
Efficient development of data migration transformations

Paulo Carreira
Oblog Consulting and FCUL

paulo.carreira@oblog.pt

Helena Galhardas
INESC-ID and IST

hig@inesc-id.pt

1 Introduction

Nowadays, the business landscape changes very fast.
Organizations merge and joint-ventures have become
common headlines. This reality requires system
reengineering, information integration and migration
of legacy data. In this paper, we address the data
migration issue.

Current data migration applications aim at convert-
ing legacy data stored in sources with a certain schema
into target data sources whose schema is predefined.
Organizations often buy applicational packages (like
SAP, for instance) that replace existing ones (e.g., sup-
plier management). This situation leads to data mi-
gration projects that must transform the data model
underlying old applications into a new data model that
supports new applications. The migration process is
first exhaustively tested and then applied in a one-
shot operation, usually during a weekend. The origi-
nal data sources become obsolete once the migration
is performed. The transformation step of the ETL
(Extract-Transform-Load) process involved in large-
scale data migration projects has two kinds of require-
ments. The first one concerns the specification of mi-
gration transformations. The second deals with the
project development and management.

Several issues arise when specifying data migra-
tion transformations. First, migration programs re-
quire more powerful languages than those supported
by most commercial ETL tools currently available. In
fact, those languages are usually not powerful enough
to represent the semantics of the transformation rules
involved. Typically, complex transformations are han-
dled by ad-hoc programs coded outside the tools. Sec-
ond, data migration programs need more than simple
programmers. People that write migration code are
often business experts as well. They prefer to use high-
level constructs that can be easily composed. Third,
the cost involved in the production and maintainability
of migration programs must be minimized. Migration
code must be short, concise and easily modifiable.

Data migration projects deal with large amounts
of data and potentially involve a considerable num-
ber of transformations. Therefore, data migration pro-
grams are iteratively developed. In real world projects,

easy prototyping is thus an imperative requirement.
Moreover, as in any other software development effort,
code and data must be logically organized into distinct
packages. Managing such information is crucial for the
success of the initiative.

Finally, migration processes deal with critical data.
This means that project auditing is frequent and strict.
Auditors want to be sure that the entire set of source
data is migrated, i.e., that the migration transforma-
tions cover all source records. To ensure this, they
need a tool that measures the progress of the migra-
tion, and reports which source fields have been mi-
grated and which target fields have been populated.

Data Fusion is a data transformation platform de-
veloped and commercialized by Oblog Consulting. It
addresses the requirements of generic data transforma-
tion applications. In this paper, we describe Data Fu-
sion DM which is the Data Fusion data migration
component that has evolved from the requirements of
real data migration problems.

1.1 The Data Fusion DM component

Data Fusion offers a domain-specific language named
DTL (standing for Data Transformation Language) for
writing concise and short programs. It also provides
an Interactive Development Environment (IDE) for ef-
ficiently producing and maintaining code. In the rest
of the paper, we will focus on the DTL primitives and
IDE features supported by Data Fusion DM.

DTL provides a set of abstractions appropriate for
expressing the semantics associated to data transfor-
mations. The basic concept is a mapper that may en-
close several rules. A rule encloses transformations
with similar logics, e.g., populate fields with the null
value (see Section 3 for an example of a mapper).
The choice of providing such domain-specific language
brings several advantages. First, migration solutions
can be expressed in a language close to the problem do-
main. Second, programs are usually concise and easy
to read and maintain. Due to these two features, DTL
is appropriate for easy prototyping and testing, which
are major requirements of data migration applications.
Third, the compiler can check if the specific vocabu-
lary is correctly used. In DTL, for example, a target

attribute cannot be assigned twice. Since DTL em-
bodies domain knowledge, a number of optimizations
that could not be identified otherwise, can be intro-
duced. Finally, a debugger facility can be developed
for data migration programs. The debugger facility
implementation of Data Fusion DM is in progress.

