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Abstract

Peephole optimizations are one of the many optimizations used by compilers. These
peephole optimizations are small static code transformations that occur whenever pos-
sible without cost analysis. Because these peephole optimizations are small, many of
them are required to make an impact on the execution time of a compiled program.
Within the LLVM compiler suite, the peephole optimizer is not only used to optimize
but also to canonicalize code snippets for other optimizations. Because of its canonical-
izing nature, the peephole optimizer requires even more peephole optimizations and is
applied multiple times to restore the canonicalizations that may have been undone by
other optimizations. Because of these characteristics, the peephole optimizer in LLVM
is one of the dominating factors in the runtime of LLVM’s optmization passes.

Alive aims to provide both a Domain Specific Language (DSL) to describe peephole
optimizations, and prove the correctness of these peephole optimizations for LLVM. Fur-
thermore, the Alive DSL describes peephole optimizations adequately to automatically
generate code which can then be used within LLVM. This generated code, however,
still uses the same matching strategy as LLVM’s default pattern matching strategy for
peephole optimizations.

This thesis explores different tree pattern matching methods, extends them to adhere
to constraints introduced by peephole optimizations, and implements code generators
within Alive which utilize the augmented tree pattern matchers with the goal to speed
up compilation time of LLVM’s peephole optimizer. In doing so, it shows that, given
a limited set of peephole optimizations, it is possible to speed up compilation time
using tree pattern matching compared to LLVM’s default matching strategy, without
sacrificing execution time or binary size.
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Chapter 1

Introduction

Today’s world is governed by technology. Many, if not all, have integrated it into their
daily lives, and businesses depend on it for their processes to the point where technology
has become an integral part of our lives. Of course, technology comes in many forms and
shapes; from word processors to embedded devices. One common aspect in the majority
of technology today is the use of software, usually written by software developers. This
software then runs on computers, embedded devices, servers, and much more. However,
software written by developers are generally in a human readable programming language
which cannot be directly run on devices. The software written in these high-level pro-
gramming languages still requires translation to a format that can be interpreted by
devices. This translation is done by a so called compiler.

The compiler, which translates human readable programs into a format executable by
devices, is also a program described in a programming language that has to be translated
into a representation runnable on a device. Problems in regular applications result in
crashes of said programs; however, problems within the compiler might result in crashes
of the programs compiled (i.e. translated). Meaning that the negative effects of compiler
bugs transcend the compiler itself, onto the software being compiled. Because of this
trait, a compiler’s correctness ought to be ensured as well as possible.

Not only should the compiler ensure that the translation does not result in faulty
emitted executable programs, it should also ensure a speedy runtime such that emit-
ted programs run as efficiently as possible. To ensure a feasible runtime for emitted
programs, many optimizations take place within the compiler. These focus on reducing
a program’s runtime or, alternatively, reducing an emitted program’s size. Supporting
all of these optimizations within the compiler means that the software describing the
compiler itself is enormous.

One technique to allow easier maintainability and adaptability of the compiler soft-
ware is to abstract parts of the code and lift them into a new Domain Specific Language
(DSL), accompanied with a program which takes the DSL and emits part of the com-
piler’s software. An example of this would be within the LLVM compiler suite where the
TableGen1 DSL is used to describe device specific characteristics. Another example of a
DSL, utilized in compilers, is within the Go compiler2 where a DSL is used to describe
peephole optimizations (pattern match code rewriting) which can be translated to the
Go language (the programming language used by the Go compiler).

Alive [9] aims to be a DSL and verifier for peephole optimizations within the LLVM
compiler suite which focusses on proving the correctness of the peephole optimizations.

1https://llvm.org/docs/TableGen/index.html
2https://github.com/golang/go

1

https://llvm.org/docs/TableGen/index.html
https://github.com/golang/go


Proving correctness of peephole optimizations decreases the flaws within LLVM, resulting
in less erroneous executable programs emitted by LLVM. Additionally, Alive describes
the peephole optimizations sufficiently to generate part of the LLVM peephole optimiza-
tion code in C++, the primary programming language used within the LLVM project.
Both verification and code generation allow developers working on LLVM to easily adapt
LLVM’s peephole optimizer for new peephole optimizations, and prove the correctness
of these extensions.

The current C++ code generator used by Alive emits code in the same structure
as the manually maintained peephole optimizer in LLVM. This means that the code
emitted is still readable as maintaining and extending peephole optimizations manually
requires readable code to aid the developers. However, it is possible to sacrifice the
human readable aspects of the peephole optimizer’s C++ code if, in turn, it can speed
up compilation time. Moreover, maintaining and extending the peephole optimizer then
occurs on a higher level, on the Alive DSL as the C++ code is then generated using
the Alive DSL. This is similar to how a software program loses its abstractions after
compilation to an executable program for the ability to run the program efficiently on a
particular device.

This thesis explores alternative methodologies which trades off clarity of the peephole
optimization C++ code for compilation speed. More specifically, alternate peephole op-
timization pattern matching techniques are explored where the Alive DSL definitions of
peephole optimizations are translated into C++ code utilizing said alternative method-
ologies. One of the strategies explored is called top-down pattern matching, denoting the
direction in which matching occurs. The other strategy explored is called bottom-up,
also named after the direction that pattern matching occurs.

The goal of the project is to automatically generate C++ code for the peephole
optimizer (using Alive), ready for use within LLVM where emitted code uses tree pattern
matching methodologies which are modified to conform the constraints introduced by
peephole optimizations, and to speed up execution time of the peephole optimizer within
LLVM. Section 3.2 explains these goals more in depth.

This thesis achieves the following:

• Describe additional constraints for tree pattern matching required to support peep-
hole optimizations

• Extend existing top-down and bottom-up tree pattern matching construction al-
gorithms to conform to peephole optimization constraints

• Implement an initial version of both top-down and bottom-up tree pattern match-
ers, which support peephole optimizations, in Alive to automatically generate nec-
essary C++ code for LLVM’s peephole optimizer

• Evaluate the initial implementations with LLVM’s default peephole optimizer and
Alive’s default peephole optimizer generator

1.1 Overview

Before describing the project and its problems, the required background knowledge is
introduced in chapter 2. After that, the chapter 3 explains the motivation and prob-
lem statement of the project. Then, the extensions required for both top-down and
bottom-up tree pattern matching stategies to accommodate constraints introduced by
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peephole optimizations in LLVM are introduced in chapter 4 together with a descrip-
tion of the initial implementations of both strategies. These implementations are then
benchmarked where the results of these benchmarks are described in chapter 5. Finally,
a conclusion summarizing the work with current issues and recommendations on future
work is described in chapter 6.
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Chapter 2

Preliminaries

This chapters aims to provide sufficient preliminary knowledge for the remainder of this
thesis. Subjects covered in this chapter will be:

• Low-Level Virtual Machine (LLVM), its design and characteristics

• Peephole optimizers, and LLVM’s peephole optimizers’ design

• Alive, a tool to automatically formally prove correctness of peephole optimizations
within LLVM

• Finite automata, their structure, and execution

• Tree pattern matching, its concept and relevant research

2.1 LLVM

The LLVM project is an open source project1 that supports and maintains a set of
modular libraries most suitable for compilers. Just the LLVM project itself would not
suffice for a complete compiler toolchain as it only consists of separate libraries. As a
subproject of LLVM, the clang project exists which can be considered the front-end that
uses the LLVM libraries for its back-end. What sets it apart from other open source
compiler toolchains is its modularity and its adaptability without sacrificing compiler
performance [7]. Its modularity refers to the reusability of the compiler submodules. Its
adaptability refers to the ease of altering a submodule as the software design of LLVM
took separation of concerns into account. An example of how both adaptability and
modularity plays a role in LLVM’s software design is the human readable LLVM Inter-
mediate Representation (IR). This LLVM IR can be considered a high-level assembly
language that can be converted to more efficient LLVM IR, or alternatively, converted
to (a computer architecture’s) target specific assembly. Support for new programming
languages could be implemented more easily by creating a front-end that emits LLVM
IR for said new programming language. Of course, this is easier said than done but can
still be considered easier in comparison to other compiler toolchains which have a tighter
integration of its submodules. A front-end developer should not need to know back-end
details just to develop a new programming language. A few examples of programming
languages that have front-ends that are built upon LLVM are: Rust, Swift, and Halide.
These programming languages depend upon LLVM’s optimizer and back-end for func-
tionality while they maintain a custom front-end.

1llvm github mirror: https://github.com/llvm-mirror/llvm
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2.1.1 LLVM design

This section aims to explain the LLVM’s background and its design. Namely, it will
describe LLVM’s IR, some ideas behind it and how it relates to the LLVM compiler’s
design.

LLVM Intermediate Representation

LLVM’s IR is the primary language used within LLVM in terms of code representation.
More traditionally, a compiler’s IR is internally described in software and data structures.
However, LLVM’s IR can also be emitted in human readable format (shown later in this
chapter). The appeal of such a design is that code transformations can be tracked as code
goes through the compiler pipeline allowing for easier understanding of the compilation
(and optimization) process.

LLVM’s IR appears similar to a verbose, high-level assembly language. However,
some details are abstracted away such as the constraint of a finite amount of registers.
Instead, an infinite amount of virtual registers is assumed. Moreover, all virtual registers
are assigned only once during their lifetime. This type of assignment is also called Static
Single Assignment (SSA). The strength of SSA is that it simplifies analysis of the assign-
use relation and the lifetime of values. Altogether, this allows for easier data and control
flow analysis [1] within the compiler.

if(x = 42)

y := 1

A

y := x+ 2

B

return y

(a) Joining basic blocks

if(x = 42)

yt := 1

A

yf := x+ 2

B

yret := φ(yt, yf )
return yret

(b) Joining basic blocks with SSA form

Figure 2.1: Multiple branch joining example

Sometimes, value assignment of variables can be ambiguous due to the joining of
basic blocks, as is shown in figure 2.1a. Here, multiple blocks are shown, each with a
single entry point and a single exit point i.e. basic blocks where the only entry point
is at the start, and only exit point is at the end of the code sequence with no way to
branch during the sequence [3]. In such a case, assignment of a variable occurs multiple
times. Namely, in basic block A, and basic block B. As multiple assignments of the same
variable is not possible in SSA, a so called phi node is introduced (φ) which assigns values
to variables depending on which basic block branched to the phi node’s basic block. The
SSA equivalent with such a phi node is shown in figure 2.1b. Here, the same basic blocks
can be observed as in figure 2.1a; however, the variables within the SSA form equivalent
basic blocks of figure 2.1b differ. As can be seen, basic block A now assigns a value to
variable yt whereas basic block B now assigns a value to variable yf . Moreover, the basic
block where both basic blocks A and B join now assigns a value to variable yret using
the phi node. The first argument of φ(yt, yf ) denotes that if the branch originates from
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A, yt should be used for assignment. The second argument denotes that yf should be
used for assignment if the branch originates from B.

int f(int a, int b) {

while (b < a) {

b++;

}

return b;

}

Listing 2.1: C code example with multiple
joining basic blocks

define i32 @f(i32 %a, i32 %b) {

entry:

br label %cond

cond:

%local = phi i32 [ %b, %entry ], ←↩
[ %inc , %body ]

%cmp = icmp slt i32 %local , %a

br i1 %cmp , label %body , label ←↩
%end

body:

%inc = add nsw i32 %local , 1

br label %cond

end:

ret i32 %local

}

Listing 2.2: LLVM IR example with
multiple joining basic blocks

Listing 2.2 shows an example of LLVM IR’s SSA form for the equivalent C code in
listing 2.1. In listing 2.2, the 4 basic blocks observed in LLVM IR are ‘entry’, ‘cond’,
‘body’, and ‘end’. As can be observed, the ‘cond’ basic block contains a phi node where
the origin is either the ‘entry’ basic block, or the ‘body’ basic block. If the ‘entry’ basic
block is the origin, then the value in %b will be assigned to %local, if the ‘body’ basic
block is the origin, then the value in %inc will be used instead.

LLVM IR Passes

Source
code

Front-end Optimizer Back-end
Machine

code

Figure 2.2: Compiler design

Figure 2.2 shows the traditional design of a compiler. The design of LLVM does not
deviate much from this design. In LLVM, the front-end (clang) will convert source code
to LLVM IR. This LLVM IR from the front-end will then serve as the input for the
optimizer which contains a plethora of optimizations and analyses. After finishing these
optimizations, more efficient LLVM IR will be emitted. This optimized LLVM IR will
then be forwarded to the back-end which will use it to emit corresponding machine code
depending on what computer architecture is being compiled for.

Notice that both the input and output of the optimizer is in LLVM IR format. To
some extent, it is possible to skip optimizations altogether and immediately go from
front-end to back-end. This will, however, emit less efficient machine code. Within
LLVM, the design of the optimizer with its optimizations has been implemented in
so called passes. A pass iterates over (part of) the LLVM IR and either analyses or
transforms it. These passes can be configured and extended depending on the particular
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needs of computer architectures.

2.1.2 Peephole optimizer

Peephole optimizations are optimizations applied on small, typically three lines of LLVM
IR, snippets of code. Peephole optimizations are applied wherever possible, meaning that
if a match has been found which adheres to the required preconditions the transformation
is applied. If a snippet of code matches one of the peephole optimizations, it will be
transformed into a more efficient alternative.

LLVM, much like many other compiler toolchains, incorporates a peephole optimizer.
This peephole optimizer in LLVM runs during LLVM’s optimization phase. Within
LLVM these peephole optimizations are implemented using passes. The peephole op-
timizer passes in LLVM are the instcombine (instruction combine), and instsimplify
(instruction simplify) passes. An example of instruction simplification is the reduction
of same variable subtraction to a 0 i.e. x − x → 0 which simplifies the expression and
might enable other optimizations. An example of instruction combination is canonical-
ization of code with multiplication by a power of 2 to a left-shift i.e. x × 2 → x � 1
whose reduction to a shift does not revert back to a multiplication.

Algorithm 1 shows pseudocode for naive instcombine’s algorithm in LLVM. The
InstructionCombine function runs over each function within the program that’s being
compiled. For every function being compiled, the sequence of LLVM IR instructions
within said function are copied (in the same order as they occur in func) to an auxiliary
sequence wl on line 3, which is iterated over until wl is empty. Each iteration of the loop
starting at line 5 starts with splitting the sequence into the sequence consisting of only
the front instruction i, and the sequence with remaining instructions wl′. Then wl is
updated by assigning remaining instruction sequence wl′ to wl. This operation mimics
a stack’s ‘pop’ operation where only the top is removed from a stack. After retrieval of
front instruction i, it is put through the ‘optimize’ function on line 8 which attempts to
optimize i and all instructions necessary for i’s execution (i.e. ‘optimize’ might affect
instructions other than i, albeit indirectly). The ‘optimize’ not only tries peephole
optimizations but also checks whether i should be removed if it produces an unused
value (Dead Code Elimination). The ‘optimize’ function returns a pair (i′, j) where i′ is
the new instruction or value to replace i with, and j is the sequence of instructions that
need to be added with i′ to ensure correctness. Whenever i′ = i, no optimizations were
found, hence the replacement condition on line 9 shows that replacements only occur
when i′ 6= i. Replacements of instructions in the func sequence occurs on line 10 where
the ‘replace’ function replaces i with the sequence of instructions j · [i′] which is the
concatenated instruction sequence of j and i′. Note that after running this replace on
line 10 i does not occur in func anymore and has been deleted. After replacement, the
auxiliary instruction sequence wl needs to be updated with instructions to iterate over
again. First, the sequence j is added to the front of the wl sequence, then all users of i′

not in wl yet, are added to the front. Note that the users of i′ are all instructions that
need i′’s value. After adding all user instructions of i′, i′ is added to the front. After all
added instruction sequences (line 11-15) to wl′, the sequence wl should look as follows:
[i′] · users(i′) · j ·wl′, where left of the sequence is the front, and right of the sequence is
the back. Keep in mind that if any changes occurred to func, the changed boolean will
be set and the loop on line 2 will repeat all aforementioned operations until changed
won’t be set after going through func without apply any changes.

The algorithm does not have an upper-bound on runtime complexity as fixed-point
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Algorithm 1 Naive instcombine

input:
func : [inst] - sequence of scheduled, reachable in-

structions
vars:
wl : [inst] - sequence of instructions
changed : B - whether code was changed
i : inst - instruction to be optimized
i′ : inst - optimized instruction
u : inst - user instruction
j : [inst] - sequence of instructions
optimize : inst→ inst× [inst] - DCE, constfolding, and peephole opti-

mizations
users : inst→ [inst] - returns sequence of user instructions of

instruction sequence
replace : [inst]× inst× [inst]→ [inst] - replaces instruction found in sequence

with replacement sequence

1: function InstructionCombine(func)
2: repeat
3: wl := func
4: changed := false
5: while wl 6= [] do
6: [i] · wl′ = wl
7: wl := wl′

8: (i′, j) := optimize(i)
9: if i′ 6= i then

10: func := replace(func, i, j · [i′])
11: wl := j · wl
12: for all u ∈ users(i′) do
13: if u 6∈ wl then
14: wl := [u] · wl
15: wl := [i′] · wl
16: changed := true

17: until changed = false

optimize(i) =


(i’, j), if i’ is the new instruction, and sequence j needs to be added to func

(i, []), if no change needs to be applied

(nil, []), if i should be deleted
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rewriting iterations have the potential to run without terminating if circular rewriting
rules exist. However, the lower-bound on runtime complexity is Ω(n), where n is the
amount of LLVM IR instructions (i.e. only one iteration needed). Ideally, the runtime
is decreased without sacrificing performance of the compiled program.

The pattern matching procedure occurs within the ‘optimize’ function. This function
will take the input instruction i as root of the expressions to match. This matching is
done within a sequence of conditionals which explicitly check the shape of the tree
rooted at i and its preconditions. This results in a linear scan for a matching peephole
optimization. Moreover, the priority of these patterns are dictated by their order of
occurrence as the linear scan matches the first conditional that holds. The resulting
runtime complexity associated with ‘optimize’ will be O(k×m), where k is the number
of patterns to match and m is the pattern size in number of tree nodes.

2.1.3 Alive

Alive is a DSL and tool for formal verification of peephole optimizations [9]. Its verifi-
cation considers LLVM’s constraints and is therefore primarily aimed at LLVM. Alive
verifies the transformations of a peephole optimization. It does not automatically gen-
erate any peephole optimizations but assumes the peephole optimizations are either
already written by a developer or automatically generated by other tools. Verification
is done using Satisfiability Modulo Theories (SMT) where it either proves a peephole
optimization is correct or constructs a counter-example in which the proposed peephole
optimization does not hold.

Pre: width(%x) > 1

%r = mul %x , 2

=>

%r = shl %x , 1

Listing 2.3: Alive DSL example

As Alive is aimed at peephole optimizations for LLVM, the Alive DSL shares simi-
larities with LLVM IR. Shown in listing 2.3 is an example of Alive’s DSL. This example
shows what Alive has to verify, namely that the snippet of code that occurs before the
arrow ⇒ is allowed to be transformed into the snippet of code that occurs after the
arrow ⇒, given that the precondition which says that the bit width of %x is greater
than 1 holds.

