Breve história da energia solar - Plástico

A conversão de energia solar em electricidade pode ser uma das soluções para a crise energética que o mundo enfrenta. O elevado preço (e o consumo de energia) associado à obtenção do silício utilizado nas células convencionais impede uma maior contribuição da energia fotovoltaica na produção de energia. Embora existam outras alternativas, as células solares de plástico, OPVs, que podem ser fabricadas a baixo custo (também a nível energético), são actualmente as mais promissoras.

De facto, a facilidade de processamento de polímeros, quando comparada com a dos tradicionais semicondutores inorgânicos, apresenta como atractivo o desenvolvimento de técnicas de custo reduzido para aplicações que requerem semicondutores de hiato no vísivel. Um novo sector da indústria electrónica  e fotónica baseado em materiais plásticos, em vez de silício, está já a surgir. Dispositivos, circuitos e sistemas em plástico, de muito baixo custo, que podem ser impressos sobre qualquer material, começam a aparecer no mercado.

Em paralelo com a electrónica convencional baseada no silício está a emergir um novo paradigma baseado, não no elevado desempenho e miniaturização dos componentes, mas sim no baixo custo de fabrico. A electrónica de plástico, também chamada electrónica orgânica, assenta no baixo custo do processamento e na possibilidade de manipulação química para atingir as propriedades desejadas nos materiais. Uma vez que os semicondutores orgânicos podem ser concebidos de modo a ser solúveis em solventes comuns, podem ser usadas tecnologias de produção como impressão a jacto de tinta ou estampagem.

Um dos objectivos mais ambiciosos para produzir circuitos e dispositivos electrónicos de baixo custo baseia-se no uso de impressoras rotativas de alta velocidade (como as usadas para imprimir os jornais), que podem imprimir milhares de circuitos ou dispositivos por metro quadrado que depois podem ser separados por processos automáticos. O uso de substratos flexíveis de plástico ou papel permite atingir custos extremamente baixos para certos tipos de circuitos como os que futuramente irão substituir o actual código de barras.

Outra aplicação da electrónica de plástico, que promete revolucionar a indústria de iluminação, é o uso de OLEDs (de luz branca, se assim se quiser) em painéis de iluminação. As eficiências e tempos de vida já excedem as das lâmpadas incandescentes. A iluminação baseada nesta tecnologia, possibilitará iluminação difusa, com painéis de grande área e cuja intensidade de iluminação pode ser controlada. Também existem LEDs de materiais inorgânicos bastante eficientes, mas de muito maior custo de fabrico.
 
Mas é nível de dispositivos fotovoltaicos que este novo paradigma da se torna muito aliciante. A flexibilidade de desenhar polímeros que apresentam as propriedades que se queiram para além da tecnologia barata já bem desenvolvida para todos os tipos de filmes plásticos tornaria essa aplicação um sucesso. A flexibilidade mecânica de materiais plásticos seria bem-vinda para integração arquitectónica, nomeadamente em superfícies curvas inacessíveis às tecnologias assentes nos materiais inorgânicos tradicionais.

Assim, não é supreendente que exista um esforço de investigação significativo no desenvolvimento de OPVs. No entanto, é ainda comparativamente inferior o desempenho de dispositivos fotovoltaicos que utilizam um polímero conjugado para absorção de radiação, devido a um baixo rendimento de fotogeração, uma recombinação radiativa considerável e baixa mobilidade dos portadores de carga.

As eficiências de conversão da energia solar, PCE, de todas as OPVS referidas na literatura são muito baixas quando comparadas com as células fotovoltaicas inorgânicas. Uma eficiência fotovoltaica elevada requer uma absorção de luz eficiente e um bom transporte de cargas. Os polímeros apresentam uma mobilidade de cargas muito menor que os seus equivalentes inorgânicos para além de o seus espectro (a parte da luz absorvida) não coincidir com o espectro da luz solar. As mais eficientes, que assentam na utilização de misturas de polímeros com derivados do fullereno, C60, apresentam PCEs à volta de 6%, o que não as torna atractivas para comercialização embora a tecnologia mais barata envolvida e a possibilidade de fabricação de áreas muito grandes sejam um ponto a favor das OPVs para algumas aplicações, por exemplo como tinta de revestimento de superfícies metálicas.

Outras alternativas

Outra alternativa inorgânica às células de silício figurou no número de Fevereiro de 2008 da Chemistry World. O artigo «First sales for 'world's cheapest solar cells’» dava conta das primeiras vendas para o público em geral das células fotovoltaicas desenvolvidas pela Nanosolar. Esta empresa americana anunciou nessa data a produção comercial de células de filme fino baseadas numa tinta de um semicondutor muito durável (segundo indicações da Nanosolar, poderá ser usado durante 25 anos). Este semicondutor inorgânico, designado CIGS (acrónimo de Copper Indium Gallium Diselenide, diselenieto de cobre índio e gálio ) apresenta vantagens  em relação ao silício no processo de fabrico, no rendimento e custo de produção de painéis solares.

Os painéis solares produzidos são revestidos com uma mistura homogénea de nanoparticulas dos vários componentes da tinta o que garante uma deposição uniforme na extensão de área que se desejar. O revestimento é posteriormente aquecido de forma a ser obtido um filme fino e contínuo. Os painéis assim produzidos apresentam uma PCE de 19,5% a um custo de apenas 13 cêntimos de dólar por cada Watt produzido (entre 1/10 a 1/5 do custo possível com as células inorgânicas convencionais). O processo de produção é rápido e possibilita um menor desperdício de material, já que se trata de uma tinta que pode ser distribuída por vários tipos de suporte com formas variadas.

A tinta CIGS «Copper Indium Gallium Diselenide» da Nanosolar

O problema com estas células reside no facto de o índio ser um elemento muito pouco abundante na Terra e ser extensivamente usado em muitas outras aplicações. Isto é, o índio, o componente fulcral destas células, é um elemento muito raro e dispendioso e se o preço a que estas células fotovoltaicas conseguem produzir energia eléctrica é muito atraente, a perspectiva de uma utilização massiva que esgotaria as nossas reservas de índio ensombra esta alternativa.


Breve História da Energia Solar
Silício
Plástico


Página desenvolvida no âmbito do projecto POCI/CTM/58767/2004, «Photovoltaic cells based on conducting polymers and anthocyanins»