
Metering the Meter, or How to Efficiently and
Deterministically Charge the Execution of Smart Contracts

GEORGE MITENKOV, ETH Zürich, Switzerland

Blockchain systems are rapidly evolving and, fueled by novel use cases and the competition with traditional

financial systems, have to be not only secure and decentralized but also performant: processing thousands of

transactions per second and having sub-second latency. Under such demanding conditions, the cost models,

which are used by blockchains to mitigate attacks on the network and to align the economic incentives

between users and node operators, become even more important. On one hand, a cost model has to be a

deterministic over-approximation of the real costs of smart contract execution to ensure that even malicious

users pay their fair share of the costs. On the other hand, cost models have to be efficiently implementable, so

that excessive cost metering during execution does not become itself a burden.

Unfortunately, existing solutions do not always satisfy these properties and are not designed with scalability

and performance in mind. In particular, this work shows that naive implementations of cost models and their

metering schemes hinder possible performance benefits from techniques such as JIT compilation, while still

leaving the blockchain systems open for attacks.

To overcome these limitations, we propose a new approach to the design of cost models and their implemen-

tation. While traditionally cost models are predominantly based on resource consumption in the network, the

goal of our approach is to additionally align the incentives and requirements for users, developers, and node

operators. In particular, we focus on one of such requirements – fast and efficient metering of instruction costs

in smart contracts. Inspired by the problems of optimal profiling and code coverage, we define the problem

of minimum metering instrumentation. The goal is to identify a minimal set of instrumentation points in a

program so that it is possible to calculate the sum of costs of all executed instructions and ensure that the

running sum of costs is within a fixed limit While the problem is hard in general, we present an algorithm

that solve the problem under certain conditions.

Our evaluation shows that the proposed algorithm only needs to instrument 30.4-37.5% of the basic blocks

of popular smart contracts, on average, and can also yield more than 2× run time improvements on selected

benchmarks compared to the state-of-the-art approaches.

1 INTRODUCTION
In recent years, with the growing demand for decentralized platforms, numerous blockchain systems

have emerged. Abstractly, a blockchain is a state machine replication system, which allows a set of

participating nodes (validators) to agree on a sequence of blocks of transactions submitted by other

nodes on the network (clients). The blockchain maintains its state and records the history of all

executed transactions, each carrying a smart contract bytecode. While traditionally being designed

as distributed ledgers supporting only simple peer-to-peer transfers of a digital currency, modern

blockchains have a significantly richer spectrum of (web3) applications, thanks to smart contracts.

Blockchains can be used in many domains where sensitive information has to be owned, managed,

and transferred, with healthcare being a great example. Storing health records on the blockchain

allows patients to protect their data and privacy, as well as to grant access to doctors or organizations

as desired [64]. Moreover, blockchains are already being used for fraud prevention, making use

of the immutability of transaction history, including but not limited to examples of real-estate

marketplaces [74], data management systems, etc.

One of the most influential aspects of blockchains is the ability to create an economic value based

on the scarcity of resources. The most obvious example is Non-Fungible Tokens (NFTs), which

allow one to create, own, and transfer digital art, gaming, or photography pieces using dedicated

marketplaces such as OpenSea.
1

1
https://opensea.io

https://opensea.io

2 George Mitenkov

Blockchains are also reshaping the financial industry. Exchanges, centralized such as Binance or

Coinbase, or decentralized like Uniswap,
2
allow users worldwide to buy and sell different digital

currencies, empowering global e-commerce. Digital currencies, in turn, create new opportunities

for traders and market makers.

Even though there are many use cases, there is no wide adoption of blockchains amongst the

general public today. While blockchain-based Ponzi schemes and collapses of crypto-industry

giants like FTX [70] definitely played their part here, one of the main reasons that hinders mass

adoption is simply the low throughput of blockchains and high fees.

For example, at the time of writing, Bitcoin [67] and Ethereum [79] – the two most prominent

blockchains, can process 7 and 20-30 transactions per second (TPS), respectively. In comparison,

Visa is capable of executing more than 65k TPS. Such drastic differences in throughput impede the

usability and the adoption of blockchains.

Low throughput has another implication which affects the popularity of blockchains and makes

it hard to replace traditional payment systems like Visa or MasterCard. Executing a transaction on

a blockchain is usually not free. A fee is needed so that clients pay for the computational resources

they utilize, e.g., to reward validators for the provided service (so they can cover their costs), as

well as to protect the network from Denial-of-Service (DoS) attacks. Because the throughput is low,

transaction fees go up, e.g., a peer-to-peer transfer on Ethereum can cost up to $10-20 during peak

times.
3

Transaction fees are crucial for blockchains. They are calculated based on a cost model – a

mathematical abstraction that regulates how the network resources are priced. For example, most

state-of-the-art cost models assign costs to bytecode instructions.

Because it is impossible to capture the true complexity of a blockchain system, the cost models are

only approximations. Ideally, a well-designed cost model is a simple and tight over-approximation,

which protects it from malicious users and DoS attacks.

A cost model has to be implemented in the blockchain protocol to record the used resources and

ensure they are paid for. This process is called metering. Metering must be efficient, otherwise, the

system may end up using significant computational resources for the metering process itself.

Often, cost models associate bytecode instructions with costs, which, as of today, contribute the

most to the execution costs on popular blockchain networks. The costs are metered and checked at

run time to ensure the client who submitted the transaction has enough funds to complete it.

Blockchains use dedicated virtual machines to execute smart contracts with built-in instruc-

tion cost metering support. Recently, however, more and more blockchains started transitioning

to existing state-of-the-art runtimes, e.g., WebAssembly [48], in order to benefit from existing

optimizations, efficient execution pipelines, and large open-source communities.

In these cases, the contract code is usually instrumented with additional instructions, which

meter instruction costs. This technique has been particularly appealing because it allows one to JIT

compile contracts to native code and to use existing compilers and runtimes without modification.

While there have been many studies on how to scale different parts of blockchain systems and

make them more secure, there has been less attention devoted to studying how cost models and

metering affect scalability and security. In this work, we study the existing cost models used by

a few popular blockchains and how they are implemented, mainly focusing on instruction cost

metering.

We use the following set of research questions to guide our study:

• How do the state-of-the-art cost models calculate the cost to execute a smart contract?

2
https://uniswap.org

3
https://etherscan.io/chart/avg-txfee-usd

https://uniswap.org
https://etherscan.io/chart/avg-txfee-usd

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 3

• How are the cost models implemented in existing virtual machines?

• How do cost models and their implementations impact contract execution performance?

Also, do they pose a security risk to the blockchain?

• How do the most popular contracts look like? What are their main characteristics, and how

do they impact the efficiency of metering?

Guided by these questions, we observe that the existing cost models are not always secure and

are also not always efficiently implemented, as we describe in a detailed study in Sections 3 and 4.

In particular, we find that the flaws in the existing implementations can lead to smaller profits

for validators, incorrect execution behaviour, and even potential attacks on the network. We also

discover that instruction cost metering can cause significant performance degradation, sometimes

more than 2× compared to unmetered executions.

Another important finding of this work is that smart contracts across multiple chains, even

though different, have very similar execution footprints, as we discuss in Section 5. In particular,

we find that only a very small fraction of contracts are not executed successfully until the end and

an even smaller fraction of contracts run into limits enforced by the cost model. Hence, the existing

approaches to meter instruction costs can be significantly improved by optimizing for the common

case.

Motivated by the need for safe and efficient ways to meter the contract’s execution cost, we

formulate the problem of minimum metering instrumentation. The goal of the problem is to

instrument the least number of basic blocks in a program for any execution path so that the

program can be metered safely and deterministically.

In Section 6, we formally define a set of properties any algorithm should satisfy to solve the

problem of minimum metering instrumentation. Our main result is a general bytecode-agnostic

algorithm that minimizes the amount of instrumentation for any path in a program while ensuring

at run time that there is always enough budget for the execution. Compared to the state-of-the-art

approaches for placing the metering instrumentation, our solution is more efficient, yielding up

to 2× run time speedup on a selection of microbenchmarks. Moreover, evaluating the proposed

algorithm on popular real-world contracts, we identified that on average it is sufficient to instrument

only 30.4-37.5% of the basic blocks.

We also show that if the constraints on the metering instrumentation are relaxed, e.g., it is

allowed to execute instructions before they are metered, the instrumentation and its overhead can

be further reduced. However, the problem becomes hard and does not admit a straightforward

solution.

Finally, this work also revisits how to design cost models for blockchains. In Section 8, we present

the Cost Model Standard, which, unlike the existing cost models, captures the relationship between

clients, smart contract developers, smart contract compilers, and validators. We show that such a

design aligns the incentives for the different stakeholders in the blockchain system so that the cost

model can be implemented more efficiently and securely. Additionally, more optimal algorithms

for the metering instrumentation placement can be used.

4 George Mitenkov

2 BACKGROUND
2.1 Blockchains and smart contracts
A blockchain is a distributed state machine that consists of validators and clients. At a high level,

validators agree on a block of transactions and execute them, thereby changing the global state

of the blockchain and progressing the network forward. Clients, in turn, submit transactions to

validators (or intermediate nodes).

All validators maintain the current global state of the blockchain and, typically, a transaction

history that records all transactions executed on the blockchain since genesis (the initial state).

Validators batch client transactions in blocks and run a consensus protocol to agree on which

transactions should be executed. Once agreement on the block content is reached, all transactions

in the block are executed in an isolated virtual machine (VM). Executed transactions (also referred

to as committed) are appended to the transaction history, and the changes made by successful

transactions are applied to the global state.

Client node

Non-validator node

Transaction pool

Validator node

Transaction
Global state and

transaction history

5. Synchronizing the
state and the
transaction history with
other nodes

6. Clients confirm their
transaction has been
committed

1. Clients send their
transactions

2. Transactions are propagated
to validators

3. Validators agree on the
block (consensus)

Proposed
block of

transactions

4. Each validator executes
the chosen block,
commits changes to the
global state and updates
the transaction history

Selected
block

Fig. 1. Step-by-step interaction between clients and validators.

Clients interact with the blockchain using smart contracts. Smart contracts are usually im-

plemented in domain-specific languages such as Solidity [3], Vyper [8], or Move [34]. However,

some blockchains also allow subsets of general-purpose programming languages such as Haskell,

JavaScript, Rust, or C++.

Smart contracts are stored on-chain as bytecode, which ensures portability and allows contracts

to be executed on any platform irrespective of the hardware vendor. The bytecode used depends

on the blockchain or the smart contract language.

Developers can deploy contracts to the blockchain by submitting a transaction with the contract

code. Once the contract is deployed, it can be called by any other client (again, via a transaction) or

by any other contract. If execution is successful, the state of the blockchain is updated. Otherwise,

all changes are discarded. Sometimes, smart contracts can be upgraded by uploading a newer

version of backward-compatible bytecode.

Every transaction on a blockchain is associated with a fee the client is willing to pay for the

transaction to be executed and committed to the global state.
4
The goal of the fee is to pay for

the costs of storing the smart contract code and the data in the global state, and for executing the

program.

4
This is true for most blockchains, but there are some notable exceptions, e.g., Dfinity [49] where the contract developer

pays for execution instead.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 5

1 // Hello World contract.
2 contract HelloWorld {
3 string greeting = "Hello World!";
4
5 // Return the greeting stored on-chain.
6 function get_greeting() public view returns (string memory) {
7 return greeting;
8 }
9
10 // Set the greeting on-chain.
11 function set_greeting(string memory input) public {
12 greeting = input;
13 }
14 }

1 module hello_world {
2 use std::{error, signer, string::String};
3
4 // ‘key’ means this struct is stored on-chain.
5 struct Greeting has key {
6 value: String,
7 }
8
9 // Error codes.
10 const ENO_GREETING: u64 = 0;
11 const EGREETING_ALREADY_EXISTS: u64 = 0;
12
13 // Returns the greeting stored on-chain.
14 #[view]
15 public fun get_greeting(
16 addr: address,
17): String acquires Greeting {
18 assert!(
19 exists<Greeting>(addr),
20 error::not_found(ENO_MESSAGE),
21);
22 borrow_global<Greeting>(addr).value
23 }
24
25 // Set the greeting on-chain.
26 public entry fun set_greeting(
27 account: signer,
28 value: String,
29) acquires Greeting {
30 let addr = signer::address_of(&account);
31 assert!(
32 !exists <Greeting>(addr),
33 error::already_exists(EGREETING_ALREADY_EXISTS),
34);
35 move_to(&account, Greeting { value }
36 }
37 }

1 import {
2 NearBindgen, near, call, view
3 } from 'near-sdk-js';
4
5 // Hello World contract.
6 @NearBindgen({})
7 class HelloWorld {
8 greeting: string = "Hello World!";
9
10 // Return the greeting stored on-chain.
11 @view({})
12 get_greeting(): string {
13 return this.greeting;
14 }
15
16 // Set the greeting on-chain.
17 @call({})
18 set_greeting({ greeting }: { greeting: string }): void {
19 this.greeting = greeting;
20 }
21 }

A) B)

C)

Fig. 2. Examples of simple smart contracts written for A) Aptos, B) NEAR, and C) Ethereum inMove, JavaScript,
and Solidity respectively. The contract allows to store a greeting message on the blockchain and view it.

Validators, in turn, can receive a fraction of the fee to account for the computational resources they

used while processing the transaction, e.g., CPU, storage, or network. Similarly, some blockchains

distribute a portion of the fees to contract developers [77].

To ensure a predictable maximum latency for executing a transaction, and to protect the network

from Denial-of-Service (DoS) attacks, the computational resources used by a transaction are usually

bounded. One way to achieve this is to impose hard limits on used resources, e.g., the maximum

amount of memory a contract can use or the maximum number of bytecode instructions that

can be executed. Alternatively, resource usage can be part of the cost model and included in the

transaction fee. In this case, the execution must be halted as soon as the fee the client is willing

to pay for the transaction (and has funds for) is not large enough to cover the costs for the used

resources.

In this work, we consider four popular blockchains, namely Ethereum [79], Solana [81], NEAR [77],

and Aptos [75]. We note that the blockchain space has numerous other different networks. How-

ever, we believe that considering these four chains is sufficient to understand the differences and

trade-offs of state-of-the-art blockchain execution models, their relationship with the cost models,

and resource metering schemes. We briefly summarize the selected chains in Table 1.

In the rest of the section, we describe how blockchains work in detail, focusing predominantly

on the execution layer. Throughout, we use examples from real networks, showing how they

are organized, how their execution layer is structured, and what runtimes they use to run smart

contracts. We discuss the design trade-offs and compare networks with each other.

2.2 Global state of blockchains
All blockchains keep track of some state, which may change every time a transaction is exe-

cuted. Usually, blockchains use an account model for that, where the state is a map between

addresses (unique identifiers) and accounts, which can be mutated by transactions. Depending

6 George Mitenkov

Table 1. A brief description of blockchains that are selected for this work.

Blockchain Launch date About the chain

Ethereum 2015 The first blockchain to introduce the concepts of smart contracts and

gas. Many modern blockchains, so-called L2 networks, operate on top of

Ethereum to improve its scalability and efficiency. It is the most well-studied

chain in the academic literature.

Solana 2020 Aims to solve the scalability and performance issues of Ethereum. Supports

Rust and C/C++ contracts, and leverages existing infrastructures such

as LLVM [55] and eBPF [62]. The first blockchain to introduce parallel

execution of transactions, thereby significantly reducing the transaction

fees.

Near 2020 Also launched in 2020, NEAR is an important blockchain to study in our

work because it stores smart contracts (originally written in JavaScript

or Rust) on-chain in WebAssembly (Wasm) [48] and uses existing Wasm

compilers and runtimes. Nowadays,Wasm is very popular in the blockchain

community, being also used by networks like Polkadot [80] and will also

potentially be used by a future version of Ethereum [31].

Aptos 2022 Originates from the Diem blockchain [17] and, like Solana, aims for scal-

ability, performance, and security. Uses the Move language, designed for

blockchains from first principles, with built-in formal verification, improv-

ing security and user experience. Also supports parallel processing of

transactions.

on the blockchain, accounts can store different data as shown in Figure 3. Accounts are typically

owned by the users, the system, or smart contracts.

2.2.1 Accounts on Ethereum. Ethereum accounts can be of two types: 1) externally-owned accounts

(EOAs), which do not store any code, and 2) contract accounts, which are owned by a smart contract

and store the code and the associated data. Additionally, they keep track of a balance in ETH (native

token).

2.2.2 Accounts on Solana. Accounts on Solana differ significantly from Ethereum. Solana accounts

can be either data accounts or contract accounts. Moreover, every account on Solana is owned by a

contract account, either created by a client or owned by the system itself. The direct implication of

this is that contract accounts are stateless, and it is the data accounts that store the global state.

…

balance: 100 ETH

nonce: 1

0x002

code

data

0x123

code

owner: System

1 contract CoinWallet {
2 mapping(address=>uint) public balances;
3
4 // The rest of the contract.
5 // ...

balance: 40 ETH

nonce: 10

data

code

null

null

…

0x101

…

0xac3

…

0xff2

…

0x003

A) 0x123

10190 // ...
10191 r1 = *(u64 *)(r7 + 8)
10192 r1 -= r8
10193 if r1 >= r6 goto +4 <panic+0x39b8>
10194 r1 = r7
10195 call -318
10196 // Remaining program code.

balance: 100 SOL

datanull

balance: 0 SOL

data

code null

0x123

owner: 0x002

0x002

… … … ……

0x123

code

owner: System

balance: 40 SOL

datanull

null

B)

code

data data

code

0x1230x002C)

null

balance: 100 APT

1 module 0x002::coin_wallet {
2 // Definition of ‘Balance’ resource.
3 struct Balance has key {
4 value: u64,
5 }
6
7 // The rest of the contract.

nonce: 1

…

Account

…

coin_wallet::Balance

…

Account

Fig. 3. Organization of global state on A) Ethereum, B) Solana, and C) Aptos blockchains.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 7

2.2.3 Accounts on NEAR. NEAR, similarly to Ethereum, stores both code and data under the same

account. The difference is that NEAR uses Wasm to store contract code on-chain. Wasm contracts

are organized in modules, which contain functions and can be called either locally or from other

modules (resulting in cross-contract calls).

2.2.4 Accounts on Aptos. Aptos uses a model similar to Solana, decoupling data from code. However,

unlike Solana, Aptos allows the users to store the code of contracts they develop (modules) and the

data they own (resources) under the same account but in different namespaces.

Modules store bytecode and can be identified in the global state by the address of the account

they belong to and the module name. The code in modules is organized into functions. Like in

many mainstream programming languages, functions have different visibility, ranging from public

to private, and can be called from other on-chain modules similar to general-purpose programming

languages.

Resources are the data accessible from the global state, with semantics inspired by linear logic [46].

This way, resources (e.g., tokens or other digital assets) cannot be copied or dropped implicitly,

only moved between different accounts.

The type of a resource (i.e., theMove type in the original smart contract) together with the account

address identifies a resource in the global state. It is worth mentioning that generic instantiations

are considered to be different types.

2.3 Blockchain fee system and gas
To execute a transaction on a blockchain, the users must pay a fee. Usually, blockchains use the

concept of a fee market in which clients compete with each other offering different fees for their

transactions. The higher the fee is, the more likely the transaction will be executed and committed

on-chain. If the fee market does not exist, the cost of transactions is said to be fixed.

The fee is usually tied to the amount of resources used when a transaction is executed, but

there are exceptions. Solana is an example of a blockchain that uses a fixed fee only proportional

to the number of signatures (used to verify that the sender has authorized the transaction) in

a transaction.
5
This means that the amount of resources used, such as the number of executed

bytecode instructions, is not taken into account when computing the fee. Instead, the runtime of

Solana defines a compute budget – a small cap on the amount of resources that transactions can

use and their size.

If the fees are not fixed, their calculation usually takes into account how many resources a

transaction uses during its execution. If this is the case, the utilization of resources is typically

measured in gas – a fundamental unit of computation that accounts for the computational work

done by the contract and the virtual machine used to execute it.

The concept of gas was first introduced by Ethereum, and many other blockchains also use it. We

describe gas in detail later in this section, however, for now, it is sufficient to understand that the

amount of gas consumed by a contract is 1) roughly proportional to the computational resources

used, e.g., CPU, memory, etc., and 2) deterministic, i.e., do not depend on a particular hardware

platform used by validators or wall/CPU time. We also note that Solana uses a similar concept to

gas called computational units, although it is not included in the fee at the time of writing and is

only used to cap the resource usage.

5
We note that while the fee is constant in the number of signatures, the cost per signature varies. In addition, there have

been ongoing discussions on whether there is a need to account for the computational resources used by transactions when

calculating the fee, similar to what Ethereum and other gas-based chains are doing.

8 George Mitenkov

Table 2. Calculation and distribution of transaction fees on Ethereum, Solana, NEAR and Aptos.

Blockchain Fee distribution Fee calculation

Solana

50% distributed to validators, 50%

are burnt.

numSignatures × pricePerSignature

Ethereum (< 2019) 100% distributed to validators.
6

Aptos 100% burnt.
7

gasUsed × gasPrice

NEAR

30% distributed to contracts, 70%

distributed to validators.

Ethereum (≥ 2019)

The base fee is burnt, and the tip

is given to a validator.

gasUsed × (basePrice + tipPrice)

Gas usually has a dynamic price in a native blockchain token, which depends on the current

load of the network, the demand, or some other factors. Clients then compete on the fee market by

offering higher prices for a unit of gas, increasing the chances of getting their transaction included

in the block.

On Aptos and an earlier version of Ethereum (before deployment of EIP-1559 [37] in 2019), a

simple first-price auction is used to guide the transaction fee mechanism. First, a client specifies

the gas limit and the gas price when submitting a transaction. The product of the gas limit and the

gas price is the maximum fee the client is willing to pay. When the transaction is completed, the

amount of gas used is known, and the final fee is obtained by multiplying the gas price by the gas

used.