The syntactic similarities can be observed by comparing Alive’s DSL, as shown in
listing 2.3, to LLVM IR as shown in listing 2.2. A few differences to LLVM’s IR are:

1. The addition of a precondition. This strengthens the transformation and con-
straints possible scenarios.

2. Removal of data type. The type of a variable can be omitted as either the peephole
optimization is not type-specific, or the type can be inferred from the transforma-
tion.

3. Introduction of variable constants. Constants and variables differ, however, con-
stants must still be abstracted in Alive. A transformation for each and every pos-
sible constant value is not feasible therefore constants are abstracted away using
variable constants. These can be considered constrained variables as the variables
are constrained to constant values only.
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4. Abstract rewriting-like notation. All Alive transformations have a structure similar
to a rewrite rule within an abstract rewriting system. Alive’s transformations
follow the following form: A⇒ B where A is unoptimized code and B is (supposed
to be) its optimized equivalent [9].

Transformations in Alive are not checked for performance, merely for validity of trans-
formation.

Alive built-in functions and predicates

Alive supports a set of built-in predicates, for preconditions, and a set of built-in func-
tions, for expressions. These built-in functions and predicates can be used to aid in
constraining expressions if necessary. For example, listing 2.3 shows one of the available
built-in functions in Alive: the ‘width’ function used to retrieve the bit width of an
expression’s value. In this example it is used to constrain the bit width of subexpression
‘x’ to be wider than 1 bit.

Code generation

n Alive op-
timizations

Alive
toolkit

n LLVM
transfor-
mations

Naive
LLVM In-
stCombine

LLVM IR LLVM IR

C++

Figure 2.3: Alive InstCombine

In addition to validating LLVM peephole optimizations, Alive can also automatically
generate the C++ code of the peephole optimizations that can be inserted into LLVM.
The advantage of automatic generation is that the peephole optimizations will be both
proven correct, and no time will be lost implementing the C++ equivalent. Currently,
however, emitted C++ code still is implemented using a naive InstCombine methodology
as shown in section 2.1.2.

Figure 2.3 shows an overview of how Alive and LLVM’s InstCombine interact. A
number of peephole optimizations described in Alive’s DSL are provided to the Alive
toolkit. This toolkit can then automatically generate the equivalent C++ code for said
peephole optimizations. This generated C++ code is ready to be included by LLVM’s
InstCombine and then compiled. The LLVM tools that use InstCombine will then apply
only the peephole optimizations described in the original Alive DSL.

2.2 Finite Automata

The tree pattern matching problem described in chapter 4 uses automata to solve tree
pattern matching. The precomputations in tree pattern matching are, more often than
not, automata that are created for a given set of tree patterns, without the need of
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an input tree to match on. This is very similar to the Aho-Corasick string matching
algorithm that precomputes the search strings’ finite automaton without the need for an
input string [2]. The advantage of using automata for computational problems is that it
is well-established within theoretical computer science. Many (optimization) algorithms
exist for automata, which do not depend on the context of said automata.

This section aims to be an introduction to automata, starting with the general idea
of finite automata.

2.2.1 General Finite Automata

Finite automata are abstract machines with a finite number of states, and transitions
to other states, used to solve computational problems [3]. When an automaton runs it
is always in a state where it can, depending on the current input symbol, transition to
another state until no more input symbols exist. Prior to processing input symbols, an
automaton needs a start state (also called initial state) from where it starts executing.
The final or accepting states are the states that accept the input depending on the
computational problem being solved. For example, to verify whether an input string
adheres to a particular pattern, an automaton can be constructed for the string pattern.
This automaton will accept an input string if there exists a path, using the whole input
string, that reaches a final state.

2.2.2 Deterministic Finite Automata

Deterministic Finite Automata (DFA) are automata with deterministic properties. More
formally, a DFA is defined as follows:

Definition 2.2.1. A Deterministic Finite Automaton (DFA) is a 5-tuple (Q,Σ, δ, q0, F )
where

• Q is the finite non-empty set of states

• Σ is the input alphabet, a finite set of input symbols

• δ is the transition function Q× Σ→ Q

• q0 ∈ Q is the initial or starting state

• F ⊆ Q is the set of final or accepting states

Note that every DFA is also a Nondeterministic Finite Automaton (NFA) with some
constraints put into place to enforce its determinism. These constraints are:

1. ε transitions, which are transitions that may occur without consuming an input
symbol from the input alphabet Σ, are not allowed. Introducing an ε transition
into a DFA immediately renders it an NFA.

2. Only a single destination state exists for each unique δ input pairs. This means
that for all δ input pairs in (Q × Σ), there can be at most one destination state.
Similar to restriction 1, introduction of multiple destinations converts the DFA to
NFA.

As can be observed from the constraints, a DFA is merely a restricted NFA. By
introducing said restrictions to a NFA (e.g. using Thompson’s algorithm [14]), it can be
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converted to its DFA equivalent, meaning that if there is an NFA accepting a pattern
p ∈ Σ∗, then there exists a DFA which accepts that same pattern p [6].

For tree pattern matching, however, an augmented notion of DFAs are used. Similar
to regular expression matching, an automaton is constructed given a description of the
tree patterns to be matched. Then, a tree is supplied to said automaton to see if it can
be matched to any of the patterns. How the DFA ought to be modified will be explained
after introducing DFAs.

0start 1

a

b

a

b

Figure 2.4: Deterministic finite automaton D

To illustrate, take QD = {0, 1}, ΣD = {a, b}, δD : {(0, a) → 1, (0, b) → 0, (1, a) →
0, (1, b)→ 1, }, and FD = {0}.

Then, DFA D = (QD,ΣD, δD, 0, FD) is illustrated in figure 2.4. This figure shows
that acceptance occurs on no input symbol, or an even number of a symbols (where b
symbols are allowed to occur between the a symbols). Any input string with an odd
number of a symbols will be rejected as an odd number will always end up in state 1
which is not a state in the final set.

DFAs can be constructed from NFAs, however, to accommodate the restrictions more
states might be necessary [15]. Minimization techniques for DFAs exist but will result
in more time spent on construction [3, 4]. Simulation on DFAs, however, can be done in
linear time with respect to the input string. As there is no non-determinism in a DFA,
there exists only a single path in the DFA for each unique input string.

DFA modification for (top-down) tree pattern matching

As previously described, tree pattern matching uses augmented DFAs for its matching.
The reason for such modification compared to a regular DFA is because tree pattern
matching can be supplied with multiple tree patterns to match which all have to be
accounted for in matching, unlike regular expression matching which only matches a
single regular expression. For the DFA this means that regular expression matching
does not need to bind a context to a particular final state in F ⊆ Q. A match for any
state s ∈ F denotes a match on the one regular expression being matching.

Tree pattern matching, however, requires each final state s ∈ F to contain additional
context on which tree pattern has been matched. The idea that a DFA results in a
‘yes’ or ‘no’ given a problem (like regular expression matching) changes. Not only does
the tree pattern matching automaton return a ‘yes’ or ‘no’ to the problem whether a
tree pattern match has been found given an input tree, it also requires the context of
which tree pattern has been matched. Because more context is necessary for final states,
metadata needs to be added during construction. Moreover, some automata algorithms
such as minimization need to be augmented as these assume that all final states are
independent of context and can be merged into a single final state.
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2.3 Tree pattern matching

Strategies exist to extend pattern matching for trees. With tree pattern matching, a
tree pattern is supplied which is matched onto a subject tree. This is similar to how a
regular expression describes a pattern which can match a particular input string.

This section aims to introduce the background knowledge necessary for tree pattern
matching accompanied with different tree pattern matching methodologies.

2.3.1 Tree pattern preliminaries

An expression (denoted E) is a recursively constructed formula of variable symbols V
and function symbols from an alphabet Σ with each symbol a finite arity2 (i.e. number of
arguments) where an arity of 0 dictates a constant value. For example, take Σ = {a, b, c},
x, y, z ∈ V , and expression t = a(b(x, c), y, z), then the arity of a is 3, the arity of b is 2,
and the arity of c is 0. The subexpression b(x, c) in t is still considered an expression,
hence expressions can be recursively constructed. More formally:

Definition 2.3.1. An expression is either:

1. a variable from the set of variables V , or

2. a nullary expression, i.e. a constant, or

3. an n-ary expression where n > 0 and each of the n arguments is an expression

a

b

x c

y z

Figure 2.5: Tree of expression t

An expression can be considered a tree where each descent from an expression’s
function symbol to one of its arguments is a descent from a tree node to (one of) its
child node(s). For example, the tree of t in the aforementioned paragraph is depicted in
figure 2.5. The terminology tree and expressions will be used interchangeably as both
express the same concept.

Definition 2.3.2. A path of an expression is:

1. the empty string Λ, denoting the root of an expression, or

2. p.i, where p is a path and i is an integer denoting the ith argument for the symbol
at path p, of an expression

Given a path p and expression e, to get a subexpression of e at position p (denoted
e|p) take p’s string and use it to descend the expression e starting at its root. For
example, take e = sub(a, add(mul(b, c), d)), then e|1 = a, and e|2.1 = mul(b, c).

2in other literature, also referred to as rank
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Furthermore, given a path p and expressions e and e′, a replacement of a subex-
pression in e at position p with expression e′ (denoted ep[e

′]) is done by inserting
e′ at e|p. For example, take e = add(add(a, sub(b, c)), d), then e1.2.2[mul(x, y)] =
add(add(a, sub(b,mul(x, y))), d), and e1[z] = add(z, d).

The size of an expression e (denoted |e|) is the number of nodes (i.e. number of
subexpressions including ones of arity = 0 and variables V ) within e. For example, if
e = add(a, b) then |e| = 3, and if e′ = sub(add(a, b), sub(c,mul(d, e))), then |e′| = 9.

Substitutions σ are mappings from variables to expressions. Take σ = {x → a, y →
b(x, a), z → v} where Σ = {a, b, f}, and x, y, z, v ∈ V , then σ(f(f(x, a), f(y, z)) =
f(f(a, a), f(b(x, a), v)).

Definition 2.3.3. An expression a is said to be an instance (also referred to as sub-
sumption i.e. b subsumes a) of expression b (denoted a ≤ b, or equivalently b ≥ a)
if there exists a substitution σ for variables in b such that a can be constructed. For
example, f(g(x, y), z) is an instance of f(x, y) given the substitution σ = {x→ g(x, y)}.
Moreover, an expression b strictly subsumes a (b > a) if b ≥ a and b 6= a.

Definition 2.3.4. A distinction is made between a subject tree and pattern tree. Pat-
tern trees are expressions that describe the search query whereas subject trees are expres-
sions that describe the tree queried on. Additionally, pattern trees may have wildcards
i.e. variables. The variables in a pattern tree denote any sub-tree, hence other literature
refers to these as wildcards. When multiple of the same wildcard variables occur in
a pattern, the subtrees at these wildcard variables ought to be equal, unless specified
otherwise.

A pattern forest (PF) of a set of patterns P is the set of all possible subtrees of
all pattern trees in P , including the patterns trees themselves. To illustrate, let P =
{a(a(b, x), b), a(a(x, c), c)}, then PF = {a(a(b, x), b), a(a(x, c), c), a(b, x), a(x, c), b, c, x}.

Definition 2.3.5. The properties used to construct a match set:

1. If expression a is a nullary symbol, then match(a) = PF ∩ {a, x} where x denotes
a wildcard variable

2. If expression a is a n-ary symbol with n > 0, then match(a(t1, ..., tn)) = PF ∩
({x}∪{p | p has root a, and 1 ≤ j ≤ n, childj(p) is in match(tj)}) where x denotes
a wildcard variable and childj(p) is the jth subexpression of expression p

Informally, all match sets denote all possible matching scenarios of the subtrees in
the pattern forest. For example, take expressions P = {a(a(b, x), b), a(a(y, c), c)} where
Σ = {a, b, c} and x, y are wildcard variables. Then, match(a(b, c)) = {a(b, x), a(x, c), x},
and match(a(b, a(c, b)) = {a(b, x), x}.

Definition 2.3.6. A pattern p matches a subject tree t if:

1. p is a wildcard variable

2. p and t are both a nullary symbol a ∈ Σ where p = a, and t = a

3. p and t are both a n-ary symbol a ∈ Σ where p = a(r1, ..., rn), t = a(g1, ..., gn),
and for 1 ≤ j ≤ n, rj matches gj
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One might also notice that for p to match t, p ≥ t, i.e. t is an instance of p.
Furthermore, note that all expressions in a match set defined in definition 2.3.5 must
match the same subject tree for it to be assigned to said subject tree. That is to say,
for all tree patterns p in match(t), where t is the subject tree, p matches t as defined in
definition 2.3.6.

Patterns p, p′ unify with one another (denoted p ↑ p′) if there exists a subject tree that
is an instance of both p, and p′. Other literature might refer to this as the independence
relation.

2.3.2 Bottom-up (leaf to root)

Bottom-up, also called leaf-to-root, tree pattern matching refers to matching of pattern
tree(s) to a subject tree by matching starting at the leaves (i.e. bottom), and going
towards the root (i.e. going up). Hoffmann and O’Donnell [8] show few algorithms for
bottom-up matching; however, the algorithms all share the same concept with minor
optimizations. The key idea is to preprocess/precompile a lookup table for each possible
symbol in Σ using the possible match sets as the state a node can be in. The table size
for each symbol grows exponentially with respect to the arity of said symbol and number
of match sets. For example, take n as number of possible match sets, then if b ∈ Σ has
an arity of 0, the resulting table would be merely a single value (n0 = 1). If a ∈ Σ has
an arity of 2, then the resulting table would be 2 dimensional (n2).

The table basically determines a node’s state, or match set, using each of its child’s
match sets. The idea is that some match sets denote the scenario of a match for a pattern.
In other words, if a node matches a match set that denotes a particular pattern, it can
be concluded that the tree node matched said pattern.

To illustrate, take Σ = {a, b, c}, linear x ∈ V meaning all occurrences of x are
indistinguishable, and patterns p = a(a(x, x), b) and p′ = a(b, x). Then the possible
match sets are:

1. {x}

2. {b, x}

3. {a(x, x), x}

4. {a(b, x), a(x, x), x}

5. {a(a(x, x), b), a(x, x), x}

Table 2.1: Table for symbol a

right child
1 2 3 4 5

left child

1 3 3 3 3 3
2 4 4 4 4 4
3 3 5 3 3 3
4 3 5 3 3 3
5 3 5 3 3 3
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Figure 2.6: Subject tree t

The lookup table for symbol a is shown as table 2.1. Tables for symbols b and c are
trivial as match(b) = PF ∩{b, x} which is set 2, and match(c) = PF ∩{c, x} = {x}, thus
set 1. Now to apply the aforementioned tables to an example subject tree, let subject
tree t = a(a(a(b, c), b), b). The result of going through the tables for each symbol in the
subject tree t, a state is assigned and denoted after the tree’s symbol in figure 2.6. As
set 4 includes p′, and set 5 includes p, it can be concluded that t|Λ, and t|1 match p, and
that t|1.1 matches p′.

Note about the example that variable wildcards of patterns are assumed to be linear
within the pattern expression itself, as differences or similarities between variable wild-
cards can be post-computed easily by a comparison (if necessary). It is more convenient
to reason about wildcards as can-be-anything variables in such a case.

Observe how the used tables compare to language parsing techniques such as LR(0)
parsing [3]. In LR(0) parsing tables are also precompiled and used to determine a
(context-free) language’s validity and construction depending on language rules. Ad-
ditionally, the tables in both LR(0) and bottom-up tree pattern matching relate to
automata as state assignments using the lookup table can be compared to automata’s
state transitions.

Doing tree pattern matching using the table allows for a linear runtime complexity
with respect to the size of the subject tree (i.e. Θ(|t|) for a subject tree t). Observe that
the linear runtime complexity is due to the fact that each node in the subject tree has
to be visited, hence the size of the subject tree.

The primary downside of this methodology is that it creates huge tables for each
symbol which exponentially grow with respect to the arity of said symbol. Hoffmann
and O’Donnell argue that restricting patterns to so called simple pattern forests meaning
that the patterns matched don’t unify with any other patterns will constrain exponential
growth of states [8]. Remember that intuitively, match sets denote possible matching
scenario’s to be considered while matching. Then if p, p′ ∈ P where p 6= p′∧p ↑ p′ would
mean at least a match set with p, at least a match set with p′, and at least a match set
with both. This grows exponentially as more patterns unify with each other, therefore
using simple pattern forests the exponential growth of table size will be avoided.

Table 2.2: Right child mapping

State 1 2 3 4 5

Mapping 1 2 1 1 1
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Table 2.3: Left child mapping

State 1 2 3 4 5

Mapping 1 2 3 1 1

Table 2.4: Improved table for symbol a

right child
1 2

left child
1 3 3
2 4 4
3 3 5

Despite that, it is not always feasible to constrain the patterns to only non-unifying
patterns. Moreover, even the simple pattern forest tables can be optimized in size. Chase
noticed that some entries on the axes of the table overlap in mapping [5]. For example,
take table 2.1. The right child axis has overlap between 1, 3, 4, 5, and the left child axis
has overlap between 3, 4, 5. These can be merged into a smaller equivalent table and
mappings can be constructed for removed states. Doing so results in what’s depicted in
tables 2.3, 2.2, and 2.4.

Notice that the trade-off in Chase’s improved table size is the extra lookup table
jumps. Before, using the primary lookup table was constant, whereas now it’s related to
the arity of a symbol. In the aforementioned example where a has an arity of 2, 2 extra
table lookups are necessary.

2.3.3 Top-down (root to leaf)

a

a

b x

c

a

a

b

1

x

2

1

c

2

Figure 2.7: Tree pattern and equivalent trie

Similarly to how bottom-up tree pattern matching starts at the bottom (leaves) and
matches trees whilst going upwards (to the root), top-down starts at the top (root)
and matches trees whilst going downwards (to the leaves). Hoffmann and O’Donnell [8]
also include ways to do top-down tree pattern matching. They reduce the tree patterns
to strings and then solve the problem using string matching. First, tree patterns are
converted to their equivalent trie structure where edges are labeled with the choice much
like shown in figure 2.7. Then all paths in the trie from root to leaf are stringified and
put into a set denoting the tree pattern. For the pattern a(a(b, x), c) depicted in figure
2.7 where x is a wildcard variable, this set would look like {a1a1b, a1a2, a2c}. Note that
the wildcard variable is omitted and that the number of resulting patterns is equal to the
number of leaves. These strings are then used to construct an automaton using Aho and
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Corasick’s string matching algorithm [2]. The key idea is that all strings in a pattern’s
string set can successfully walk down the same root symbol. In such a case, walking
means going from the root node downwards to a leaf node taking the path as denoted
by the string.

Although Hoffmann and O’Donnell’s algorithm works, reduction of the tree pattern
matching to a string matching problem is unnecessary. An adaptive approach is proposed
by Sekar, Ramesh, and Ramakrishnan [13]. In this approach, matching still occurs
starting at the root, going to the leaves (i.e. top-down); however, the path going down
a subject tree is heuristically determined at automaton build time such that a more
efficient automaton can be constructed. This more efficient automaton can result in both
reduction of matching time and reduction of state space. Additionally, this approach
also supports priorities of patterns. Some patterns might have higher priority meaning
that matches on lower priority patterns are delayed if any pattern of higher priority
could still be a potential match.

