensive mapper function. The grouping oper-
ator in this expression can only be computed after map-
ping all tuples of R. In contrast, the equivalent expres-
sion px -4,y B(Vy,cour (R)), is more efficient to compute.
The mapper is evaluated only once for each distinct value of
Y.

Pushing the grouping operator over the mapper involves:
(i) pushing the aggregate functions and (%) pushing the
grouping attributes. Intuitively, if the mapper functions cor-
respond to renamings, the grouping operator can be safely
pushed through the mapper by applying the renamings in-
duced by the mapper functions. Rule 5.5 captures this idea.

RULE 5.5: Let yg,z be a grouping operator and prun be
a mapper such that, (i) all input attributes of the aggregate
functions in L and (%) grouping attributes in G, are gen-
erated by renaming functions in F. Furthermore, consider
H to contain those mapping functions that do not produce
aggregate or grouping attributes. Then,

ve,.(prun(R)) = pruidg (Vo(a).pr)(R))
o

Considering the distributive properties® of the SQL built-
in aggregate functions COUNT, SUM, AVG, MIN and MAX, we can
push grouping operators through mappers that map the at-
tributes of aggregate functions through arithmetic expres-
sions. . For example, we can write SUM(2 + .25 x A) as
k x 2 4 .25 x SUM(A), where k is the count of tuples (ob-
tained, for example, as kK = COUNT(A)).

These properties can be used to distribute aggregate func-
tions over mapper functions. They enable a number of useful
optimizations since many mapping functions consist of arith-
metic expressions (for example to specify transformations of
units of measurement).

ExAMPLE 5.1: Consider the following expression, that com-
putes the sum of salaries by employee categories:

"YCATEG,SUM(SALARY) (JLECAT — CATEG,SAL X . 75-+BONUS — SALARY (R)) .

The expression can be re-written introducing two new at-
tributes X and Y

JLECAT— CATEG, X X .75+Y — SALARY, (’)’ECAT,SUM(SAL) — X ,SUM(BONUS) —Y (R)) .

2A detailed explanation of the distributive properties of the
SQL built-in functions is beyond the scope of this paper.

O

RULE 5.6: Let Fr, be the set of mapper functions f% that
result from distributing the aggregate functions of L over
each f4 € Fa. Let L' be the set of aggregate functions
needed for computing the functions of the form f5. Then,

Y6, (kr(R)) = prp (Yo(c),L' (R))
O

Aggregate functions can apply to expressions as well as to
attributes in some dialects of SQL. Furthermore, grouping
attributes can also be expressions. These two generaliza-
tions lead to a straightforward extension of the grouping
operator, henceforth denoted by 5. For example writing
Ast+v,sum(a,B)(R) is legal. This extension allows further
optimizations, since it enables pushing aggregate functions
over mapping functions when the distribution of aggregate
functions over a mapper function is not possible. Rule 5.7
formalizes this new equivalence.

RULE 5.7: Let Hy be the set of all mapper functions h%.
Each A% results form replacing, by a new attribute, the ex-
pressions of each function fa € F4, that do not admit dis-
tribution of an aggregate function. Let L' be the set of ag-
gregate functions needed for computing Hy,, and further, let
H' be the set of grouping expressions needed for computing
H L- Then,

Ye,.(pr(R)) = puy, (Yo, (R))
o

EXAMPLE 5.2: Consider the mapper functions for the at-
tributes X and Y in vy, sumx)(H2xc—y,2xa/B)—x (R)).
Using equivalency rules (5.5) and (5.6), not much can be
done. However, by introducing attributes V' and W, the
expression is equivalent to

Bw—Y,2xV X (Texc—w,suM(4a/B)—v (R))

O

5.3 Pushing projections

A projection applied to a mapper is an expression of the
form 77 (ur(R)). The attributes produced by the mapper
functions may not be used by the projection. These at-
tributes are said to be projected out. Mapper attributes that
are projected out suggest an optimization. More concretely,
projected-out mapper attributes whose corresponding map-
per functions are single-valued, can be dropped from the
mapper. Rule 5.8 formalizes this notion.

RULE 5.8: Given a mapper ur and a list of attributes that
have been projected-out. Let F’ C F contain mapper func-
tions fa such that either: (i) A is an attribute used in the
projection 7z or (i) the mapper function f4 is multi-valued.
Then,

7 (ur(R)) = mr(pr (R))
O

EXAMPLE 5.3: The expression aounr (facct,amt(LOANS)) is
equivalent to the expression mamounr (Uamt(LOANS)). The acct

mapper function is dropped because the ACCOUNT attribute
was projected out and the acc function is single-valued.
However, in the expression macero (acet,amt(LOANS)), the amt
mapper function cannot be dropped because, according to
Example 2.1, this function may produce multiple output
values.

Attributes that are input of any mapper function need not
be retrieved from the mapper input relation R.