For Ethereum, this mechanism did not work well which resulted in transitioning to a new

transaction fee model that works as follows. The fee is split into 1) a base fee, which is a fixed

amount determined by the system and which is always burnt, and 2) a tip that is given to a validator

that incentivizes including this transaction in the block. When the fee is burnt, it simply disappears

from the system decreasing the total supply of a native token. The tip is specified by the client.

While the new model helped to reduce transaction waiting times, the new model did not help with

gas fees reduction [59].

Here, NEAR stands out from the other blockchains because it returns 30% of transaction fees to

contract developers (i.e., to the accounts where the executed contract is stored). With this, NEAR

incentivizes developers to write contracts which will attract more users to the network.

We observe that for validators the best scenario is to maximize the fees they receive while

minimizing the usage of computational resources. Hence, if two contracts have identical gas costs,

rational validators prefer the contract with the lowest resource consumption to maximize their

profit. Indeed, lower resource consumption most likely means that the contract can run faster,

which allows the validator to execute more transactions and increase the revenue. Alternatively,

lower resource consumption decreases expenses, e.g., less network bandwidth is used, increasing

the validator’s profit.

6
Strictly speaking, they were miners instead of validators because the pre-2019 versions of Ethereum were using a proof-of-

work consensus protocol.

7
Based on discussions with developers, Aptos will also distribute a fraction of fees to validators when there is more traffic

on the network.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 9

2.4 Transaction validation and execution
A transaction submitted by a client is not executed straight away. It first ends up in a transaction

pool – a priority queue of pending transactions. The priority of a transaction is influenced by

different factors, e.g., the gas price.

Transactions are validated while in the pool. Validation consists of multiple steps, including

but not limited to checking the validity of signatures, whether the transaction has already been

executed, or if the transaction’s sender has sufficient resources to pay the transaction fee (i.e.,

maximum transaction fee if it is not known upfront). If validation fails, the transaction is rejected

and evicted from the pool.

Eventually, transactions from the pool are forwarded to validators. Validators almost always

batch transactions together into blocks. The size of blocks can range from hundreds to thousands of

transactions. Operating on blocks instead of single transactions allows validators to agree, execute,

and commit at higher throughput, minimizing communication overhead. At the execution layer,

the execution of a block is simply an execution of an ordered sequence of transactions. Note that

the ordering is fixed according to a consensus protocol.

We now describe how a single transaction from a block is executed by a validator. Before

execution, transactions are re-validated. Re-validation typically follows the same procedure as in

the transaction pool.

After re-validation, the transaction gets executed using a virtual machine (VM).
8
The VM is

initialized with a maximum computational budget. On Ethereum, NEAR, and Aptos, this budget is

the maximum amount of gas the contract can use. Additionally, or instead, this budget can enforce

bounds on computational resources, such as memory usage or the number of executed bytecode

instructions. For example, Solana uses this approach.

Usually, the client specifies which function to call from the contract and with which arguments.

The VM then runs the selected function while ensuring the used computational resources are

within the budget. The process of ensuring the budget is not exhausted is called metering.
During execution, the changes the transaction makes to the global state are not applied immedi-

ately and instead are kept separately. If the transaction terminates successfully without exceptions,

the changes are applied to the global state.
9
Conversely, contract execution can fail (e.g., not

enough gas to finish execution, or an exception is thrown because of a division by zero), in which

case the execution is aborted, and the changes made to the state are discarded. Note that failed

transactions are still recorded in the transaction history, and the fees are also charged.

2.5 Cost models for blockchains
As already mentioned, all contract executions on blockchains are metered in order to mitigate DoS

attacks and to ensure that clients pay for the computational resources they use. What exactly is

metered is determined by the cost model.

The goal of a cost model in blockchains is to approximate the real cost of executing a contract on
validators’ hardware under the current protocol implementation. Most importantly, the cost has to

be deterministic on any platform and using any protocol client. This is crucial because costs are

usually included in the transaction history ledger (e.g., amounts of used gas in Ethereum) and are

part of transaction outputs validators agree on when running a consensus protocol. If validators

were to compute even slightly different costs for the same transaction, consensus would fail.

8
The VM can also be used for validation. For example, Aptos uses a smart contract to do certain validation checks, such as

checking the account balance of the sender.

9
Strictly speaking, the changes are applied to the sub-state maintained for a given block. Only when all transactions in the

block are executed, these changes are applied to the global state, i.e., persisted into the actual storage backend used by the

protocol.

10 George Mitenkov

In general, cost models over-approximate the cost to prevent malicious clients from attacking

the network. At the same time, the cost model should be as close as possible to the real cost. If not,

clients are overcharged and are economically motivated to use a different blockchain that is more

cost-effective.

It is also important that the cost model is efficiently implementable. If not, then measuring

the cost of the resource consumption can become expensive. This means that clients would be

undercharged and validators would not profit from execution anymore, not getting paid enough for

the resources they use. It is worth mentioning that cost models can accept under-approximations

in case the accurate cost is too difficult or too costly to measure.

2.6 Cost model implementation and metering schemes in blockchains

In essence, metering is an implementation of the cost model for the protocol. There are two

important kinds of metering: 1) metering to charge for the usage of the validator’s computational

resources, which we call gas metering, and 2) metering to ensure the usage of computational

resources does not exceed some pre-defined limits but does not charge for the usage, also referred

to as resource metering. If gas or resource limits are exceeded, the execution must be halted. What

are the limits, and what are the costs is determined by the cost model.

Most of the blockchains opt for gas metering schemes: all actions performed by a contract are

associated with a gas cost. Using gas is a great example where the cost model simplifies the system

by defining a common unit of resource consumption. The costs are typically associated with the

bytecode instructions, e.g., executing an addition instruction on Ethereum costs 3 units of gas.

However, the implementation details of VMs sometimes also leak into the cost model and as a

result, are included in the gas cost. For example, the VM used by Aptos has a gas cost for generic

type instantiations as a protection against DoS attacks and deeply-nested generic types. This is

because the implementation uses a recursive traversal over the type, which can be slow and could

be used by a malicious user to slow down the network. The metering scheme should also account

for costs like these.

We consider resource metering to be a special case of metering because there the exact consump-

tion over time is not important. For example, if there is a limit on the maximum allowed memory

the contract can use, it does not matter how much memory was used at run time, as long as it did

not go beyond the limit.

For example, Solana has an upper limit on the number of bytecode instructions a contract can

execute. In this case, the VM may not have to track the number of executed instructions at any

given point in time. Instead, it might be sufficient to check the computational budget occasionally.
10

For gas metering, precision becomes crucial because the amount of used gas determines how much

clients pay for their transactions.

Metering and the limits on computational resources are very tightly coupled with the cost model.

In Section 3, we describe the cost models used by the state-of-the-art blockchains, and compare

the costs and limits. In Section 4, we describe how gas and resource metering is implemented, also

discussing trade-offs and possible problems of existing solutions.

10
Note that this is possible with instruction counting because it is a monotonically increasing function. For memory

allocations and de-allocations, such a strategy would not work.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 11

2.7 On-chain code representation and virtual machines
On the chain, the smart contract code is stored as bytecode, which allows greater portability and

thus is preferred over native code. The bytecode is executed in a virtual machine, e.g., using an

interpreter or a JIT compiler.

Here, we consider the different code representations (or simply instruction sets) and the VMs

used by popular blockchains. Table 3 summarizes the VMs and their supported code representations.

Table 3. A brief description of bytecode and VMs used by various blockchains.

Blockchain On-chain bytecode VM

Ethereum

EVM bytecode – stack-based bytecode, de-

signed from scratch specifically for EVM.

Ethereum Virtual Machine (EVM) [79] – a

specification of a VM for Ethereum protocol

with multiple implementations.

NEAR

WebAssembly (Wasm) – stack-based lan-

guage primarily developed for the browsers

and the Web.

NearVM [7] – a wrapper around Wasm run-

times to work under the blockchain setting.

Solana

Solana Bytecode Format (SBF) – a modified

version of eBPF bytecode, register-based. An

important difference of SBF from eBPF is

that loops are allowed.

Solana has its own VM, but in this work we

focus on one of the components – RBPF [10],

which is a modified version of the eBPF VM

used to execute contracts.

Aptos

Move bytecode – stack-based representa-

tion, designed from scratch for the Move

programming language.

MoveVM [19] – a VM to securely execute

Move bytecode. In this work we consider the

version used by Aptos.

First, we observe that Ethereum and Aptos use bytecode invented for blockchains and conse-

quently a VM designed from scratch. In contrast, Solana and NEAR opt for existing instruction

sets, in order to benefit from existing infrastructure, tools, and broader developer communities.

EVM, NearVM, and MoveVM use stack-based bytecode, which allows contracts to be more

compact compared to the register-based representations [73]. In contrast, RBPF used by Solana is a

register-based VM.

Next, we focus on the instruction sets supported by EVM, RBPF, NearVM, and MoveVM. We note

that we do not describe all kinds of instructions, but rather focus on interesting design decisions

that impact the cost model and its implementation, as we will see in Sections 3 and 4.

2.7.1 Simple instructions. All instruction sets we consider mostly comprise of simple instructions:

arithmetic, type casts, constants, and stack manipulation (if stack-based). However, there is a

noticeable difference in their semantics, which has long-standing effects on both the cost model

and its implementations. As an example, we describe a simple integer addition shown in Table 4.

Most of the simple instructions in EVM operate on 256-bit integers, matching the word size

of the stack. As a result, manipulating integers of smaller bit widths requires extra instructions

(e.g., to zero out the bits) and becomes more computationally expensive. At the same time, simple

instructions always terminate, e.g., addition wraps and even division by zero is defined as zero. We

see that in such a design, it is the responsibility of the developer and the compiler (e.g., for Solidity)

to have checks to avoid wrapping. A clear drawback is that this is error-prone, and in particular,

opens the door for vulnerabilities in smart contracts.

MoveVM uses the opposite approach, making most of the simple instructions checked, and

therefore arithmetic, type casts, and some other instructions can throw an exception at run time.

12 George Mitenkov

Table 4. Comparison of addition in EVM bytecode, SBF, Wasm and Move bytecode.

Language Description

EVM byte-

code

A single instruction that performs an unsigned 256-bit addition, wraps on overflow.

Wasm Additions can be 32- or 64-bit, and wrap on overflow.

SBF

Additions can be 32- or 64-bit, and operate on both registers and immediates. Wrap on

overflow.

Move byte-

code

The addition is unsigned and is an overloaded instruction for different bitwidths from

8 to 256 bits (and throws an exception if the bit widths of arguments do not match).

Throws an exception on overflow.

Such a design clearly prioritizes security over performance, because all instructions have an implicit

branch and also because instructions are overloaded. Moreover, this has implications for the cost

model making the instruction costs higher because of the implicit control flow.

NearVM and RBPF use existing instruction sets, with arithmetic, casts (for Wasm) and other

instructions having wrapped semantics. Still, division traps on overflow or division by zero.

We conclude that the instructions sets used by different blockchains and VMs have different

semantics, prioritizing either performance or security. Even simple instructions can have implicit

control flow, which has to be accounted for by cost models and their implementation.

2.7.2 Control-flow instructions. Control flow is particularly interesting in smart contracts. Here,

we consider how control flow is handled within a single contract, as summarized in Table 5.

Table 5. Comparison of explicit control flow in popular bytecodes.

Language Description of local function calls Description of general control flow

EVM byte-

code

Calls to local functions defined in the same

contract are implemented as jumps. To re-

solve the function call special selector code

to jump to the right address is used.

Unstructured control flow with

conditional/unconditional branches and

terminating instructions (e.g., return).

Move byte-

code

Supports generic function calls. Local and

cross-contract calls are not differentiated.

SBF Local function calls are supported using

call instructions. Arguments are passed

via registers (SBF) and/or via stack (Wasm).

Wasm Structured control flow is built into the lan-

guage in addition to classical branches.

We observe that all instruction sets have instructions that transfer control flow or terminate the

execution (successfully or not). Moreover, at the time of writing, there is no exception handling.
11

We highlight that Wasm stands out compared to the other instruction sets because it uses a

structured control flow. As we will see in Section 3, structured control flow can be problematic

because the code structure can differ significantly from native code, e.g., x86 assembly. For example,

Wasm programs can contain deeply nested blocks (a sequence of instructions where branches can

11
There is some progress on adding exception handling toWasm, but it is not yet finalized [18], nor supported byWasm-based

blockchain runtimes.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 13

only jump to inner blocks or the end of the block) with almost no real branching.
12
While Wasm

interpreters have to execute these instructions, they do not exist in native code.

It is also worth mentioning the difference in function call handling. Because function calls in

Move bytecode can be generic, MoveVM has to perform type instantiation at run time. The use of

generics simplifies smart contract development and allows for code reuse but also shifts the type

instantiation to run time, which can negatively impact performance and adds complexity to the

cost model.

At the same time, the Ethereum smart contract code does not have functions at all. This makes

porting EVM bytecode to alternative faster representations (e.g., Wasm) challenging, and makes it

very difficult to analyze the code structure.

2.7.3 Cross-contract calls. Cross-contract calls are essential for smart contract design and are

widely used by web3 developers. In general, there are two different ways of handling cross-contract

calls, as we can see in Table 6: by starting a new VM or loading the called contract at run time.

Table 6. Comparison of cross-contract calls in popular VMs.

VM Description

EVM,

NearVM,

RBPF

A new VM is instantiated when there is a cross-contract call. The current state (e.g.,

registers, arguments, or memory) is passed to the new VM instance. When the call

completes, the control returns to the caller’s VM.

MoveVM

When the contract is executed, its cross-contract dependencies (i.e., imported modules)

are loaded in advance. When a cross-contract call is identified, the function is called

from one of the loaded modules, identically to how a local function would be called.

We observe that MoveVM follows a more traditional design used by general-purpose VMs and

languages: the code is loaded at run time and the VM simply transfers the control flow to it.

This design allows loading the called contract only once, and then calling functions, just like

local functions would be called. On VMs like EVM, a new VM is instantiated for each call, and

therefore the arguments and the return data have to be passed in and out for the new VM.

At the same time, such a design also has a drawback. For example, all dependencies are loaded

before a contract executes, whether or not all of them are used. This can negatively impact perfor-

mance and even be used as an attack vector (under the existing cost model).

2.7.4 Memory instructions. In all VMs, there is a concept of memory that can be accessed and

modified at run time, i.e., a heap space. Table 8 summarizes the memory model for different VMs

and describes how memory can be accessed.

We observe that while both EVM and NearVM use linear memory, the semantics of memory

expansion are different. NEAR requires memory management to be done by the compiler – to

insert instructions to grow memory. In contrast, on Ethereum, every memory access can potentially

expand memory. This approach can degrade performance because memory is expanded multiple

times instead of performing a bulk allocation.

Interestingly, MoveVM used by Aptos does not have an explicit memory at all. While this has its

pros (e.g., automatic memory management, simpler bytecode), it can be very restrictive and might

have unpredictable performance. For example, multiple fields in a struct might not be allocated

consecutively, making field access latencies different.

12
https://github.com/bytecodealliance/wasmtime/issues/3414

https://github.com/bytecodealliance/wasmtime/issues/3414

14 George Mitenkov

Table 7. Comparison of memory models and instructions for different bytecodes.

VM Description

EVM bytecode

Memory is a word-addressed byte array with a word size of 256 bits, zero-initialized

and linear, i.e., it is never freed and only new bytes can be allocated. EVM bytecode

has three instructions to handle memory to load words from memory or store a

single byte or a word. These instructions perform memory expansion implicitly

when accessing an unallocated memory address.

Wasm

Memory is linear and can only grow in increments of pages, that is at least 4 KB.

Memory can be expanded using a dedicated grow_memory instruction, and accessed
via standard Wasm load/store instructions. Accesses that are made beyond the

current memory size trap.

Move bytecode

There is no concept of memory in Move bytecode. A run-time value representation

of data is used instead, where value is just an enumeration, which can be a primitive

type, a heap-allocated vector, or a heap-allocated struct.

SBF

Memory is a fixed-size heap space, which can be accessed using different flavours

of load/store instructions. Accesses are checked, and they trap if an invalid memory

region is accessed.

2.7.5 Storage instructions. Recall that blockchains have a global state where all the data is main-

tained. The global state can be accessed by smart contracts and modified, and therefore VMs have

to handle this interaction. For Ethereum, Solana, NEAR, and Aptos blockchains the storage is

organized as key-value pairs, but the way the contracts access it is different, as described in Table 8.

Table 8. Comparison of storage models and instructions in EVM bytecode, SBF, Wasm and Move bytecode.

Language Description

EVM Storage access can be either a load or a store, both of 256-bits (EVM word size).

Wasm Storage accesses inWasm contracts aremodelled as calls to host functions. Host functions

are defined in the VM (in the host program, as the name suggests) but can be called from

Wasm code. Like in Move bytecode, reading and writing to storage, existence checks,

and delete operations are supported.

SBF Solana accounts are stored in memory-mapped files, which map into the virtual address

space of a running process that executes the contract. Storage can be accessed using

load/store, and other similar SBF instructions.

Move byte-

code

Move bytecode has instructions to move data to storage, borrow it from the global state

(returning a mutable or immutable reference), check existence, or delete it.

We observe that for EVM and MoveVM the storage is part of the bytecode specification, and is

accessed with special instructions. Move storage instructions are more detailed, potentially allowing

for more optimizations. At the same time, they take a generic type parameter that represents the type

of data to access from, and thus the type is only known at run time. As a result, it is challenging to

implement JIT compilers for Move bytecode as the generic types would need to be monomorphized

during execution.

In contrast, Solana and NEAR use existing VMs and therefore use different approaches. NEAR

is still similar to Ethereum or Aptos because storage accesses are modelled as host function calls.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 15

Solana maps storage to a memory region, which allows RBPF to treat storage and memory accesses

uniformly and keep the VM implementation simple.

2.8 Bytecode verification, interpretation and JIT-compilation in blockchains
Usually, VMs for general-purpose languages employ a variety of techniques in order to improve

security and performance. In particular, two major techniques that are important for this work are

bytecode verification and JIT compilation.

Table 9. Bytecode verification and execution in existing VMs.

VM Bytecode verification Execution

EVM A single pass to compute the table with jump

targets and validate them.

A variety of interpreters, ranging from sim-

ple implementations [2] to more optimized

ones [15] which use techniques such as

jump-threading.

NearVM Before execution, Wasm code is validated,

e.g., type checked.

Mostly JIT compilation via Wasmer [13] (in

production) or wasmtime [16].

RBPF A modified eBPF verifier (e.g., it allows

loops). Performs a linear pass with simple

checks and does not analyze the control-flow

graph of the contract.

A simple interpreter and a JIT compiler

(working for x86, and Aarch64 under devel-

opment).

MoveVM Extensive bytecode verification, which

checks the structure of the bytecode and

whether it is well-typed, stack sizes, absence

of dangling references, etc.

A very simple interpreter with no optimiza-

tions.

As shown in Table 9, the VMs for blockchains are still very young and usually lack security

features (e.g., no extensive bytecode verification) and are not optimized for performance.We observe

that in cases where fast execution is available (e.g., for Solana and NEAR), it comes from re-using

existing infrastructures and runtimes (in the case of Wasm).

However, using existing runtimes comes at a cost. The VMs used by blockchains need to integrate

deterministic resource metering in order to implement the cost model. We will see in Section 4 that

this is a challenging task, and can lead to bugs and security vulnerabilities in blockchains.

2.9 Summary
In this section, we understood what are blockchains and how smart contracts are executed. We

learnt that blockchains use cost models to approximate the real execution or storage costs. Cost

models are fundamental to protect the network from DoS attacks, to ensure that clients pay their

fair share of the infrastructure cost, and to reward validators who operate the network.

The implementation of a cost model is called metering. Metering tracks execution and storage

costs, as well as limits certain run-time resources. A well-designed cost model must have an efficient

metering scheme.

We also presented a detailed comparison of multiple VMs used by state-of-the-art blockchain

networks: Ethereum, Solana, NEAR, and Aptos, as well as their bytecodes. We observed that the

semantics of instructions in different chains vary greatly.

16 George Mitenkov

3 BLOCKCHAIN COST MODELS: A STUDY
In this section, we describe the cost models used by some of the popular blockchains, focusing on

Ethereum, NEAR, Solana, and Aptos. A well-designed cost model is crucial for the cost-effective

execution of smart contracts. As we will see later, the existing cost models do not always reflect

that.

Cost models have to account for many different aspects of the blockchain system, including but

not limited to execution in the VM, the underlying protocol, or long-term storage. In this work, we

primarily focus on execution-related aspects of cost models, analyzing what incentives they bring,

as well as identifying what they miss.

3.1 Measuring computations on blockchains
Blockchains use a cost model to 1) approximate the real cost of executing a contract, and 2) provide

the right incentives to contract developers, infrastructure operators, and clients. Cost models

usually take into account the typical hardware that validators use, the VM stack, and the blockchain

protocol.

3.1.1 Approximating hardware costs. The executed instructions usually serve as a good metric

for calculating the cost of a program and how it utilizes the hardware. For example, there exist

instruction tables [43] which help engineers estimate the latency and throughput of different

instruction sets on various CPUs. Depending on what kind of instructions are used, programs can

be more or less expensive (in terms of the usage of the computational resources) to execute.

Being able to predict the execution cost based on the instruction opcode is particularly attractive

for blockchains. A common approach used by themajority if not all blockchains, including Ethereum,

NEAR, and Aptos is to associate instructions with costs so that the cost is proportional to how

computationally expensive the instruction is. Then, in order to approximate the cost of a sequence

of instructions it suffices to sum up their costs.