Λstart

1

2c26=c

3c36=c

p3

p1

p2p1 p3

a

c6= c

bb

b

c

6= b ∨ cc 6= c

Figure 2.8: Naive left-to-right DFA

To illustrate, take patterns p1 = a(x, b, c), p2 = a(c, b, b), p3 = a(x, b, y) where pi
denotes a pattern with priority i, Σ = {a, b, c}, and x, y ∈ V are wildcard variables.
Then figure 2.8 shows a naive left-to-right matching, states are labeled with the path
being checked. Subscripts serve no purpose apart from identifying different states. Edges
are the symbol being checked and 6= z denotes all symbols that are not z ∈ Σ ∪ V .
Moreover, accepting states are labeled with the pattern that is matched. Observe that
left-to-right refers to the order in which the expressions are matched (starting from the
left, going to the right).
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Figure 2.9: Adaptive DFA

Figure 2.9 shows the adaptive alternative of the same example. This figure shows
an automaton where the matched subexpressions are out of order resulting in smaller
state space size, and possibly faster matching which can finish within 3 checks (instead
of the mandatory 4 in the figure 2.8). Deciding matching order of a set of patterns such
that the algorithm constructs the most optimal automaton in size is NP-complete [13].
However, few greedy algorithms are discussed by Sekar, Ramesh, and Ramakrishnan
such as using the path with the minimal amount of unique symbols in the matching
patterns.

Figure 2.9 shows one of the problems with automata construction shown in [13].
Both edges containing 6= result in the same match. The algorithm described could be
augmented such that duplicated sub-automata can be avoided to some extent; however,
an alternative methodology is described by Nedjah, Walter, and Eldridge [12]. This
methodology introduces a notion of equivalence classes for states. It does so by keeping
track of what patterns, and how much of said patterns have been matched thus far
by each state in the automaton and takes a wildcard variable closure of this set for
each state. The methodology is inspired by LALR parsing [3] which also constructs
automata-like tables to compute the validity of a context-free grammar depending on
rewriting rules. The result of each state’s closure sets is that similar closure sets can
be merged. The similarity condition uses the remaining non-checked symbols, and the
expansion of wildcard variables to determine whether states are similar such that they
can be merged.

The biggest drawback of [12] is that the constructed automaton does naive left-to-
right matching which can be improved upon using an adaptive methodology as was
shown in figures 2.8 and 2.9. An adaptive methodology using the same concept as [12]
is described by Nedjah and Mourelle [11]. The naive left-to-right methodology in [12]
kept track of what has been matched thus far using an auxiliary character • added in
the pattern expressions (e.g. a(a(b, •c), y)) where any symbol in Σ ∪ V on the left of
the auxiliary character has been matched, and all symbols on the right of the auxil-
iary character, has not been matched yet. The adaptive alternative described in [11]
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introduces another auxiliary character X to mark symbols that have been matched. For
example, a(a(b, •c), y) of the naive left-to-right methodology has the adaptive equiva-
lent aX(aX(bX, •c), y) where both notations denote that pattern prefix a(a(b has been
matched so far. Of course, the idea of the adaptive variant is that these marks X do not
have to occur consecutively in the expression, nor are they constrained to only the left
side of the tracking auxiliary character •.
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Chapter 3

Description

This chapter aims to motivate this project, and to describe the problem of this project.
Section 3.1 motivates peephole optimizations and some of the fallbacks within LLVM’s
peephole optimizer. Section 3.2 describes the problem statement with its associated
research question.

3.1 Motivation

The LLVM compiler suite supports, much like many other compiler suites, peephole opti-
mizations. These peephole optimizations are small, static code transformations meaning
that small snippets of code are analysed and, where possible, altered to gain runtime
performance.

Not only is the peephole optimizer in LLVM used to gain performance, but many
other optimization passes in LLVM depend upon the canonical form of code emitted by
the peephole optimizer. Therefore, modifying the output of the peephole optimizer could
negatively affect other optimizations, and thereby the performance of emitted code.

Despite the aforementioned responsibilities of the LLVM peephole optimizer, its run-
time execution is less-than-stellar as it naively iterates through the code looking for a
match on any of the peephole optimizations. If a match is found, it is then transformed
into its equivalent, after which the peephole optimizer will iterate over the optimized
code again to ensure no other peephole optimizations were made possible due to previous
transformations. If any code has been altered in an iteration, the peephole optimizer
will iterate again until no more modifications are applied to code during an iteration.
This means that iterations run until a fixed-point is found where no more peephole
optimizations can be applied.

Due to the naive implementation of the peephole optimizer for LLVM, compilation
time is dominated by it. According to initial profiling done by engineers on llvm-dev1

the peephole optimizer takes about 35% of total compilation time. The majority of the
peephole optimization’s execution seem to be caused by optimizing the code. Ideally, the
peephole optimizer’s runtime is decreased such that total compilation time is reduced.
For this, both naive matching (and replacement), and fixed-point iterations of peephole
optimizations ought to be changed such that fewer iterations are necessary and matching
time is improved.

1LLVM mailing list, used by LLVM developers for questions on LLVM development and im-
portant LLVM design decisions. Link to related llvm-dev discussion on naive peephole optimizer:
http://lists.llvm.org/pipermail/llvm-dev/2017-March/111257.html
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Naive matching can be improved upon by using matching automata instead. The
idea is that, because all peephole optimizations are known prior to compilation, the
matching automata can be precompiled. Then, this matching automaton can be used
during compiler execution to efficiently match peephole optimizations.

3.2 Problem statement

The goal of this project is to (1) automatically generate C++ code for LLVM’s peephole
optimizer using Alive, and (2) speed up execution time of the peephole optimizer in
LLVM.

The purpose of (1) is to help developers who intend to add new peephole optimiza-
tions to LLVM. Currently, adding new peephole optimizations require the developer
to:

1. Show correctness of newly developed peephole optimization(s) e.g. using Alive

2. Have an understanding of LLVM IR pattern matching and LLVM IR code trans-
formations internals

3. Have an understanding of LLVM’s InstCombine and InstSimplify passes (with all
of its caveats)

The ideal workflow for developers who intend to add new peephole optimizations to
LLVM is to define the peephole optimization’s transformation, supply said definition
of a peephole optimization’s transformation to a tool which will then automatically
prove the correctness of said transformation, and generate C++ code of the peephole
optimization’s transformation which is ready for compilation when included in LLVM.
This workflow omits the need to know about LLVM internals and passes in detail.

The purpose of (2) is to accelerate compilation time of LLVM which uses the gener-
ated C++ code in (1). Since C++ code generated at (1) does not require the developer
of new peephole optimizations to have deep knowledge on LLVM internals it is possible
to restructure the generated C++ code to a more efficient, albeit possibly less clear,
alternative.

A definition of a peephole optimization requires the following information for both
verification and code generation:

1. Precondition: requirements on the variables found within the peephole optimiza-
tion that have to hold (can be omitted, in which case the precondition can be
considered ‘true’)

2. Source code pattern: snippet of code that has to be matched for the peephole
optimization

3. Target code snippet: if both the precondition holds and a match on the source
code pattern has been found, then the code will be transformed to the target code
snippet

The peephole optimization matching problem can be described as the problem of
matching and transforming code. Given the aforementioned necessary peephole opti-
mization definition information, 1 has to hold, a match has to be found for 2, and
transformation code has to be invoked for 3 when both 1 holds and 2 has been matched.
As the current peephole optimizer in LLVM shows the potential to be optimized in terms
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of execution speed by use of tree pattern matching, the tree pattern matching problem
needs to be extended and constrained for the peephole optimization problem.

The resulting question is: how can tree pattern matching methodologies be extended
to solve the peephole optimization matching problem.

In the end, this thesis aims to describe how extensions can be applied to tree pattern
matching to conform to additional constraints (in this case, the constraints introduced
by peephole optimizations). This way, developers can implement similar tree pattern
matching methodologies which introduce constraints similar to the ones introduced by
peephole optimizations.
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Chapter 4

Tree pattern matching in Alive

Shown in figure 2.3 is the interaction between Alive and LLVM in terms of compilation
that can be considered a compiler-compiler. This phrase refers to the fact that code has
to be generated by Alive, for the LLVM compiler toolchain. In such a sense, Alive is a
compiler for a compiler. Though Alive is not yet at the point where the shown workflow
is extensively used, it is the ideal workflow to allow LLVM developers a more structured
way of extending peephole optimizations in LLVM.

This chapter will explain the necessary extension to tree pattern matching such that
tree pattern matching can be used for peephole optimization matching. Furthermore, it
will explain some implementation specific differences between top-down and bottom-up
approaches used for peephole optimization(s) in Alive.

4.1 Additional constraints for tree pattern matching

Tree pattern matching can be extended to support peephole optimization matching and
transforming. This section aims to explore some additional constraints that come with
peephole optimization matching compared to tree pattern matching.

4.1.1 Linearity of wildcards

Most literature on tree pattern matching, such as [8, 13, 5], puts barely any constraints on
pattern trees. For example, it is assumed wildcards that occur in tree patterns are linear,
meaning they are indistinguishable from one another (i.e. occurrences of wildcards might
not be comparable). Moreover, only a single type of wildcard is considered. These choices
are sensible within the context of tree pattern matching. For example, if linearity was
not assumed, then pattern matching can be considered Directed Acyclic Graph (DAG)
pattern matching instead of tree pattern matching.

add

a

Figure 4.1: Non-linear tree l

Shown in figure 4.1 is a non-linear tree l where add is a symbol with an arity of 2 and
a is a variable. Note that variable a is a constrained wildcard and is distinguishable from
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other variables. Because of this property, it is now constrained such that both children of
l|Λ must reference the same value. Tree pattern matching methodologies described in [8]
do not consider non-linear trees, therefore tree pattern matching needs to be extended
to take into account such constraints.

%r = sub %x , C

=>

%r = add %x , -C

Listing 4.1: Alive DSL example with
constant wildcard

sub

%x C

Figure 4.2: Tree with constant wildcard

4.1.2 Constant wildcards

Additionally, apart from variable wildcards there are also constant wildcards which can
be considered wildcards that are even more constrained. These are the wildcards that
refer to only constant values. For example, take the peephole optimization in listing
4.1, the %x is a variable wildcard and C is a constant wildcard. To illustrate, take the
following expressions that match the source tree pattern as defined in listing 4.1:

• sub(add(x, y), 5), where x, y ∈ V

• sub(x, 8), where x ∈ V

• sub(92, 633)

And the following expressions that do not match the source tree pattern as defined
in listing 4.1:

• sub(x, y), where x, y ∈ V

• sub(5, x), where x ∈ V

• sub(x, add(y, z)), where x, y, z ∈ V

As can be observed from the example expressions, constant wildcards, which are
always prefixed with a C, are constrained to constant values whereas regular variable
wildcards are not. Note that also constant wildcards are non-linear similarly to variable
wildcards meaning that using the same name multiple times in a pattern results in
explicitly matching for the same constant value. For example pattern add(C,C) will
only match expressions with an add function and two constant values that are the same.
To differentiate between multiple constant wildcards, a differing suffix in form of an
integer is applied to the constant wildcards. For example, pattern add(C1, C2) matches
expressions with an add function and can have two different constant values.

This additional constrained constant wildcard alters the concept of expressions as
introduced in definition 2.3.1. Now, an expression is a recursively constructed formula
of variable symbols V , constant wildcard symbols C , and function symbols from an
alphabet Σ with each symbol a finite arity (i.e. number of arguments) where an arity of
0 dictates a constant literal value. More formally:

Definition 4.1.1. An expression is either:

1. a variable from the set of variables V , or

28



2. a constant wildcard from the set of constant values C , or

3. a nullary expression, i.e. a constant literal, or

4. an n-ary expression where n > 0 and each of the n arguments is an expression

The change in expressions described in definition 4.1.1 also affects other important
aspects of tree pattern matching. For example, an alternative concept of substitution
must now be added to allow substitutions of constant wildcards and constant values.
Now, substitutions are mappings from variable wildcards to expressions, and constant
wildcards to constant values. Take σ = {x→ sub(a, b), C1→ 8}, where Σ = {add, sub},
a, b, x ∈ V , and C1 ∈ C , then σ(add(x,C1)) = add(sub(a, b), 8)).

The concept of subsumption in definition 2.3.3 does not change. However, the addi-
tion of constant wildcards means that every variable wildcard subsumes every constant
wildcard, every constant wildcard subsumes every constant value, and by transitivity,
every variable wildcard subsumes every constant value (i.e. x ≥ C1 ≥ 0, where x ∈ V
and C1 ∈ C).

4.1.3 Preconditions

Tree pattern matching focusses on matching a pattern tree to a subject tree, where the
pattern tree can abstract some subtrees that might occur in the subject tree. These ab-
stractions were introduced in the previous sections in the shape of constrained wildcards.
However, these constrained wildcards might need some further constraining within the
context of a pattern tree. For such pattern trees, the addition of a precondition is
necessary to explicitly constrain the wildcards used within the tree(s).

Pre: isPowerOf2(C1)

%r = mul %x , C1

=>

%r = shl %x , log2(C1)

Listing 4.2: Alive DSL precondition example

Shown in listing 4.2 is a peephole optimization in the Alive DSL which contains a
precondition. This precondition also uses the built-in Alive function ‘isPowerOf2’ to
constrain the values of C1 to only constant values that are a power of 2 (i.e. 1, 2, 4, 8,
16, ...). For this peephole optimization, this precondition is necessary for its correctness.
It is easy to show a counterexample if this peephole optimization would not contain this
precondition.

Given the following expression: mul(2, 5) = 10, then a transformation according to
the peephole optimization defined in listing 4.2 (ignoring the precondition) would result
in shl(2, log2(5)) ≈ shl(2, 2.321). Of course, shifting a value by a non-integer constant
value is not possible.

Tree pattern matching methodologies will have to be extended to support these
preconditions considering that merely tree pattern matching is not sufficient for peephole
optimization transformations. Furthermore, preconditions exist in two different forms:
implicit preconditions which are embedded in the peephole optimization source pattern,
and explicit preconditions which are defined in the precondition field of a peephole
optimization definition. For example, take multiple occurrences of variables or constant
wildcards that need to be checked for equality, for a transformation to be correct.
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4.1.4 Transformation

For peephole optimization transformations, the matching phase is only the first half of
the peephole optimization. After matching, the code transformation itself needs to take
place. Generally, transformations require subexpressions of the peephole optimization’s
source pattern (i.e. the expression matched) to construct the peephole optimization’s
target expression (i.e. the transformed expression).

The easiest way to accomplish this is to construct a new tree according to the peep-
hole optimization’s target expression and to replace the subject tree matched in its
entirety. In some cases constructing the target code tree might not even be necessary.
For example, when the target code expression is an already existing sub-tree.

4.2 Tree pattern ordering

Tree patterns can be relatable, as shown using the tree subsumption relation described
in definition 2.3.3. Moreover, tree patterns can use relations such as these to derive a
notion of order between tree patterns. This section aims to explain such orderings and
priorities between tree patterns.

4.2.1 Partial ordering

Definition 2.3.3 describes the subsumption relation between trees. Note that this binary
relation is not applicable to every pair of trees. For example, take t1 = add(x, y), and
t2 = sub(a, b) where a, b, x, y ∈ V and Σ = {add, sub}, then t1 6≥ t2 ∧ t1 6≤ t2. Because
not every tree pair is comparable, this type of ordering is also called a partial ordering
[10]. This means that the subsumption relation’s characteristics are, in accordance with
partial ordering, as follows:

The subsumption binary relation is:

1. reflexive: for any tree t, t ≥ t i.e. t subsumes itself

2. anti-symmetric: for all trees t1 and t2, if t1 ≥ t2 ∧ t2 ≥ t1 then t1 = t2 i.e. two
distinct trees cannot subsume one another

3. transitive: for all trees t1, t2, and t3, if t1 ≥ t2 ∧ t2 ≥ t3 then t1 ≥ t3 i.e. a tree
subsumes another tree if a third tree is subsumed by one but subsumes the other

4.2.2 Priority

Pre: (computeKnownZeroBits(%x) | ←↩
computeKnownZeroBits(%y)) == -1

%r = add %x , %y

=>

%r = or %x , %y

Listing 4.3: Alive DSL general source
pattern tree

%nx = xor %x , -1

%r = add %nx , C

=>

%r = sub C-1, %x

Listing 4.4: Alive DSL less general source
pattern tree

For peephole optimizations, the most specific (i.e. least subsumed) source tree pat-
tern is given priority over more general source tree patterns. For example, the source
pattern of the peephole optimization shown in listing 4.3 is more general than the source
pattern shown in listing 4.4 (i.e. add(x, y) ≥ add(xor(x,−1), C)). When considering
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only the tree patterns of both aforementioned listings, without transformation or pre-
conditions, it can be said that when a match is found for listing 4.4, listing 4.3 will
always match, too. In that sense, listing 4.3 is a more general version of listing 4.4.

Because of this subsumption relation between the source patterns of listings 4.3 and
4.4 a priority needs to be given in case both match at a subject tree. If listing 4.3 would
always emit more efficient code compared to listing 4.4 it would be better to omit the
peephole optimization of listing 4.4 entirely. It is therefore assumed that less specific
peephole optimizations generate more efficient code and will therefore be prioritized over
the more general peephole optimization pattern trees. However, it would be ideal to still
use the peephole optimizations with the more subsuming source pattern as fallback in
case preconditions for the less general do not hold.

The ordering of subsuming source patterns can be visualized using an immediate
subsumption graph as described in [8]. This graph is a DAG where each vertex is a
pattern tree, and each directed edge points to another vertex containing the immediate
subsuming pattern tree of the source vertex’s pattern tree. An immediate subsuming
pattern tree is a pattern tree that subsumes another pattern tree without other pattern
trees that transitively occur between said trees. In other words, take pattern trees
t1, t2, t3, then t1 immediately subsumes t2 if there exist no t3 for which t1 > t3 ∧ t3 > t2,
and it holds that t1 > t2. The immediate subsumption graph therefore depicts the
transitive reduction graph.

a(x, y)

a(x,C) a(C, x)

a(C1, C2) a(5, x)

Figure 4.3: Immediate subsumption graph example

Figure 4.3 shows an immediate subsumption graph for expressions a(x, y), a(x,C),
a(C, x), a(C1, C2), a(5, x) where a ∈ Σ, x, y ∈ V and C,C1, C2 ∈ C . Note that no direct
edge between a(x, y) and a(5, x) even tough a(x, y) > a(5, x). This is because there
exists a tree, a(C, x), for which a(x, y) > a(C, x) and a(C, x) > a(5, x), therefore the
edge between a(x, y) and a(5, x) is omitted (i.e. omitted because it is not immediately
subsuming). Furthermore, figure 4.3 shows that some trees are incomparable but still
relatable to one another. Take pattern trees a(C, x) and a(x,C), these trees do not
compare as neither subsumes the other; however, there exists more specific trees that
are subsumed by both trees which is in accordance to the unification described in section
2.3.1.
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4.2.3 Topological sort

The immediate subsumption graph used for pattern tree priority still contains patterns
that are not comparable, i.e. unifying patterns. These unifying patterns are still assumed
to have a distinct priority between them. To achieve this, the immedate subsumption
graph is linearized using topological sort. Topological sort ensures the linear order using
a DAG by taking vertices (pattern trees in our case) that do not have any other vertex
refer to it and puts them in a sequence. This sequence will contain the vertices where
the order between vertices does not break the subsumption relation. That is to say, a
tree pattern p in the sequence can only be of higher priority if for all tree patterns q of
lower priority q subsumes p, or p and q unify. When a vertex is put in the sequence it
is then removed from the DAG together with its outgoing edges to allow other vertices
to be appended to the sequence. The order of the vertices available to append to the
sequence is arbitrary.