The Data Fusion DM IDE supports the develop-
ment of data migration projects. It follows the trend
of modern environments for software development (like
e.g. Eclipse or Visual Studio). It includes a text edi-
tor that supports known functionalities such as syntax
highlighting and code templates. Moreover, the DTL
compiler is integrated within the IDE and provides
helpful hints when compilation errors occur. The user
can parameterize Data Fusion DM through the IDE,
in order to differentiate among production and devel-
opment modes. The types of errors that are allowed
when writing and testing a migration application are
not the same as the ones that may occur when migrat-
ing real data.

The IDE also supports project management. First,
the code produced is organized into packages accord-
ing to the functionality provided. This feature is ex-
tremely important in large-scale projects as is the case
of data migration. Second, the IDE provides a project
tracking facility that shows to be very useful in real
data migration applications. The information to mi-
grate is precious in the sense that every source record
must be migrated and every slot of the target schema
must be filled in. Auditing a data migration project
is a very common activity. People owning data to be
migrated frequently ask for periodically checking the
progress of the data migration process. The IDE re-
ports the state of all source and target fields, i.e., the
association between all target and source fields, the
percentage of source and target data already migrated,
etc.

1.2 Related work

The commercial ETL tools currently available usually
either provide an incredible number of operators (e.g.,
Sagent [Sag]) for transforming data or only a small
set of operators (e.g. DataJunction [Dat]). The first
group of tools is not easy to use, given the large num-
ber of abstractions that the programmer must be able
to handle. In the second group of tools, complex trans-
formation logics must be developed as external ad-hoc
functions through programming interfaces. This solu-
tion has several drawbacks. First, programmers must
be aware of at least two programming languages: the
transformation language supplied by the tool and the
programming language (usually Java or C) for writing
external code. Second, migration programs that han-
dle rich transformation semantics turn to be complex
and difficult to optimize. Furthermore, debugging of
migration transformations tha invoke external code is
difficult and further delays the data migration develop-

ment cycle. The Data Fusion DM approach defends
that functions should be defined in the transformation
language to allow integrated development and debug-
ging without having to switch among development en-
vironments and tracking down bugs through archaic
mechanisms.

Commercial tools provide a GUI to specify the
source-target mappings, often imposing weak forms of
interaction when compared with a modern program-
ming language editor. Finally, some of these tools
(e.g., Compuware FileAid/Express [Fil]) neglect the
development environment in favor of a more power-
ful set of data transformations. The application of
Data Fusion DM to solve real world data migration
problems confirmed our expectations about the IDE
usefulness.

Several research data transformation tools have
been proposed in the last years. Potter’s Wheel [RH01]
is a tool for discrepancy detection that allows the user
to successively apply simple schema and data trans-
forms. However, the class of data transformations ex-
pressible with these transformation operators is lim-
ited and does not cover all data migration require-
ments. The semantics of the AJAX [GFS+01] map
operator is similar to the semantics of a Data Fu-
sion DM rule, but rules can enclose more complex log-
ics due to the expressiveness of DTL when compared
to the map let clause. Express [SHT+77] is an early
prototype for data transformation. As Data Fusion
DM, it offers a language for specifying transforma-
tions of source files into target files. However, unlike
DTL, it does not support recursion. Clio [MHH+01]
is a tool for interactive development of schema map-
pings. However, the set of transformations supported
is a subset of SQL. As it will be shown in Section 3,
Data Fusion DM DTL can express transformations
that cannot be written in SQL.

DTL was designed for capturing the semantics of
arbitrarily complex data migrations. It is a domain
specific language because it is oriented to a par-
ticular problem domain [vDKV00]. Many domain-
specific languages have been used over the years (SQL,
ASN.1, Makefiles, among others [vDKV00]), and the
subject has been receiving increased attention from
the research community [Kam97]. MedMaker MSL
[PGMU96] and Squirrel ISL [ZHK96] are data inte-
gration languages whose main goal is to fusion data
from several sources. DTL is intended for specifying a
larger class of data transformations.