It is also important to consider the code size of the program in the cost model. It is well-known

that large program sizes can degrade performance because programs do not fit into the instruction

cache, or because they have to be loaded/compiled at run time by the VM. Hence, blockchains

usually have a cost per byte of code.

The second metric which approximates the utilization of hardware is memory. Indeed, memory

accesses can impact the execution cost of a program significantly: the latency of an access varies a

lot depending if it is a cache hit or miss, and where the data is coming from.

Approximating the real cost of memory is difficult because the cost model has to be deterministic

for any hardware while the effects of caching are not. Instead, blockchains opt for using simpler

memory models with pricing based on the amount of allocated space, rather than the access

patterns.

Lastly, the cost model must account for the data stored in the blockchain’s global state, because

this consumes disk space of validators. The cost of storage has to take into account 1) the number

of accesses and the amount of fetched data from the disk (in bytes), and 2) how long the data is to

be stored for.

Note that the cost of long-term storage is crucial: if the amount of active users of the blockchain

increases, so does the global state, putting more pressure on validators and forcing them to use

larger and larger disks. Hence, in existing blockchain systems the cost model usually incentivizes

clients to delete their data or enforces a rent-like mechanism
13
to prune unused disk space.

In summary, the cost of the hardware can be estimated as a weighted sum of:

13
https://docs.solana.com/implemented-proposals/rent

https://docs.solana.com/implemented-proposals/rent

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 17

(1) the costs of executed (bytecode) instructions,

(2) the cost to load the program,

(3) the memory costs when executing a program,

(4) the storage costs to store the global state of the blockchain.

3.1.2 Approximating VM costs. Contracts are executed inside a VM, either via an interpreter or

using JIT compilation. Therefore, it is important to consider the costs associated with starting up

the VM itself.

In addition, before a contract gets executed, its bytecode may be analyzed. For example, Aptos

runs a bytecode verifier before executing any program. We note that to our knowledge there are

no blockchains that include such analysis into the cost model.
14

This can lead to potential attack vectors on existing networks. For example, if the algorithm uses

a fixed-point iteration to perform an analysis, e.g., compute some data flow, then it is vulnerable to

adversarial inputs. In particular, it is possible to come up with an instance of a program where the

run time becomes at least quadratic in the input size.

In summary, the cost of the VM can be estimated as a weighted sum of:

(1) the cost of launching the VM,

(2) the cost of analyses (e.g., bytecode verification) performed by the VM.

3.1.3 Approximating protocol costs. Finally, it is important to consider the cost of the actual protocol

a blockchain uses. Based on the protocol specification, a transaction has a certain size in bytes and

carries one or more signatures that have to be verified. Existing cost models typically place a limit

on the maximum size a transaction can have (so as not to saturate the network) and include the

cost for signatures attached to the transaction.

Moreover, every blockchain protocol validates transactions before execution by specifying the

number of checks transactions should pass. These checks, as we have seen, are agnostic of the

actual program and usually involve checking the sender’s balance or the sequence number of the

transaction. As some computational resources are used for validation, they also have to be included

in the cost model.

We note that for convenience, existing blockchains combine certain VM and protocol fixed costs

under a single base cost – the minimum cost of executing any program on a blockchain. Such an

approach makes the cost model more concise and easier to analyze.

In addition, a cost model should also take into account the execution of transactions within

the block. For example, Figure 4 shows the runtime of Block-STM [44] – a parallel transaction

processing engine used by the Aptos blockchain, on different workloads: peer-to-peer transfers

between 2, 4, and 100 accounts, selected randomly.

We observe that the larger number of accounts implies lower conflict rates between any pair of

transactions. As a result, the execution time can increase by order of magnitude if there are many

conflicts.

While similar trends are observed in other chains that support parallel processing of transactions,

it is interesting that no blockchain has yet included block execution into its cost model. Instead,

different attempts to reduce the conflicts have been proposed, e.g., by providing sets of read-write

locations
15
or shuffling transactions [51].

In general, scalability improvements such as parallel transaction processing have to be accounted

for in the cost model. Another such example is blockchain sharding. With sharding, the blockchain

is split into multiple sub-chains which allows the network to process transactions in parallel within

14
There exists a proposal to charge for the JUMPDEST analysis on Ethereum [32]. However, it has not yet been accepted.

15
https://docs.solana.com/developing/programming-model/transactions#overview-of-a-transaction

https://docs.solana.com/developing/programming-model/transactions#overview-of-a-transaction

18 George Mitenkov

2 10 100

100

200

300

Number of accounts in the block

R
u
n
ti
m
e,

m
s

1 thread
2 threads
4 threads
8 threads

Fig. 4. Runtimes for executing a block of 1000 peer-to-peer transactions using Block-STM with a different
number of threads. On the x-axis – the number of accounts in the system, used to randomly generate
peer-to-peer transactions. The data is obtained using Apple M1 Pro CPU with 8 cores and 16 GB of memory,
with multi-threading and frequency scaling disabled. Aptos node version 1.7.2 is used.

each shard. However, sharding is susceptible to communication overhead, as it essentially sacrifices

intra-shard parallelism for cross-shard communication. To date, there has been little research done

on how sharding affects cost models.

In summary, the cost of the protocol can be estimated as a weighted sum of:

(1) the cost for a transaction to reach execution inside the VM, including validation, signature

checks, etc.,

(2) the cost for executing a block of transactions,

(3) the cost of sharding.

In the rest of the section, we analyze the aforementioned costs, primarily focusing on execution

inside a VM. We first look at the base costs used by popular blockchains and analyze how they

compare to the average cost of a transaction. We also discuss different upper bounds used by the

networks to limit resource consumption. Finally, we present a detailed analysis of how bytecode

instructions are priced for the selected blockchains, focusing on simple, control-flow and memo-

ry/storage instructions. Where applicable, we mention the limitations of the current cost models

and discuss potential problems or attacks.

3.2 Gas and computational units
In order to charge for on-chain computations, blockchains use the concept of gas. A notable

exception is the Solana blockchain, where the term computational units (CUs) is used instead for the
same concept. Solana is also the only blockchain in our study that uses a flat-fee model, charging

the users for the number of signatures per transaction and not for the computations.

Even within the gas-based cost models, the costs in units of gas differ by orders of magnitude.

For example, on Ethereum instructions usually have single-digit costs, NEAR uses tera-gas (10
12

gas) when describing the costs, and Aptos uses fractions.

As a result, it becomes very difficult to compare the cost between different blockchains if using

raw gas units. In order to allow comparisons across chains, we convert gas costs to the equivalent

costs expressed in terms of US dollars (USD), as shown in Table 10. For example, if some computation

has a gas cost of 𝐶𝑔, then its cost in USD 𝐶𝑈𝑆𝐷 is computed as

𝐶𝑈𝑆𝐷 = 𝐶𝑔 ·𝐶𝑢 ·𝐶𝑡 ,

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 19

where𝐶𝑢 is the cost of a single gas unit in the native token and𝐶𝑡 is the exchange rate of the token

to USD.

In this work, we use the exchange rates for the native tokens calculated based on the 7-day

average from 05.09.23 to 11.09.23 taken from CoinMarketCap.
16
In order to calculate the gas prices

in USD, we additionally took 7-day average gas prices for each network.

Table 10. Exchange rates for native tokens, the units of gas, and addition instruction for Ethereum, NEAR,
and Aptos blockchains. For Solana, the cost for a single signature is shown.

Ethereum Solana NEAR Aptos

Token price $1,631 $17.5 $1.1 $5.5

Gas unit (signature) cost $23.0 · 10−6 $87.5 · 10−6 $0.11 · 10−15 $7.7 · 10−6
Cost of addition $69 · 10−6 $0 $0.09 · 10−12 $24.6 · 10−9

We can already observe how the difference in the bytecode influences the costs. NEAR usesWasm,

a relatively low-level bytecode, and so its instructions are significantly cheaper than instructions in

EVM or Move bytecodes.

In the rest of the section, we use the costs from Table 10 to compare prices across chains for

different instructions or actions on the blockchain. We also refer to addition instruction as a baseline,

as it is sometimes preferable to express the cost in the number of additions.

3.3 Base costs
Every blockchain includes a base cost in the cost model in order to account for fixed VM and

protocol costs, as discussed before. Table 11 shows the base costs for some of the blockchains, both

in terms of gas and in terms of USD.

Table 11. Comparison of base costs on Ethereum, NEAR, and Aptos blockchains. For NEAR, we use the base
cost for calling a method of a smart contract. Again, Solana is different and has no base cost.

Ethereum Solana NEAR Aptos

USD price $0.48 $0 $0.255 · 10−3 $11.6 · 10−6
Equivalent to # additions 7,000 - 2.82 · 106 469

Average transaction cost $0.84 - $1.40 · 10−3 $3.14 · 10−3

The base cost of Ethereum is equal to the cost of a transfer between two externally-owned user

accounts (EOAs). According to Ethereum’s website, this amount covers the cost of cryptographic

primitives to get the address of a sender from the signature, as well as an estimate of the cost of

storing the transaction. We observe that on Ethereum the base fee accounts for approximately

50% of an average user transaction cost. This means that the cost of executing the bytecode of

smart contracts does not dominate the total cost. Another possible explanation is that transactions

on Ethereum are mostly transfers, and therefore have zero execution cost, thereby skewing the

average transaction cost closer to the cost of a peer-to-peer transfer.

We observe that Aptos has a significantly smaller base cost which is closer to the cost of bytecode

instructions, unlike Ethereum, if expressed in terms of the number of additions. This can also be

16
https://coinmarketcap.com

https://coinmarketcap.com

20 George Mitenkov

seen when comparing the base cost with the average cost of a transaction on Aptos. We deduce

that on Aptos bytecode execution dominates the final cost.

Another possible explanation for such a discrepancy between the base cost and the cost of

execution on Aptos is the inefficient VM implementation. Because MoveVM is not performant, the

cost of processing a single instruction has to be increased (indeed, addition on Aptos is at least a

million times more expensive than addition in Wasm).

In contrast, the base cost on NEAR for calling a function in a contract is an order of magnitude

larger than a single Wasm addition. The average cost of transaction on NEAR is 5.5× greater than

the base cost. It means that for NEAR the execution cost dominates the total cost of an average

user transaction, similar to Aptos.

In conclusion, we observed that the cost of VM execution (i.e., costs of bytecode instructions) is

the main contributing factor to the cost of an arbitrary user transaction, on average. As a result, it

is crucial to ensure that bytecode instructions are well-priced.

3.4 Run-time limits
Blockchains enforce different limits at run time in order to ensure the resource consumption is

bounded to protect against DoS attacks and to ensure deterministic execution. For example, NEAR

and Aptos blockchains have a maximum length a function name can have in a contract so that

malicious code does not slow down the network by using huge identifiers. For this work, it is worth

mentioning a pair of limits: 1) code size, and 2) stack height for stack-based bytecode. We show the

limits in Table 12.

Table 12. Limits on the maximum code size and the maximum stack height.

Ethereum Solana NEAR Aptos

Maximum code size (KB) 24 1.2 4096 64

Maximum stack height 1024 - 262,144 1024

We observe that the code size varies a lot. Interestingly, Solana uses a very small code size (rough

estimation – 153 SBF instructions because each instruction is at least 8 bytes). This impacts how

contracts are deployed – instead of deploying the contract all at once, developers have to send

multiple transactions to put the code on-chain in chunks. This is because Solana does not price the

code size and therefore keeps a very small free limit.

We observe that Aptos allows one of the biggest code sizes. However, it is worth mentioning

here that the size of the code is priced: there is a free cap of 600 bytes, after which users have to

pay on a per-byte basis. In contrast, Ethereum does not have that.

Wasm is also interesting. We see that it allows the largest programs, but this is because Wasm is

low-level and so programs have many instructions, which increases the size significantly, unlike

Solana.

The second limit is the stack size, which is not used for Solana because SBF is a register-based

instruction set. Again, the same observation holds: Wasm code is expected to have more items on

the stack but for Ethereum and Aptos – heights are the same.

Limiting the stack height is important for Wasm because the maximum number of elements a

stack can hold varies across operating systems and different CPU architectures. At the same time,

the limits have to be deterministic, and therefore the runtime that executes the contract has to limit

its stack size as well.

In this work, however, we do not focus on enforcing stack size, or other forms of run-time limits.

The problem of stack sizes is mostly applicable for Wasm, and stack-based instruction sets. Here,

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 21

we consider instead a more general problem of metering of instruction costs and memory. The

main conclusion is that certain limits require very expensive metering.

3.5 Costs for bytecode instructions
In this section, we study how different kinds of instructions are priced on Ethereum, NEAR, Solana,

and Aptos. This is a particularly interesting study because one can observe how the semantics of

bytecode instructions influence the cost.

While Solana uses a flat-fee model and does not take executed bytecode instructions into account

when computing the cost of a transaction, it still defines a limit on the maximum number of

instructions that can be used in a program. As we will see, such a setting simplifies the cost model

but can be exploited.

3.5.1 Simple instructions. For selected blockchains, the majority of instructions have a constant

integer cost. Here, we consider simple instructions such as arithmetic, casts, etc. In particular, we

focus on arithmetic instructions – their costs (relative to each other) and their costs in USD (across

chains).

We observe that all blockchains with an exception of Ethereum assign the same cost for simple

instructions. For example, Table 13 shows how the costs for multiplication and division compare to

the cost of addition.

Table 13. Comparison of costs of multiplications and divisions on Ethereum, Solana, NEAR, and Aptos. All
costs are expressed in terms of the cost of addition instruction or USD.

Multiplication or division Ethereum Solana NEAR Aptos

additions 1.67 1 1 1

USD $115 · 10−6 $0 $0.09 · 10−12 $24.6 · 10−9

It is interesting that while division is more expensive than addition or multiplication on modern

CPUs [43], it is still assigned the same cost (or almost the same in the case of Ethereum). To

understand if this approach is robust, we set up a small experiment. We construct SBF programs

which consist only of additions or divisions and execute them using Solana’s RBPF JIT compiler

(without metering their costs). We use Intel Core i7-7700HQ (Kaby Lake) for the experiments with

multi-threading and frequency scaling disabled.

We observe that programs with divisions only, on average, are 30× slower. In addition to large

latencies of division instruction compared to addition, the slowdowns are due to the JIT compiler

adding checks for division by zero and division overflow.

Such a significant run-time overhead has an impact on how many transactions a chain can

process and the fees validators receive. We recall that Solana prices transactions using the flat-fee

system, equivalent to $87.5 · 10−6 per signature (i.e., per transaction). Given that Solana can operate

at a few thousand transactions per second (TPS), assuming an approximation of 5000 TPS, in order

to process 1,000,000 transactions a validator needs 1, 000, 000/5, 000 = 200 seconds, approximately.

Given that Solana has 2,421 validators in total, with 50% of fees being distributed to the validator,

the daily revenue of a validator can be calculated as

24 · 3, 600 · 0.5 · 87.5 · 10−6 · 5, 000 · 1

2, 421
= $7.8

in expectation.

Hence, processing 30× less transactions results in only earning $0.3 daily, if all transactions were

to contain only divisions.

22 George Mitenkov

We conclude that having the same cost for simple instructions can be a good idea, however,

outliers such as division have to be taken into account. One can say it is not realistic to have

contracts consisting of division only, but there can be instances of other instructions also with high

variance in latency, or malicious users aiming to reduce validators’ profits and slow them down.

Curious if other blockchains are affected by this, we looked into solutions by Ethereum, NEAR,

and Aptos. Only Ethereum has a higher cost for division than for addition, with it being 1.7×
more expensive. At the same time, a recent study [68] shows that Ethereum opcodes are not

well-calibrated in terms of costs.

Authors observed that additions and multiplications have the same running time in their ex-

periments, but division instructions are 5× slower than addition, on average. This is because

according to Ethereum EVM bytecode specification, division by zero is defined as zero, and so

division bytecode instruction has an implicit branch. We observe that the factors between the costs

and execution times are different, and so it is easy to construct an adversarial example that would

not cost proportionally to the work done by a validator node.

On Aptos, division has the same cost as addition. Divisions are slower than additions, and

therefore the program can have the same problem as in Solana. However, we do not observe that in

our experiments because the VM implementation is not optimized for performance, and the cost of

the interpreter’s dispatch loop and internal data structures dominates the total running time.

At the same time, NEAR benefits from using Wasm, which has a better solution thanks to its

specification. In Wasm, division operation traps on division by zero or overflow, and therefore the

Wasm code must also include checks for division by zero or overflow. These checks are also priced,

and therefore, the latency due to branches on overflow is implicitly taken into account.

In conclusion, we observed that

• instructions can have very different latencies which, however, are not always taken into

account by modern blockchains;

• instructions that can throw an exception, such as division, require additional handling,

which prevents validators from earning more and also decreases the throughput of the

network.

The latter also adds complexity to metering, as we will see in Section 4.

3.5.2 Control-flow instructions. In all cost models we study, control flow is never taken into account.

Instead, the billing is based on the instructions that lead to a change in control flow. Table 14 shows

the costs for branch instructions on Ethereum, Solana, NEAR, and Aptos.

Table 14. Cost of control-flow branching instructions on Ethereum, Solana, NEAR, and Aptos in terms of the
number of additions and USD.

Instruction Ethereum Solana NEAR Aptos

unconditional branch (# additions) 2.67 1 1 0.33

unconditional branch (USD) $184 · 10−6 $0 $0.09 · 10−12 $18.5 · 10−9

conditional branch (# additions) 3.33 1 1 0.67

conditional branch (USD) $230 · 10−6 $0 $0.09 · 10−12 $27.7 · 10−9

Based on the data, we observe that branches are cheaper on Aptos than on Ethereum. Such

counter-intuitive results can be due to the semantics of Move bytecode. We recall that arithmetic is

always checked in Move, and therefore there is always an implicit conditional branch. This aligns

with the cost of addition being smaller than the cost of the conditional branch.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 23

We also see that branches are cheaper in Move when compared to branches in EVM bytecode,

relative to the cost of addition. A possible explanation for this is that EVM models function calls to

functions within the same contract as branches, and as a result, their cost is increased.

In general, the main question is whether branches should be more expensive or not. In prac-

tice, branches have very small latencies thanks to branch predictors in hardware. However, on

misprediction, the latency increases by 10-20 clock cycles and stalls the execution pipeline of a

CPU.

Because the cost model has to be an over-approximation to prevent DoS attacks, assigning higher

costs to branches is reasonable as it accounts for the worst case. However, Ethereum is the only

blockchain that does that.

To support our claim, we conduct a small experiment again using the JIT compiler in RBPF.

We compare programs which use only additions with programs which use only branches (with

different offsets and patterns), with results presented in Figure 5.

0

5

10

15

S
lo
w
d
ow

n
,
ti
m
es br-zigzag

br-0
br-1
br-4
br-8
br-16

Fig. 5. Slowdowns of programs that consist of branches only compared to the program with only additions.
Here, br-N programs unconditionally jump with offset 𝑁 , and br-zigzag jumps back and forth until converging
in the middle of a program. The data is obtained using Intel Core i7-7700HQ (Kaby Lake) with multi-threading
and frequency scaling disabled. RBPF version 0.7.1 is used.

We observe that the run time of programs with branches is significantly slower. For example,

when the branch always jumps to the next instruction (br-0), the program is 9.7× slower than

the program with additions. Similarly, the programs br-1 and br-4 which execute 2× and 4× less
instructions instead of being faster, end up being 4.9× and 2× slower. We see that br-zigzag has

the worst running time and is 12.9× slower than the equivalent program with additions (while

executing the same number of instructions).

The experiment shows that while existing cost models might be acceptable for interpreter-based

execution, it is not the case for JIT compilation. Branches are significantly slower than simple

instructions such as additions, if executed in native code, and should have higher costs. Moreover,

branch offsets and access patterns play an important role in affecting the running time.

Another interesting aspect of existing cost models is that control flow impacts the code size and

can lead to higher costs for the clients if the code is JIT compiled and not interpreted.

For example, in EVM bytecode, there is a special instruction JUMPDEST which costs 1 gas unit

($23 · 10−6 or 0.33 additions) and marks a valid jump target. Similarly, Wasm uses structured

control-flow, enforced by block and loop bytecode instructions (which cost $0.09 · 10−12 or 1
addition). In particular, branches can only jump to the end of the block or the start of the loop.

24 George Mitenkov

Just like JUMPDEST, these instructions are only needed to enforce the validity of the control flow

and otherwise are no-ops. We refer to such instructions as markers.
Firstly, markers increase the code size. If we consider Ethereum for instance, every JUMPDEST

instruction adds a byte to the size of the code. Having 1024 such markers in the contract code

already uses 4.2% of the code size limit, which, given that Ethereum models local function calls as

branches, can be very limiting to the users.

Secondly, if the code is interpreted, markers are still executed. If they are not priced, a malicious

program consisting of JUMPDESTs or a nested sequence of Wasm blocks can be executed for free.

At the same time, if priced, the cost of execution of JIT compiled contracts over-approximates the

true execution cost: markers do not appear in the generated native code. As a result, users can end

up paying for the nested sequence of Wasm blocks which are never executed. While this scenario

is particularly attractive for validators (higher transaction fees while doing less computations), it

can be bad for end users.

During our study, we found an interesting difference in existing cost models used by NEAR and

Polkadot on how to price loop instruction. According to NEAR, the instruction is executed at every

iteration of the loop and therefore has to be metered and charged for at each iteration. In contrast,

on Polkadot, the loop instruction is executed only once when the loop is entered, and so also has

to be metered only once. Essentially, the loop instruction is treated as a jump to the loop head, and

so the control flow returns to the first instruction in the loop body.

This observation results in different costs for the same Wasm programs on different blockchains.