EXAMPLE 5.4: Since ACCT is not an input attribute of the
mapper function amt, the expression pgm:(LOANS) is equiv-
alent t0 pgm¢(manr (LOANS)). O

RULE 5.9: Given a mapper pur applied to a relation R.
Let mn be the projection that projects only the attributes
required for computing any mapper function of F. Then,

pr(R) = pp(mn(R))
o

Finally, Rule 5.10 generalizes rules (5.8) and (5.9) for
pushing projections.

RULE 5.10: Let ur be a mapper and 7z a projection over
the attributes of the mapper output relation. Let F’ be a
set of mapper functions with the properties stated in Rule
5.8. Let N be the set of attributes needed for computing
the functions in F'. Then,

wr(pr(R)) = 7r(pp (78 (R)))
O

5.4 Composing mappers

Mappers represent data transformations, so we expect
them to be composeable. Intuitively, mapper composition
is obtained by composing the underlying mapper functions.
Given mapper functions f and g, ps(pg(R)) should be the
same as ftfoq(R). However, since mapper functions may re-
turn sets of values, writing f o g constitutes an abuse of
notation. Thus, a more complete definition for composing
mapper functions is required.

DEFINITION 5.1: Let A and Xi,..., X,, be attributes with
corresponding domains D4 and Dx,,...,Dx,. Let fa be
a mapper function such that Dy, C Dx, x ... x Dx,, and
9x1, ---; §x, be mapper functions where for each gx;, Dg,, C
Dy, X ... x Da,. Consider Ai,..., Ax to be attributes of a
mapper input relation R[A4, ..., Ax]. We define composition
of fa with gx,, ..., gx, , written

falgxy, s gx,)(R)
as the set of values
{fa(t) |t € gx,(t) x ... x gx,.(t),t € R}
O
Based on Definition 5.1 we can now define the composition
two mappers. This rewriting rule has great practical interest

since it enables to save pipelining stages in query execution
plans.

RuULE 5.11: Given two mappers pr and pg, the expression
pr o pg represents the composition of pr with pug which
is itself a mapper. Given sets of mapper functions F =

{f1, -, fr} and G = {g1, ..., gn}, then

(17 0 pG)(R) = £y (g1, 19n)1eos fic (g1 enrgm) (B)
O

5.5 Promoting projections to mappers

There cases where the query optimizer has to handle se-
quences of projections and mappers, for which no more rewrit-
ing apply. In these cases, one more optimization is possible
promoting the projections to mappers. An expression used
in a projection can be seen as a mapper function. Thus,
every projection operator 7z, can be emulated by a mapper
pr. Executing a single mapper is usually to be faster than
performing the projection after the mapper.

RULE 5.12: Given a mapper pr, and projection wr. Let
pr be the mapper that emulates the projection 7r.. Then,

7L (pr(R)) = (pL o pr)(R)
o

5.6 Decomposing mappers

A major improvement in distributed environments, is to
be able to execute query operators at different sites. For
queries expressions complex mappers it is advantageous to
decompose them. We can break complex mappers into sim-
pler mappers and distribute its processing.

EXAMPLE 5.5: Consider a mapper pur to be processed
at a site s1 and a relation R[U,V,W, X,Y, Z] stored at site
s2. Computing pr(R) implies to transfer tuples of R from
s2 to s1. Suppose that pr produces few attributes but uses
many attributes of R (€.8. Ur = JU+V+W+X+Y >A,2xZ—B)-
We can write the expression pr(R) as pg(uwu(R)), where
BH = Midy2xZ—B and Ig = JUAVAW+X+Y 5 Aid,- AS @
result, the optimizer may schedule pg to run at s; and pg
at s2, thus transferring much smaller tuples from s to 1.
O

DEFINITION 5.2: Given a mapper ur, and two sets of
mapper functions G and H, such that each of the sets G and
H contain at least one mapper function of F and GNH = ().
A decomposition of pr, is a pair of mappers pue and pg such
that, ur = pe(pa(R)). A mapper pr is decomposable if it
admits a decomposition. O

THEOREM 5.1: Every mapper with more than one mapper
function is decomposable.

PrOOF. Given a mapper pr. It suffices to find a suitable
partition for the set of mapper functions. Without loss of
generality, consider F' = {fa, fx,, ..., fx,}. Furthermore,
consider a partition of F' formed by two sets F1 = {fa} and
F> = {fxy,.., fx. }- Now, let ue¢ and px be two mappers,
where G = F1 U {idx; | X; is generated by fx; € F>} and
H = {ida} U F>. Then,

pa(pr(R)) = Bfaidxy,-..idx,, (HidA,fxl oo f X (R)) = pr(R)
O

From Theorem 5.6 we can devise a systematic method for
decomposing mappers. However, we need a criterion for es-
tablishing appropriate mapper function partitions. Let us
consider a predicate Cr to be such a criterion. For example,
a criterion based on the number of source attributes could
have been used for obtaining the appropriate partition used
in Example 5.5. Criteria based on some measure of com-
putational complexity can be used to partition the mapper
functions such that most expensive mappers (in terms of
computational cost) get processed on a site with highest
computing power.