To illustrate, take the immediate subsumption graph depicted in figure 4.3. Ini-
tially, the only vertices available to be appended to the sequence are vertices a(5, x) and
a(C1, C2). Putting these vertices in the sequence (arbitrarily) and removing them from
the immediate subsumption graph will result in enabling the following vertices to be
added: a(x,C) and a(C, x). Removing these vertices from the immediate subsumption
graph will result in one remaining vertex, a(x, y). Then, the sequence created may look
as follows:

1. a(5, x)

2. a(C1, C2)

3. a(x,C)

4. a(C, x)

5. a(x, y)

Where a lower number denotes a higher priority. Note that the order of the available
vertices at each iteration is allowed to be arbitrary as any permutation between these
do not break the subsumption relation order. In other words, a pattern tree within this
sequence will always occur before any pattern tree that subsumes it. For example, if
a(5, x) and a(C1, C2) swap their positions within the sequence, the subsumption relation
is not broken and they are, therefore, allowed to be ordered arbitrarily.

4.3 Top-down

Previously, Alive was to be considered a compiler-compiler. In case of top-down peephole
optimization matching, this goes even further as the compiler analogy fits figure 2.2
which shows an abstract design of a compiler with its front-end, optimizer, and back-end.
Alive’s top-down peephole optimization matching shared the same front-end as used for
formal verification of peephole optimizations. Using the parsed peephole optimization
definitions, an automaton is constructed. This automaton can be considered the IR of
top-down peephole optimization matching. It is, to some extent, possible to iterate over
the generated automaton for further optimizations given that none of the functionality
the automaton describes is lost. Then, the back-end takes in an automaton and generates
its equivalent in C++, for use within LLVM.

This section aims to describe the design decisions for an initial implementation of
top-down peephole optimization matching and transforming in Alive.
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4.3.1 Methodology

For top-down peephole optimization matching, the methodology described by Sekar,
Ramesh, and Ramakrishnan [13] was extended to take into account the constraints
introduced in section 4.1. The algorithm as introduced in [13] builds the automaton
recursively, state by state. The augmented algorithm constructs the automaton in a
similar manner, recursively and one state at a time. This section aims to introduce
some augmentations to the original algorithm for peephole optimization matching and
transforming.

Final state transformations

One of the augmentations of the algorithm is the labeling of the final states. Originally,
a set of possibly matching tree patterns is assigned to a final state. However, it is only
possible to apply a single transformation with peephole optimizations. In other words, if
the set of possibly matching trees contains multiple trees which unify with one another
a choice has to be made between the unifying trees on which transformation will be
applied. To make a choice, the tree pattern with the highest associated priority is used
as match. Remember that final states are required to contain context on which tree
pattern has been matched which is why labeling the final state is necessary.

Duplicate sub-automata reduction

Using the original algorithm, some duplicate sub-automata might be constructed within
an automaton. These duplicate sub-automata result in a bigger automaton with more
states. Preferably, unnecessary duplicate sub-automata are reduced such that the num-
ber of states are suppressed.

Λstart

31 1

2 p1 p1 2

p2 p1 p1 p3

a

5 6=

3

6=
6=

3

4

6=
6=

4

Figure 4.4: DFA constructed with duplicate sub-automata

For example, take Σ = {a, 3, 4, 5}, x, y, z ∈ V , and tree patterns p1 = a(x, y, z),
p2 = a(3, 4, 5), p3 = a(3, 4, z), then the constructed top-down matching automaton is
shown in figure 4.4. This automaton shows the duplicate sub-automata for final states p1.
A small example such as the one depicted in figure 4.4 contains only a few overlapping
sub-automata with the sub-automata size consisting of only a single state. However,
with the number of tree patterns increasing together with the size of each tree pattern
it would be preferred to merge these duplicates somehow.
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· · ·

s′
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Figure 4.5: Example without diverging 6=

sstart

· · ·

s′

s′′
· · ·

· · ·

6=

Figure 4.6: Example with diverging 6=
The extension that avoids unnecessary duplicate sub-automata uses the closest an-

cestor node with a diverging 6= transition. This ancestor can be found by backtracking
starting from the currently generated state towards the initial state. During backtrack-
ing, the first state found which transitions to a different (i.e. diverging) state not on
the backtracked path is an ancestor with a diverging 6=. Note that it is possible to have
no diverging 6= on the path from a particular state towards its initial state. Figure 4.5
shows a situation where no diverging 6= exists in the path from s′ towards its initial state
s. A 6= transition exists on the path itself but none exist that diverge and therefore,
there is no ancestor node with a diverging 6= transition. Figure 4.6, however, shows a
situation where an ancestor has a diverging 6= as the path from s′ to initial state s has
a diverging 6= from s to s′′. As multiple of these diverging 6= transitions might exist on
a path towards the initial state, the one of interest is the first diverging 6= found on the
path from a state to the initial state. This closest ancestor with a diverging 6= can be
used by taking the state at the destination of this 6= transition. This state can then be
used as state to transition to on 6= transitions for the particular state being processed.

Searching for the destination state of the diverging 6= is also referred to as finding
the closest diverging sink state as the 6= transition is considered to be a sink transition.
The 6= transition encompasses all remaining transitions on input in Σ not yet explicitly
covered in that state, hence sink transition.

Λstart

x1

x2 t1

t2

a

3 6=

4

6=

Figure 4.7: DFA constructed using ClosestDivergingSink

To illustrate, take Σ = {a, 3, 4, 5}, x, y ∈ V , and tree patterns t1 = a(x, y), t2 =
a(3, 4), then figure 4.7 shows the resulting automaton. Note that during construction of
state x2, the closest diverging sink state is t1 since on the path from state x2 to its initial
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state Λ, the state x1 contains a diverging 6= transition towards t1. Then an additional
6= transition is added from x2 to t1 as fallback for x2.

An input expression example for the automaton in figure 4.7 which takes this fallback
option for x2 is subject expression ts = a(3, 5). When using ts as input the path taken
in the automaton will be Λ→ x1 → x2 → t1. The transition between x1 and x2 is taken
since the symbol at ts|1 is 3 which has an explicit transition to x2. However, the symbol
at ts|2 does not have an explicit transition, hence the sink transition 6= is taken. This
transition then finds a tree pattern match for ts where ts matches tree pattern t1.

Algorithm 2 ClosestDivergingSink function

input:
dfa : (Q,Σ, δ, q0, F ) - deterministic finite automaton searched for its closest di-

verging sink state
s : Q - state whose closest diverging sink state is to be located

vars:
n : N - the number of steps for the transitive closure of δn

δn∈N : Q× Σ→ Q - Transitive closure of transitions in δ, up until n steps

CDS(dfa, s) =


q, if ∃s, s′, s′′ ∈ Q. ∃a ∈ Σ ∪ {6=}. (s′, a)→ s ∈ δn ∧ (s′, 6=)→

s′′ ∈ δ, where q is state s′′ with the maximum associated n

nil, otherwise

Algorithm 2 shows the function for finding the closest diverging sink state (CDS).
This function takes in a state whose closest diverging sink state is being searched and a
deterministic finite automaton of which its quintuple (Q,Σ, δ, q0, F ) is used for searching.
This function returns q if a diverging sink state has been found, and nil otherwise. The
return value q denotes the state reached using a 6= sink transition from its parent state
which is located on the path between the initial state and input state s and has the
highest number of transitional steps between the initial state to the parent state (which,
in turn, results in the lowest number of steps from input state s to the parent state).

Variable and constant wildcards

The original algorithm assumes only a single kind of unconstrained wildcard type. How-
ever, as discussed in section 4.1, because of peephole optimizations, this concept of wild-
cards needs to be extended and further constrained with variable wildcards and constant
wildcards. For automaton construction, every sink transition will now be expanded to
diverge between a path for variable wildcards and a path for constant wildcards.
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Figure 4.8: Multiple wildcards with am-
biguous ClosestDivergingSink
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Figure 4.9: Multiple wildcards with unam-
biguous ClosestDivergingSink

To accommodate wildcards, the original algorithm uses sink (i.e. 6=) transitions. The
obvious solution would be to extend this concept and introduce a constant wildcard sink
6=c that transitions in case of constant literals that do not have an explicit transition from
a particular state; however, this might result in erroneous functionality when processing
the closest diverging sink state. To illustrate, take the automaton shown in figure 4.8
which naively introduces a 6=c transition similar to how a 6= transition is introduced. In
this case, if state s3 needs a fallback option using the closest diverging sink state, only
state s2 would be used as fallback; however, state s4 should also be used as fallback state
in case the transition is on a constant literal that has no explicit transition in state s3.
In other words, an additional closest diverging sink for constant wildcards would need
to be introduced for this methodology.

Instead, an alternative is used which does not require searching for the closest diverg-
ing constant wildcard sink state. This alternative constructs an additional state which
is used only for diverging variable wildcards and constant wildcards. This way the clos-
est diverging sink state suffices as it results in the state which then splits off between
the variable wildcard or constant wildcard. To illustrate, the automaton in figure 4.9
depicts the additional state as state s′. This state s′ is the closest diverging sink state
for state s3. Without the need for state s3 to search for its closest diverging constant
wildcard sink state, the state can still fallback on either variable wildcards and constant
wildcards. Note that states s1 and s′ will be labeled with the same coordinate. Recall
that this coordinate depicts the coordinate within the subject tree that is to be checked
in said state.
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Algorithm 3 CreateSink pseudocode

input:
dfa : (Q,Σ, δ, q0, F ) - deterministic finite automaton being constructed
s : state - when in unlabeled state s, the prefix expression e will have

been processed
e : E - prefix expression, used keep track of what’s processed so

far
V : {E} - set of patterns that could match prefix expression e
co : path - string of edge choices

vars:
root : E → S - gives the symbol at the root of a expression
sink : Q - the closest diverging sink state relative to s

1: function CreateSink(dfa, s, e, V, co)
2: label s with co
3: if ∃v ∈ V. root(v|co) ∈ V then
4: Create fresh state s 6=
5: δ := δ ∪ {(s, 6=)→ s 6=} . 6= denotes any symbol not in C
6: Build(s 6=, eco[ 6=], {p ∈ V | root(p|co) ∈ V })

. the 6= sub-expression denotes a variable occurrence
7: else
8: sink := CDS(dfa, s)
9: if sink 6= nil then

10: δ := δ ∪ {(s, 6=)→ sink} . 6= denotes any symbol not a literal constant

11: if ∃v ∈ V. root(v|co) ∈ C then
12: Create fresh state s 6=c

13: δ := δ ∪ {(s, 6=c)→ s 6=c} . 6=c denotes any symbol in C
14: Build(s 6=c , eco[6=c], {p ∈ V | root(p|co) ∈ C})

. the 6=c sub-expression denotes a constant wildcard occurrence

Shown in algorithm 3 is the CreateSink function pseudocode. The input for this
function are:

1. dfa, the DFA currently being constructed.

2. s, the unlabeled state used to transition to new fresh states depending on the tree
patterns.

3. e, the (prefix) tree pattern which has the shape of the tree matched thus far, i.e.
when in state s the tree matched thus far is e.

4. V , tree patterns whose symbol at coordinate co is either a variable wildcard in V
or a constant wildcard in C .

5. co, path currently being built upon in (prefix) tree pattern e.

No output is necessary for this function as construction happens locally using the input
DFA.

Since this function takes care of diverging between variable wildcards and constant
wildcards, it is assumed that all tree patterns in input V have either a symbol in V or
a symbol in C at coordinate co. That is to say that the following is assumed to hold:

∀v ∈ V. root(v|co) ∈ V ∨ root(v|co) ∈ C
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The procedure described in algorithm 3 shows that the unlabeled state s is first labeled
using the input path co. This will be the same label as its parent state, of which it
only has one at this point during construction, as can be observed in line 2. Then, a
check is done to see whether a new sink state is necessary. This is done by checking
whether there exists a variable wildcard at coordinate co for any of the patterns in V .
If this is the case, a fresh state is created, a 6= (i.e. sink) transition is added from s to
the fresh state, and the fresh state is then recursed on using the recursive automaton
construction function Build. If no variable wildcard exists at coordinate co for any of
the pattern in V , then the closest diverging sink state is searched for using the CDS
function. If such a state exists, it will be used to 6= transition towards from s; however,
if none exists no additional transitions will be added using the regular variable wildcard
transition 6=. Then, a similar process is used for constant wildcards starting from line 11
in the algorithm. Here, a check is made to see whether there exists a constant wildcard
at coordinate co for any of the patterns in V . If this is the case, a fresh state is created,
a transition is made from s to the fresh state using a 6=c transition (which is a transition
only taken when the subject tree used as automaton input contains a constant literal
at coordinate co), and the fresh state is then recursed on using the recursive automaton
construction function Build; however, if no constant wildcard exists at coordinate co for
any of the patterns in V no modifications are applied to the input DFA. Note that it is
important that the 6= construction has priority over 6=c construction as the path down
the 6=c transition might use the 6= transition in state s for its closest diverging sink state.

Note that not every invocation of CreateSink will result in two additional fresh
states. Creation of these states depend upon the availability of tree patterns in V
with either a variable wildcard or constant wildcard at coordinate co. This means the
following sub-automata are possible by CreateSink’s construction:

· · ·

s1

s2 s3

· · · · · ·

6=

6=c6=

· · · · · ·

Figure 4.10: Both 6= and 6=c transitions
from sink state s1

· · ·

s1

s2

· · ·

6=

6=

· · ·

Figure 4.11: Only a 6= transition from sink
state s1
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· · ·

s1

s2

· · ·

6=

6=c

· · ·

Figure 4.12: Only a 6=c transition from sink state s1

The automaton in figure 4.10 shows the case where both variable wildcards and
constant wildcards occur for patterns in V , at coordinate co. Note that the same closest
diverging sink state search can still be applied. For instance, the closest diverging sink
state of state s3 is state s2 since its parent is on the path from s3 to the initial state,
and the transition from the parent to s2 is a 6= transition.

The automaton in figure 4.11 shows the case where only variable wildcards occur for
all patterns in V , at coordinate co. Note that now, a replica exists for state s1 as s1’s
parent has the same path string label as s1. In other words, the same path coordinate
is checked twice with the same 6= sink transition. These duplicated transitions can be
removed using a subsequent optimization pass through the automaton which detects this
inefficiency and promptly removes it.

The automaton in figure 4.12 shows the final possible scenario where only constant
wildcards occur for all patterns in V , at coordinate co. Here, the inefficiency of the
unnecessary 6= transition towards state s1 could be removed after construction of the
automaton. However, during construction this 6= might be used for another state’s
closest diverging sink state search.

Top-down construction function

So far, all discussed automaton related construction algorithms are extensions of the
existing original construction procedure; however, this procedure is still required to be
modified to support these extensions.
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Algorithm 4 Top-down Build pseudocode

input:
dfa : (Q,Σ, δ, q0, F ) - deterministic finite automaton being constructed
s : Q - when in unlabeled state s, the prefix expression e will have

been processed
e : E - prefix expression, used keep track of expression tree pro-

cessed so far
P : {E} - set of patterns that could match prefix expression e

vars:
M : {E} - patterns of which e is an instance
c : path - string of edge choices
FS : {S} - symbols of all patterns in P at coordinate c
maxprio : {E} → E - gives the expression with the highest priority
prio : E → N - gives the priority of a certain expression
nextop : E → path - gives the next operand to match as a path
root : E → S - gives the symbol at the root of a expression
ar : E → N - gives arity (i.e. rank) of an expression
sink : Q - the closest diverging sink state relative to s

1: function Build(dfa, s, e, P )
2: M := {p ∈ P | e ≤ p}
3: if M 6= ∅ and ∀p ∈ P. ∃p′ ∈M. prio(p′) ≥ prio(p) ∧ p′ 6> p then
4: label s as final state for expression maxprio(M)
5: F := F ∪ {s}
6: else
7: c := nextop(e, P )
8: Label s with c
9: FS := {f | ∃p ∈ P. root(p|c) = f ∧ ¬(f ∈ V ∧ f ∈ C)}

10: if ∃p ∈ P. root(p|c) ∈ V ∨ root(p|c) ∈ C then
11: Create fresh state s¬FS

12: δ := δ ∪ {(s, 6=)→ s¬FS} . 6= denotes any symbol not in FS
13: CreateSink(s¬FS , ec[ 6=], {p ∈ P | root(p|c) ∈ V ∨ root(p|c) ∈ C}, c)

. the 6= sub-expression denotes a variable occurrence
14: else
15: sink := CDS(dfa, s)
16: if sink 6= nil then
17: δ := δ ∪ {(s, 6=)→ sink} . 6= denotes any symbol not in FS

18: for all f ∈ FS do
19: Create fresh state sf
20: δ := δ ∪ {(s, f)→ sf}
21: Build(sf , ec[f(x1, ...xar(f))], {p ∈ P | root(p|c) = f})

Shown in algorithm 4 is the pseudocode for the augmented automaton construction
function Build. The input of this function is similar to the input for the CreateSink
function in algorithm 3:

1. dfa, the DFA currently being constructed.

2. s, the unlabeled state used to either mark as final state or used to transition to
fresh states depending on the tree patterns in P .
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3. e, the (prefix) tree pattern which has the shape of the tree matched thus far, i.e.
when in state s the tree matched thus far is e.

4. P , the tree patterns that match e, i.e. every tree patterns in P is subsumed by e.

Similarly to the CreateSink function, no output is necessary as the construction of the
DFA happens locally by augmenting dfa.