On NEAR, loops turn out to be more expensive. Also, as a result, unrolling the loop on NEAR is

more beneficial because the cost for loop is avoided.

To conclude our investigation about the costs of control-flow instructions, we note the following:

• existing cost models do not take control-flow structure into account (e.g., vectorizable and

non-vectorizable loops can have the same costs);

• branching instructions are mostly under-priced in existing cost models, in particular if

contracts are JIT compiled;

• using bytecode instructions to mark valid control flow may lead to significant code size

increase, higher costs for end users but also higher profits for validators;

• semantics of the language can be interpreted by different cost models differently, affecting

execution costs.

In Section 4, we will further observe that branches also complicate metering.

3.5.3 Memory instructions. Another important part of the cost model usually considered when

executing smart contracts is memory. First, we consider how different blockchains price memory

allocations. On Ethereum, its linear memory is expanded using the equation

3𝑎 +
⌊
𝑎2

512

⌋
where 𝑎 is the number of new 32-byte words allocated. In contrast, Wasm grows its memory in

increments of pages and so NEAR assigns a per-page cost. Solana has a free 32 KB heap, and Aptos

does not charge for memory consumption at the time of writing.

In Table 15, we compare the costs of bulk allocations on different blockchains. In particular, we

compare how much it costs to allocate 4 KB of memory (a typical page size).

We observe that allocating that much memory on Ethereum is extremely expensive. This is

because allocations of the size of 4 KB make the cost equation quadratic in the number of words.

The other downside of Ethereum’s cost model, apart from high prices, is the fact that memory

can be expanded on every store to memory. As a result, this has to be enforced by the metering

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 25

Table 15. Costs for bulk memory allocations (4 KB) on Ethereum, Solana, NEAR and Aptos.

Ethereum Solana NEAR Aptos

Cost for 4KB $32 $0 $0.11 · 10−15 -

scheme, as we discuss later in Section 4. Other blockchains opt for more metering-friendly cost

models, where allocations are either not tracked (Aptos), are done in advance (Solana), or are

performed in larger increments by special instructions (NEAR).

We now consider the cost models used to price memory accesses, summarized in Table 16. We

observe that accessing memory is very cheap on Ethereum, Solana, and NEAR, with the costs

comparable to the cost of addition. However, it is worth mentioning that because EVM can expand

memory on access, the cost can be significantly higher.

Table 16. Costs for memory accesses on Ethereum, Solana, NEAR, and Aptos.

Ethereum Solana NEAR Aptos

Memory access (#additions) 1 1-2
17

1 -

Memory access (USD) $69 · 10−6 $0 $0.09 · 10−12 -

Aptos does not have the concept of memory but instead has instructions to access data from

structs and vectors which are first-class types in Move bytecode. The costs of these instructions are

usually between 2-3 additions in Move.

It is interesting to analyze how caches impact the latency of memory accesses. Because these

instructions have costs similar to arithmetic, we expect to observe a very similar behaviour to the

one we have seen with branches: in practice, accessing memory can be very slow and instructions

are under-priced.

However, in this work, we focus on the other fact – all memory accesses have an implicit branch

and throw an exception if the access is out-of-bounds. Just like with divisions, this alone has two

implications: 1) implicit control makes metering more difficult, which we discuss in Section 4, as

well as 2) JIT compilers have to emit strictly more code than for additions, and interpreters need

more checks. We conclude that the cost of memory access has to be higher to account for that.

3.5.4 Storage instructions. While the cost model for persistent storage is out of scope for this work,

it is important to at least mention it here because accessing storage still impacts the run time and

metering.

In general, storage accesses are priced based on the number of bytes loaded at run time. Typically,

the price is reduced if the access is cached by internal data structures (deterministically), or the

access is cheap. For example, writing to a new storage location is expensive on Ethereum, but

changing existing items is not.

A general cost function associated with storage access is

𝐶𝑏𝑎𝑠𝑒 +𝐶𝑘𝑒𝑦 +𝐶𝑝𝑒𝑟_𝑏𝑦𝑡𝑒 · 𝑛
where 𝐶𝑏𝑎𝑠𝑒 is the base cost, 𝐶𝑘𝑒𝑦 is the cost for the number of bytes in the key (storage is a

key-value database), 𝑛 is the number of loaded bytes, and 𝐶𝑝𝑒𝑟_𝑏𝑦𝑡𝑒 is the cost per-byte.

While existing pricing is rather detailed and complicated, for this work the important takeaway

is that the cost of storage access cannot be determined in advance, in general, and is dynamic in the

17
Earlier versions of SBF bytecode have lddw instruction which occupies two words, and therefore costs 2 CUs.

26 George Mitenkov

number of loaded bytes. We note that because Solana treats storage accesses the same as memory

accesses, such a problem does not exist.

3.5.5 Cross-contract and local calls. Existing blockchains handle local and cross-contract calls

very differently. For example, Ethereum represents local calls as branches and uses a very complex

model for cross-contract calls. In addition, EVM, RBPF, and NearVM instantiate a new VM for each

cross-contract call.

Such an approach is particularly disadvantageous for efficient metering. Before the cross-contract

call, the exact cost for the currently executed instructions has to be known so that the new VM

instance can precisely meter the callee’s costs.

In this work, we only consider local and cross-contract calls on Aptos and local calls on Solana

and NEAR so that we can focus on the aspects relevant to metering and use a more conventional

setting where the VM loads new functions when they are called.

Table 17 shows the base cost of a function call on different blockchains. We observe that both

Solana and Wasm price calls the same way as simple instructions. While we have not conducted

experiments similar to the ones with branches and control flow, it is clear that having the same

price for a function call and addition may result in malicious programs slowing down the network,

while not being charged accordingly.

When a call is made even in native code, there is always an additional cost for saving registers,

pushing function arguments to the stack, jumping to the start of the new code, and restoring the

saved registers. Clearly, a reasonable cost model has to account for this additional work.

Table 17. Base costs of a function call on Solana, NEAR, and Aptos in terms of the number of additions and
USD.

Solana NEAR Aptos

additions 1 1 6.25

USD $0 $0.09 · 10−12 $153.8 · 10−9

On Aptos, in contrast, the cost of a function call differs from the cost of simple instructions. It

can be written as

𝐶𝑏𝑎𝑠𝑒 +𝐶𝑎𝑟𝑔 · 𝑛
where 𝐶𝑏𝑎𝑠𝑒 is the base cost for the call, 𝐶𝑎𝑟𝑔 is the cost for each argument, and 𝑛 is the number

of arguments. An extra cost is used for each type parameter if the function is generic. Such an

approach allows Aptos to scale the cost for more expensive functions that use many arguments.

We observe that the base cost of a function call on Aptos corresponds to approximately six

additions. While it is hard to judge if the cost is too small or too large, it definitely shows that

simple instructions on Aptos are not efficiently implemented and are very expensive.

For cross-contract calls, another crucial aspect is code loading. Recall that when a function from

another contract is called, MoveVM loads the code module where the callee is defined and its

transitive dependencies. Additionally, the loaded code is re-verified. It is clear that unless cached,

code loading can be very computationally expensive. Surprisingly, the cost model of Aptos does

not account for that.

In conclusion, we found that the cost of function calls is calculated using a simple model and

is mainly constant. While it is reasonable to assume that such simple models can be attacked, a

more in-depth study is needed to evaluate the performance and the economic impacts of calls on

validators’ profits and metering. However, this is out of the scope of this work.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 27

3.5.6 Summary. In this section, we explored existing cost models used by Ethereum, Solana, NEAR,

and Aptos. We found that, in general, blockchains use very tight limits for resources such as code

size or stack height (for stack-based bytecode) to ensure that transactions are quickly propagated

through the network and to enforce deterministic execution.

We also discovered that existing models are not well-calibrated. While simple instructions such

as arithmetic have similar and low costs, some instructions produce side effects and can trap. In

these cases, execution can be significantly slower, especially if the contracts are JIT compiled.

Moreover, as we will see in Section 4, such instructions are difficult to meter efficiently, making

existing metering schemes slow and susceptible to malicious inputs.

Cost models used by the state-of-the-art blockchains also do not take control flow into account.

This is a surprising fact, in particular, given that it is well-known that unpredictable control flow

can slow down execution significantly.

Lastly, we observed that the cost of bytecode instructions dominates the total execution cost.

Moreover, these costs are mainly constant, with storage and memory being the only exceptions.

28 George Mitenkov

4 METERING SCHEMES: A STUDY
A cost model is implemented as part of a VM or a protocol. In the latter case, the implementation

usually does not have a significant overhead. For example, given the maximum size of a transaction

in bytes, a transaction can be rejected at the validation stage while sitting in a transaction pool. In

contrast, the implementation of a cost model inside the VM, and the metering schemes in particular,

directly impact security and performance.

In this section, we study how blockchains meter resource usage. In particular, we focus on the

state-of-the-art metering schemes used for:

(1) metering instruction execution cost,

(2) metering memory and storage costs.

These metering schemes already cover a large portion of the cost model’s implementation and are

sufficient for our study.

4.1 Instruction cost metering
Recall that the role of instruction cost metering is to ensure that the sum of the costs of executed

instructions does not exceed a pre-defined budget, and to compute the final execution cost. If the

budget is not sufficient, the execution must be halted.

Under this specification, it is straightforward to see how to implement instruction cost metering.

For any instruction, one has to 1) calculate the cost of instruction, 2) subtract the cost from the

current budget, and 3) if the budget is negative, halt the execution. Otherwise, the next instruction

is executed.

In practice, there are a few options to meter instruction costs, as summarized in Table 18. They

depend on the blockchain network and the underlying VM.

Table 18. Different approaches to meter instruction costs in VMs. Here, we also list some of the blockchain
networks that use it.

Metering type Example Used by

Software

Integer counter, updated on every iteration of the dispatch loop of

an interpreter.

Aptos, Solana,

Ethereum

Bytecode Dedicated bytecode instruction which updates the counter. NEAR, Polkadot

Native code

The counter is stored in a pinned register or memory location and

is occasionally updated by the program.

Solana

Instruction cost metering in software is the easiest to implement, and it is the go-to approach for

the networks that use interpreter-based VMs, e.g., Aptos and Ethereum. Solana also uses integer

counters in software for its interpreter in RBPF.

The metering in the bytecode is used by Wasm-based blockchains – NEAR and Polkadot. NEAR

instruments contract with calls to host functions and then JIT compiles the resulting Wasm code.

Polkadot translates Wasm into its own custom bytecode with a special metering instruction

and uses an interpreter instead. Both blockchains aim to minimize the amount of the metering

instrumentation (the number of host calls or metering instructions). Later we will see how these

two approaches compare.

If the contract code is JIT compiled, the metering is injected into the target program. While

NEAR does this at the Wasm level, before the native code is generated, Solana is an example of a

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 29

blockchain that produces metered native code directly. RBPF’s JIT compiler uses a fixed register

and an algorithm to minimize the number of instructions used for metering.

Next, we consider three existing approaches to metering in turn.We guide our study by answering

the following questions:

(1) How does metering impact the run time and the code size?

(2) How does metering impact the security of the blockchain?

(3) What are the economic implications of metering for validators, if they collect a fraction of

the fees?

We use an Apple M1 Pro CPU with 8 cores and 16 GB of memory for all experiments. The only

exception is RBPF because its JIT compiler only supports x86 backend. For the experiments with

RBPF, we use an Intel Core i7-7700HQ (Kaby Lake). In both cases, we disable multi-threading and

frequency scaling.

4.1.1 Instruction cost metering in software. Instruction cost metering in software can only be used

with interpreters. Here, we consider four different interpreter-based VMs: evmone [15] and geth [2]

for Ethereum, the interpreter of RBPF for Solana, and MoveVM for Aptos. They all maintain an

integer counter, which is updated and checked at each iteration of the dispatch loop.

First, we analyze the performance implications of instruction cost metering in software. We

compare the cases where VMs use a counter or not. To ensure VMs do not track instruction costs,

we comment out the necessary parts of the code. For all experiments, we use the built-in benchmark

suites of selected VMs. We describe our observations and their implications in Table 19.

Table 19. Instruction cost metering in software: observations and implications.

Observation Implication

The metering with a counter does have a run-time

overhead of at most 0.2–0.5% for all VMs on all

benchmarks. Disassembling the interpreter’s code,

we find that metering only takes a few x86 instruc-

tions (see example in Figure 6). In comparison, an

implementation of the addition bytecode handler,

e.g., in geth, consists of 63 x86 instructions.

The metering has no performance penalty in the

current implementations of the VMs because the

run time is dominated by other parts of the sys-

tem. Metering overhead is negligible. As a result,

there are no implications on security or validator

profits.

All VMs but evmone use an unsigned 64-bit inte-

ger for the counter, which results in less optimal

native code.

Using signed integers should be preferred to re-

duce the number of assembly instructions. For

example, using the USD price of a gas unit on Ap-

tos, a straightforward calculation shows that with

a signed 64-bit counter the execution cost can be

at most $7 × 1013, which is already an astronomi-

cal number.

We conclude that the overhead of instruction cost metering in software is fairly low. This is

because existing interpreters used by popular blockchains are not implemented for speed.
18
As the

interpreters get better over time, we believe that the metering problem will be more apparent.

18
It is well-known that the most efficient interpreters have to be hand-written in assembly, as discussed here: http://lua-

users.org/lists/lua-l/2011-02/msg00742.html.

http://lua-users.org/lists/lua-l/2011-02/msg00742.html
http://lua-users.org/lists/lua-l/2011-02/msg00742.html

30 George Mitenkov

1 ; meter instruction cost
2 cmp rax, rsi
3 jb .out_of_budget
4 sub rax, rsi
5 ; continue execution
6 .out_of_budget
7 ; handle running out of budget

1 ; meter instruction cost
2 sub rax, rsi
3 jb .out_of_budget
4
5 ; continue execution
6 .out_of_budget
7 ; handle running out of budget

Fig. 6. Assembly code (x86) for instruction cost metering when the budget is an unsigned (on the left) or
signed (on the right) counter. The budget is stored in the rax register and the instruction cost is stored in the
rai register.

4.1.2 Instruction cost metering in bytecode. In order to implement counter-based metering, an

interpreter with metering being a first-class citizen has to be designed from scratch (such as EVM

or MoveVM) or an existing one has to be adapted (Solana’s RBPF) and maintained, which can be

difficult, and time-consuming. Also, it is not possible to JIT compile the contracts or interpret them

in some fast interpreter because then the execution is not metered.

In order to overcome these issues, metering instructions can be injected at run time into the

contract’s bytecode prior to interpretation or JIT compilation. There were early attempts to compile

contracts to LLVM IR [4], but modern blockchains useWasm runtimes, as they offer great portability,

decent performance, and extensive tooling. For a blockchain VM, it can therefore be sufficient to

instrument a Wasm contract with metering code, and then use an existing runtime to execute it.

Here, we consider two libraries for instrumenting Wasm code: wasm-instrument [9] (previously
used by NEAR, Polkadot and FileCoin [54]) and finite-wasm [20] (currently used by NEAR in

production). These libraries are used to inject metering instrumentation into Wasm contracts,

which can then be executed by state-of-art interpreters or JIT compilers.

Additionally, we consider wasmi [12] – an interpreter for Wasm contracts used by Polkadot in

production. Instead of re-using Wasm infrastructures, it translates Wasm into its own intermediate

representation and interprets it.

One must consider two things when injecting metering instrumentation:

(1) the instrumentation itself: which instructions are injected, and how do they track the costs,

(2) the instrumentation placing algorithm: where to inject the instrumentation, and how often.

Table 20 describes three different kinds of instrumentation Wasm programs can be used.

Table 20. Metering instrumentation kinds for Wasm. Additionally, we list which instrumentation libraries
and Wasm runtimes use these approaches to instrumentation.

Mutable global Host function Dedicated bytecode instruction

TheWasmmodule stores a global

variable that represents the cost

counter. The instrumentation is

a few Wasm instructions that

check and update the global.

Metering is done using a host

function call. The cost counter

is kept on the host side. The

instrumentation is a call to the

host function, which updates the

counter.

Metering is encoded as a byte-

code instruction, which also car-

ries the cost. The bytecode han-

dler has to be added to the VM.

Used by wasm-instrument. Used by wasm-instrument and

finite-wasm.

Used by wasmi interpreter.

All three approaches have different trade-offs. Using host functions is preferred over mutable

global because the counter is kept in sync if Wasm code calls functions from other modules. In

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 31

the case of a mutable global, it would have to be synchronized and linked correctly.
19

At the

same time, using a dedicated instruction may be more performant than both of these approaches,

because the metering then happens purely on the VM side. The drawback of this solution is that a

bytecode handler (and code generation if JIT compilation is supported) needs to be implemented

and maintained.

We now consider the second problem – how to inject metering instrumentation. The straw-

man solution would be to instrument every instruction in the source program, but this incurs a

significant run-time overhead. Instead, an instrumentation placement algorithm is used to identify

a better way of injecting metering code.

First, we consider wasmi and study the impact of the metering instrumentation on the run time

of the programs executed by the interpreter. For that, we use a set of simple Wasm programs from

the wasmi benchmark
20
as well as two programs from LLVM’s testsuite

21
(quicksort and matrix

multiply) compiled to Wasm with Emscripten.
22

For the placement, wasmi uses a simple algorithm that sums up the costs of instructions if there

is no control flow, and injects a special bytecode instruction that charges the accumulated cost. As it

can be seen in Figure 7, instrumenting at every instruction brings significant performance regression,

with slowdowns ranging from 7% to 120%. With a more careful metering employed by wasmi,
the slowdown is decreased to at most 25%. In particular, we observe that on compute-intensive

programs with long straight-line sequences of instructions such as float_mm, the instrumentation

overhead is insignificant. At the same time, programs with control flow incur the highest overheads.

qu
ick
so
rt

flo
at
m
m

m
em
or
y
ve
c
ad
d

m
em
or
y
fil
l

m
em
or
y
su
m

fib
on
ac
ci
ta
il

fib
on
ac
ci
ite
r

fib
on
ac
ci
re
c

re
cu
rs
iv
e
tr
ap

re
cu
rs
iv
e
sc
an

re
cu
rs
iv
e
ok

fa
ct
or
ia
l i
te
ra
tiv
e

fa
ct
or
ia
l r
ec
ur
siv
e

gl
ob
al
co
ns
t

gl
ob
al
bu
m
p

tr
un
c
f2
i

br
ta
bl
e

co
un
t
un
til

re
ge
x
re
du
x

re
v
co
m
pl
em
en
t

tin
y
ke
cc
ak

0

20

40

60

80

100

120

S
lo
w
d
ow

n
,
%

wasmi-native
wasmi-strawman

Fig. 7. Slowdowns of different Wasm programs when 1) metering is done for every instruction (wasmi-
strawman) and 2) metering is done only on diverging control flow (wasmi-native). Experiments are conducted
with wasmi version 0.20. The lower is better.

Next, we consider wasm-instrument and finite-wasm instrumentation libraries. Figure 8 shows an

example of a Wasm program instrumented with wasm-instrument and finite-wasm. We observe that

all these algorithms accumulate the costs over a sequence of instructions, and place the metering

instrumentation only occasionally.

19
There was also a proposal to wrap calls to other Wasm contracts so that they take one more argument (the cost counter)

and return one more value (the remaining cost) as described in https://github.com/paritytech/wasm-instrument/issues/11.

Essentially, the proposal aimed at defining an ABI for the contracts with metering taken into account.

20
https://github.com/paritytech/wasmi/tree/master/crates/wasmi/benches

21
https://github.com/llvm/llvm-test-suite

22
https://emscripten.org

https://github.com/paritytech/wasm-instrument/issues/11
https://github.com/paritytech/wasmi/tree/master/crates/wasmi/benches
https://github.com/llvm/llvm-test-suite
https://emscripten.org

32 George Mitenkov

1 (func $original (result i32)
2 i32.const 10
3 i32.const 5
4 i32.div_s
5 i32.const 2
6 i32.add
7 (block $bb1
8 call $foo ;; returns i32
9 br_if $bb1
10 call $bar ;; returns nothing
11)
12 return
13)

A) 1 (func $wasm_instrument (result i32)
2 call $meter (i64.const 9)
3 i32.const 10
4 i32.const 5
5 i32.div_s
6 i32.const 2
7 i32.add
8 (block $bb1
9 call $foo ;; returns i32
10 br_if $bb1
11 call $meter (i64.const 1)
12 call $bar ;; returns nothing
13)
14 return
15)

B) 1 (func $finite_wasm (result i32)
2 call $meter (i64.const 3)
3 i32.const 10
4 i32.const 5
5 i32.div_s
6 call $meter (i64.const 4)
7 i32.const 2
8 i32.add
9 (block $bb1
10 call $foo ;; returns i32
11 call $meter (i64.const 1)
12 br_if $bb1
13 call $meter (i64.const 1)
14 call $bar ;; returns nothing
15)
16 call $meter (i64.const 1)
17 return
18)

C)

Fig. 8. An example of a simple Wasm program, which divides two numbers, adds 2 to the result, calls function
foo, and conditionally calls function bar. From left to right: A) not instrumented, B) instrumented by wasm-
instrument, and C) instrumented by finite-wasm.

We highlight that none of the algorithms is formally defined, or well-documented. As a result, we

analyze the code and examples to understand how theywork.We observe thatwasm-instrument tries
to accumulate costs for all instructions that are guaranteed to be executed together. Essentially, the

algorithm exploits the tree-like structure of Wasm to identify dominance relations between different

sections of Wasm code and then places the instrumentation. In contrast, finite-wasm instruments

all instructions first, and then moves them around to combine costs. The main difference from

wasm-instrument is that it does not allow for costs to move across instructions with potential side

effects, such as calls or division.