RULE 5.13: Given a mapper pr and a criterion defined by
a predicate Cr. Counsider the set F = {fx,,..., fx,} with
more than one mapper function. Let

G= {fX1 | CT(in)a fx; € F}

U {idx; | ~Cr(fx;), fx; € F}

and

H= {fXj | =Cr(fx,), fx; € F}
U {idx, | Or(fx,), fx, € F}
such that pur and pmg form a decomposition of ur. Let

Cr(F) represent G and Cr(F) to represent H. Then, for a
fixed Cr we have,

pr = pice(r) (Ber) (R))
O

5.7 Mappers and other binary operators

Unary operators often enjoy interesting distribution laws
over binary operators. In fact, since mappers are monotonic
operators, a number of straightforward equivalences can be
established.

RULE 5.14: Let ur be a mapper. Given relations R and
S, the following equivalencies hold:

pr(RUS) = pr(R) U pr(S) (1)
pr(RNS) = pr(R) N pr(S) (2)
pr(R—5) = pr(R) — pr(S) 3)

In general, the equivalence pur(R x S) = pr(R) x pr(S)
does not hold. However, if the mapper is decomposable, we
can partition partition the set of mapper functions F' into
two disjoint subsets. Each of the subsets contains mapper
functions that depend only on attributes of either R or S.

RuULE 5.15: Consider a mapper pur. Let Fg C F and
Fs C F be sets of mapper functions, such that each function
fr € Fr (respectively fs € S) has only source attributes of
the relation R (respectively, of relation S). We can write,

pr(R x S) = prg (R) x prg (S)

6. PHYSICAL EXECUTION

The mapper operator admits a simple tuple-at-a-time se-
mantics. This suggests an iterator-based algorithm for exe-
cuting the mapper that consists of three steps. First, a tuple
t is fetched from the source. Second, the mapper functions
are executed taking ¢ as source. Third, the result of each
mapper function is combined to produce the output tuples of
t. These three steps are repeated until all the source tuples
are processed.

6.1 Mapper mixed evaluation

Many data sources often reside on an RDBMSs. DBMSs
are often capable of processing extended projection opera-
tors that use expressions. Since many mapper functions can
be represented as expressions, we can push these functions
to be processed as projections. The idea is that, mappers be
decomposed in order to avoid transferring very wide tuples
over the network. Using the decomposition algebraic rewrit-
ing rules of Section 5.6, we can produce a mapper that is
representable as a projection 7z. For this purpose we use a
criterion Cr such that

Cr(fa) = fais equivalent to an expression

of the projection statement on the source data.

After obtaining the projection 77, we perform a push-down
to the DBMS where the source relation resides. Substan-
tial savings of transmission of attribute data are obtained if
the arity of the source relation is high but the arity of the
mapper is low.

Performing a mapper push-down brings a further benefit.
Part of the mapper is optimized by the DBMS where the
source data resides.

6.2 Further optimizations

In the following we present a optimization strategies that
can be used to optimize mapper executions.

6.2.1 Cached computation

The execution of mappers that involve expensive compu-
tations motivates the use of caching techniques. The idea
is to assign a cache to every expensive function in order to
lower its cost. Before computing the value of f4(t) the cache
is looked up. If the value exists it is retrieved (instead of
being computed), else the result of fa(t) is computed and
stored in the cache.

Not all mapper functions are good candidates for caching.
To be a candidate for caching, a mapper function must meet
two criteria. First, the average expected cost of storage and
lookup must not exceed the average cost of computation.
Clearly, a constant mapper function is not a good candidate
for caching. Second, the selectivity of the input attributes
used to compute f4 must be low enough so that, the prob-
ability of a cache miss also remains low.

6.2.2 Mapper pre-computation

Data mappers are often executed over large amounts of
data that is not updated. For mappers that involve expen-
sive computations or costly I/O we can take advantage of
pre-computing the mapper result.

If we can guarantee that between two consecutive exe-
cutions of a mapper pr, a tuple with key £ has not been
updated. Then (i) we can use the locally stored result, (i)

otherwise, we download the tuple, compute the mapper re-
sult and store it in the pre-computation structure.

Consider a relation R with a key K. We can hash the
result of computing pr(t) using the key k and store it in
an auxiliary structure. As a consequence we need not to
transfer all the tuples from the source relation R the second
time the mapper is executed. Only the keys need to be
transferred. Instead of activating all the mapper functions to
compute the pr(t), this result can be immediately retrieved
from the auxiliary structure using the key k.