Lines 2, 3, 4, and 5 in algorithm 4 show the process of marking state s as a final
state. On line 2 the set M is constructed containing all patterns in P which subsume
(prefix) tree pattern e. Then, line 3 has the acceptance condition which has to hold for
state s to be marked as a final state. This acceptance condition holds when M is not
empty, the tree patterns in M are all of higher or equal priority than any tree pattern in
P , and the tree patterns in M do not strictly subsume any of the tree patterns in P . As
subsumption is used for priority, it is never possible for a tree to be of higher or equal
priority than another while strictly subsuming said tree. However, if priority depends
on other factors, such as tree node count, then the not strictly subsuming condition is
important to ensure all tree patterns are able to be matched. Line 4 describes labeling
state s with the tree pattern in M with the highest priority and line 5 adds state s as one
of dfa’s final states F . Line 7 and onwards describes the case where not all patterns in
P are at their final state yet and should therefore further construct (prefix) tree pattern
e until all non-unifying tree patterns in P have their own final state. If multiple patterns
in P are of high priority and unify with one another, the highest priority between said
patterns will be used for marking s as final state. Line 7 assigns c with the next tree
path coordinate to match for the automaton. It does so using (prefix) tree pattern e,
and all the tree patterns in P . A heuristic is used for the decision which path to check.
This decision affects the automaton’s construction. Because matching has to be fast, a
greedy decision algorithm is used which tries to discriminate as soon as possible between
all patterns in P ; however, if necessary a different decision methodology can be used.
Line 8 labels state s with the path string c to denote what node is matched at state
s. Line 9 assigns to FS all function symbols (that are neither a variable wildcard or a
constant wildcard) at tree coordinate c, for all tree patterns in P . Line 10 contains the
conditional statement which decides whether the CreateSink function is to be called,
or a closest diverging sink state for state s is to be searched. This conditional checks
whether any tree in P contains a symbol at tree coordinate c that is either a variable
wildcard or a constant wildcard and if so, it will call the CreateSink function using the
tree patterns in P with said variable wildcard or constant wildcard at tree coordinate
c. Line 11 creates a fresh state, and line 12 adds a 6= sink transition to dfa which
goes from s to the fresh state. Line 13 calls the CreateSink function using the fresh
state created in line 11, a new (prefix) tree pattern derived from e where the symbol at
tree coordinate c has been replaced with the 6= symbol which denotes a variable wildcard
within the expression, all patterns in P which have either a variable wildcard or constant
wildcard at tree coordinate c, and tree coordinate c. In reality, line 13 is a recursive call
as CreateSink calls the Build function again after its sink creation procedure. Lines 15,
16, and 17 are the else condition for the condition on line 10. Line 15 assigns sink to the
closest diverging sink state for state s, line 16 is the conditional which checks whether
the sink variable is assigned a state or nil, where nil denotes no closest diverging sink
state exists for s. Line 17, which is only invoked when the conditional on line 16 holds,
creates a 6= transition for dfa going from state s to state sink. Line 18 loops over all
symbols in FS together with lines 19, 20, and 21. Line 19 creates a fresh state and line
20 adds a transition on symbol f ∈ FS going from s to the fresh state created in line 19.
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Line 21 recursively calls Build using the fresh state of line 19, the (prefix) tree pattern e
where e’s subtree at tree coordinate c has been replaced with function symbol f ∈ FS,
and the set of tree patterns in P which have symbol f ∈ FS at tree coordinate c.

Note that the lines from 10 to 17 which are responsible for the 6= sink transition from
state s occur before the other transitions for all symbols f ∈ FS. The reasoning for this
is similar as the reasoning given for CreateSink where the 6= transition needs to exist
prior to the transition for all f ∈ FS so that the 6= transition can be used for the closest
diverging sink state search for all states beneath the transitions f ∈ FS. Furthermore,
all function symbols f ∈ FS denote the not only function symbols such as add and sub
which both have an arity of two, but also constant literals which are considered function
symbols with an arity of zero.

Runtime complexity of this procedure is an estimated Ω(
∑

p∈P |p|) where |p| denotes
the size of pattern p (i.e. the number of nodes within the tree pattern). This runtime
complexity takes some liberal assumptions:

1. Runtime of the heuristic on line 7 depends on the heuristic used and implemented;
however, for it is assumed constant time O(1)

2. Closest Diverging Sink procedure CDS is never called, as this requires a reverse
breadth first search traversal through (part of) the so far generated DFA

3. Computation of M and the final state conditional on lines 2 and 3 do not dominate
the Build procedure’s runtime complexity

4. Creation of a new state is constant time O(1)

5. New transitions between states is constant time O(1)

This runtime complexity is derived from the fact that every call to either the Build
or CreateSink procedures labels the input state, creates a new state for every unique
symbol at a coordinate using P , and recurses on the newly created state. Although
the CreateSink procedure expands with an extra state, the extra states is still linearly
bounded by the number of wildcard occurrances for every unique coordinate using P .

4.3.2 Back-end

The back-end phase of top-down peephole optimization matching and transforming gen-
erates C++ code for LLVM using the constructed automaton and auxiliary peephole
optimization information. This section aims to explain the lowering of the given au-
tomaton and peephole optimization information into C++ code. Although C++ is the
target language, alternative back-ends for different target languages can be written. Au-
tomaton and code generation exist separately which allows either to be modified without
affecting the other.

Code generation

To generate code, the provided automaton is traversed using Breadth-First Search (BFS)
starting at the automaton’s initial state. During each traversal the code for said state
is generated. Since every state with its transitions does not depend upon other states,
the code generated for every state can be generated stand-alone. A state can be:

1. a regular state, or
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2. a final state

· · ·

3.1

· · · · · ·

· · ·

a b

Figure 4.13: State with transitions for symbols a and b at tree coordinate 3.1

A regular state has transitions towards other states. These transitions can occur on
symbols in Σ; however, it is possible to have states with transitions on 6= sink transitions
or 6=c sink transitions for constant wildcards. Each regular state is lowered into a block of
code with an entry point which can be jumped towards, containing multiple conditionals
that check for a match on the input tree symbol at a tree coordinate. On such a match,
a jump towards the another state is made. For example, take Σ = {a, b}, and the state
labeled 3.1 in figure 4.13. This labeled state has an underlying unique identifier in N to
distinguish different states with the same label. For now, let this unique identifier be
1, i.e. the state labeled 3.1 in figure 4.13 is state 1. Then, the generated code will be
a unique entry point which can be called or jumped towards. This entry point needs
to be named in a unique and identifiable fashion, which can be done using the state’s
unique identifier. For state 1 in figure 4.13 this name could be ‘state 1’. The contents of
the code at this entry point will be conditionals which check whether a match between
the input tree’s symbol at tree coordinate 3.1 and one of the transition symbols occurs.
In the case for ‘state 1’, the state will jump towards another state’s entry points on
when a match occurs between the input tree’s coordinate 3.1 and symbols a or b. If
no 6= transition exists in a state, and the input tree cannot take any of the existing
transitions, an implicit matching failure is assumed. For example, take Σ = {a, b, c},
then the state labeled 3.1 in figure 4.13 will result in a matching failure if the input tree of
the automaton reaches the state labeled 3.1 while the c symbol occurs at tree coordinate
3.1. When a matching failure occurs, an implicit 6= transition to a non-matching return
value is generated. This can be considered a 6= transition towards an additional garbage
state1 which self transitions using a 6= transition. This garbage state denotes a state
which will never result in an accepting state as it self-transitions on every possible input.

For a final state, the final state’s peephole optimization auxiliary information which
was added to the context of said final state during construction is retrieved. If an input
subject tree reaches this final state, it has matched the source tree pattern of the peephole
optimization associated with the final state. This means that the final state should still
be an entry point that can be jumped towards, however, the contents should contain or
refer to the peephole optimization’s code transformation logic. Note that the peephole
optimization may contain (both implicit as explicit) preconditions. In such a case an
extra conditional which guards the peephole optimization’s code transformation should
be emitted.

1Also referred to as sink state in other literature
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state_388:

{

if (match(x_1 , m_Xor(m_Value(x_1_1), m_Value(x_1_2)))) {

goto state_406;

} else if (match(x_1 , m_NUWShl(m_Value(x_1_1), m_Value(x_1_2)))) {

goto state_420;

} else if (match(x_1 , m_LShr(m_Value(x_1_1), m_Value(x_1_2)))) {

goto state_399;

} else if (match(x_1 , m_Shl(m_Value(x_1_1), m_Value(x_1_2)))) {

goto state_413;

} else if (match(x_1 , m_Trunc(m_Value(x_1_1)))) {

goto state_427;

} else {

goto state_389;

}

}

Listing 4.5: LLVM C++ code example for a regular state

A transition from a regular state to another state means gaining more information
about the structure of the subject tree, used as input for the automaton. During con-
struction of the automaton this gain of tree structure information is represented by the
prefix tree that gets augmented at every recursive call which creates a fresh state. The
generated code for each state also simulates this information gain by populating variables
at each transition with the subtree. These subtrees can later be used in a regular state’s
matching or a final state’s guard checking and code transforming. An example of subject
tree structure information gain is shown in listing 4.5. This listing shows the C++ code
contents of a state with six transitions (of which one is a fallback, sink transition). Each
shown transition tries to match variable x 1 with a instruction. Within the emitted code,
variables with an x prefix followed by integer values separated by underscores denote
the subject tree’s subtrees by their path. In this case, x 1 refers to the subtree at path
1. Not only does the condition for each transition match x 1 to one of the instructions,
it also populates the children of said instructions. Take the first conditional in listing
4.5, the subtree at coordinate 1 is checked for a match on a ‘Xor’ instruction, and the
children at coordinates 1.1, and 1.2 are populated. This also means that variable x 1
had to be populated by a state occurring prior to the state shown in listing 4.5. The
only subtree populated before automaton execution is the subtree at the empty path’s
coordinate, denoted in generated code by variable x.

Final state expansion

Although final states denote a match for a peephole optimization’s source pattern, if
the peephole optimization’s code transformation is guarded by conditionals then a final
state is not truly a final state. The back-end code generator expands these guarded
final states such that either the guard holds resulting in the code transformation, an
alternative sub-automaton is transitioned towards, or if neither the guard holds and no
alternative sub-automaton exists a matching failure value is returned.
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· · ·

p1

s

· · ·

¬g1

Figure 4.14: Final state p1 with fallback
option

· · ·

g1

s p1

· · ·

False True

Figure 4.15: Functional expansion final
state p1

Figure 4.14 shows the final state p1 as constructed by the Build function in algorithm
4, where the dotted transition is part of the auxiliary peephole optimization information
bound to the final state. This dotted transition is the fallback transition towards sub-
automata s in case guard g1, associated with final state p1, fails. This fallback option
can be obtained using the closest diverging sink state search described by algorithm 2.
If no such state is found, a dotted transition towards the blocking garbage state s is used
to denote a match failure.

Figure 4.15 shows how the final state expansion should be considered, where the only
responsibility of the final state is to apply the peephole optimization’s code transforma-
tion. The added state g1 is state p1’s associated guard. Outgoing transitions from g1

are on the result of evaluating g1. When true, a source pattern match is found and the
required conditionals hold and a transition towards the final state is made. When false,
the required conditionals do not hold and a transition towards the fallback sub-automata
s is made.

4.3.3 Preconditions

A peephole optimization’s precondition is emitted by the back-end as a guard, checked
at the final state. Recall that it might be possible that no preconditions exist for a
peephole optimization. In this case the procedure contents of the final state for said
peephole optimization only consists of the peephole optimization’s code transformation.

All peephole optimization precondition options and built-in functions require the
ability to be lowered to the back-end target language’s equivalent. This target language
equivalent needs to check whether the precondition holds for the matched subject tree.
The primary reasons why preconditions cannot be evaluated prior to source pattern
matching, is because information about the subject tree is necessary. This subject tree
information is retrieved while executing the automaton. When an input subject tree
arrives at a final state, enough information about the subject tree has been retrieved to
know its tree structure. This information is then used to evaluate the precondition, and
transform the subject tree into its more efficient or canonical equivalent.
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if (isKnownToBeAPowerOfTwo(C1)) {

...

// Peephole optimization code transformation

...

} else {

...

// Transition to fallback state , or failure return

...

}

Listing 4.6: LLVM C++ code example for precondition

For example, listing 4.6 contains part of the lowered C++ LLVM code of the final
state for the peephole optimization defined in listing 4.2. This lowered code shows the
Alive DSL built-in function ‘isPowerOf2’ with its subtree argument lowered to its C++
LLVM equivalent. In this final state, all necessary subtrees of the subject tree are known
and ready to be used for checking whether the guard holds. If the conditional is true,
the peephole optimization code tranformation is applied to the subject tree. If false,
a transition is made towards a fallback state, or (if no such fallback state exists) a
matching failure value is returned to break out of the automaton without applying any
code transformation.

Not all preconditions are explicit, some preconditions are encoded within the source
pattern tree. An example of such precondition is variable wildcard equivalence. When
such implicit preconditions are detected, they are considered preconditions and only
checked in final states. Having these implicit preconditions within the context of a
peephole optimization’s source pattern could assist in checking preconditions prior the
final state. However, this will complicate automaton construction as overlapping tree
patterns need to diverge in case part of the overlapping tree patterns comprise of implicit
preconditions.

4.3.4 Flags

Within LLVM’s IR, it is possible to add flags to instructions to augment their func-
tionality. There are multiple approaches available to support these flags for peephole
optimization matching. One is to regard these flags as additional constraints and ex-
tend the preconditions with a check for such flags. Another way is to consider flagged
instructions as separate instructions and match them as such within the automaton.
The difference between these two approaches is how either affects automaton construc-
tion. When considering flags as additional constraints in preconditions, matching failure
on flags occur only on the final state’s guard. When considering flags as part of the
instruction, matching failures on flags occur during automaton execution. This means
that source pattern match failures are detected earlier and unnecessary matching is
preempted faster.
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x

· · · · · ·

· · ·

NSWAdd NUWAdd

Figure 4.16: State with separate transitions for no unsigned wrap add, and no signed
wrap add

The used approach is considering flags as part of an instruction. The resulting au-
tomaton for states with multiple transitions from flagged instructions will look like the
sub-automaton shown in figure 4.16. This automaton shows a state x with separate
transitions on the ‘Add’ instruction, depending on the associated flag. Any other in-
struction other than ‘NSWAdd’ or ‘NUWAdd’, including an ‘Add’ instruction with other
flags, will result in a source pattern match failure.

4.3.5 Code flow LLVM

To integrate the top-down approach into LLVM’s peephole optimizer, every available
instruction node will be used as automaton input. This instruction node will be taken
as root of its expression tree and put through the automaton to see if it matches any of
the peephole optimization patterns. This section aims to explain the process of pattern
matching, precondition checking, and the transformation of code using the top-down
peephole optimization matching methodology, for an instruction node.

InstCombine

Algorithm 1 shows the naive algorithm for LLVM’s instruction combine IR level peephole
optimizer. The ‘optimize’ procedure invoked on line 8 will be the call to the top-down
approach. The only provided argument is the instruction being optimized. Recall that
these instructions are provided in the order that they occur within a function. This
order is counter intuitive for the top-down approach as matching happens starting from
the root. The provided instruction will then be used as root for top-down matching;
however, this might then pass over an instruction multiple times, as part of different
subexpressions.

Automaton execution

Provided to the automaton is the instruction as root of its own expression. Recall that
matching occurs on transitions from one state to another. During matching all of the
instruction’s arguments are populated for further matching transitions. This continues
until either a match failure occurs denoted by a return of a ‘nullptr’, or a transformation
is applied. Transformations can only be applied in the final state if the precondition
holds.
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Instruction *InstCombiner :: runOnInstruction(Instruction *I) {

ConstantInt *C2, *C1;

Value *x_1 , *x_2 , *x, *x_2_2 , *x_2_1;

x = I;

goto state_0;

...

// State machine

...

}

Listing 4.7: LLVM C++ optimize example

Listing 4.7 shows part of the procedure for top-down approach’s ‘optimize’. Shown
is how variable ‘x’ is the root, initialized to the provided instruction ‘I’. Note that
‘state 0’ is always the initial state and is, therefore, used to transition towards initially.
Furthermore, note that all the ‘Value’ pointer variables used during matching are already
defined, ready to be populated by the matching automaton.

4.4 Bottom-up

Similar to top-down peephole optimization matching and transforming, the bottom-up
methodology can be considered a compiler-compiler with a traditional compiler design.
The front-end that parses Alive DSL used by the bottom-up methodology is shared with
Alive’s formal verification of peephole optimizations. From the peephole optimization
definitions in the Alive DSL, array tables are constructed and used to assign each tree
node of the subject tree to a matchset, a set containing a permutation of expressions
from the Pattern Forest (PF). Each of these assigned matchsets may contain source
patterns part of a peephole optimization. When a matchset containing such a peephole
optimization’s source pattern is assigned to a node, a pattern match has been found and
the peephole optimization’s transformation should be applied. The array tables con-
structed for source pattern matching can be considered the IR for bottom-up’s pattern
match methodology. The constructed tables, together with the procedure that assigns
matchset to a subject tree, are emitted in C++ (for use in LLVM) by the back-end.

This section aims to explain the implementation of the bottom-up peephole opti-
mization matching and transforming methodology in Alive.

4.4.1 Methodology

For bottom-up approach’s implementation, the methodology discussed by Chase in [5]
is augmented and extended for the constraints introduced in section 4.1. The algorithm
in [5] describes how to generate matchsets for an input pattern forest PF. Recall that
PF is the set of all possible subtrees of a set of supplied patterns. For completeness,
the pseudocode to generate the PF is shown in appendix A. The generated matchsets
can then be enumerated and used to generate the array tables. This section aims to
explain the modifications and extensions for bottom-up peephole optimization matching
and transforming.

Bound wildcards

Bottom-up’s approach to tree pattern matching needs to be extended to conform variable
and constant wildcards. The introduction of constrained wildcards affects both PF
generation and matchset generation.
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Every variable or constant wildcard occurring in multiple different expressions are
only bounded within its own expression and do not necessarily share the same value.
This characteristic prevents unnecessary generation of variable wildcard matchsets and
unnecessary subexpressions in PF. For example, take a tree pattern add(x, y) where
x, y ∈ V , then PF will be {x, add(x, y)}, and the resulting matchsets will be:

1. {x}

2. {add(x, y), x}

Note that because of the aforementioned characteristic, PF will only contain x as
variable wildcard instead of both x and y. This is because no distinction can be made
between the two. Moreover, no distinction can be made between matchsets {x} and
{y}, therefore one of the two suffices to denote the matchset containing only a variable
wildcard. The same holds for constant wildcards where each constant wildcard is only
bound within an expression.

Matchset construction

Matchset construction is an iterative procedure which starts with an initial iteration
and continues with a fixed-point iteration. The fixed-point iteration is only allowed
to terminated when the iteration’s resulting matchsets are the same as the matchsets
generated by the previous iteration. The number of iterations of this fixed-point iteration
is bounded by the maximum height, h, of all pattern trees in PF. This bound is the result
of the way every iteration generates its resulting matchsets. Every iteration’s result
depends on last iteration’s result by taking all the currently generated matchsets and
check whether there exists a permutation of these matchsets used as child subtrees that
results in new matchsets. Because the initial iteration starts at matchsets consisting of
leaves, the second iteration consists of all matchsets consisting of leaves and trees with
height = 1, and so on.

To illustrate, take the following pattern expressions:

• add(1, add(1, x))

• add(0, sub(x, 1))

Then the matchsets generated are:

1. {x}

2. {0, x}

3. {1, x}

4. {add(1, x), x}

5. {sub(x, 1), x}

6. {add(1, add(1, x)), add(1, x), x}

7. {add(0, sub(x, 1)), x}
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Where x ∈ V . From the generated matchsets, numbers 1, 2, and 3 are generated
in the initial iterations, numbers 4 and 5 are generated in the first iteration, and num-
bers 6 and 7 are generated in the second iteration. An additional third iteration will
execute, however, since the second and third iterations generate the same matchsets
the iteration loop is terminated and all possible matchsets are discovered. Note that the
maximum height h of all pattern expressions supplied is 3 which is the bound on number
of iterations (leaving out the initial iteration).