Data Fusion DM assumes that the source-target
schema mappings are known. The tool does not offer
any facility for discovering schema mappings as it is the
case of COMA [DR02], TranScm [MZ98] and others.

2 Architecture

The Data Fusion platform follows the client-server
architecture depicted in Figure 1. On the client side,

IDE

(Client)

extract load

Data staging area

Run-time Library

Execution Service

Java Run-time Environment

Target dataSource data

Remote Comm. DTL Compiler Report System

User Interface

RTE

(Server)

status

information

Java

mappers

User Extensions

Compiled mappers

Figure 1: Architecture of Data Fusion

the Integrated Development Environment (IDE) allows
users to work in multiple data migration projects. On
the server side, the Run-Time Environment (RTE) is
responsible for compiling and parallelizing the data mi-
gration requests submitted from IDE instances. This
client-server architecture attains scalability. An in-
stance of the IDE may submit requests to multiple
RTE instances and an instance of the RTE may run
in parallel accepted submissions from multiple IDE in-
stances.

The IDE is constituted by (i) the graphical user in-
terface, which is a development environment for DTL
specifications (ii) the remote communication subsys-
tem in charge of submitting the compiled mappers
and receiving the migration progress information, (iii)
the DTL compiler that generates Java code from DTL
mappers, and (iv) the report system that is responsible
for displaying project tracking and auditing informa-
tion.

The RTE is composed by (i) an execution service
responsible for processing submission requests by com-
piling, launching and monitoring the execution of map-
pers, (ii) a run-time library that implements the se-
mantic concepts of DTL and (iii) the Java Run-time
Environment which is responsible for executing the
Java code.

The transformations are executed by the RTE on
a data staging area which can be supported by any
RDBMS with a JDBC connection. Data extraction
and loading are performed by third-party tools (e.g.,
Oracle SQL*Loader).

3 The Data Transformation Language

To motivate the unique features of the DTL language,
we present a simple example which is a simplified ver-
sion of typical real world problems found when migrat-
ing legacy data. The example show problems that are
solved in a concise and self-contained way using DTL.

To the best of our knowledge, complex restructuring
sequences or manual coding would have to be used if
tackled with currently available data transformation
frameworks.

The first example illustrates the ability to reason
about source record ordering, in particular to varia-
tions of record ordering. The second example illus-
trates cardinality control.

3.1 Migration of currency rates

In this example, the data source view RATE LOG (see
Figure 2) stores currency rates that enter the infor-
mation system at regular intervals. The column RATE
is the currency conversion rate and HOUR contains the
hour at which the currency rate entered the system.
The goal is to migrate these data into another table
where only the start value, turning point values (as-
cending to descending and descending to ascending)
and final value must be kept.

Domain experts elicited the following requirements:

1. Migrate from RATE into RTVAL the first rate value
(1,2 in the figure), the values after turning points
(1,6, and 1,4 in the figure) and the last value (1,8
in the figure).

2. The column HOUR is mapped directly into column
RTHOUR.

The DTL mapper that performs this conversion is
shown on the right of Fig.2 using the DTL syntax.
Note that each requirement is associated with a rule.
In particular, the non-trivial requirement for the col-
umn RTVAL is implemented using a self-contained rule.

The rule works as follows. The variable V is used to
keep the previous value of RATE. It is persistent across
rule firings. For each source record, the foreach state-
ment of the rule is executed. The if statement decides
whether to migrate using the value of the RATE column.
The condition checks if the view cursor is located at
the first record, at the last record or if there is a rate
variation. Variations are detected using the built-in
boolean operator varying. This operator evaluates
an expression (signal in this case) for two consecu-
tive source records. If the returned value is not the
same for both records, the operator returns true.

Achieving the same effect through a general purpose
language involves instructions for moving the cursor
forward and backward and an extra temporary vari-
able for holding the value returned by the signal func-
tion.