6.2.3 Local attribute storage

Another interesting strategy consists of storing attributes
of the mapper input relation locally 3. The underlying idea
is that for subsequent executions of the mapper only transfer
(i) attributes that form the key of the input relation and (%)
attributes that are not stored locally.

Different criteria can be used for selecting attributes to
be stored locally. A first criterion is to store attributes that
present greater I/O cost. A second criterion consists of stor-
ing attributes that are less frequently updated. Thus, upon
mapper execution, only those that are most frequently up-
dated are transferred.

6.2.4 Parallel execution
Mappers with complex functions are good candidates for

parallelization. Using a mapper decomposition criterion based

on the expected computational cost of complex mapper func-
tions, the system can decide which mapper functions are
good candidates for parallel execution. The algorithm sup-
porting this strategy would then compose the output tuples
as the result of each function execution become available.

7. CONCLUSIONS

This paper presents the formalization of an operator widely
used in schema and data transformations. The data map-
per operator is presented as a generalization of the relational
extended projection operator. We have identified both se-
mantic and physical optimization strategies to obtain fast
executions of data mappers.

The data mapper operator subsumes previous data trans-
formation operators such as the AJAX Map and Potter’s
Wheel Format operators while elegantly solving problems
not addressed by the former tools.

Many useful data transformations can not be tackled with
relational algebra. An important class of transformations
are those that require to process the entire input relation.
Our mapper operator is based on a tuple semantics and
does not aim at specifiying such transformations. However,
we believe that composing mappers with other operators
proposed in literature such as generalized groupping [12] we
can successfully specify many useful global transformations.

We believe that current relational database technology en-
hanced with the mapper operator would become not only a
data staging repository, but also a more powerful transfor-
mation engine. This work requires experimental validation.
Some of the optimizations presented in this paper are being
deployed as part of the DATA FUSION platform [2].

8. REFERENCES

[1] Ascential. http://www.ardent.com.

3Where the mapper is being executed

[2] P. Carreira and H. Galhardas. Efficient development
of data migration transformations. Demo paper. In
Proc. of the Semantic Integration Workshop (The
Second Int’l Semantic Web Conf.), Sanibel Island,
Florida, USA, October 2003.

[3] P. Carreira and H. Galhardas. Efficient development
of data migration transformations. Demo paper. In
ACM SIGMOD Int’l Conf. on the Managment of
Data, Paris, France, June 2004.

[4] Susan B. Davidson and Anthony Kosky. Wol: A
language for database transformations and
constraints. In Alex Gray and Per-Ake Larson,
editors, Proceedings of the Thirteenth Int’l Conf. on
Data Engineering, April 7-11, 1997 Birmingham U.K,
pages 55—65. IEEE Computer Society, 1997.

[6] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and
C. A. Saita. Declarative data cleaning: Language,
model, and algorithms. In Proc. of the Int’l Conf. on
Very Large Data Bases (VLDB’01), Rome, Italy,
September 2001.

[6] J. Widom H. Garcia-Mollina, J. D. Ullman. Database
Systems — The Complete Book. Prentice-Hall, 2002.

[7] L. V. S. Lakshmanan, F. Sadri, and I. N.
Subramanian. SchemaSQL - a Language for Querying
and Restructuring Database Systems. In Proc. Int’l
Conf. on Very Large Databases (VLDB’96), pages
239-250, Bombay, India, September 1996.

[8] R. J. Miller, L. M. Haas, and M. Hernandéz. Schema
Mapping as Query Discovery. In Proc. of the Int’l
Conf. on Very Large Data Bases (VLDB’00), pages
77-78, Cairo, Egypt, September 2000.

[9] L. Popa, Y. Velegrakis, R. Miller, and
M. A. Herndandez adn R. Fagin. Translating web
data. In Proc. of the Int’l Conf. on Very Large Data
Bases (VLDB’02), Hong-Kong, August 2002.

[10] V. Raman and J. Hellerstein. Potter’s Wheel: An
Interactive Data Cleaning System. In Proc. of the Int’l
Conf. on Very Large Data Bases (VLDB’01), Roma,
Italy, 2001.

[11] Sagent. http://www.sagent.com.

[12] E. Schallehn, K. Sattler, and G. Saake. Advanced
grouping and aggregation for data integration. In
Proc. 10th Int’l Conf. on Information and Knowledge
Management, CIKM’01, Atlanta, GA, USA, 2001.

[13] J. D. Ullman. Principles of Database and
Knowledge-Base Systems, volume 1. Computer Science
Press. New York., 1988.

[14] L. Yan, R. J. Miller, L. M. Haas, and R. Fagin.
Data-Driven Understanding and Refinement of
Schema Mappings. In Proc. of ACM SIGMOD Int’l
Conf. on the Managment of Data, May 2001.