Recall that every function in Σ requires its own array table. The more matchsets
exists, the larger the generated function array tables. Additionally, the dimensionality
of a generated table grows with respect to the function’s argument count. For example,
the LLVM IR ‘Select’ instruction requires three arguments. This results in a three
dimensional array table for the ‘Select’ instruction. Each dimension of the naive array
table has the same length as the number of matchsets. Assuming such an array table
for the ‘Select’ instruction where every array table entry is a 32-bit integer. Then, to
occupy 1 gigabyte of memory for just the ‘Select’ instruction’s array table the number of
matchsets required is 630 as 6303 = 250.047.000 array table elements. Then, assuming
each element occupies 4 bytes resulting in 250.047.000× 4 = 1.000.188.000 bytes which
is about 1 gigabyte. This only worsens as the dimensionality of the generated table
increases. It is therefore important that array table sizes are as minimal as possible.

As described by Chase in [5], an array table’s duplicate dimensional entry (e.g. row
or column in a two dimensional array table) can be omitted resulting in a minimized
array table. Moreover, omitting duplicate dimensional entry can occur during matchset
creation using representer sets which avoids generating the large, naive array table before
minimization. These sets contain, for each function in Σ with an arity higher than 0 and
for each argument number in N, the matchsets used by function’s minimized array table.
Every matchset can be mapped to one in the representer set. Then, the representer set
can be used to construct the minimized array table with an additional mapping step
that is introduced for mapping matchsets to sets in the representer set. The size of
representer sets have an upper bound equal to number of generated matchsets. In other
words, the best case scenario for array table size would be when all matchsets map to
a single set in the representer set whereas the worst case scenario would be when every
matchset maps to a differing set in the representer set. As multiple matchsets can map
to the same set in a representer set, these matchsets can be considered equivalent as
their resulting mapped value is the same. For this, a notion of matchset equivalence will
be introduced.

To illustrate, take the aforementioned generated matchsets example with input pat-
terns: add(1, add(1, x)) and add(0, sub(x, 1)). The following representer sets can be
generated for functions add and sub:

• representer set for add, 1st argument: {{}, {0}, {1}}

• representer set for add, 2nd argument: {{x}, {add(1, x), x}, {sub(x, 1), x}}

• representer set for sub, 1st argument: {{x}}

• representer set for sub, 2nd argument: {{}, {1}}

To generate these representer sets, all matchsets and child sets are required. These
child sets are for each function in Σ with an arity greater than 0 and for each argument
and denote all the possible subexpressions possible at a function’s argument. The child
sets can be computed using the following:
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childSeti∈Nf∈Σ = {si| f(s1, · · · , sn) ∈ PF}

Then, for the aforementioned generated matchsets example with input patterns
add(1, add(1, x)) and add(0, sub(x, 1)), the following child sets can be generated:

• childSet1add = {0, 1}

• childSet2add = {x, sub(x, 1), add(1, x)}

• childSet1sub = {x}

• childSet2sub = {1}

Note that generation of child sets only depends on expressions in the pattern forest.
Then, using the generated child sets, the representer sets can be constructed using the
following:

representerSeti∈Nf∈Σ = {r ∈ {E}| m ∈MS ∧ r = m ∩ childSetif}

Where MS is the set of generated matchsets and r is the intersection of m ∈MS with
a child set. The introduced matchset equivalence is when a matchset m1 and m2 map to
the same set in a representer set, or alternatively, when m1∩childSetif = m2∩childSetif .
This type of equivalence is referred to as the Aj equivalence [5].
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Algorithm 5 Matchset generation

input:
PF : {E} - set of all subexpressions of the tree patterns

vars:
VW : {V } - set containing v ∈ V if v ∈ PF
CW : {C} - set containing c ∈ C if c ∈ PF
iteration : [{{E}}] - sequence of matchsets
ms : {E} - matchset used to add to iteration

childSeti∈Nb∈Σ : {E} - expressions that occur as the ith child of pat-
terns with symbol b in Σ

repi∈Nb∈Σ : [{E}] - Sequence of sets used for representer sets
A : S - Function symbol for f
C : {{(E1 × · · · × Ear(t∈PF ))}} - set of sets containing tuples of expressions in

PF
l : {E} - new matchset to be added to current

iteration’s matchset
ar : E → N - returns the number of arguments for an expres-

sion
root : E → S - returns the symbol at the root of an expression

1: function GenMS(PF )
2: VW := {p ∈ PF | p ∈ V }
3: CW := {p ∈ PF | p ∈ C}
4: iteration[0] := ∅
5: iteration[0] := iteration[0] ∪ {VW}
6: iteration[0] := iteration[0] ∪ {CW} ∪ {VW}
7: for all p ∈ {o ∈ PF | ar(o) = 0 ∧ o 6∈ C ∧ o 6∈ V } do
8: iteration[0] := iteration[0] ∪ {{p} ∪ VW ∪ CW}
9: childSetjG := {sj | G(s1, · · · , sk) ∈ PF}

. for all G ∈ Σ and j ∈ {n ∈ N| 0 < n ≤ k}
10: repjG[0] := {r ∈ {E}| m ∈ iteration[0] ∧ r = m ∩ childSetjG}

. for all G ∈ Σ and j ∈ {n ∈ N| 0 < n ≤ ar(G(· · · ))}
11: repeat
12: iteration[i] := iteration[i− 1]
13: for all f ∈ {p ∈ PF | ar(p) > 0} do
14: A := root(f)
15: C := ∅
16: for all (s1, · · · , sar(f)) ∈ rep1

A[i− 1]× · · · × repar(f)
A [i− 1] do

17: C := C ∪ {s1 × · · · × sar(f)}
18: for all t ∈ C do
19: l := VW
20: for all (a1, · · · , an) ∈ t do
21: l := l ∪ {A(a1, · · · , an)} ∩ PF
22: iteration[i] := iteration[i] ∪ {l}
23: repjG[i] := {r ∈ {E}| m ∈ iteration[i] ∧ r = m ∩ childSetjG}

. for all G ∈ Σ and j ∈ {n ∈ N| 0 < n ≤ ar(G(· · · ))}
24: until repjG[i] = repjG[i− 1] for all G ∈ Σ and j ∈ {n ∈ N| 0 < n ≤ ar(G(. . . ))}
25: return iteration[i], repjG[i] . for all G ∈ Σ and j ∈ {n ∈ N| 0 < n ≤ ar(G(. . . ))}
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Algorithm 5 shows the procedure used to generate matchsets. Lines 2 to 10 describe
the initial iteration while lines 11 to 24 describe the fixed-point iteration loop for the
ith iteration, where i ∈ N and i > 0. Line 2 shows the initialization of variable wildcard
set VW . If a variable wildcard occurs in the pattern forest, then VW will be the set
containing a variable wildcard, otherwise VW will be the empty set. Similarly, line 3
describes the initialization of constant wildcard set CW which is the set containing a
constant wildcard if one occurs in the pattern forest and will be the empty set otherwise.
Line 5 shows the initialization of a matchset containing only the variable wildcard. Note
that such a matchset will only exist if a variable wildcard occurs in the pattern forest.
Similarly, line 6 shows the initialization of a matchset containing the constant wildcard
and variable wildcard, if they occur in the pattern forest. Lines 7 and 8 contain the loop
used to construct matchsets for each constant literal in the pattern forest. Recall that
function symbols with an arity of zero are considered constant literals which is why the
loop iterates over all expressions with an arity of zero. Line 9 constructs the child sets
and line 10 constructs the representer set for the initial iteration. The loop from line 11
to 24 is the fixed-point loop that continues iterating until no more new matchset can be
constructed. However, the loop from line 13 to 22 constructs the matchsets for a single
iteration. Line 13 shows that only the expressions with an arity higher than zero are
looped over, in other words, the constant literals are omitted. Line 14 initializes A to
the function symbol of f ∈ PF . For example, if f = add(1, x), then A = add where
f ∈ E and A ∈ Σ. Lines 15 to 17 construct all possible n-tuple permutations using last
iteration’s representer sets for symbol A. Note that the size of these tuples depend on
the arity associated with symbol A. For example, if the associated arity of A is 3, then
each tuple will be of size 3. These tuples are then used in the loop from line 18 to 22
which constructs new matchsets for iteration[i]. Line 23 simply updates the representer
set for iteration i using iteration[i], then the fixed-point condition on line 24 will check
whether all of i’s representer sets are equal the ones of iteration i− 1. If so, all possible
matchsets have been found and both the matchsets and representer sets are returned by
the GenMS procedure.

Matchset generation is a set heavy procedure. The dominant runtime complexity fac-
tor within the procedure are the nested loops starting at line 11. The runtime complexity
estimated for these nested loops are as follows:

• line 11: bounded by maximum height h of patterns trees in PF, hence O(h)

• line 13: worst case, loops over all trees in PF, hence O(#(PF ))

• line 16: loops over the cartesian product of all representer sets rep for a function

f with symbol A, hence O(max(
ar(f)⋃
i=1
{#(repiA)})ar(f))

• line 17: requires loops to compute the cartesian product of all elements in the
n-tuple s (where n = ar(f) and si is the ith within the tuple) and takes the

union between this cartesian product and C, hence O(max(
n⋃

i=1
{#(si)})n×#(C)×

max(
⋃
c∈C
{#(c)}))

Where # retrieves the size of a set and max retrieves the maximum value of a set.
To get the estimated runtime complexity of the procedure can then be retrieved by
combining the time complexities of the (nested) loops on lines 11, 13, 16, and 17.
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Table construction

The function array tables can be constructed using the generated matchsets and repre-
senter sets. The representer sets can be used to construct the minimized array table.
From an array table, an element can be retrieved using a tuple (e1, · · · , en) as index where
n is the dimension of the array table (and thereby, the arity of array table’s function).
The size of each dimension can be derived from the size of the dimension’s representer
set. For example, take the aforementioned generated representer sets example with input
patterns add(1, add(1, x)) and add(0, sub(x, 1)). Then there exist two representer sets for
symbol add because the associated arity of add is two. Both the representer sets contain
three sets which results in a three by three array table. For the symbol sub, there also
exists two representer sets; however, one representer set contains one set, and the other
representer set contains two sets, so the array table’s size will therefore be one by two.
Finally, additional mapping tables are used to map each matchset to its representer set
equivalent. These mapping tables are one dimensional and its sizes equal to the number
of matchsets.

The elements of the table are the enumerated values that map to the matchsets.
To assign these elements, the enumerated value of the matchset with the most specific
pattern should be assigned to an element when the most specific pattern’s child argu-
ments’ enumerated matchset values are used as the index. That is to say, when the most
specific pattern in a matchset with enumerated value k is A[x1, · · · , xn], then the tuple
(map(x1), · · · ,map(xn)) should be the index for value k, where map is the function that
maps a subexpression to its equivalent matchset. Note that multiple matchsets may
contain different expressions whose child tuple index the same element. In such a case
the subsumption priority is used to determine which matchset should be assigned to the
index. Recall that the subsumption priority rank more specific expressions higher.

Note that for element assignment, only the most specific pattern in a matchset is
important. Because of this, a notion of reduced matchsets are used to assign enumerated
values to array table elements. These reduced matchsets are the matchsets with only
the most specific patterns remaining. For example, take the aforementioned generated
matchsets example with input patterns: add(1, add(1, x)) and add(0, sub(x, 1)), then
take the numbering as shown in the example (e.g. value 1 refers to matchset {x}, value
2 refers to matchset {0, x}, etc.). Then the following are the reduced matchsets with
equivalent enumeration:

1. {x}

2. {0}

3. {1}

4. {add(1, x)}

5. {sub(x, 1)}

6. {add(1, add(1, x))}

7. {add(0, sub(x, 1))}

Computing the reduced matchset can be done as follows:

msred = {p ∈ ms| ∀p′ ∈ ms. p 6≥ p′}
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Where msred is the reduced matchset equivalent for matchset ms. The reduced
matchset msred will contain only the patterns that do not subsume any of the other
patterns in the matchset. The set can contain multiple trees in case these tree unify
with one another.

Also note that, a 0 arity symbols in Σ (i.e. literal constants), likewise requires table
generation. However, recall that the arity of a symbol affects the dimension of the
array table. A zero dimension array table is merely a value, or matchset, that cannot
be indexed. During matching, when a subject tree’s subtree is equal to such a literal
constant, the value denoting the matchset with said literal constant is assigned to the
subtree. For example, take the aforementioned generated matchsets example with input
patterns: add(1, add(1, x)) and add(0, sub(x, 1)). Then, the subject tree’s subexpression
containing the literal constant 1 will be assigned the enumerated value that maps to the
matchset containing that constant literal, {1, x} = 3.

Algorithm 6 Minimized table generation

input:
MS : {{E}} - all matchsets constructed by GenMS
RS : {{E}} - all representer sets constructed by GenMS
PF : {E} - pattern forest, set of all subexpressions for all

matching patterns
vars:
mapMS : {{E}} × N→ {E} - returns the matchset mapped to a natural

number (one natural number maps to one
matchset)

mapRSj∈N
G∈Σ : {{E}} × {E} → N - returns the value of a matchset’s representer

set
RMS : {{E}} - reduced version of MS
ar : E → N - gives arity (i.e. rank) of an expression
↑: E × E → B - unification relation of expressions

1: function GenTable(MS,RS, PF )
2: if variable wildcard ∈ PF then
3: initialize all entries in tables with i where x ∈ V and mapMS(MS, i) = {x}
4: RMS := ∅
5: for all ms ∈MS do
6: RMS := RMS ∪ {{p ∈ ms | ∀p′ ∈ ms . p 6> p′}}
7: for all ms ∈ RMS do
8: for all t = A(t1, . . . , tar(t)) ∈ ms do

9: ∀1 ≤ l ≤ ar(t) . el = mapRS(RS, tl)
l
A

10: if ∃k, j ∈ N . ∃t′ ∈ mapMS(RMS, k) ∧ 1 ≤ j ≤ ar(t) . tj ↑ t′ then
11: tables[A][e1, . . . , ear(t)] := o where {tj , t′} = mapMS(RMS, o)
12: else if ∃k, j ∈ N . ∃t′ ∈ mapMS(RMS, k) ∧ 1 ≤ j ≤ ar(t) . tj < t′ then
13: tables[A][e1, . . . , ear(t)] := m where {t} ⊆ mapMS(RMS,m)

14: return tables

Algorithm 6 shows the procedure to generate a minimized array table. Supplied are
the output of the GenMS procedure with MS denoting all the generated matchsets
and RS denoting all the generated representer sets, and the pattern forest PF . Lines
2 to 6 show the initialization necessary to assign the array table elements in lines 7 to
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13. Lines 2 and 3 initialize all array table elements to the matchset containing only
the variable wildcard, if one exists in PF . If no variable wildcard exists in PF , some
array table elements remain empty. If during subject tree matchset value assignment
an empty element is indexed, it ought to be considered a matching failure. Lines 4 to 6
reduces the matchsets in MS and creates the reduced matchset set RMS. Note that it
is assumed that a matchset ms in MS and its reduced equivalent msred in RMS share
the same i such that mapMS(MS, i) = ms and mapMS(RMS, i) = msred. On line
7 starts the loop that iterates over all possible ms in RMS while on line 8 the loop
that iterates over all expressions in ms start. Recall that because these are the reduced
matchsets, only the most specific expressions of each matchset are iterated over. Line
9 ensures that for every l between 1 and the arity of tree t, el is equal to the matchset
value of a matchset msrs in RMS for which holds that tl is the argument of t, ms ∈MS,
{tl} ⊆ ms, and msrs = ms ∩ childsetlA. Lines 10 and 11 cover the case when a reduced
matchset exists with multiple unifying expressions that all match expression t. When
this happens, the matchset value that should be prioritized is the one whose matchset
covers all unifying expressions that subsume t. Lines 12 and 13 cover the case when
multiple reduced matchsets exist whose expression subsumes expression t. In such a
case, the reduced matchset containing the most specific expression should be prioritized
for assignment. For example, the matchset {x} subsumes every possible expression and
can therefore be assigned to every element in an array table. It is more descriptive if
the matchset whose value is assigned to an element contains the most specific expression
as this tells most accurately the shape of the subject tree during bottom-up peephole
optimization matching.

The table generation procedure is, much like matchset generation, a set heavy pro-
cedure. However, its nested loops are not as harsh as the nested loops necessary for
matchset generation. The runtime complexity estimate is as follows:

• line 7: loops over all matchsets in RMS, hence O(#(MS))

• line 8: loops over all trees within a matchset, hence O(max(
⋃

t∈ms
{#(t)}))

• line 11,12,13,14: loops over all possible matchsets and trees within said matchset,
hence O(#(MS)×max(

⋃
t∈ms
{#(t)}))

Where # retrieves the size of a set and max retrieves the maximum value of a set.
Combining these time complexities gives the estimated runtime complexity Ω(#(MS)2×
max(

⋃
t∈ms
{#(t)})2).

Table indexing in C++

Recall that array tables have a variable number of dimensions that depend on the arity
of the array table’s function and that indexing is done using a n-tuple. There is no way
to generalize indexing within array tables declared with multiple dimensions when these
multiple dimensions differ. For example, take array tables arr1 of size five by six (i.e.
arr1[5][6]) and array table arr2 of size two by five by three (i.e. arr2[2][5][3]). Both arr1

and arr2 contain the same number of elements; however, retrieving an element’s value
in arr1 can only occur when given a 2-tuple (two indices) whereas element values in arr2

can only be retrieved given a 3-tuple (three indices). To ensure that indexing can be
accomplished in a generalized fashion, every array table is flattened to a single dimension.

56



The indices of the array table can then be used to compute the accumulative offset in the
linearized array table. Using this methodology, calculating the to be retrieved element
value’s index can be done by computing the offset beforehand. This can trivially be
done by looping over all indices, regardless of the number of indices. Appendx B shows
the offset compute procedure for a variable number of array table dimensions.

For example, take the same arrays arr1[5][6] and arr2[2][5][3]. Then, linearizing both
will result in linear1[5×6] and linear2[2×5×3] respectively. Computing the last index
for both linear1 (i.e. index tuple (4, 5)) and linear2 (i.e. index tuple (1, 4, 2)) can be
done as follows: 4 + (5 × 5) = 29, and 1 + (4 × 2) + (2 × 2 × 5) = 29. Note that
the underlined values are the indices and the other values are the multipliers used to
compute offsets.

4.4.2 Back-end

The back-end phase of the bottom-up methodology takes in the tables and mappings to
emit the C++ equivalent which can be inserted into LLVM. Not only are the tables and
mappings translated to a target programming language, but some additional procedures
are required to traverse all tables and mappings. Finally, the peephole optimization’s
preconditions, flags, and transformation code have to be checked and applied. This
section aims to explain the extension and decisions made for bottom-up approach’s
emitted code.

Mapping representation

Recall that the bottom-up approach requires mappings from a matchset’s enumeration
to indices of the minimized array tables. These mappings are linear, one dimensional
arrays the same size as number of matchsets. Mappings exists per operand, and per
instruction. This means that although every mapping array is of size n ∈ N where
n is the number of matchsets, there might be multiple mapping arrays necessary per
instruction since every mapping array is per dimension. For example, call to mind that
the ‘Select’ instruction contains three arguments. The resulting mapping for the ‘Select’
instruction will then require three arrays, each the same size as number of matchsets.