Next, we consider the impact of instrumentation on the run time. We again use the same

benchmarks from wasmi and its runtime, but instrument the Wasm code using wasm-instrument
and finite-wasm. The metering is done using host calls. Figure 9 shows the slowdowns we observe.

qu
ick
so
rt

flo
at
m
m

m
em
or
y
ve
c
ad
d

m
em
or
y
fil
l

m
em
or
y
su
m

re
cu
rs
iv
e
tr
ap

re
cu
rs
iv
e
sc
an

re
cu
rs
iv
e
ok

fa
ct
or
ia
l i
te
ra
tiv
e

fa
ct
or
ia
l r
ec
ur
siv
e

gl
ob
al
co
ns
t

gl
ob
al
bu
m
p

tr
un
c
f2
i

br
ta
bl
e

co
un
t
un
til

re
ge
x
re
du
x

re
v
co
m
pl
em
en
t

tin
y
ke
cc
ak

0

50

100

150

200

250

300

350

S
lo
w
d
ow

n
,
%

wasm-instrument
finite-wasm

Fig. 9. Slowdowns of Wasm programs when different instrumentation strategies are used (wasm-instrument
version 0.4.0 and finite-wasm version 0.5.0). The lower is better.

We see that instrumentation in Wasm code leads to even higher slowdowns compared to the

approach used by wasmi (using custom bytecode with special instruction for metering). We believe

that the observed run-time overhead is because wasm-instrument and finite-wasm use host calls for

metering.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 33

We also observe that using finite-wasm slows down execution 3− 4× on some of the benchmarks.

Because finite-wasm instruments on every trapping instruction, trunc_f32_i experiences the

largest slowdown. We conclude that the state-of-the-art metering of instruction costs in bytecode

is not efficient at all.

It is also not hard to see that existing placement of metering instrumentation is not optimal.

In Figure 10, the costs of the bodies of if and else statements are identical, and therefore their

instrumentation can be avoided.

1 (func $not_optimal (result i32)
2 call $meter (i64.const 4)
3 i32.const 100
4 (if
5 (then
6 call $meter (i64.const 1)
7 i32.const 1)
8 (else
9 call $meter (i64.const 1)
10 i32.const 1)
11)
12 i32.add
13 return
14)

ENTRY

4

11

EXIT

1 (func $optimal (result i32)
2 call $meter (i64.const 5)
3 i32.const 100
4 (if
5 (then
6
7 i32.const 1)
8 (else
9
10 i32.const 1)
11)
12 i32.add
13 return
14)

ENTRY

5

EXIT

B)A)

Fig. 10. Example of non-optimal metering instrumentation in wasm-instrument for a simple program which
computes 100+1 = 101: A) the original instrumented program, B) programwith more efficient instrumentation
placement. In both cases, we also show the control-flow graphs with basic blocks with costs highlighted in
red, and basic blocks without instrumentation highlighted in green.

In Figure 11 we observe that the algorithms do not take information about dominance into

account. Here, if the first jump to $a is taken, the cost is indeed 6 for the execution. But, the second

branch is taken all the time, which means that instructions at lines 15-16 are always executed if

that path is taken. As a result, having one metering call is sufficient.

1 (func $not_optimal (param i32 $c1)
2 (param i32 $c2)
3 (result i32)
4 call $meter (i64.const 6)
5 i32.const 100
6 (block $bb1
7 (block $bb2
8 local.get $c1
9 br_if $bb1
10 call $meter (i64.const 2)
11 local.get $c2
12 br_if $bb2
13)
14 call $meter (i64.const 2)
15 i32.const 1
16 i32.add
17)
18 return
19)

ENTRY

2

EXIT

2

6

A) 1 (func $optimal (param i32 $c1)
2 (param i32 $c2)
3 (result i32)
4 call $meter (i64.const 6)
5 i32.const 100
6 (block $bb1
7 (block $bb2
8 local.get $c1
9 br_if $bb1
10 call $meter (i64.const 4)
11 local.get $c2
12 br_if $bb2
13)
14
15 i32.const 1
16 i32.add
17)
18 return
19)

ENTRY

EXIT

4

6

B)

Fig. 11. Example of non-optimal metering instrumentation in wasm-instrument because the algorithm does
not use the dominance information. The program takes two boolean constants (c1 and c2) as inputs, which
are used to jump between different blocks. Importantly, the branch on line 12 jumps to the same location
(line 14) whether taken or not. A) The instrumentation placed does not account for lines 11-12 dominating
lines 15-16. B) Better placement of instrumentation which leverages the dominance relation.

The inefficiency of instruction cost metering directly impacts the revenues of validators. We

observe that branching instructions, blocks and loops – all require metering. Slowing down the

contract by 2× means that revenues of validators are also 2× lower than they could have been.

34 George Mitenkov

While performance is important, the security of the network and the correctness of smart

contracts have always been a priority. As already seen, finite-wasm conservatively places instru-

mentation for any instruction that may trap or produce side effects, sacrificing execution speed.

Indeed, implementing an algorithm to place the metering instrumentation correctly is not trivial.

For example, Wasmer [13], a well-known Wasm runtime, has its own implementation of in-

struction cost metering. During our research, we identified multiple bugs in the implementation,
23

which makes Wasmer’s metering unusable in practice.

An example of a malicious Wasm program exploiting Wasmer’s implementation is shown in

Figure 12. The problem with the existing implementation is that it does not account for implicit

control flow when an instruction traps.

1 (func $bomb (param i32 $a)
2 (param i32 $b)
3 (result i32)
4 local.get $a
5 local.get $b
6 i32.div_u
7
8 return
9)

1 (func $bomb_instrumented (param i32 $a)
2 (param i32 $b)
3 (result i32)
4 local.ge $a
5 local.ge $b
6 i32.div_u ;; division by 0 traps!
7 call $meter (i64.const 4)
8 return
9)

Fig. 12. Example of an attack on Wasmer instruction cost metering. On the left, an original malicious program.
On the right, the same program but with metering instrumentation. When b is zero, division traps, but the
instruction cost is not yet metered.

Such a program can be used for DoS attacks on a blockchain. The attacker can craft a very large

contract with no control flow and ending in a division by zero. Then, the contract is called many

times. As a result, validators will be executing a large amount of instructions, but the attacker will

pay nothing (or a small base fee only).

It is crucial to mention that implicit control flow has further implications than just security. If

there is a trap during program execution, then the existing algorithms for placing the metering

instrumentation meter either larger costs (e.g., wasm-instrument, finite-wasm) or smaller (e.g.,

Wasmer). This has two consequences.

First, it is undesirable for users because they can be charged for non-executed instructions if

there is a trap during execution. However, one can argue that such design incentivizes writing

good and well-tested smart contract code.

Second, it creates a problem of reaching an agreement at a consensus level. Honest validators

running VMswith different algorithms for instrumentation placement can produce different outputs.

For example, a contract can trap for one validator but run out of budget for the other. We note that

this problem can be avoided by making the metering instrumentation placement algorithm part of

the VM specification.

We conclude that state-of-the-art instruction cost metering in bytecode is not yet efficient, nor

secure:

• Existing algorithms do not take into account cost and dominance information, which can

result in high metering overheads, indirectly affecting the liveness of a blockchain network

and the profits of validators.

• Existing algorithms are either too conservative in the presence of trapping instructions

(e.g., finite-wasm) which causes significant run time overhead, or simply do not take it into

account, which is a security vulnerability for the blockchain.

23
https://github.com/wasmerio/wasmer/issues/4219 and https://github.com/wasmerio/wasmer/issues/4256

https://github.com/wasmerio/wasmer/issues/4219
https://github.com/wasmerio/wasmer/issues/4256

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 35

• Metering costs are not always accurate and differ for various implementations. It can affect

transaction fees for users, as well as introduce challenges for the consensus.

4.1.3 Instruction cost metering in native code. Finally, we consider how to meter instruction costs

if compiling to native code. To our knowledge, Solana is the only blockchain that has its own JIT

compiler (adapted from eBPF JIT compiler, but a substantial amount of work has been added), and

therefore faces the problem of generating the metering instrumentation together with native code.

Table 21 describes how the counter for metering can be implemented in native code. We observe

that storing the counter in a register is preferred, as it avoids memory access instructions unless

in-memory increments are supported. As we have already seen, the instrumentation only needs

two assembly instructions (subtraction and comparison). Interestingly, Solana uses an unsigned

one, which requires three assembly instructions.

Table 21. Approaches for metering instrumentation in native code.

In-register counter In-memory counter

Fix a register for accumulating the cost of a run-

ning program. If selected carefully, the calling

convention allows the use of the register as an

argument to the function, essentially defining an

ABI for the metering. As a result, metering can

be done across function and contract calls. Solana

fixes rdi register during code generation.

Store the cost counter in memory. Can still be

efficient on x86 platforms which allow adding

a 32-bit immediate to a a 64-bit variable stored

in memory.
24

As we have discussed, the total

instruction cost can never overflow 32 bits.

Similarly to Wasm-based VMs, for JIT compilation it is important to minimize the amount of

instrumentation in the generated code. To place instructions optimally, Solana uses a very interesting

approach which uses the fact that every SBF instruction costs 1 computational unit. In this setting,

the cost of executed instructions can be rewritten as the difference between the original value of a

virtual program counter (PC) and its final value. During code generation, on every branch/call, the

current virtual PC is subtracted from the counter (which marks the end of the metering section),

and the target virtual PC is added to the counter (which marks the start of the next metering

section). In order to avoid long unmetered sequences of instructions, metering instrumentation is

also inserted every 10K SBF instructions. Figure 13 shows some intuitive examples of how metering

works.

In order to see the effect of instrumentation in native code, we consider the ten most used Solana

contracts, according to solscan. 25 We observe that the emitted instrumentation increases the code

size by at least 30% (Figure 14). Large code size can negatively impact performance, e.g., more

instruction cache misses can happen, or even page faults.

However, the code size on its own does not show how the performance of a contract is affected.

We additionally calculate the number of x86 instructions generated for metering each contract

and compare it with the number of basic blocks in the control flow graph of the same contract. As

discussed before, Solana uses comparison and a conditional branch to check that the current cost is

within the limits, subtraction to meter it, and addition to undo the metering for one of the targets

of a conditional branch.

24
https://www.felixcloutier.com/x86/add

25
https://solscan.io

https://www.felixcloutier.com/x86/add
https://solscan.io

36 George Mitenkov

 0:
 1: if meter - 4 < 0: OOB
 2: meter -= 2
 3: JMP 6
 4: meter += 2
 5:
 6:
 7: if meter - 10 < 0: OOB
 8: meter -= 3
 9: JMP 13
10: meter += 3
11:
12: if meter - 15 < 0: OOB
13: meter -= 15
14: EXIT

ENTRY

EXIT

2

4

4

3

2

 0: if meter - 3 < 0: OOB
 1: meter -= 1
 2: CALL_IMM
 3: meter += 1
 4:
 5:
 6:
 7: if meter - 10 < 0: OOB
 8: meter -= 1
 9: LDDW_IMM
 10:
...
 999: if meter - 1000 < 0: OOB
1000:
1001:

B)A)
 0:
 1:
 2:
 3:
 4: ;; loop body starts
 5:
 6:
 7:
 8: if meter - 11 < 0: OOB
 9: meter -= 7
10: JMP 4
11: meter += 7
12:
13:

C) ENTRY

7

4

3

Fig. 13. Example of metering (pseudocode in red) added by RBPF’s JIT compiler. Here, OOB represents a label
to the error handler. A) Example of a program with control flow, with its CFG shown in the middle. The CFG
is annotated with instruction costs. We only show jump instructions to make it more readable. B) Example of
metering for calls, the lddw instruction, and when not metered instruction sequences become large. C) A
do-while loop.

0

10

20

30

40

50

60

C
o
d
e
si
ze

in
cr
ea
se
,
%

pyth-oracle
serum-dex-v3
token
mango
switchboard-v2
switchboard-oracle
sequence-enforcer
raydium-liquidity-pool-v4
chainlink
magic-eden-v2

Fig. 14. Increase in the code size (generated x86) of metered Solana contracts. Contracts are ordered based
on their popularity, from the most popular (on the left) to the least (on the right). RBPF version 0.7.1 is used.

The results are shown in Figure 15. We observe that there are on average 3-4 x86 instructions

generated for each basic block for metering. This fact is particularly important because it highlights

that the algorithm that produces the instrumentation is essentially instrumenting every basic block.

Solana uses instruction costs only to limit the computation, and not to calculate the execution cost.

Still, there can be attacks on the liveness of the blockchain network by exploiting the instrumentation

placement.

For example, the first version of SBF bytecode supports the lddw (load) instruction, which

takes two words instead of one, unlike the other instructions. The instruction is deprecated in the

most recent version of the bytecode but still exists on-chain. For example, between 2% and 4% of

instructions used by the ten most popular Solana contracts are lddw.
The issue with lddw is that it occupies two words which breaks the assumptions of the metering

algorithm used by Solana. In order to make the metering correct the developers decided to add

metering instrumentation immediately before every lddw occurrence. It is then possible to create

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 37

0 1 2 3 4

pyth-oracle

serum-dex-v3

token

mango

switchboard-v2

switchboard-oracle

sequence-enforcer

raydium-liquidity-pool-v4

chainlink

magic-eden-v2

Number of x86 metering instructions per basic block

cmp & br cond
sub
add

Fig. 15. The ratio between the number of x86 instructions produced for metering instrumentation and the
number of basic blocks in a contract. RBPF version 0.7.1 is used.

an adversarial program consisting of only these load instructions, which based on our experiments

can lead to 2× – 5× slower execution of such programs.

We conclude that low-overhead metering in native code is very important, as otherwise the

code size of a metered program doubles. It is crucial that the implementation of such an algorithm

accounts for corner cases (like lddw) in a general way, to avoid performance regressions.

4.2 Memory and storage costs metering
Memory models are always taken into consideration when designing a cost model. We saw in

Section 3 that blockchains usually associate a per-byte or per-page cost to account for the memory

usage, as well as cap it at a certain value. Under the existing cost models, the goal of memory

metering is to ensure that the contract does not use excessive amounts of memory and that the

cost of memory allocations (which are typically expensive) are recorded.

Metering memory allocations depends on how they are done. Table 22 describes two ways: static

memory allocation performed in advance, and dynamic memory allocation which happens at run

time.

Table 22. Different ways of allocating memory, and their impact on metering.

Static memory allocation Dynamic memory allocation

No metering is required because memory is pre-

allocated based on the client-requested size and

is therefore pre-paid. Used by RBPF.

The amount of allocated bytes or pages has to

be tracked for each allocation, and it is used to

calculate the final cost. Used by EVMandNearVM.

We observe that static memory allocation, used by Solana, simplifies metering a lot, allowing the

RBPF’s JIT compiler to avoid injecting any additional instrumentation. For the rest of the section,

we therefore focus on VMs where memory is allocated dynamically.

4.2.1 Metering memory in software. EVM implementations such as geth or evmone meter memory

usage in software, just like the instruction costs. Again, we observe that for the selected interpreters,

the overhead of memory metering is invisible, similar to the instruction cost metering we described

before. Indeed, memory allocation can take from hundreds to thousands of instructions, so a few

instructions added by metering are negligible.

38 George Mitenkov

4.2.2 Metering memory in bytecode or native code. In order to meter memory in bytecode or native

code, instrumentation has to be injected into the contract’s code. For Wasm, this accounts for

instrumenting every occurrence of memory_growwith costs proportional to the number of allocated

pages. We observe that the additional instrumentation is not a real bottleneck because the time

taken to allocate memory still dominates the processing time for extra instructions.

It is interesting to see how the semantics of the language can affect memory metering. In EVM,

we recall that memory expansion is not decoupled from memory access. A write to a new memory

location results in memory expansion and incurs a cost. This means that if Ethereum contracts are

JIT compiled, every memory access has to be metered to adhere to the semantics of the memory

model.

As a result, memory metering for Ethereum contracts, if done in bytecode or native code, can

have a significant impact on performance. In this way, the approach used by Wasm is better: only

explicit allocations have to be metered. However, we must say that having explicit memory_grow
instructions shifts the job to the compiler or a contract developer: they have to generate these

instructions, which is nearly impossible to do optimally.

Finally, we note that the size of allocated memory is usually dynamic, and therefore it is not

possible to optimize the placement of instrumentation tometer it. However, having fewer allocations

is likely to minimize the metering overhead, if any. This way, the problem of metering is shifted to

the memory allocator.

4.2.3 Metering storage. For storage metering, the same concept as for memory metering can be

used. For example, on the Aptos blockchain loading a resource from storage has two costs: 1) to

load the bytes into memory, and 2) to serialize the bytes into internal in-memory representation

which is used by MoveVM. In particular, every time there is storage access, the VM has to meter

the cost for the fetched data. We observe that this metering is identical to the metering for memory

allocations or expansion.

4.3 Summary
Existing cost models for blockchains either require a flat fee for execution or use per-instruction

costs. In the latter case, instruction costs have to be metered at run time. The metering has to be

implemented correctly and efficiently to yield deterministic and accurate costs, to not open an

attack vector on the network, or to not degrade the performance.

We learnt that state-of-the-art runtimes used by blockchains are mostly simple, and the straight-

forward metering implementations in existing VMs achieve both correctness and do not have a

visible performance overhead.

However, for more advanced VMs that use JIT compilation or leverage existing performant

infrastructures metering instruction costs can become a problem. Particularly, straightforward

metering implementations can slow down the execution by 2×.
We presented a detailed comparison of how multiple VMs used by state-of-the-art blockchain

meter run-time instruction costs. We identified that existing metering schemes are not ideal:

• they can cause significant run-time regressions in existing systems;

• they can lead to a significant increase in the code size, sometimes more than 30%;

• they lack any formal descriptions, which sometimes leads to incorrect implementations,

and allows malicious users to halt the network for some time.

Lastly, we briefly considered how other resources (memory and storage) are metered. In particular,

we observed that instead of dynamic metering there are chains that statically pre-allocate resources.

There are pros and cons for both solutions.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 39

5 SMART CONTRACTS ANALYSIS & STATISTICS
In this section, we investigate the structure of popular smart contracts deployed on different chains.

The goal is to understand the real execution behaviour, in particular:

• how often the execution of contracts fails, and why,

• what bytecode instructions are most commonly used,

• how does the control flow of contracts look like, etc.

The behaviour and the structure of real contracts can help us to understand the requirements

for the cost model and the metering. As a result, we can develop more efficient metering schemes,

optimized for the common case based on the gathered statistics.

5.1 Frequency of transaction failures
As we have already seen, metering is an important defense mechanism against DoS attacks. It

is interesting to investigate how many contracts violate the run-time limits enforced by the cost

model or are submitted with small costs insufficient to cover execution. Additionally, it is worth

analyzing what proportion of contracts terminate abnormally in general.

We first look into the Aptos blockchain and analyze all transactions submitted to it between

01.01.23 and 31.05.23 (in total of 5 months). These are the transactions starting at version 60641618

and ending at version 151268548 (inclusive).

We observe that on Aptos for the selected period, 93.0% of transactions are successful, as shown

in Figure 16. From the failed transactions, 2.5% run out of gas, which contributes only 0.2% when

compared to the total number of transactions. Such an insignificant fraction highlights that out-of-

gas exceptions are rare and are not frequently encountered by regular users.

Successful transactions, 93.0%

Explicit failure, 94.0%

Im
plici

t c
on

tro
l-fl

ow
, 3.
5%

Out-
of-

ga
s,
2.5
%

Failed transactions, 7.0%

Fig. 16. The distribution of successful and failed transactions on Aptos over the selected time interval.

In addition, we investigate how many transactions failed due to implicit control flow leading

to an exception (e.g., arithmetic underflow or stack overflow). We find that only 3.5% of failed

transactions did not explicitly abort. This means that 94.0% of transactions explicitly failed, by

going into the basic block with abort instruction.
While we have not been able to gather such detailed data for other blockchains, we still observe

a very similar trend – failures are rare. On Solana, the most popular contracts have a relatively

high success rate, around 80-90% for the five most popular contracts, as shown in Table 23. These

contracts account for more than 50% of traffic on Solana.

26
https://analytics.solscan.io/overview

https://analytics.solscan.io/overview

40 George Mitenkov

Table 23. Success rates of popular Solana programs, based on solscan analytics tool. 26 Programs are ordered
by their popularity from left to right. The data is based on 04.10.2023.

pyth-oracle serum-dex-v3 token mango switchboard-v2

84.00% 84.85% 82.35% 80.91% 98.33%

At the same time, on Ethereum, a recent study [58] showed that running out of gas is not common

either, and if the execution is aborted, it is done with special instructions, e.g., REVERT. The study
suggests that from all selected transactions that did not terminate successfully, only 20% were due to

out-of-gas exceptions. The main causes for these exceptions are misunderstanding the transaction

mechanism and low gas limits.

We conclude that the execution of smart contracts is predictable from the first glance. Exceeding

metering limits has very low probability and primarily occurs due to 1) clients not knowing how

to estimate the resource or gas consumption, and 2) occasional adversarial behaviour. While it is

important to ensure that resources are metered correctly for all possible executions, the gathered

data suggests that optimizing the metering for successful execution is reasonable.

5.2 Distribution of instruction opcodes
Next, we investigate how often the different kinds of instructions are used in smart contracts.

5.2.1 Distribution of instructions on Aptos. Weanalyze all existing contracts on theAptos blockchain

using the recent version 280140423 (which corresponds to 30.09.23). In total, there are 10.8K con-

tracts with 67.9K functions and 2.6M bytecode instructions. On average, a single function has only

38.9 instructions.

As a result, we analyze the distribution of different Move opcodes globally, i.e., for all contracts

together, rather than focusing on specific functions. Otherwise, due to the small number of bytecode

instructions per function, the statistics we gain can be not that insightful.