Supporting the claim of section 1, the varying op-
erator simplifies the migration logic and greatly im-
proves code conciseness and readability.

3.2 Migration of loan information

The source view LOANS, in Figure 3, stores the details
of loans requested per account. The source column

RATE LOG

RATE HOUR

1,2 08:05
1,3 12:05
1,6 16:05
1,5 08:05
1,4 12:05
1,6 16:05
1,7 08:05
1,8 12:05

RTVAL RTHOUR

1,2 08:05
1,5 16:05
1,6 12:05
1,8 12:05

mapper RateConvert
import master RATE LOG
export RATE EVOL

RTVAL = rule
var V: numeric(8,4) = null
foreach

if atfirst RATE LOG
or atlast RATE LOG
or varying signal(RATE - V)

then
@@ = RATE

else
exclude

end if
V = RATE

end foreach
end rule

RTHOUR = HOUR
end mapper

Figure 2: Specification of the RateConvert mapper

ACCT is the account number, LOAN is the loan number
for each account and AMT is the amount requested. The
target system does not support loan amounts superior
to 100. When a loan amount greater than 100 is found
in the source, it must be split into several loan payment
entries in the target. In the target view PAYMENTS,
LOANNO is the loan number and AMOUNT is the amount
to be payed. The mapping requirements are as follows:

1. The column LOANNO is mapped by concatenating
ACCT with LOAN.

2. The column AMOUNT is obtained by breaking down
the value of AMT into multiple records with a max-
imum value of 100, in such a way that the sum
of amounts for the same LOANNO is equal to the
source amount for the same loan.

The mapper that implements these requirements is
shown on the right side of Figure 3. The first require-
ment is implemented in the rule1 that assigns the con-
catenation of the source columns ACCT and LOAN to the
column LOANNO.

To implement the second requirement, an auxiliary
variable rec amnt is initialized with the value of AMT
and is used to partition the total amount into parcels
of 100. The dynamic creation of records is achieved by
nesting an insert statement into a while loop. Each
time an insert is executed, a new value for the target
column is associated with the rule. Internally, values
produced by the rules are represented by nodes in a
graph. After executing all the rules for a source record,
the values contained in the nodes are combined by a
graph traversal algorithm to produce target records.
In Figure 3, for each iteration of the loop, a node
AMOUNT is loaded with 100. After the loop, an ad-
ditional node AMOUNT is filled in with the remaining
value. When both rules are executed for each source

1No rule keyword is required when the rule is composed of
a single statement.

LOANS

ACCT LOAN AMT

123 001 20,00
123 002 140,00
456 001 250,00

PAYMENTS

LOANNO AMOUNT

123001 20,00
123002 100,00
123002 40,00
456001 100,00
456001 100,00
456001 50,00

mapper LoanConvert
import master LOANS
export PAYMENTS

LOANNO = ACCT || LOAN

AMOUNT = rule
var rec amnt: numeric
rec amnt = AMT
while rec amnt > 100 do

@@ = 100
rec amnt = rec amnt - 100
insert

end while
@@ = rec amnt
insert

end rule
end mapper

Figure 3: Specification of the LoanConvert mapper

record, the values stored in node LOANNO and in nodes
AMOUNT (for each LOANNO node, several AMOUNT nodes
may exist) are combined to generate several records in
the target view PAYMENTS.

The distinguishing feature illustrated by this exam-
ple is as follows. The mapping logics used to load
the target columns whose value is fixed (LOANNO in
this example) is kept outside the loop. This is highly
beneficial because in real-world examples, we often en-
counter target tables with tens of columns. By nesting
all rules inside the loop would compromise their read-
ability.

4 Scenario demonstrated

Data Fusion DM has been used in real data mi-
gration projects. For example, it was applied by the
Spanish software house INDRA [ind] to migrate finan-
cial data, and by Siemens to integrate three databases
storing Portuguese public administration information.