Remember that the minimized array tables are linearized, practically flattening every
array table to a single dimension. As a result the indices need to compute their offsets
to retrieve the required values within this linear array table. Considering that these
mappings map matchset enumerated values to the indices of the array tables, they play
a role in this offset computation; however, note that during pattern matching traversal
through the array tables, only the indices are used as input. The remaining values
aren’t affected and constant after precomputing. Because only the indices are given to
the matching procedure to retrieve the enumerated matchset value, it’s possible to apply
the multiplier offsets within the mapping during computation of these mappings. Within
the pseudocode shown in appendix B, all operations with variable m are then covered
by the mapping arrays. The only operation left during bottom-up pattern matching
traversal is the offset accumulation.
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map1 0 1 2 3 4

0 1 2 1 3

map2 0 1 2 3 4

0 0 1 2 2

Table 4.1: Mappings before applying mul-
tipliers

linear1 0 1 2 3 4

0 1 2 1 3

linear2 0 1 2 3 4

0 0 4 8 8

Table 4.2: Mappings after applying multi-
pliers

First child
0 1 2 3

Second child
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11

Table 4.3: Mapping example’s minimized array table

For example, take a minimized table of size four by three (i.e. arr[4][3]) with the
number of matchsets equal to five, and the mapping arrays for each dimension shown
in table 4.1. Shown in these tables are the enumerated matchset values mapping to a
particular index for the minimized array table. Because the minimized array table is
two dimensional only two mapping arrays exist, each mapping differently to the min-
imized array table indices. When flattening the minimized array table, the mappings
can be augmented to take care of any additional offsets introduced by linearizing the
multi dimensional array. The tables listed in 4.2 show the same mappings with offset
multipliers applied. As can be observed in table 4.2, the mapping for the second dimen-
sion has its mapping values multiplied by the size of the minimized array table. Now, to
compute the correct indices for the matchsets, the mapping values are only required to
be accumulated. Table 4.3 shows the minimized four by three table with each element
populated with the flattened array’s index equivalent. Then, using matchset enumerated
values four and two as input, the following indices can be computed:

• for multi-dimensional array table: arr[map1(4)][map2(2)] = arr[3][1]

• for flattened array table: arr[linear1(4) + linear2(2)] = arr[3 + 4] = arr[7]

When using these indices in table 4.3, both the multi-dimensional and linear indices
index the same element.

Note that in the aforementioned example all indices are sequential, starting at zero.
It might be possible that the minimized array table does not result in sequential indices.
In this case, a normalization renumbering the irregular indices to sequential indices is
required.

Table representation

Every multi-dimensional array table can be linearized to a one dimensional array. For
peephole optimization matching, every instruction requires one of such array tables. For
example, different array tables exist for add and sub which may have different sizes.
To easily find the correct array table necessary during pattern matching traversal, all
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flattened tables are combined within an array used for retrieving the correct array table.
Then, a mapping from instruction to natural number is introduced to easily index the
right flattened table. A procedure for the target programming language is emitted which
maps instructions to natural number values denoting the index of this array.

Similarly, the mapping arrays for all instructions are combined and the same mapping
procedure is used to retrieve the right mapping arrays for a particular instruction.

Constants

Within bottom-up pattern matching, literal constants are considered instructions with-
out arguments. Because a table is constructed for every instruction, every literal con-
stant also requires an array table. Every of these literal constant array tables are zero
dimension tables. This means that every literal constant directly maps to a matchset’s
enumerated value.

However, recall that there are also constant wildcards. If constant wildcards occur
within the pattern forest, there will be a matchset representing this constant wildcard.
If a subject tree’s subexpression contains a constant literal not mapped to an array
table, then it should be mapped to the matchset representing this constant wildcard.
To support both constant literals and constant wildcards, a procedure is emitted that
will return the correct matchset depending on the literal constant, including the fallback
matchset containing the constant wildcard.

Found matches

When a subject tree’s node has been assigned a matchset’s enumerated value, it might
be the case that the assigned matchset contains a peephole optimization match. If such
a match occurs, the subject tree should be transformed according to the peephole opti-
mization’s transformation. Checking whether a subject (sub-)tree’s enumerated value is
associated with a matchset containing a peephole optimization pattern can be trivially
done if the target language supports constructs such as switch cases. This switch-case
would have to take in the matchset enumerated value and jumps towards transformation
code depending on whether said value is a matchset that contains a peephole optimiza-
tion pattern. The contents of this jump destination contains the peephole optimization’s
transformation in the target language. Note that the peephole optimization transfor-
mation code can still be guarded for preconditions and might still result in a match
failure.

To decrease the possibility of match failures, additional jumps towards fallback trans-
formations are introduced. These fallback transformations are according to the subsump-
tion relation. In other words, if two peephole optimizations exists where one subsumes
the other, it is possible to fallback to the more subsuming peephole optimization. The
immediate subsumption graph can be used to find what peephole optimizations can be
used as fallback. If no fallback exists and the precondition guard fails, a matching failure
is assumed.

4.4.3 Preconditions

For bottom-up’s methodology, peephole optimization preconditions (both implicit and
explicit) are used as guard during transformations. This means that preconditions checks
are delayed until the last moment. If such a precondition does not hold, then the
subject tree does not match the peephole optimization. This approach to preconditions
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is very similar to top-down’s. The difference is in the fallback option. For top-down’s
approach, a match failure will either transition to a different sub-automaton or result in a
match failure, whereas the bottom-up approach will either transition to another peephole
optimization’s transformation code or result in a match failure. If no precondition exists,
no guard is added and the transformation will be applied the peephole optimization
pattern has been matched.

Equivalence checker

Implicit preconditions relating to equivalence of subexpressions may result in an over-
abundance of equivalence checks in the guard. This is the result of multiple unnecessary
equivalence checks. The equivalence relation can be visualized using a graph where every
vertex is a subexpression and every edge denotes an equivalence between two vertices.
Then, emitting an equivelance check for every edge will result in unnecessary check be-
cause the equivalence relation is transitive. It would suffice to reduce the graph to the
minimum spanning tree and only emit the remaining edges for equivalence checking.

For bottom-up’s approach an equivalence checker is used to emit only the minimal
number of edges necessary to denote the subexpression equivalences.

4.4.4 Flags

Instruction flags can be used to augment an instruction’s functionality. To support
these flags in the bottom-up peephole optimization matching and transforming, mul-
tiple approaches are available. One of such strategies is appending flag checks in the
preconditions; however, using this method, the guard check can only occur at the end
of peephole optimization pattern matching. This approach might complicate precondi-
tion guard predication in case the tree pattern results in different peephole optimization
transformations depending on its flags (e.g. when there are both ‘nsw add’ and ‘nuw
add’ patterns with the same arguments).

It has therefore been decided to concatenate flags to instructions for bottom-up pat-
tern matching. The result is that multiple array tables may exist for an add instruction
depending on the flags. The mapping of instructions to the correct index for the ar-
ray containing array tables need to be extended to support these flagged instructions.
However, this is a trivial matter as additional mappings can be added for every instruc-
tion/flag combinations to its correct array table.

4.4.5 Code flow LLVM

To match and apply peephole optimizations using bottom-up’s methodology within
LLVM, every LLVM IR instruction node will have to be matched, precondition checked,
and, if all holds, transformed to the optimized or canonicalized alternative. However,
a lot of details on how to integrate bottom-up’s approach into LLVM has yet to be
described. This section aims to explain the matching, precondition checking, and trans-
forming of code within LLVM for bottom-up’s strategy.

InstCombine augmentations

Algorithm 1 describes the naive instruction combine procedure. For bottom-up peephole
optimization matching and transforming, a few modifications are required as a subex-
pression’s matchset value needs to be memorized during matching. To memorize the
subexpression matchset value, a hash table is used which uses expressions as key and
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matchset value as its value. Within algorithm 1, the declaration of the hash table occurs
between lines 4 and 5. This means that the loop starting at line 5 and iterating over
elements in wl will use the same hash table keys and value, and only the fixed-point loop
starting on line 2 clears hash table values at every iteration of the loop.

Then, take the ‘optimize’ procedure on line 8, and add the additional hash table as
parameter. This ‘optimize’ procedure will be the bottom-up procedure for matching and
transforming. Supplied is the instruction, and the hash table. Recall that the instruc-
tions supplied to this ‘optimize’ are in order of occurrence within the function being
passed over, so every invocation of ‘optimize’ gets supplied the next instruction. This
means that all instructions prior to the current instruction processed should already be
assigned a matchset’s enumerated value. Moreover, all instructions prior to the current
instruction processed are either subexpressions of the current instruction processed or
not used by it. This way, instructions will be supplied in the bottom-up order without
additional augmentations.

Matchset value

After a matchset value for an instruction is retrieved, it is appended to the hash table
using the instruction’s expression as key. Note that the expressions are used as key, not
only the instructions. This allows other types of expressions to be used as keys for the
hash table such as expressions consisting of constant literals. Assigning an instruction’s
expression to a matchset value is done by taking the instruction’s expression, retrieving
the matchset values associated with the instruction’s arguments (i.e. subexpressions)
through either the hash table or a local recursive call if necessary, and using the retrieved
subexpression matchset values as indices to index the element containing the correct
matchset value in the instruction’s array table. This matchset value can then be used by
other instructions in subsequent ‘optimize’ calls, or can result in a peephole optimization
transformation. Note that only instructions are supplied to the ‘optimize’ procedure. For
remaining expression types required by instruction expression retrieval not yet assigned
within the hash table, a recursive call for matchset retrieval is invoked. These will then
be retrieved and appended to the hash table. As a fallback for matchset value retrieval,
the expression could be assigned the matchset containing only the variable wildcard;
however, this is only possible if a variable wildcard occurs within the pattern forest.

static unsigned retrieveStateValue(ConstantInt *C) {

switch (C->getSExtValue ()) {

default: {

return 1;

break;

}

case 0: {

return 2;

break;

}

case 1: {

return 3;

break;

}

case -1: {

return 4;

break;

}

}

}

Listing 4.8: LLVM C++ constant matchset retrieval
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Listing 4.8 shows an example of the matchset enumerated value retrieval procedure
for constants. In this case, the constant literal values 0, 1, and -1 map to matchset
enumerated values (in this example matchset enumeration values 2, 3, 4). Any other
constant literal will be assigned the value for the reduced matchset containing only the
constant wildcard (i.e. matchset enumeration value 1).

static unsigned retrieveStateValue(Instruction *I, DenseMap <Value*,unsigned >←↩
&sa) {

unsigned offset = 0;

unsigned child = 0;

if(! opcodeMappingExists(I))

return 0;

for (Value *op : I->operands ()) {

unsigned ms = 0;

if(!sa.count(op)) {

ms = retrieveStateValue(op, sa);

sa.insert(std:: make_pair(op, ms));

} else {

ms = sa[op];

}

offset += computeMap[opcodeMapping(I)][child ][ms];

child ++;

}

const unsigned *computeTable = computeTables[opcodeMapping(I)];

return computeTable[offset ];

}

Listing 4.9: LLVM C++ instruction matchset retrieval

Listing 4.9 shows an example of the matchset enumerated value retrieval procedure
for instructions. Note that the matchset value 0 denotes the matchset containing only
a variable wildcard. If an instruction/flag combination does not exists within the array
tables, it will use the 0 matchset value as fallback. If the instruction/flag combination
does exist in the array table, it will then try to retrieve its arguments’ matchset values.
If the instruction/flag combination does not exist in the hash table, it will attempt to
retrieve them through a recursive call. Finally, the offset within the instruction’s array
table is calculated using each argument and finally, the right value is retrieved and
returned.

Note that:

• sa is the hash table used

• the ‘opcodeMappingExists’ procedure checks whether an array table exists for a
particular instruction

• the ‘computeMap’ array is the array with all matchset value mappings

• the ‘opcodeMapping’ procedure maps a particular instruction to an index

• the ‘computeTables’ array contains all array tables, for every supported instruction

static unsigned retrieveStateValue(Value *V, DenseMap <Value*, unsigned > &sa)←↩
{

if (isa <ConstantInt >(V)) {

return retrieveStateValue(cast <ConstantInt >(V));

} else if (isa <Instruction >(V)) {

return retrieveStateValue(cast <Instruction >(V), sa);

} else {

return 0;

}

}

Listing 4.10: LLVM C++ enumerated matchset value

62



Listing 4.10 shows the procedure called when an expression’s type is unknown. If the
expression is a constant, it will use the procedure shown in listing 4.8. If the expression
is an instruction, it will use the procedure shown in listing 4.9. If it is neither, it will use
the aforementioned 0 matchset which denotes the matchset containing only a variable
wildcard.

Pattern match

A pattern match is found when the matchset assigned to an expression contains a peep-
hole optimization’s pattern. Which matchsets contain such patterns can be predeter-
mined. This allows the peephole optimizer to derive whether a peephole optimization’s
pattern has been matched or not by using only the matchset’s enumerated value.

For example, say the expression e = add(a, b) (where a, b ∈ V ) is a peephole optimiza-
tion’s pattern. Then if expression e exists within a reduced matchset, the enumerated
value for e can then be used to conclude whether a subject tree matches the aforemen-
tioned peephole optimization.

When a peephole optimization match has been found, the guard predicate is eval-
uated and if correct, the transformation is applied. Note that during matching, the
general structure of the subject tree is derived, but the specific values of the subject tree
are not retrieved. Therefore, the first step for peephole optimization transformations
is to retrieve the subject tree expressions. These can then used for either precondition
checking or code transforming.
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Chapter 5

Evaluation

The initial implementations of both top-down and bottom-up are benchmarked together
with Alive’s naively generated C++ code, and LLVM’s default InstCombine by compiling
provided benchmarks in the LLVM test-suite1 and SPEC20172. These four versions
are then compared for compilation time, execution time, instruction memory size, and
number of peephole optimizations applied. Note that the differences between the four
versions is only the peephole optimizer. The differences between peephole optimizers are
as follows:

• LLVM’s default InstCombine, LLVM IR level peephole optimizer as shipped with
LLVM

• Alive naive code generator, Alive’s default code generator which uses the same
matching strategy as LLVM’s default InstCombine

• Top-down Alive code generator, implementation for Alive’s top-down strategy

• Bottom-up Alive code generator, implementation for Alive’s bottom-up strategy

These will be benchmarked using the same version of LLVM with the utilized peep-
hole optimization strategy as only modification. At the time of writing, the most recent
LLVM version released is 7.0.1 which will be used for benchmarking. Additionally, Alive’s
default, top-down, and bottom-up code generators support about 414 peephole optimiza-
tions whereas LLVM’s InstCombine manages more peephole optimizations; however, the
precise number of peephole optimizations is unknown. This difference in number of peep-
hole optimizations available may affect the comparison between the Alive-based strate-
gies, and LLVM’s default InstCombine. Additionally, the impact of runtime complexity
on the actual runtime is evaluated together with the resulting intermediate formats of
both top-down and bottom-up.

5.1 Strategy evaluation

Both top-down and bottom-up peephole optimization matching strategies generate an
immediate format. In top-down’s case this format is the DFA constructed, in bottom-
up’s case these are the matchsets and function array tables created. This section aims
to evaluate the impact of each strategy’s runtime complexity on actual generation time,
and the size of the generated immediate format.

1https://github.com/llvm/llvm-test-suite
2https://www.spec.org/cpu2017/
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Top-down

Recall that the top-down strategy generates a DFA. When supplying Alive with the 414
peephole optimizations available for code generation, the current top-down code gener-
ation implementation results in a DFA of 1892 states and 2776 edges. Augmentations
on input, heuristic used within the top-down methodology, and priority used affects the
size and, more importantly, the shape of this DFA.

Figure 5.1: Part of top-down DFA visualized

Figure 5.1 shows part of the DFA constructed when the top-down code generator
is provided the aforementioned 414 peephole optimizations. All states share the same
initial state at the top but diverge. All states with a green outline denote a final state.
Recall that transitions going outward from any final states get expanded during code
emitting.

The runtime complexity for top-down’s automaton construction described in chapter
4 is derived using an optimistic scenario; however, even with added complexity from
additional calls (such as CDS) results in a feasible runtime using a modern computer
(at the time of writing). Currently, when provided with the set of 414 peephole opti-
mizations, the generation time for the automaton is about 2 minutes.

Bottom-up

Bottom-up requires generation of matchsets and array tables. Recall that these array
tables are minimized and linearized. Moreover, they require additional mapping arrays.
Displaying all array tables generated using the 414 peephole optimizations is not feasible;
therefore only the size of each table is summarized and shown. The current bottom-
up procedure generates 1399 matchsets when given the aforementioned 414 peephole
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optimizations. The size of the mapping arrays for each instruction is merely the total
number of matchsets multiplied with the arity of the instruction and these sizes are,
therefore, omitted.

Instruction and lshr shl nuw select shl nsw nuw

Array table size 46× 31 12× 3 3× 2 39× 23× 16 1× 2

Instruction xor sub mul nsw ashr exact mul nuw nsw

Array table size 28× 14 9× 24 2× 2 2× 2 1× 2

Instruction mul nuw shl nsw add mul icmp ne

Array table size 2× 2 2× 3 19× 9 13× 4 2× 3

Instruction trunc icmp slt lshr exact sub nsw srem

Array table size 5 5× 3 2× 2 2× 3 1× 3

Instruction icmp ult sext urem icmp ule icmp eq

Array table size 2× 3 3 3× 3 2× 2 4× 3

Instruction sdiv exact icmp sge udiv exact sdiv icmp ugt

Array table size 3× 2 2× 2 4× 6 8× 5 1× 3

Instruction add nsw icmp sgt add nuw udiv zext

Array table size 3× 2 5× 4 3× 2 10× 8 3

Instruction shl or ashr icmp uge

Array table size 21× 3 38× 44 8× 3 3× 2

Table 5.1: Array table sizes

Table 5.1 show the array table sizes for each supported instruction. Note that the
‘select’ instruction contains the most number of elements with 39 × 23 × 16 = 14352.
Recall that this is after reduction as the complete array table would require 13993 =
2738124199 elements.

The estimated time complexities for bottom-up’s approach introduced in chapter 4
are described for two separate procedures. One, for matchset generation and another for
table generation. On a modern computer (at the time of writing) the matchset procedure
takes roughly 5 hours to compute all matchsets given the 414 peephole optimizations
whereas table generation takes 6 minutes but assumes all matchsets readily available.
This is roughly as expected as the estimated runtime complexity for matchset genera-
tion was derived from needing many set based operations including multiple cartesian
products while table generation merely iterates through the generated matchsets, and
trees within said matchsets.
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5.2 Benchmarks

The LLVM test-suite contains a plethora of applications (such as ALAC, SPASS, aha,
lua, oggenc, sqlite3), tests, and benchmarks (such as Adobe’s C++ benchmarks, Dhry-
stone, Linpack, Polybench, MiBench, Rodinia, SciMark2, and many more benchmark
suites commonly used for publications). In addition to these benchmarks supplied with
LLVM’s test-suite, the SPEC2017 benchmarks have been added to further benchmark
and compare all versions of LLVM’s peephole optimizer.

The benchmarks run as follows:

1. Single-core clang with bottom-up/top-down/alive-default/llvm-default peephole
optimizer compiles all benchmarks

2. Compiled programs are executed and tested using test scripts

Step 1 results in compilation time, number of peephole optimizations applied and
instruction memory size while step 2 results in execution time.