We show the distribution of different kinds of opcodes on Aptos in Table 24. We observe that the

fraction of all storage instructions combined is smaller than 2.4%, which means that, on average,

there is a single global storage access per function. Because calculating the cost of the global

instruction is not common, most of the instructions in Move contracts have statically known costs.

Table 24. Distribution of different opcodes for all Move modules stored on Aptos on 30.09.23. We consider
global storage instructions (checking existence, loading or storing data), control-flow instructions (calls,
branches, and explicit aborts), and simple instructions (addition, casts, constants).

Total Global ex-

istence, %

Global

loads, %

Global

stores, %

Calls, % Branches, % Aborts, % Simple, %

2643004 0.46 0.52 1.32 12.10 7.87 1.97 16.29

Another insight from the data is that function calls are 1.5× more common than branching

instructions. On one side, this highlights that the code on Aptos is very modular. At the same time,

the Move bytecode stored on Aptos is not optimized, and it is possible that many opportunities

where a compiler should inline the call are unused. For example, in Figure 17, we show a snippet of

Move code stored on-chain that clearly benefits from inlining.

Finally, we observe that the high-level nature of the Move bytecode significantly impacts the

distribution of opcodes. In Move, structs and vectors are first-class citizens of the bytecode, and

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 41

1 public exists_at(arg0: address): bool {
2 bb1:
3 MoveLoc[0](arg0: address)
4 Exists[0](Account)
5 Ret
6 }

Fig. 17. An example of a Move function that should be inlined by the compiler, but is currently not. The
function checks if Account resource exists at a particular address. If inlined, a single bytecode instruction is
used to check for the existence of the resource. If not inlined, significantly more instructions are executed:
passing the arguments to the call, setting up a new function frame, etc.

therefore there is a variety of instructions to access their fields and elements. Based on the data

presented in Table 24, we deduce that these instructions must account for up to 60% of the total

number of instructions.

5.2.2 Distribution of instructions on Solana. Next, we look at different kinds of instructions that

exist in Solana contracts. Unlike Aptos, Solana uses low-level SBF bytecode, and so contracts

contain thousands of instructions. We therefore consider only the ten most popular contracts for

our analysis, presented in Table 25.

Table 25. Distribution of different opcodes for the ten most popular Solana contracts (ordered in their
popularity from top to bottom). We consider arithmetic instructions (addition, multiplication, shift, etc.),
memory instructions (load/store), and control-flow instructions (call/jump).

Program Total Arithmetic, % Loads, % Stores, % Calls, % Jumps, %

pyth-oracle 9122 42.7 21.3 12.8 5.5 16.9

serum-dex-

v3

24439 37.3 26.3 18.1 4.8 12.8

token 13597 40.7 21.6 16.0 6.2 14.5

mango 15899 37.4 22.5 19.4 5.5 14.2

switchboard-

v2

176762 49.2 16.9 14.3 10.6 7.9

switchboard-

oracle

66054 42.6 19.4 15.6 9.1 11.8

sequence-

enforcer

20338 46.1 17.5 13.7 9.7 11.0

raydium-

liquidity-

pool-v4

74516 40.5 23.2 16.5 7.2 12.1

chainlink 57388 43.3 20.0 16.5 8.0 11.4

magic-eden-

v2

101564 50.5 15.8 12.7 11.9 7.6

First, we see that Solana contracts are large, sometimes comprised of more than 100K SBF

instructions. We observe that nearly half of the instructions in all contracts are simple arithmetic,

42 George Mitenkov

and a third are memory accesses. It is worth mentioning that because there is no difference between

memory and storage in SBF bytecode, it is very challenging to understand the real access patterns.

We also observe that while the number of control-flow instructions varies from contract to

contract, on average, on average 19.9% of instructions are responsible for the control flow. We note

that this number is comparable with the average proportion of control-flow instructions on Aptos,

which is 21.8% on average.

5.2.3 Distribution of instructions on Ethereum. Lastly, we look at Ethereum and the distribution

of different EVM opcodes there. Luckily, there has been some prior research done in that area.

Bistarelli et. al. [33] show that on Ethereum stack manipulation opcodes and stores to memory

(MSTORE) are the most popular opcodes. The reason why MSTORE is so popular is potentially due

to Solidity compilers: when a Solidity contract is compiled, a scratch space is always allocated

in memory. Moreover, the authors claim that all contracts access storage and cross-contract calls

occur in 11% of all contracts. At the same time, the study does not account for different types of

instructions, e.g., if it is arithmetic or control flow, which makes it less useful for our purposes.

5.2.4 Summary. To sum up, we looked at the distribution of different kinds of bytecode instructions

in multiple blockchains, focusing closely on Aptos, Solana, and Ethereum networks. We observed

that storage accesses are not common in contracts (for chains where they can be distinguished

from memory accesses). This means metering does not have to process variable instruction costs

often. Predominantly, simple instructions such as arithmetic are used with statically known costs.

We also discovered that performing such an analysis is a non-trivial task, as one has to account

for the semantics of the bytecode of interest, whether it preserves the domain-specific information

(e.g., storage access), or missed optimizations in the compiler, amongst other things. Moreover, the

difference in high- and low-level instruction sets makes it harder to compare the distribution of a

particular opcode across multiple chains.

5.3 Control-flow structure
As discussed above, analyzing what kinds of instructions are used on-chain is hard. Here, we

analyze the control flow of the contracts instead. The motivation is that 1) the control flow is

chain-agnostic, which allows one to compare contracts on different blockchains better, and 2) the

control flow directly impacts the metering of instruction costs.

We note that control-flow analysis is also not trivial in existing systems. For example, on Ethereum,

due to the bytecode structure it is hard to distinguish between if-else or while statements [33].

Furthermore, it can be somewhat meaningless to analyze the control flow if contracts are not

optimized, or if functions have small code sizes and use relatively high-level bytecode. This is

particularly the case for Aptos, where functions, on average, are under 40 bytecode instructions.

As a result, function calls and the call graph hide the complexities of the control-flow graphs of

Move contracts.

Therefore, we consider Solana contracts to analyze the control flow in smart contracts. We note

that the SBF bytecode is also very close to the native code and hence can give a good estimation

of how the control flows through the contract when it is executed by a validator. Our analysis is

summarized in Table 26.

First, we observe that the size of a basic block on Solana is around 4 SBF instructions only.

Considering the metering instrumentation, this is very significant. Because SBF instructions almost

always map one-to-one to native assembly, adding extra instrumentation per block would result in

up to 2× code increase. We note that this conforms with what we have observed while studying

the metering scheme used by Solana in Section 4.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 43

Table 26. Statistics about the control-flow structure of Solana contracts. Here,𝑉 is the set of basic blocks, and
𝐸 is the set of edges. By 𝑏, we denote the average number of instructions per basic block. We use 𝐸𝑐 ⊆ 𝐸 and
𝐸𝑏 ⊆ 𝐸 to describe critical- and back-edges, respectively. Lastly,𝑉𝑙 and 𝐷 are the sets of leaves and diamonds.

Program |𝑉 | 𝑏 |𝐸 | |𝐸𝑐 |
|𝐸 | (%)

|𝐸𝑏 |
|𝐸 | (%)

|𝑉𝑙 |
|𝑉 | (%) |𝐷 |

pyth-oracle 2456 3.7 3318 21.7 0.8 7.3 52

serum-dex-

v3

5116 4.8 6859 20.8 0.4 8.2 129

token 3263 4.2 4274 19.4 0.4 7.9 82

mango 3758 4.2 4965 18.6 0.4 8.5 97

switchboard-

v2

36902 4.8 42204 8.4 0.1 6.6 265

switchboard-

oracle

16125 4.1 19855 17.2 0.7 8.2 206

sequence-

enforcer

5032 4.0 5931 15.9 0.4 11.1 111

raydium-

liquidity-

pool-v4

16710 4.5 21870 18.6 0.2 7.0 250

chainlink 12771 4.5 16428 18.3 0.3 6.8 220

magic-eden-

v2

22477 4.5 25115 7.8 0.2 8.0 186

Second, it is interesting that programs have many critical edges. An edge is critical if its source

has multiple successors and its destination has multiple predecessors. We conclude that contracts

must have been often using conditionals similar to if statements. In contrast, all contracts have a

low fraction of edges which are back-edges. Back-edges are edges of the control-flow graph that are

not part of the Depth-First-Search traversal of the graph. In particular, back-edges allow one to find

the lower bound on the number of cycles in the graph. We conclude that loops are not common in

popular Solana contracts.

Finally, we analyze how many leaves and diamonds control-flow graphs contain. Leaves are

vertices with no successors. In the control-flow graph, these vertices signify termination of execution.

Diamonds are simple graphs on four vertices, where one vertex has two successors and one vertex

has two predecessors.

We find that on average 8.0% of all vertices are leaves. Because the contracts we study define

many functions, the graph is a collection of strongly connected components, and so there has to be

at least one leaf for each function, which can explain these numbers. At the same time, we observe

that diamonds are not common, and so the control flow rarely diverges and re-converges almost

immediately after.

Lastly, we discuss the control-flow structure of Ethereum contracts, again based on the study by

Bistarelli et. al. Instead of EVM bytecode, they analyzed the source code of contracts. The authors

claim that for and while loops occur in 24% and 6% of Solidity contracts they analyzed, respectively.

Hence, about a third of all Ethereum smart contracts have at least one loop. Conditionals, such as

if-else, are used by most of the Ethereum contracts.

44 George Mitenkov

In conclusion, we looked at the control-flow structure of smart contracts, predominantly focusing

on Solana. We observed that contracts have a large number of basic blocks, which are small, on

average. This can negatively impact the running time and the code size if contracts are not metered

efficiently. We also observe that loops are not common in smart contracts. Instead, there are many

critical edges (particularly in Solana contracts), which is significant for metering as we will see in

the later sections.

5.4 Summary
Blockchains are yet to find the right set of applications they are useful for. To this day, contracts

are mainly related to economic activity: decentralized exchanges, trading, transfers, swaps, and

other similar workloads. All these tasks do not require complicated control flow, nor numerous

loops to do an expensive computation, which is evidenced by the data we obtained when looking

at the distribution of instruction opcodes and control-flow graphs of contracts.

While control flow is not complicated, it is still widely used by the contracts, predominantly

via conditionals such as if-else statements. This means that smart contracts can have many basic

blocks, so efficient and more optimal metering schemes are needed.

Lastly, the execution behaviour of smart contracts is predictable: in general, a contract is executed

successfully within a budget. Statistics show that exceptions due to implicit control flow or due

to running out of budget are rare. This means that existing metering schemes can be improved if

optimized to be efficient for smart contracts that terminate successfully.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 45

6 MINIMUM SAFE METERING INSTRUMENTATION
In Section 4 we have observed that the existing approaches to metering are not always efficient,

in particular when the metering instrumentation is injected into the smart contract. Moreover,

placing the metering instrumentation carelessly can create security vulnerabilities, like we have

seen with Wasmer’s instrumentation, and can affect the liveness of the blockchain network.

In this section, we formally develop an efficient algorithm for computing the placement of the

metering instrumentation for a given program, which is also safe. The goal of this algorithm is to

reduce the run-time overhead of instrumentation, as well as to ensure safety – the program has to

terminate within the allowed limit. Moreover, our goal is to design an algorithm that can be applied

to arbitrary instruction sets with fixed costs, so that they are not bound to particular semantics

such as structured control flow in Wasm.

The algorithm should also have a linear or sub-linear complexity in the number of basic blocks in

the control-flow graph of a program. Such a requirement is necessary because the instrumentation

is computed at run time by validators executing the code. For example, if the complexity is quadratic,

the algorithm can become an attack vector and can be exploited by a malicious program.

The algorithmwe present can be used for anymetering scheme that tracks the cost of instructions,

e.g., gas costs on Ethereum, NEAR, and Aptos, or computational units on Solana. We consider a

setting where instruction costs are statically known as opposed to variable or dynamic costs. Such

a setting is sufficient for the following reasons:

(1) As observed in Section 3, many popular blockchains use a fixed cost when pricing instruc-

tions. Non-constant costs associated with memory expansion (in Ethereum or NEAR cost

models) or the cost of accessing a resource in Move can sometimes be computed at compile

time. Figure 18 shows such an example. Moreover, there are cost models like the one used

by Solana which pre-allocate resources to avoid dynamic costs.

(2) Lastly, consider a cost that depends on some expressions 𝑒1, . . . , 𝑒𝑛 defined by the program.

First, we observe that the metering instrumentation for this cost cannot be moved before the

definition of any of the expressions {𝑒𝑖 }𝑛𝑖=1. If the metering is placed significantly after the

definitions, then {𝑒𝑖 }𝑛𝑖=1 have to stay live until the metering instrumentation. Such a setting

is usually considered to have poor performance. For example, in native code, this creates

higher register pressure (there should be a register to hold every variable the dynamic cost

depends on) or creates unnecessary spilling to memory. As a result, placing the metering

code immediately after the definitions of {𝑒𝑖 }𝑛𝑖=1 might be preferable. In any case, there is

no straightforward solution, and doing more work in non-linear time is not needed.

1 use std::signer;
2
3 struct Foo has key {
4 value: u64,
5 }
6
7 public fun foo(user: signer): u64 acquires Foo {
8 let addr = signer::address_of(user);
9 let foo = borrow_global<Foo>(addr);
10 return *foo.value
11 }

12 // The cost of global borrow (line 9) can be
13 // calculated according to the formula:
14 // cost = base_cost + sizeof(T) * cost_per_byte
15 //
16 // Assume base_cost = 100, cost_per_byte = 10.
17 // cost = 100 + sizeof(T) * 10
18 // = 100 + 8 * 10
19 // = 180
20 //
21 // because the size of T is statically known to be
22 // 8 bytes.

23 // Size is statically known for any instantiation.
24 struct Bar<phantom T> has key {
25 value: u64,
26 }
25 // Sizes can change or depend on instantiation.
28 struct Fizz<T: store> has key {
29 value: T,
30 }
31 struct Bazz has key {
32 value: vector<u64>,
33 }

Fig. 18. On the left, an example of Move code where the non-constant cost for resource Foo is not a problem
for the metering and can be computed by the compiler. On the right, examples of Move resources that have
statically known or unknown costs.

The rest of this section is organized as follows. First, we define the properties that any metering

instrumentation placement should satisfy. We then consider a simple approach of placing metering

instrumentation at the start of each basic block in a program and study how such a placement can

be implemented efficiently and robustly even in the presence of exceptions. We then describe an

46 George Mitenkov

algorithm that computes a more optimal placement for metering instrumentation by analyzing a

program’s control-flow graph. We also present the algorithmic framework we have used, along

with the proofs of correctness.

6.1 Properties of metering instrumentation
It is crucial to define a set of properties that any algorithm for placing metering instrumentation

has to enforce. Before describing the properties, it is important to mention that we assume that the

algorithms cannot change the instructions of the original program. In particular, this guarantees

that the cost of execution of a user program cannot suddenly change at run time. The algorithms

can only add instrumentation to meter the instruction costs, as well as insert new basic blocks but

containing the instrumentation only.

Informally, there are three properties the metering instrumentation must satisfy:

• Validity: We want the instrumentation not to change the behaviour of programs that

terminate successfully.

• Consistency: We may want to make sure that the execution is correct even if it fails. For

example, if the program results in an arithmetic error, the instrumented program should

not suddenly return an error saying it run out of budget.

• Safety: we want to make sure no work done by the runtime goes unpaid. Safety ensures we

meter resources on time.

We now develop more formal definitions of these properties. Before that, we have to cover some

preliminary basics.

In this section, we use a mathematical model to reason about instructions and their costs. We let

I be the set of instructions and let 𝑐 : I → Z>0 be a cost function. Recall that we assume that

all instructions have a fixed cost. Without loss of generality, we can say that the costs are always

positive.

The programs we consider are organized as control-flow graphs (CFGs) where instructions

belong to basic blocks. A basic block is a sequence of instructions without explicit control flow. The

cost of instructions is calculated using the cost function 𝑐 . For any instruction sequence, its cost is

the sum of the costs of instructions in the sequence. For simplicity of notation, we use the same

cost function 𝑐 when talking about the cost of instruction sequences, to avoid using summations.

𝑐 (𝐼) =
∑︁
𝑖∈𝐼

𝑐 (𝑖), for a sequence of instructions 𝐼 .

We consider an arbitrary cost model C. Let AC be an algorithm that computes the placement

of the metering instrumentation under C. For any program 𝑃 , we define AC (𝑃) as the metered

version of the program after running the instrumentation algorithm. By 𝑃C we denote the ground

truth – a metered instance of 𝑃 instrumented under the specification of the cost model C. A simple

way to obtain 𝑃C is to place instrumentation before each instruction in 𝑃 .

We consider that any program is executed given a budget 𝐵 > 0 and the current global state

of the blockchain, 𝜎 . The execution of a program updates the budget based on the costs of the

executed instructions and can also modify the state. We call the sequence of instructions𝑇 executed

with budget 𝐵 and at the state 𝜎 a trace 𝑇𝜎,𝐵 . The result of any metered execution, if it terminates,

is a triple (𝑆, 𝐵′, 𝜎 ′) where 𝑆 is the status of execution (described in Definition 6.1), 𝐵′ is the final
budget, and 𝜎 ′ is the final global state of the blockchain.

Definition 6.1. Consider a metered instance of an arbitrary program 𝑃 under the cost model C,
𝑃C . Let its execution be a transition from (𝐵, 𝜎) to (𝑆, 𝐵′, 𝜎 ′).

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 47

We say the program execution has status T if it terminates successfully under the provided budget
and cost model. More formally, if non-metered 𝑃 transitions the global state from 𝜎 to 𝜎 ′ using a trace
of instructions 𝑇 , then the following holds. If 𝐵 ≥ 𝑐 (𝑇), then the execution status is 𝑆 = T , the final
budget is 𝐵′ = 𝐵 − 𝑐 (𝑇), and the final state is 𝜎 ′.
We say the program execution has status F𝐸 if it terminates with an exception 𝐸 originating from

one of the executed instructions. Formally, assume non-metered 𝑃 keeps the global state 𝜎 because
executing a trace of instructions 𝑇 results in exception 𝐸. Then if 𝐵 ≥ 𝑐 (𝑇), the execution status is
𝑆 = F𝐸 , the final budget is 𝐵′ = 𝐵 − 𝑐 (𝑇), and the final state is still 𝜎 . Moreover, the same exception 𝐸
is still produced.

Finally, the program execution has status F<0 if it terminates because it runs out of budget. Formally,
consider any trace of instructions 𝑇 which 𝑃 can execute. Then, if 𝐵 < 𝑐 (𝑇), then the execution status
is 𝑆 = F<0, the final budget is 𝐵′ = 0, and the final state is still 𝜎 .
Lastly, given an executed trace of instructions 𝑇 of a terminating metered program 𝑃 , we say that

the execution cost is 𝑐 (𝑇).

We now present the three properties the metering instrumentation must satisfy, namely validity,

consistency, and safety. Note that in all cases we only consider programs that terminate under the

cost model. If the cost model is not sound and allows non-terminating programs, the metering

instrumentation is undefined.

Definition 6.2 (Validity). Assume that 𝑃C terminates with status T and final budget 𝐵. Then
AC (𝑃) terminates with the same status equal to T and the same final budget 𝐵.

Validity ensures that the program is metered according to the cost model. Validators can choose

different algorithms to place instrumentation, but as long as these algorithms produce valid instru-

mentation and the execution succeeds, the execution results and final budgets are equivalent. This

is required for consensus, which usually does not admit approximated results.

Note that in the definition of validity, we do not mention that the final states of 𝑃C and AC (𝑃)
are the same. However, this holds implicitly because the same trace of instructions is executed.

Definition 6.3 (Consistency). Assume that 𝑃C terminates with status 𝑆 ∈ {F𝐸, F<0} and final
budget 𝐵. Then AC (𝑃) terminates with the same status equal to 𝑆 and with an identical budget equal
to 𝐵.

Consistency guarantees that no matter what instrumentation algorithm is used, the execution

status and the final budgets are the same. For example, consider two instrumented versions of a

program 𝑃 under the cost model C, called 𝑃1 and 𝑃2 which do not satisfy consistency with respect

to 𝑃C . Then, it can happen that 𝑃1 terminates with status F𝐸 and a non-zero final budget, while 𝑃2
terminates with F<0 and zero budget. In practice, this can mean that one instance of the program

has terminated with an integer overflow error and the other has run out of the supplied budget.

The discrepancy in execution results in case of abnormal termination (either due to exceptions or

being out-of-budget) is again important for consensus, similarly to validity. Validators can select any

algorithm that produces valid and consistent instrumentation, which in turn guarantees agreement

amongst honest validators.

We should mention that one can ignore consistency (and validity, strictly speaking). Such an

approach might be easier to realize, but at the same time, it limits the system significantly. For

example, the changes to the algorithm have to be versioned because two versions can now yield

different execution costs. Moreover, it precludes validators from running different instrumentation

algorithms, making the network weaker because it depends on a single algorithm implementation.

48 George Mitenkov

Definition 6.4 (Safety). Assume that 𝑃C terminates with status F<0 and executes a trace of
instructions 𝑇 with the total cost 𝑐 (𝑇) equal to the initial budget.

We say that AC is k-safe if for some 𝑘 ≥ 0 the following holds. AC (𝑃) terminates with status F<0
and executes a trace of instructions 𝑅 such that |𝑐 (𝑅) − 𝑐 (𝑇) | ≤ 𝑘 . If 𝑐 (𝑅) ≤ 𝑐 (𝑇) for any 𝑇 , we say
the algorithm is safe. Otherwise, we say the algorithm is generous and can tolerate costs up to 𝑘 to go
unmetered.