In data migration projects, there is a common pat-
tern. Proprietary applications are discontinued in fa-
vor of applicational packages which means that legacy
data is migrated into a fixed target schema. The mi-
gration project that we will demonstrate intends to il-
lustrate the generic characteristics of a data migration
project driven by these requirements.

Due to confidentiality restrictions we cannot present
real data used in our projects. Therefore, the scenario
demonstrated is a constructed example of a banking
migration. The Banking information system is com-
posed of four applications: Clients, Accounts, Loans
and Credit-cards. The data handled by these appli-
cations must be migrated into a pre-defined target
schema.

With this demonstration, we want to outline the
following points:

1. Complex legacy data transformations – We will
illustrate a set of data migration transformations
expressible in DTL that are either not tackled or
are impractical in existing tools and frameworks.

Figure 4: Snapshot of Data Fusion IDE

2. IDE – We will show our development environment
for DTL specifications (see a snapshot in Figure
4). In particular, we will present how the IDE
project management handles the migration of real
world financial data systems with thousands of
tables.

3. Project tracking and auditing – By taking advan-
tage of data dependency information supplied by
the DTL compiler we are able: (i) to compute
coverage metrics for source and target schema and
(ii) to develop data dependency reports for source
and target fields. We show how coverage metrics
indicate the progress of rule coding. We also show
how auditors take advantage of the data depen-
dency reports to gain insight and confidence about
the migration specification.

References

[Dat] DataJunction. http://www.datajunction.com.

[DR02] Hong-Hai Do and Erhard Rahm. Coma – a sys-
tem for flexible combination of schema matching ap-
proches. In Proc. of the Int’l Conf. on Very Large
Data Bases (VLDB’02), Hong-Kong, August 2002.

[Fil] Compuware FileAid/Express.
http://www.compuware.com/products/fileaid/express.htm.

[GFS+01] Helena Galhardas, Daniela Florescu, Dennis
Shasha, Eric Simon, and Cristian-Augustin Saita.
Declarative Data Cleaning: Language, Model,
and Algorithms. In Proc. of the Int’l Conf. on
Very Large Data Bases (VLDB’01), Rome, Italy,
September 2001.

[ind] Indra. http://www.indra.es.

[Kam97] S. Kamin, editor. First ACM SIGPLAN Workshop
on Domain-Specific Languages (DSL’97), January
1997.

[MHH+01] R. J. Miller, L. M. Haas, M. Hernandéz, C. T. H.
Ho, R. Fagin, and L. Popa. The Clio Project:
Managing Heterogeneity. SIGMOD Record, 1(30),
March 2001.

[MZ98] T. Milo and S. Zhoar. Using schema matching
to simplify heterogeneous data translation. In
Proc. of the Int’l Conf. on Very Large Data Bases
(VLDB’98), New York, USA, August 1998.

[PGMU96] Y. Papakonstantinou, H. Garcia-Molina, and J. Ull-
man. MedMaker: A Mediator System Based on
Declarative Specifications. In Proc. Int’l. Conf. on
Data Engineering, Naharia, Israel, March 1996.

[RH01] V. Raman and J. Hellerstein. Potter’s Wheel: An
Interactive Data Cleaning System. In Proc. of the
Int’l Conf. on Very Large Data Bases (VLDB’01),
Roma, Italy, 2001.

[Sag] Sagent. http://www.sagent.com.

[SHT+77] N. C. Shu, B. C. Housel, R. W. Taylor, S. P.
Ghosh, and V. Y. Lum. EXPRESS: A Data EXtrac-
tion, Processing and REStructuring System. ACM
Transactions on Database Systems, 2(2):134–174,
June 1977.

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser.
Domain-Specific Languages: An Annotated Bibli-
ography. SIGPLAN Notices, 35(6):26–36, 2000.

[ZHK96] G. Zhou, R. Hull, and R. King. Generating
Data Integration Mediators That Use Materializa-
tion. Journal of Intelligent Information Systems,
6(2/3):199–221, 1996.