Note that a vectorization pass (slp vectorizer) has been disabled to avoid assertion
errors in the Alive-based peephole optimization strategies. For fair comparisons, this
vectorization pass has been disabled for all strategies which may affect some of the
benchmark results.

Number of instructions combined

This section explores the number of peephole optimizations matched and applied (i.e.
instructions combined) for each of the peephole optimization version.

Figure 5.2: Sum total number combined instructions, per version

Figure 5.2 shows the total number of instructions combined for each version. In other
words, the number of instructions combined for every benchmark have been accumulated
and visualized per version. Observe from figure 5.2 that the default LLVM peephole opti-
mizer combines most instructions at 8, 085, 388 which is more than all of the Alive-based
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peephole optimizations applied, combined. Alive default has the second most combined
instructions at 1, 378, 615 combines which is over a million more than either bottom-up
and top-down. The difference between top-down and bottom-up is less distinct with
top-down applying 346, 654 combines and bottom-up applying 321, 016 combines.

The ratios of instructions combined between the versions is an accurate represen-
tation of each benchmark’s results where LLVM default generally dominates with the
number of instructions combined, Alive default second most followed by either top-down
or bottom-up. For example, the ‘parest’ benchmark part of the SPEC benchmark set
shows the most number of instructions combined by any of the variants with 1, 282, 360
instructions combined by LLVM default, 221, 978 by Alive default, 59, 390 by top-down,
and 55, 571 by bottom-up. The only benchmarks that do not follow this kind of trend
are tests with very few (< 100) instructions combined by any of the versions. For ex-
ample, the ‘lowercase’ benchmark part of the LLVM test-suite in ‘SingleSource/Bench-
marks/Misc/lowercase’ shows 30 instructions combined by LLVM default, 31 by Alive
default, 21 by top-down, and 18 by bottom-up.

Compilation time

This section will evaluate compilation time which denotes the time (in seconds) it takes
to compile a particular benchmark.

(a) Total time in seconds to compile all bench-
marks, per version

(b) Compile time speedup with respect to LLVM
default

Figure 5.3: Compilation time and associated compilation speedup

Figure 5.3a shows the total compilation time, in seconds, required per version to
compile all available benchmarks with figure 5.3b showing the corresponding speedup
of all four methodologies with respect to LLVM default. The compilation times shown
in figure 5.3a displays an expected trend given figure 5.2 which shows that most code
transformations are applied by LLVM default, then Alive default with top-down and
bottom-up versions the least number of transformations. As LLVM default and Alive
default apply most tranformations, their compilation time take the longest. LLVM
default takes 3814.78 seconds in total, Alive default takes 3662.93 seconds in total, with
top-down taking 3560.29 seconds and bottom-up taking 3568.63 seconds. These results
align with the expectation that more transformations applied means more time spend
doing peephole optimizations.

The corresponding speedups depicted in figure 5.3b show a (rounded to 3 decimal
places) speedup of 1.000 for LLVM default showing that this is used as reference, 1.041
for Alive default, 1.069 for bottom-up, and 1.071 for top-down.
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(a) Full boxplot of compilation time (b) Partial boxplot of compilation time

Figure 5.4: Boxplots of compilation time

Figures 5.4a and 5.4b show the boxplots for compilation time with figure 5.4b showing
the same boxplot as 5.4a zoomed in until 10 seconds. Note that the boxplots omit
all unit tests of the benchmarks since these take close to 0 seconds for any variant to
compile, hence is not of significance for the boxplots. The remaining benchmarks are still
dominated by low compilation time; however, many outliers exist in the boxplots’ upper
whisker as shown in figure 5.4a. LLVM default has 47 upper outliers, Alive default has
46 upper outliers, bottom-up has 46 upper outliers and top-down has 48 upper outliers
with extremes going up to 604.27 seconds for LLVM default, 576.18 seconds for Alive
default, 562, 87 seconds for bottom-up, and 565.70 seconds for top-down.

The contrast in compilation time between the Alive-based versions and LLVM de-
fault is not as distinct as the difference in number of instructions combined. Possibly
because the minor differences between each methodology’s implementation. Recall that
the only difference between all versions benchmarked is the peephole optimizer whereas
the remaining optimizations applied (apart from slp vectorization, which has been dis-
abled for all) are still applied. The perceived difference in compilation time come from
the number of instructions combined by the peephole optimzer, the strategy used to do
so, and/or the propagated effects of the peephole optimizer on other optimizations.

Note that despite having the least number of instructions combined, the bottom-up
strategy results in more time spend compiling than the top-down methodology. This
does not necessarily dictate that the top-down methodology for peephole optimization
matching is better than bottom-up’s but that within the current implementations of
either top-down and bottom-up, top-down is more successful at number of combines
and compilation time. This is not entirely surprising as more time was spend on top-
down’s implementation whereas shortcomings and bottlenecks within bottom-up’s ap-
proach might still contain trivial solutions.

Execution time

All benchmarks run tests using the compiled programs which allows evaluation of execu-
tion time. In other words, the impact of different peephole optimizer versions on execu-
tion time can be assessed. Note that LLVM test-suite’s microbenchmarks, unit tests and
regression tests are omitted. Microbenchmarks are run iteratively until measurements
are of statistical significance. The number of iterations might differ per version and is,
therefore, not suitable for a fair comparison between the different versions. Additionally,
the unit and regression tests are too small for consideration. Many of the execution times
of these tests are rounded to two decimal places resulting in 0.00, implying an execution
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time of 0.

Figure 5.5: Total execution time, per version

Figure 5.5 depicts the total execution time, in seconds, per version. LLVM default is,
as expected, the fastest with 725.74 seconds. This is most likely the result of the substan-
tial amount of instructions combined as can be observed in figure 5.2. Surprisingly, of
the Alive-based methodologies, bottom-up shows the fastest execution time with 854.61.
Alive default was the expected best between the Alive-based approaches considering the
number of instructions combined (which then resulted in a higher compilation time) but
resulted in a total execution time of 863.24 seconds. Although top-down is the slowest
in terms of execution time at 878.71 seconds, it shows the highest speedup in figure 5.3b.

Figure 5.6: Execution time vs number of instructions combined, per version
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Figure 5.6 shows number of instructions combined on the y-axis and execution time
on the x-axis. Observe that LLVM default, Alive default, and top-down all show that a
low number of instructions combined comes at a cost of execution time; however, bottom-
up shows that a lower number of instructions combined can result in a lower execution
time (relative to top-down and Alive default). This event may be caused by either the
subsumption priority enforced resulting in better choice of peephole optimization, the
matching methodology, or a combination of both.

Instruction memory size

The compiled programs can be examined for their executable instruction size (i.e. the
size of the ‘.text’ section). With this, the impact of the different peephole optimization
verions can be evaluated for resulting instruction memory size.

Figure 5.7: Total size of instructions emitted in bytes, per version

Figure 5.7 shows the total size of instructions emitted, per variant. The sizes do
not deviate more than 1, 266, 160 bytes which shows how evenly matched the different
peephole optimizer versions are in terms of emiting instructions. Not entirely surpris-
ing is the LLVM default version which shows the smallest size of emitted instructions
at 72, 370, 940 bytes. The Alive-based approaches show a similar trend as with execu-
tion time, which is that Alive default emits most instructions with 73, 637, 100 bytes
whereas top-down and bottom-up are more conservative in terms of emitting code with
73, 086, 028 and 73, 005, 516 bytes emitted, respectively. This, again, shows that the
number of instructions combined does not necessarily indicate better resulting executa-
bles.
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Chapter 6

Conclusions

This report presented extensions to two tree pattern matching methodologies to conform
to constraints introduced by peephole optimizations. One methodology was top-down,
which matches trees starting from the top, going down towards its leaves. The other
methodology was bottom-up, which matches trees starting from the bottom, going up
towards its root.

An initial implementation of a code generator for both top-down and bottom-up
methodologies have been implemented in Alive, whose DSL shows an abstract and high-
level representations of peephole optimizations with the original intent to formally verify
said peephole optimizations for the LLVM compiler suite. This allowed lowering of high-
level representations of peephole optimizations to code which exploits the tree pattern
matching methodologies. This code can then be easily included in LLVM, resulting in
LLVM using said tree pattern matcher for its peephole optimizer with as goal a faster
compilation time.

The initial benchmark results show promise, where both top-down and bottom-up
approaches exhibit compilation time speedups compared to both LLVM default and Alive
default. Moreover, the expectation was that a speedup would come at a cost of either
binary size and execution time of the programs compiled using compilers which utilize
tree pattern matching. This seemed to be true to some extend with LLVM default which
showed the highest compilation time, most number of instructions combined, but lowest
execution time and smallest instruction memory size. However, between the Alive-based
methodologies the Alive default stategy showed the highest compilation time and most
number of instructions combined did not show the lowest execution time or instruction
memory size. Instead, the top-down strategy showed the smallest instruction memory
size whereas the bottom-up strategy showed the lowest execution time. Assuming that
the only factor affecting benchmarking were the differences between these four peephole
optimization stategies, the compilation speedup might be caused by the subsumption
priority introduced and enforced, the tree pattern matching strategy, the propagated
effects of the different peephole optimizers on other optimizations, or a combination of
the aforementioned.

However, despite showing an improvement using both top-down and bottom-up ap-
proaches, the differences between the Alive-based are not too notable. For example, the
difference in instruction memory size between Alive default and the top-down approach
is 631, 584 bytes (i.e 632 kilobytes) for the benchmark sets totaling about 72 megabytes.
Moreover, the difference in execution time between Alive default and bottom-up is 8.63
seconds for a total of about 860 seconds. Neither these statistical differences seem that
noteworthy, even when considering that only a variantion in peephole optimizer caused
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this difference.

6.1 Open issues

This section aims to introduces some of the open issues within both top-down and
bottom-up approaches to peephole optimization matching and the code generation re-
quired for it.

Supported instructions

Not all available LLVM IR instructions are supported by the code generator. Currently,
these instructions are regarded as wildcard variables; however, if a peephole optimization
definition which uses these unsupported instruction is supplied to Alive in the Alive DSL,
with the intention of emitting LLVM C++ code, no code will be generated or emitted.
The following LLVM IR instructions are supported by both bottom-up and top-down
methodologies at the time of writing: add, sub, mul, udiv, sdiv, urem, srem, shl,
ashr, lshr, and, or, xor, trunc, zext, sext, ptrtoint, inttoptr, bitcast, icmp,
and select. Remember that these are the instructions supported for pattern trees. All
instructions are supported as part of subject trees, as other types of instructions are
covered by variable wildcards.

One of the unsupported instructions that is considered an edge case is the ‘GetEle-
mentPtr’. Most instructions have a fixed number of arguments; however, the ‘GetEle-
mentPtr’ instruction is one of the instructions that does not have a fixed number of
arguments. This affects how the tree pattern matching methodologies create its au-
tomaton or tables as these depend on the number of arguments. For example, bottom-
up’s approach creates a table per instruction with each table’s dimension equal to the
number of arguments for said instruction. As the ‘GetElementPtr’ instruction does
not have a bound on number of arguments, the ‘GetElementPtr’ table would have no
bound on its dimensionality. Furthermore, since the number of arguments are variable,
it would either require the ‘GetElementPtr’ table to support multiple indices, or multiple
‘GetElementPtr’ tables, one for every requires number of arguments.

Priority for unifying trees

It might be possible that multiple patterns match a particular subject tree. In such
a case, the priority as introduced in section 4.2 is used to derive the highest priority
pattern. Nevertheless, if these tree patterns unify no priority can be derived. Topological
sort using the immediate subsumption graph has arbitrarily assigned one tree pattern a
higher priority than the other, however, this higher priority tree pattern might not be
the most suitable choice.

Moreover, when a tree has been chosen between multiple options, the other is not
considered as fallback option. This scenario may result in no peephole optimization
applied when it may have been able to. For example, if a peephole optimization’s
precondition does not hold it will then consider all tree patterns subsuming it as fallback,
but not the unifying tree.

Overlapping tree pattern structures

Multiple peephole optimization definitions might share the same tree patterns with dif-
ferent constraints. Recall that constraints are translated into guards for the transfor-
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mation. Preferably, a tree pattern match is allowed to contain multiple conditionals
to different transformations. This way, peephole optimizations with overlapping tree
pattern structures can be supported.

Array table empty elements

Tree patterns can exist without wildcards. When supplying the bottom-up strategy
with a set of peephole optimizations containing no variable wildcard, the generated
tables might contain empty index values. In other words, some indices might result
in no matchset value assignment. Indexing to these empty elements should result in
matching failures; however, bottom-up’s LLVM C++ generation does not support these
empty elements yet and always assumes that variable wildcard occur within at least one
of the supplied tree patterns.

Equivalence checker for top-down

If a tree pattern contains a plethora of implicit equivalences, many unnecessary equiva-
lence checks will be appended to the precondition. Section 4.4.3 contains the ‘equivalence
checker’ section which explains how unnecessary equivalence checks are omitted from
the precondition. This ‘equivalence checker’ is not yet implemented for the top-down
methodology.

Constant value assumptions in LLVM

C++ code listing 4.8 shows the matchset value retrieval function for constant literals (i.e.
function symbols with an arity of 0). This function uses the ‘getSExtValue’ function,
part of the ‘ConstantInt’ class. This function returns a signed 64-bit value, meaning
that it assumes the value is at most a signed 64-bit. Values wider than 64-bits have not
been tested.

Compare instruction predicate wildcards

Neither bottom-up, nor top-down have been tested with predicate wildcards for integer
compare instructions. In other words, it is always assumed that integer compare instruc-
tions have explicit predicates (e.g. ‘icmp eq’ or ‘icmp ule’). Predicate wildcards could
be processed much like constant wildcards, where predicate wildcards subsume explicit
predicates.

Test failures

Although all benchmark programs were compiled some top-down experienced a test
failure on one of the benchmark sets. More specifically, the executable program emitted
for the ‘siod’ benchmark was tested for a particular input for which the output did not
match the expected output while no tolerances were allowed.

Moreover, the slp vectorizer resulted in assertion errors when used in combination
with any of the Alive-based peephole optimizer. The initial debugging showed that a
‘GetElementPtr’ instruction contained an illegal type discrepancy between indices. This
might have been initially caused by a peephole optimization and propagated through
other optimizations; however, due to time constraints it has been decided to disable the
slp vectorizer instead for benchmarking.
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6.2 Future work

This section aims to investigate some to be explored areas within peephole optimization
matching and transforming.

Alternative automata

So far, only augmented DFAs are used for construction. However, not all peephole
optimization properties are matched yet during automaton traversal (e.g. preconditions).
Using other types of automata with different characteristics might help matching some of
these properties. For example, it might be possible to exploit the auxiliary stack supplied
in push-down automata for matching some of the peephole optimization’s characteristics.

Commutativity

Some instructions are commutative, meaning the argument order supplied does not af-
fect the outcome. An example of such instruction is the ‘add’ instruction. Doing an
add 5, 2 or add 2, 5 instruction result in 7, hence argument order does not matter. The
current peephole optimizer explicitly matches subexpressions and depends on canonical-
ization for its matching. For example, add C, x where x ∈ V and C ∈ C will ensure that
the constant literal occurs on the left subexpressions and anything else may occur on
the right subexpression. Canonicalizing the order ensures that the order between argu-
ments, however, this will require an additional transformation. For example, if the ‘add’
instruction canonicalization requires constants to be the right subexpression whereas
anything else is required to be on the left subexpression, then the aforementioned pat-
tern add C, x requires the intermediate transformation add C, x → add x,C before any
further peephole optimization can be applied. Another commutativity strategy would
be to match all argument permutations of commutative instructions; however, this will
expand top-down automaton’s state space and bottom-up’s matchsets drastically.

Both discussed strategies come with their advantages and disadvantages. Preferably,
commutativity can be considered during matching without any additional steps. This
might be possible by, for example, constructing an alternative automaton which contains
auxiliary memory to keep track of matched subexpressions.

Precondition guard offloading

Checking whether preconditions hold is currently delayed until the end of tree pattern
matching. Preferably these are covered during matching of trees. This way, if precondi-
tions are found to not hold for a subject tree, a fallback alternative or matching failure
can occur faster.

Matchset generation

Currently, matchset generation for bottom-up’s methodology requires a lot of time. This
is because of an excessive amount of set operations. Preferably, another procedure is used
to construct the matchsets. For example, by extending the table generation procedure
by Hoffmann and O’Donnell [8] to support more than simple pattern forests.
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Additional InstCombine improvements

Although the focus of this thesis was using tree pattern matching to speed up compilation
time, other strategies to speed up the peephole optimizer exist. For example, decreasing
unnecessary fixed-point iterations, preferably removing the fixed-point iteration loop
altogether.

Top-down conditional branching vs switch-case jump table

Shown in listing 4.5 is a state in top-down’s approach. Conditional branching is used
to determine which state to transition towards. Instead of using conditional branches
which require evaluation, a switch-case might be more suitable. This switch-case will
not require evaluating all expressions and, instead, creates a jump table which jumps
towards the next ‘goto’ transition to the next state. Additional investigating is required
to analyse the impact of conditional branching versus a jump table within top-down’s
implementation.

Top-down automaton passes

Top-down approach’s generated automaton still emits an inefficient automaton. For
example, section 4.3 describes the ‘CreateSink’ procedure which expands to multiple
states that might result in unnecessary states. Additionally, no state space minimization
is applied for the generated automaton. These inefficiencies can be optimized by doing
a pass over the automaton to analyse, detect, and optimize where possible.

Transformation occurrence

Peephole optimization transformations now occur immediately when a match has been
found; however, it may be more efficient to iterate multiple times using the peephole
optimizer before applying any transformation, and merging the transformations found.
This could avoid unnecesary intermediate transformations.
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Appendix A

Pattern Forest pseudocode

Procedure used to generate the Pattern Forest. Iteratively adds all expression patterns
with its subexpressions to the pattern forest PF .

input:
P : {E} - set of matching pattern expressions

vars:
T : {E} - set of patterns to be added to pattern forest
PF : {E} - pattern forest, set of all subexpressions in P
children : E → {E} - given an expression, returns all child expressions

1: function GenPF(P )
2: PF := ∅
3: T := {p ∈ P}
4: for all t ∈ T do
5: T := T/{t}
6: PF := PF ∪ {t}
7: T := T ∪ children(t)

8: return PF
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Appendix B

Linear array offset computation

Procedure used to calculate the offset in a flattened, or linearized, array which was previ-
ously multi-dimensional. Effectively converts indices in indices for the multi-dimensional
array table to a single index for the linearized equivalent array table.

input:
table : [N]1 × · · · × [N]n - multi dimensional array table of size n
indices : N1 × · · · × Nn - tuple with n indices where n is the

number of array table dimensions
vars:
m : N - multiplication offset for table
offset : N - accumulative sum of all indices’ offsets
size : N1 × · · · × Nn → N - Size of tuple
dimension : [N]1 × · · · × [N]n × N→ N - retrieves a table’s dimension’s size

1: function offsetCompute(table, indices)
2: m := 1
3: offset := 0
4: for all idx := 1→ size(indices) do
5: offset := offset+ (indices[idx]×m)
6: m := m× dimension(table, idx)

7: return offset
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