Informally, safety ensures that the metering placement eventually terminates the program which

is executed with an insufficient budget. The role of the parameter 𝑘 is to allow a more relaxed

placement of instrumentation while still guaranteeing termination. For example, for programs

running out of budget, it is acceptable to execute a fewmore instructions than under the specification

of the cost model.

6.2 Per-block placement of metering instrumentation
Now, we define the first algorithm which places the metering instrumentation for each basic block

in the program, which we call PB. Since the algorithm is straightforward, we do not present the

pseudo-code, and instead opt for a textual description. Figure 19 shows an example of such a

placement in LLVM IR.
27

(1) For each basic block, compute the sum of the costs of all instructions in that block.

(2) The instrumentation is placed at the beginning of the basic block.

1 bb1:
2 br label %bb2

3 bb2:
4 %i = phi i32 [0, %bb1], [%i.inc, %bb3]

5 bb3:
6 %i.inc = add nsw i32 %i, 1
7 %cond = icmp slt %i.inc, %n
8 br i1 %cond, label %bb2, label %bb4

9 bb4:
10 ret void

1 bb1:
2 call void @meter(i64 1)
3 br label %bb2

4 bb2:
5 call void @meter(i64 1)
6 %i = phi i32 [0, %bb1], [%i.inc, %bb3]

7 bb3:
8 call void @meter(i64 3)
9 %i.inc = add nsw i32 %i, 1
10 %cond = icmp slt %i.inc, %n
11 br i1 %cond, label %bb2, label %bb4

12 bb4:
13 call void @meter(i64 1)
14 ret void

Fig. 19. Example of metering instrumentation as computed by the PB algorithm. For clarity, the metering is
shown as a call to the @meter function which takes a single integer argument – a cost to update the budget
of the program. We assume all LLVM instructions have unit cost.

It is clear that the algorithm takes linear time in the number of instructions in the program.

Moreover, the instrumentation placed by PB satisfies validity and safety, as proved below.

Proof. Consider a program 𝑃 and its metered instance 𝑃C which terminates under C.
27
We use LLVM IR here as an example because 1) its syntax is well-known, and 2) it is high-level enough to avoid complicating

the figures with unnecessary information.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 49

Safety: Assume 𝑃C terminates with status 𝑆 = F<0 when executed with initial budget 𝐵. This

means that there exists a trace 𝑇 of instructions in 𝑃 which is executed successfully, and which

costs 𝑐 (𝑇) = 𝐵. Let𝑈 be the sequence of basic blocks visited by executing the trace 𝑇 . Then

𝐵 = 𝑐 (𝑇) ≤
∑︁
𝑢∈𝑈

∑︁
𝑖∈𝑢

𝑐 (𝑖) =
∑︁
𝑢∈𝑈

𝑐 (𝑢).

That means that the metering instrumentation placed by PB observes that the budget is not sufficient

having executed a trace 𝑅 ⊆ 𝑇 . Hence, it also terminates with the same status 𝑆 .

Validity: Assume 𝑃C terminates with status 𝑆 = T . Then, each executed basic block 𝑏 has cost

𝑐 (𝑏). At the same time, PB meters precisely 𝑐 (𝑏) for each basic block 𝑏 as well. Hence, the final costs

of execution are the same. Moreover, the final budget, status and states are also the same because

the metered costs are equivalent and the instructions in the original program are not modified by

PB. □

There are two important observations about the PB algorithm we can make. First, we observe

that the placement of the metering instrumentation at the beginning of the block is optimal (we do

not consider placements across blocks yet). Any other placements within the basic block would

keep the number of instrumentations the same. However, placing the instrumentation at the kth
position in the block only guarantees k-safety which is strictly worse than 0-safety as guaranteed

by PB.
28

Second, the instrumentation placed by the PB algorithm does not satisfy consistency. To see that,

one can consider a simple counterexample as shown in Figure 20. Here, we use a Wasm program

comprised of a single function that divides two inputs, and which has a single basic block. We

assume that all instructions have unit cost and the input b is zero.

If the function instrumented by the PB algorithm is executed with a budget of at most 3, the

execution terminates with F<0 because the metering call detects that the budget is too small. At the

same time, if executed with a budget of 3 under the specification, the execution terminates with F𝐸
because the division in Wasm traps on division by zero.

1 (func $division(param i32 $a)
2 (param i32 $b)
3 (result i32)
4 call $meter (i64.const 4)
5 local.get $a
6 local.get $b
7 i32.div_u
8 return
9)
10
11
12

1 (func $division(param i32 $a)
2 (param i32 $b)
3 (result i32)
4 call $meter (i64.const 1)
5 local.get $a
6 call $meter (i64.const 1)
7 local.get $b
8 call $meter (i64.const 1)
9 i32.div_u
10 call $meter (i64.const 1)
11 return
12)

1 (func $division(param i32 $a)
2 (param i32 $b)
3 (result i32)
4 call $meter (i64.const 1)
5 local.get $a
6 call $meter(i64.const 1)
7 local.get $b
8 call $meter(i64.const 1)
9 i32.div_u
10 call $meter (i64.const 1)
11 return
12)

Specification PB algorithm

Budget = 1 Budget = 3 Budget < 4

Fig. 20. Wasm-based example illustrating that the instrumentation placed by the PB algorithm does not
satisfy consistency. The first two boxes (on the left) show the execution under the specification (i.e., every
instruction is metered individually) with budgets of 1 and 3. The third box (on the right) shows the execution
under the PB algorithm for any budget smaller than 4.

28
We note that this statement is questionable in the presence of dynamic costs. For example, we can combine dynamic costs

to avoid extra metering instrumentation. The effect of this on performance is very low, however, and is not considered in

this work.

50 George Mitenkov

Note that the violation of consistency comes from the implicit control flow originating from

instructions which may throw an exception. In these cases, when a program instrumented by the

PB algorithm is executed, the algorithm optimistically assumes that the budget is exceeded and

then terminates. However, this might not be the case because the budget can still be sufficient to

reach an instruction that implicitly transfers the control flow.

It is worth mentioning that the instrumentation is placed by the PB algorithm at the beginning of

each basic block, and therefore the lack of consistency is not a security issue. Indeed, the metered

cost always covers the whole block, so even if the program must terminate with an erroneous

status F𝐸 , it does not consume a higher budget than it is supposed to. However, this is a problem

on the consensus layer if different instrumentation algorithms are used.

One way to solve this problem is to be conservative and meter before each instruction with

implicit control flow. This solution is used by finite-wasm, which is used by the NEAR blockchain.

In this work, we opt for an optimistic approach instead. As we have observed in Section 5, it is

not common for contracts to terminate by implicitly throwing an exception such as divide-by-zero.

It is even less common for contracts to run out of their budget. As a result, our goal is an efficient

algorithm that calculates the placement of the metering instrumentation so that it satisfies validity,

and, separately, a mechanism to ensure consistency.

6.3 Consistency recovery mechanisms
Instead of focusing solely on the PB algorithm, we consider an arbitrary cost model C and an

arbitrary algorithm AC which places valid metering instrumentation at the beginning of basic

blocks. Such a relaxation is useful because it can be applied to any valid algorithm (and particularly

to the more efficient algorithms we describe later in this section). Figure 21 shows an example CFG

instrumented by different algorithms.

3

ENTRY

EXIT

22

2

3

2

5

ENTRY

EXIT

7

ENTRY

EXIT

12

7

Fig. 21. Example of a simple CFG instrumented by three different algorithms. All instructions (in grey) have
unit cost. The metering instrumentation is depicted in red with the cost written in bold. On the left, the PB
algorithm is used. It is easy to see that the instrumentations shown in the middle and on the right satisfy
validity (but not necessarily safety), despite not all blocks having metering instrumentation.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 51

We consider an extended instruction set I𝑚 , which is simply the union of the original instruction

set I and instruction𝑚 used for the metering. We note that while in reality, a single metering

instruction can take 2-4 assembly instructions, in this model we consider it to be a single (pseudo-)

instruction. We use the following classification of instructions in I𝑚 .
• AlwaysReturn: Instructions in this class are guaranteed to return and therefore it is safe to

combine their costs. For example, wrapping addition belongs to this class.

• MayThrow: Instructions in this class may throw an exception. These instructions cause

consistency problems if the costs are optimistically combined. If they throw an exception,

status F𝐸 must be produced. For example, division is usually such an instruction.

• Meter : Instructions in this class are inserted by metering instrumentation placement algo-

rithms. Every instruction 𝑖 ∈ 𝑀𝑒𝑡𝑒𝑟 subtracts the metered amount𝑚(𝑖) from the current

budget. If the budget is not sufficient, the execution must halt with status F<0. Trivially,
𝑐 (𝑖) = 0 for 𝑖 ∈ 𝑀𝑒𝑡𝑒𝑟 .

Consider any trace of instructions𝑇 such that the execution terminates with status T . Let𝑀 ⊆ 𝑇
be the set of all instructions in𝑇 that belong to the𝑀𝑒𝑡𝑒𝑟 class. Then for the instrumentation to be

valid it must hold that: ∑︁
𝑖∈𝑇

𝑐 (𝑖) =
∑︁
𝑖∈𝑀

𝑚(𝑖)

Informally, the sum of metered costs must be equal to the cost of the execution according to

the cost model when the program terminates successfully. With this setting, it is not difficult to

see where the consistency problems can arise. In total, there are four sources of inconsistencies

depicted in Figure 22.

Meter 10

MayThrow

Meter 10

MayThrow MayThrow

Meter 10

MayThrow

Meter 10

Budget:
8

Budget:
20

Budget:
2

Budget:
20

The budget is
sufficient to reach
throwing instruction!

Throwing instruction
should cost 3, not
10!

Instruction throws
but is unreachable!

Throwing instruction
should cost 4, but
costs 0!

Fig. 22. Four examples where the instrumentation placement does not satisfy consistency.

We consider two instances of a program 𝑃 : the specification 𝑃C and the instrumented version

AC (𝑃) under the cost model C. Let 𝐵 be the initial budget. Denote the trace of the executed

instructions by an unmetered program as 𝑇 and let the last instruction in 𝑇 always throw an error

𝐸 and be the only instruction with implicit control flow. Assume 𝑃C terminates with status 𝑆 ≠ T .
Again, let𝑀 = {𝑖 ∈ 𝑇 | 𝑖 ∈ 𝑀𝑒𝑡𝑒𝑟 } and let 𝑐𝑀 be the total cost metered by instrumentation in𝑀 .

The four sources of inconsistency can be formally described as follows.

• Assume 𝑆 = F<0 and 𝑐𝑀 ≤ 𝐵 < 𝑐 (𝑇). In this scenario, the program under the cost model

specification does not have enough budget. Because the metered amount is within the

budget to execute the whole trace 𝑇 , AC (𝑃) terminates with F𝐸 instead.

52 George Mitenkov

• Assume 𝑆 = F𝐸 and 𝑐 (𝑇) ≤ 𝐵 < 𝑐𝑀 . Because the metered amount exceeds the budget,

AC (𝑃) terminates with a different status F<0, while under the specification the program

runs into an exception.

• Assume 𝑆 = F𝐸 and 𝑐 (𝑇) < 𝑐𝑀 ≤ 𝐵. In this case, because the metered amount is still

within the budget,AC (𝑃) terminates with the same status 𝑆 throwing the same exception 𝐸.

However, consistency is not satisfied because the final budgets are not equal and 𝐵 −𝑐 (𝑇) >
𝐵 − 𝑐𝑀 .

• Assume 𝑆 = F𝐸 and 𝑐𝑀 < 𝑐 (𝑇) ≤ 𝐵. Similarly to the case above, AC (𝑃) terminates with

the same status 𝑆 , but different final budgets. This time, the instrumented program meters

fewer instructions than necessary, which can be a security problem.

We observe that in order to ensure consistency of AC (𝑃), we must guarantee that 1) we can

select the correct status for execution in a deterministic way, either F<0 or F<𝐸 , and 2) if the

program terminates with erroneous F𝐸 status, the final budget must match the one obtained under

the specification 𝑃C .
Firstly, observe that (1) means that on running out of budget when processing some instruction 𝑖 ∈

𝑀𝑒𝑡𝑒𝑟 the execution should not immediately terminate. It is possible that the budget is sufficiently

large for the execution to reach an instruction 𝑗 ∈ 𝑀𝑎𝑦𝑇ℎ𝑟𝑜𝑤 which halts the execution with a

different status. At the same time, it is not enough to check if 𝑗 is reachable within the budget,

because the fact that 𝑗 throws can depend on the state of the program just before 𝑗 . Alternatively,

there can be divergence in the control flow and without executing the rest of the trace it might not

be possible to know which branch will be taken.

Secondly, we observe that if execution encounters an instruction 𝑖 ∈ 𝑀𝑎𝑦𝑇ℎ𝑟𝑜𝑤 which throws

an exception 𝐸, the execution status can be determined in a simple way:

• If there is not enough budget to reach 𝑖 , the execution terminates with the status of F<0
and the final budget of zero.

• Otherwise, the execution terminates with status F𝐸 . Moreover, one may need to compute

the precise budget needed to reach 𝑖 .

Using these two observations we define a simple mechanism to ensure consistency, presented as

Algorithm 1. The mechanism consists of two functions. The first one, on_meter(a), is executed for

any instruction 𝑖 ∈ 𝑀𝑒𝑡𝑒𝑟 which meters the amount 𝑎. The second one, on_throw(i), is executed
when an instruction 𝑖 ∈ 𝑀𝑎𝑦𝑇ℎ𝑟𝑜𝑤 results in an exception. Both functions can be viewed as

bytecode handlers in an interpreter loop, one to process the metering instructions and one to be

used for error handling.

We observe that this design does not impact successful executions at all, allowing them to work

at full speed. If there are no exceptions, then on_throw is never called. If the program never runs

out of budget, the branch on line 6 in Algorithm 1 is never taken, no matter whether the recovery

mechanism is used or not.

It remains to show how on_meter and on_throw functions can be integrated into an interpreter

or a JIT-compiler, as well as how to implement calculate_budget_to_reach.
We observe that on_meter and on_throw are trivial to implement both as a part of an inter-

preter/compiler or in bytecode. For example, one can fix a memory location to track the recovery

counter. Note that fixing a register is not required: the counter is accessed only when the program

is in the failing state, and there the efficiency is not very important.

There are two ways to implement calculate_budget_to_reach: either it recomputes the cost

online, or the algorithm has to do it beforehand.

First, we consider the case when the costs are calculated in advance. For that, we use the concept

of refund tables. We associate each instruction with a refunded amount which should be subtracted

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 53

Algorithm 1 Consistency recovery mechanisms.

1: budget← 𝐵 ⊲ Counter to keep track of the program budget

2: recovery← 0 ⊲ Counter that is positive when in consistency recovery mode

3:

4: function on_meter(amount)
5: budget← budget - amount ⊲ Update the budget with metered amount

6: if budget < 0 then
7: if recovery > 0 then
8: return F<0 ⊲ No exceptions before the program runs out of budget

9: end if
10: recovery← amount ⊲ Enter the recovery mode

11: end if
12: end function
13:

14: function on_throw(instruction)
15: b← calculate_budget_to_reach (instruction) ⊲ Obtain the budget to reach the instruction

16: if budget + recovery - b < 0 then ⊲ Compare with the last positive budget

17: return F<0
18: end if
19: return F𝐸
20: end function

from the current accumulated cost to obtain the correct value. We show examples of refund tables

in Figure 23.

3

ENTRY

EXIT

22

2

3

2

5

ENTRY

EXIT

7

ENTRY

EXIT

12

7

0
1 1

0

2

0
1

0
1
2

0
1

1
0

5
6 6

5

4

7
8

2
3
4

2
3

1
0

-7
-6 -6

-7

-8

-5
-4

-3
-2
-1

-10
-9

1
0

B)A) C)

Fig. 23. Three examples of a CFG metered differently. For each, in yellow, refund tables are shown. The exact
cost to reach a particular instruction can be simply calculated by subtracting the corresponding refund from
the current accumulated cost (which is in turn the original budget minus the current budget).

Refund tables can be calculated by performing a single pass over all instructions in the program.

Each entry is simply the difference between the currently metered amount and the actual cost.

Observe that there is no need to consider loops.

We note that this approach works even in the presence of calls, although in a slightly more

complicated manner. If there is an exception inside a function, we can use the refund tables to

calculate the cost to reach the throwing instruction from the start of the function. Because the

function was called, there might be some cost that has not yet been refunded in the caller. This

54 George Mitenkov

extra refund can be calculated by unwinding the call stack: the callee is removed from the stack

and the refund is calculated for the previous caller. This process is shown in Figure 24.

10

ENTRY

9

7
8

6
5

EXIT

4

2
3

1
0

ENTRY

ERROR

EXIT

10

-2

-4
-3

-5
-6

2
3

1
00

-1

CALL

0

10

10 - -5 = 15
15 - 4 = 11

1) no cost
accumulated
at the start

2) speculatively
meter 10

3) function call
creates a new frame

4) on exception, recalculate
the accumulated cost

5) call stack is unwinded

6) recalculate the cost
for the next stack frame

Fig. 24. Example of using refund tables to recalculate the actual cost of execution if exception happens inside
a function call.

While being faster than online calculation, refund tables add additional complexity and require

more space. While each entry can be potentially a single byte, the amount of needed memory still

increases by 𝑛 bytes if there are 𝑛 instructions in the contract. In theory, this can be optimized by

storing refunds only for instructions which may throw an exception.

An alternative approach is to calculate refunds online, trading extra space for refund tables with

the additional processing time. In addition, the other benefit is that we calculate the refunds on the

fly only for the functions which are currently on the call stack, and not for every function in the

program.

With a consistency recovery mechanism, validity and safety are the only necessary properties

an efficient instrumentation placement algorithm must satisfy. We next look at such an algorithm.

However, first, we develop an algorithmic framework we will be working in.

6.4 Algorithmic framework
Our next step is to develop a more optimal algorithm, using the PB algorithm as a starting point.

We note that, in general, the algorithm for the placement of the metering instrumentation only has

to satisfy validity and be k-safe for some 𝑘 ≥ 0. Consistency can be enforced using a consistency

recovery mechanism.

Before describing a safe algorithm we develop, we need to formally define the setting we are

using one more time, as we will not be operating on instructions anymore and instead analyze the

vertices of a control-flow graph.

We consider CFGs denoted as 𝐺 = (𝑉 , 𝐸) where 𝑉 is a set of vertices and 𝐸 is a set of directed

edges. 𝐺 does not have any parallel edges.

There is a unique entry vertex 𝑠 ∈ 𝑉 and a unique exit vertex 𝑡 ∈ 𝑉 . The exit vertex is reachable
by any other vertex in𝑉 and any vertex in𝑉 can be reached from 𝑠 . This condition means that any

loop in the program corresponding to 𝐺 has an exit and an entry.

We use 𝑁𝑜𝑢𝑡 (𝑣) = {𝑢 ∈ 𝑉 | (𝑣,𝑢) ∈ 𝐸} and 𝑁𝑖𝑛 (𝑣) = {𝑢 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸} to represent the sets of

successors and predecessors of a vertex 𝑣 ∈ 𝑉 , respectively.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 55

Definition 6.5. A vertex 𝑣 ∈ 𝑉 is called a predicate if |𝑁𝑜𝑢𝑡 (𝑣) | > 1. A directed edge (𝑢, 𝑣) ∈ 𝐸 is
called a critical edge if |𝑁𝑜𝑢𝑡 (𝑢) | > 1 and |𝑁𝑖𝑛 (𝑣) | > 1.

The significance of critical edges in a CFG is that in order to enable certain compiler optimizations

they have to be split by introducing a new vertex. The most obvious example of such an optimization

is the partial redundancy elimination (PRE) [65].

In PRE, there are expressions which can be redundant on some but not all paths. For example,

in Figure 25 an expression 𝐸 is redundant on the paths containing the basic block 𝑎 but is not for

the paths containing the blocks 𝑏 and 𝑐 . Moreover, 𝐸 is never computed on any path through the

blocks 𝑐 and 𝑑 .

PRE optimization splits the edge (𝑐, 𝑏) and introduces an empty basic block 𝑣 . Then, 𝐸 can

be moved to blocks 𝑎 and 𝑣 , without introducing non-existent computations on the path going

through the blocks 𝑐 and 𝑑 . Such a technique is also useful for the algorithms that place metering

instrumentation, as we will see later on.

E

E

E

Ea

b d

c a

v

c

db

Fig. 25. Partial redundancy elimination for the expression 𝐸. On the left, an original CFG where 𝐸 is computed
twice on the path 𝑎 − 𝑏. On the right, a CFG obtained after running the PRE algorithm.

Definition 6.6. When talking about cycles in a directed graph 𝐺 , we use the terminology defined
by Ball and Larus [28]. Let 𝑢, 𝑣 and𝑤 be three consecutive vertices on a cycle. We say there is a fork at
𝑢 if there are edges (𝑢, 𝑣) and (𝑢,𝑤). We say there is a join at 𝑢 if there are edges (𝑣,𝑢) and (𝑤,𝑢). We
say there is a pipe at 𝑢 if there are edges (𝑣,𝑢) and (𝑢,𝑤) or (𝑤,𝑢) and (𝑢, 𝑣). A diamond is a cycle
with exactly one fork and one join. A directed cycle is a cycle consisting of pipes only.

Definition 6.7. Let 𝐶 be a cycle and let 𝐺 [𝐶] be the subgraph of 𝐺 induced on 𝐶 . An edge that
connects two non-consecutive vertices of 𝐺 [𝐶] is called a chord of 𝐶 .

Lemma 6.8. Consider a graph 𝐺 = (𝑉 , 𝐸) such that it has no critical edges. Then any directed cycle
𝑋 ⊆ 𝑉 has no chords.

Proof. For contradiction, assume there is a chord (𝑎, 𝑏) ∈ 𝐸 in some directed cycle 𝑋 . Take

𝑐 ∈ 𝑋 ∩ 𝑁𝑜𝑢𝑡 (𝑎) and 𝑑 ∈ 𝑋 ∩ 𝑁𝑖𝑛 (𝑏). Note that it is possible that 𝑐 = 𝑑 . Clearly, |𝑁𝑜𝑢𝑡 (𝑎) | > 1 and

|𝑁𝑖𝑛 (𝑏) | > 1, so (𝑎, 𝑏) is a critical edge, which is a contradiction. □

Any vertex in a CFG has a cost, determined by a cost function 𝑐 : 𝑉 → Z>0. Moreover, for

any set of vertices 𝑋 ⊆ 𝑉 we define the cost of 𝑋 as the sum of the vertex costs. For convenience,

we again abuse the notation and use the cost function throughout: for costs of vertices, paths, or

arbitrary sets of vertices.

In our model we do not allow having explicit costs for edges. One can observe that this is not

needed because edge costs can be simulated: an edge can be split by introducing a new vertex with

a cost equal to the cost of that edge.

56 George Mitenkov

We define a metering function 𝑚 : 𝑉 → Z≥0. For any vertex 𝑣 ∈ 𝑉 , we call it metered if

𝑚(𝑣) ≠ 0 and unmetered otherwise. The metering instrumentation algorithm can then be reduced

to identifying such a function𝑚 – an assignment of zero and non-zero integer values to vertices of

a CFG. The metering instrumentation can then be injected into all basic blocks 𝑏 with𝑚(𝑏) ≠ 0. A

single instrumentation which meters the amount𝑚(𝑏) and placed at the beginning of the basic

block is sufficient.

Definition 6.9 (Validity). The metering function is called valid if for any path 𝜋 = 𝑠, . . . , 𝑡 it
holds that ∑︁

𝑣∈𝜋
𝑚(𝑣) =

∑︁
𝑣∈𝜋

𝑐 (𝑣).

We note that the validity of𝑚 ensures the validity of the corresponding instrumentation. Assume

a sequence 𝑆 of basic blocks is successfully executed. The execution cost is simply 𝑐 (𝑆). Hence, the
metering function produces a valid instrumentation.

Definition 6.10 (Safety). We say that for a vertex 𝑣 ∈ 𝑉 is covered if for any entry-exit path
𝜋 = 𝑠, . . . , 𝑡 it holds that ∑︁

𝑣∈𝜋
𝑚(𝑣) ≥

∑︁
𝑣∈𝜋

𝑐 (𝑣).

Next, let

𝑘 = min

∀𝜋∈P
|𝑚(𝜋) − 𝑐 (𝜋) |

where P is a set of all possible paths starting at entry 𝑠 ∈ 𝑉 . Then, we call such metering function
k-safe. If 𝑘 = 0, i.e., the costs of all vertices in a CFG are covered, then the metering function𝑚 is called
safe. Otherwise, it is called generous.

We observe that the safety of a metering function implies the safety of the corresponding

instrumentation. If the metering function is safe, then when a basic block 𝑏 is about to be executed

the cost of 𝑏 has either been already metered or will be metered using the metering instruction

placed at the beginning of 𝑏 and which is large enough to at least cover the instructions in 𝑏.

Hence, running out of budget is always caught early or at least triggering the recovery mode if a

consistency recovery mechanism is used.

Corollary 6.11. The metering function𝑚 : 𝑉 → Z≥0 so that for each vertex in 𝑉 it holds that
𝑚(𝑣) = 𝑐 (𝑣) is both valid and safe.

Recall that we are interested in the properties of the metering instrumentation for a program 𝑃

only when the program terminates under the specification of the cost model. Hence, it is convenient

to define the following lemma already.

Lemma 6.12. Consider an arbitrary program 𝑃 represented by the control-flow graph 𝐺 = (𝑉 , 𝐸)
and an arbitrary cost model C. Then if 𝑃C terminates, any directed cycle in 𝐺 which is also reachable
from the entry 𝑠 ∈ 𝑉 has a non-zero cost.

Proof. For contradiction, assume that there is a directed cycle 𝑋 ⊆ 𝑉 such that it has a zero cost

and is reachable from 𝑠 ∈ 𝑉 . Hence, there is a path from the entry vertex 𝑠 to some 𝑢 ∈ 𝑋 . Since
the cost of 𝑋 is zero, it can be executed infinitely many times. That is, one can select an execution

path 𝑠, . . . , 𝑋, 𝑋, . . ., and so 𝑃C does not terminate, which leads to a contradiction. □

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 57

Onward, we assume that for all control-flow graphs 𝐺 we consider, it holds that for any directed

cycle 𝑋 , 𝑐 (𝑋) > 0. Such an assumption does not limit the generality of the instrumentation

placement algorithms. We only consider programs which terminate under the specification of the

cost model C. But then Lemma 6.12 implies the condition.

Next, we look at the safe per-path placement (SPP) algorithm which aims at minimizing the

number of instrumented basic blocks along any entry-exit path in a CFG, while ensuring safety.

6.5 Computing valid and safe metering function which is path-minimal
So far we have seen the PB algorithm which operates on basic blocks. It is not hard to see that there

exist programs where the PB algorithm does not produce the optimal placement. For example, in

Figure 21, the program instrumented with the PB algorithm goes through 5 metering instructions,

while it can be reduced to just 1 or 2.

We therefore look for an algorithm that optimizes the placement of the metering instrumentation

over paths in a CFG of a program. We formulate it as an optimization problem using the algorithmic

framework we have previously defined.

Given a CFG 𝐺 = (𝑉 , 𝐸), our goal is to find a linear-time algorithm to compute the metering

function𝑚 : 𝑉 → Z>0 such that𝑚 is valid and safe, and so that the number of metered vertices is

minimized along all paths (and so𝑚 is called path-minimal).

6.5.1 Locally path-minimal safe and valid metering function. Before we describe the algorithm, it is

important to make a few observations about the metering function we are looking for. We consider

two simple structures, also shown in Figure 26: a straight-line sequence of vertices and a predicate

vertex. For each, we find a metering function which is locally optimal.

3

2

0

4

0

0

0

9

1) Straight-line sequence of vertices. 2) A predicate vertex.

2

1

5

3

2

0

3

3

1

0

Fig. 26. Optimal and safe metering function for two local structures: 1) a straight-line sequence of vertices
(on the left) and 2) a predicate vertex (on the right). The vertices’ labels are the metered amount.

Lemma 6.13. Consider a graph on vertices 𝑉 = {𝑣1, . . . , 𝑣𝑛} with edges {(𝑣𝑖 , 𝑣𝑖+1) | 1 ≤ 𝑖 < 𝑛}.
Suppose we are also given a valid and safe metering function𝑚 : 𝑉 → Z≥0. Then𝑚 can be refined
into𝑚′ : 𝑉 → Z≥0, which is valid, safe, and minimizes the number of metered vertices. Moreover,𝑚′

is defined as

𝑚′ (𝑣𝑖) =
{
𝑚(𝑉) , if 𝑖 = 1

0 , otherwise

Proof. We observe that𝑚′ is trivially a valid metering function. Moreover, it is safe because

every vertex is covered by the metering in the first vertex 𝑣1. This metering is also minimal because

a single vertex is metered (and having no metered vertices would violate validity). □

58 George Mitenkov

Lemma 6.14. Consider a graph with vertices𝑉 such that𝑉 = {𝑢} ∪𝑁𝑜𝑢𝑡 (𝑢) (the graph is a directed
star with a predicate vertex 𝑢). Also, let𝑚 be a valid and safe metering function on 𝑉 . Then𝑚 can be
refined into𝑚′ : 𝑉 → Z≥0, which is valid, safe, and minimizes the number of metered vertices in 𝑉 .

Denote 𝑐 = min𝑣∈𝑁𝑜𝑢𝑡 (𝑢)𝑚(𝑣). Then the optimal and safe metering function𝑚 is defined as

𝑚′ (𝑥) =
{
𝑚(𝑢) + 𝑐 , if 𝑥 = 𝑢

𝑚(𝑣) − 𝑐 , if 𝑥 = 𝑣 ∈ 𝑁𝑜𝑢𝑡 (𝑢)

Proof. It is trivial to refine𝑚 to𝑚′ using its definition, so it suffices to show that𝑚′ is valid,
safe, and minimizes the number of metered vertices.

Take any 𝑣 ∈ 𝑉 \ {𝑢}. Then𝑚′ (𝑢) +𝑚′ (𝑣) = 𝑚(𝑢) + 𝑐 +𝑚(𝑣) − 𝑐 = 𝑚(𝑢) +𝑚(𝑣) and so𝑚′ is
both valid and safe by definition.

Now it remains to show optimality. Let 𝑛 = |{𝑣 ∈ 𝑉 |𝑚(𝑣) = 𝑐}| be the number of unmetered

vertices. Now, for contradiction assume that𝑚′ is not optimal and hence it should be possible to

adjust the cost along the path 𝑢, . . . , 𝑣 for some 𝑣 ∈ 𝑉 \ {𝑢} to make 𝑛 bigger.

Since 𝑐 = min𝑣∈𝑁𝑜𝑢𝑡 (𝑢)𝑚(𝑣), there exists a vertex 𝑣 ∈ 𝑉 \ {𝑢} such that𝑚(𝑣) = 0. Hence, it is

not possible to increase𝑚(𝑢) as it must decrease the metered amount for 𝑣 .

We also cannot decrease𝑚(𝑢) by an amount greater than or equal to𝑚(𝑢) (recall that𝑚′ must

be safe). Hence, decrease𝑚′ (𝑢) by some 0 < 𝑡 < 𝑚(𝑢). However, this makes all vertices 𝑣 ∈ 𝑉 such

that𝑚′ (𝑣) = 0 to be metered, decreasing 𝑛 instead. Note that such 𝑣 always exists, because the

minimum metered amount has been taken. □

6.5.2 Globally path-minimal safe and valid metering function. Lemma 6.14 is particularly powerful

and can be applied to arbitrary CFGs on a vertex set 𝑉 if critical edges are split. In that case, the

successors of any predicate vertex 𝑣 ∈ 𝑉 would have only a single predecessor – 𝑣 itself. This means

that we can refine the metering function across𝐺 to obtain a locally optimal function around 𝑣 and

its successors.

Inspired by Lemmas 6.13 and 6.14, we can define an algorithm to find the metering function that

satisfies both safety and validity by repeatedly computing the locally optimal metering function.

The hope is that the safety and validity would be preserved during the iterations of the algorithm,

and it will terminate reaching the global optimum for𝑚.

The pseudo-code for the algorithm is present in Algorithm 2. The algorithm first splits all critical

edges in the control-flow graph and starts with the metering function𝑚0 equal to the cost function

𝑐 . Then, it iterates until it reaches a fixed-point and at each iteration applies Lemma 6.14. Note

that Lemma 6.13 can be trivially expressed as multiple applications of Lemma 6.14. The algorithm

terminates when the metering function𝑚𝑖 cannot be further improved. Finally, empty blocks are

removed. A step-by-step walk-through of the algorithm for a simple CFG is shown in Figure 27.

We now show that that the algorithm terminates with a valid and safe metering function. We

then argue that the function is optimal. It is worth mentioning that the SPP algorithm shown in

Algorithm 2 is not efficient, and its running time can be further improved. Nevertheless, we use

this version of the algorithm for our proofs.

Lemma 6.15. Consider𝐺 = (𝑉 , 𝐸) – a CFG with all critical edges split. For any directed cycle𝐶 ⊆ 𝑉 ,
𝑚𝑖 (𝐶) = 𝑐 (𝐶) at each iteration of the algorithm.

Proof. We use induction on the number of iterations. Trivially, the statement holds at iteration

0. It remains to show that a single iteration of an algorithm preserves the total metered amount for

the cycle.

For inductive step, assume this is true and𝑚𝑖 (𝐶) = 𝑐 (𝐶). We now prove that this implies that

𝑚𝑖+1 (𝐶) = 𝑐 (𝐶) as well.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 59

2

3

3

4

5

EXIT

ENTRY

6

2

0

0

0

2

3

3

4

5

EXIT

ENTRY

6

2

4

3

5

0

2

EXIT

ENTRY

0

8

5

6

5

0

5

1

0

4

EXIT

ENTRY

3

8

2

1

4

0

2

1

0

0

EXIT

ENTRY

4

11

5

3

4

0

3

1

0

0

EXIT

ENTRY

2

15

2

4

2

0

3

1

0

0

EXIT

ENTRY

2

17

0

4

0

0

7

1

0

0

EXIT

ENTRY

0

19

0

2

0

0

9

1

0

0

EXIT

ENTRY

0

19

0

0

0

0

9

1

0

0

EXIT

ENTRY

0

19

Original CFG Split critical
edges

Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 5 Iteration 6 Remove empty
blocks

Iteration 7

Fig. 27. Execution of the SPP algorithm on a simple graph which has a single cycle with multiple exits.
Metered vertices are represented in red, and the current values of the metering function are written in bold.

Because the algorithm splits all critical edges, by Lemma 6.8, there are no chords in 𝐶 .

Let𝑊 ⊆ 𝑉 \𝐶 be a set of vertices which have edges going to 𝐶 , and let 𝐸𝑊 be the collection of

such edges. We observe that it is not possible for𝑤 ∈𝑊 to have multiple outgoing edges, because

this would contradict an assumption that there are no critical edges. Hence, there is a unique edge

for each𝑤 ∈𝑊 and |𝑁𝑜𝑢𝑡 (𝑤) | = 1.

At iteration 𝑖 + 1, for (𝑤, 𝑣) ∈ 𝐸𝑊 ,𝑚𝑖 (𝑣) is propagated to𝑤 , and also to a single 𝑥 ∈ 𝐶 , as 𝑣 lies
on a cycle. Note that there are no chords, which results in uniqueness of 𝑥 , and so the metering

amount in the cycle does not change.

We now consider the opposite scenario: can more metering flow into the cycle? Let𝑈 ⊆ 𝑉 \𝐶 be

a set of vertices which have edges pointing from 𝐶 , and let 𝐸𝑈 be the collection of such edges. Like

in the case above, it is not possible for 𝑢 ∈ 𝑈 to have other incoming edges – this would create

a critical edge. Also, for each (𝑣,𝑢) ∈ 𝐸𝑈 , there is a unique edge (𝑣,𝑦) with 𝑦 ∈ 𝐶 . By the same

reasoning, having multiple edges creates chords.

At iteration 𝑖 + 1, we move the metered amount from successors of 𝑣 to 𝑢. The amount is always

bounded by the largest metered amount amongst them. In particular, we can never move more than

𝑚𝑖 (𝑦). Moving less, will keep some fraction of metered amount with 𝑦, leaving the total metered

amount unchanged. □

Theorem 6.16. The metering function computed by the SPP algorithm is valid and safe.

60 George Mitenkov

Algorithm 2 The SPP algorithm which computes safe and valid metering function.

1: function spp(G)
2: split_critical_edges (G)
3: 𝑖 ← 1 ⊲ Tracks the number of iterations of the algorithm.

4: 𝑚0 ← 𝑐 ⊲ Initially the metering function is the cost function.

5: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ← _𝑣 . 0

6: while 𝑡𝑟𝑢𝑒 do
7: 𝑡𝑜𝑡𝑎𝑙_𝑢𝑝𝑑𝑎𝑡𝑒 ← ∑

𝑣∈𝑉 𝑚𝑖𝑛𝑢∈𝑁𝑜𝑢𝑡 (𝑣)𝑚𝑖−1 (𝑢)
8: if 𝑡𝑜𝑡𝑎𝑙_𝑢𝑝𝑑𝑎𝑡𝑒 = 0 then ⊲ If the metered function cannot be improved, terminate.

9: remove_empty_blocks (G)
10: return𝑚𝑖

11: end if
12: for 𝑣 ∈ 𝑉 do
13: 𝑐′ ←𝑚𝑖𝑛𝑢∈𝑁𝑜𝑢𝑡 (𝑣)𝑚𝑖−1 (𝑢)
14: 𝑚𝑖 (𝑣) ←𝑚𝑖−1 (𝑣) + 𝑐′ ⊲ Each vertex takes the minimum cost of its successors.

15: for 𝑢 ∈ 𝑁𝑜𝑢𝑡 (𝑣) do
16: if 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 (𝑢) ≠ 𝑖 then ⊲ Ensures we do not subtract twice.

17: 𝑚𝑖 (𝑢) ←𝑚𝑖−1 (𝑢) − 𝑐′ ⊲ Successors give a fraction of their costs.

18: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 (𝑢) ← 𝑖

19: end if
20: end for
21: end for
22: 𝑖 ← 𝑖 + 1
23: end while
24: end function

Proof. The metering function is trivially valid and safe before iteration when 𝑖 = 0. Assume

that after iteration 𝑖 the computed metering function𝑚𝑖 is valid and safe. Showing that𝑚𝑖+1 is
valid and safe completes the proof by induction.

Observe that the algorithm is simply an application of Lemma 6.14 to all vertices in 𝑉 , and each

application is locally valid and locally safe. Hence,𝑚𝑖+1 must be safe.

Moreover,𝑚𝑖+1 is also valid. The reason why local application allow this is because critical edges

are split. As a result, every successor of some vertex 𝑣 dominates 𝑣 , and therefore shifting the cost

there does not change the per-path sum, which gives the validity. □

Next, we show that the SPP algorithm terminates. We will prove that by associating a ranking

function with the algorithm, which is bounded from below by zero and decreases at each iteration.

Definition 6.17. A vertex 𝑣 is called killed at iteration 𝑖 , if one of the following holds.
(1) 𝑚𝑖 (𝑣) = 0 and 𝑁𝑜𝑢𝑡 (𝑣) = ∅
(2) ∃𝑢 ∈ 𝑁𝑜𝑢𝑡 (𝑣) such that𝑚𝑖 (𝑢) = 0 and 𝑢 is killed.

For any killed vertex 𝑣 we define a witness path𝑊 (𝑣) as follows:
(1) if 𝑁𝑜𝑢𝑡 (𝑣) = ∅, then𝑊 (𝑣) = ∅.
(2) otherwise,𝑊 (𝑣) = {𝑢} ∪𝑊 (𝑢) for arbitrary 𝑢 ∈ 𝑁𝑜𝑢𝑡 (𝑣) with𝑚𝑖 (𝑢) = 0.

Corollary 6.18. If a vertex 𝑣 ∈ 𝑉 is killed by the algorithm in iteration 𝑖 , it remains killed for all
iterations 𝑗 ≥ 𝑖 .

Corollary 6.19. The exit vertex 𝑡 ∈ 𝑉 is always killed in the first iteration.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 61

Theorem 6.20. There exists a constant 𝑐 ∈ Z>0 such that every 𝑐 iterations at least one vertex is
killed by the algorithm.

Proof. Consider an arbitrary iteration 𝑖 of the algorithm, and the set of killed vertices so far

𝐾 ⊆ 𝑉 . By Corollary 6.19, |𝐾 | ≥ 1. We let𝑊 B {𝑣 ∈ 𝑉 | (𝑣,𝑢) ∈ 𝐸 ∧𝑢 ∈ 𝐾} be the set of all vertices
with at least one of their successors killed.

If there is a vertex𝑤 ∈𝑊 such that 𝑁𝑜𝑢𝑡 (𝑤) ⊆ 𝐾 , then𝑤 gets killed by a single algorithm step.

Indeed, all its successors are killed, the update computed by the algorithm makes the metered

function to be 0 in at least one vertex, and so𝑤 is killed by definition.

Otherwise, for all𝑤 ∈𝑊 there exists 𝑢 ∈ 𝑁𝑜𝑢𝑡 (𝑤) such that 𝑢 ∉ 𝐾 . In this case, some vertices in

𝑊 lie on a directed cycle. This holds because for any such a vertex 𝑢 there is a path 𝜋 = {𝑢, . . . , 𝑡},
since 𝑡 has to be reachable from any vertex. As 𝑡 ∈ 𝐾 , 𝜋 ∩𝑊 ≠ ∅. This holds for all𝑤 ∈𝑊 and so

there must be a directed cycle.

Moreover, there is a directed cycle 𝐶 such that for all 𝑤 ∈ 𝐶 ∩𝑊 , for all 𝑢 ∈ 𝑁𝑜𝑢𝑡 (𝑤) either
𝑢 ∈ 𝐾 or 𝑢 lies on some directed cycle (it can be 𝐶 or some other cycle). This follows from the

reachability of the exit vertex 𝑡 . If there is some successor 𝑢 ∉ 𝐾 , there is a path to 𝑡 which goes

through𝑊 again. This either creates a directed cycle which satisfies the property or it goes to some

other𝑤 ′ outside of this cycle. Because𝑊 is finite, at some point the desired cycle is found.

We now take any such cycle 𝐶 and let 𝐵 B 𝐶 ∩𝑊 and let 𝑁𝑏 B {𝑢 ∈ 𝑁𝑜𝑢𝑡 (𝑏) | 𝑏 ∈ 𝐵 ∧ 𝑢 ∉ 𝐾}.
In essence, 𝐵 are all vertices on 𝐶 which also have successors in 𝐾 and 𝑁𝑏 are all successors of

𝑏 ∈ 𝐵 which are not yet killed.

We claim that there exists a constant 𝑐 ∈ Z≥1 such that after 𝑐 steps of the algorithm all vertices

in 𝑁𝑏 are metered (the metering function evaluated at these vertices is non-zero). Therefore, the

next algorithm step either:

• kills 𝑏 if its successor with the smallest metered value lies in 𝐾 , or

• decreases the metered amounts for vertices in 𝑁𝑜𝑢𝑡 (𝑏) ∩ 𝐾 .
Even if 𝑏 is not killed, more steps of the algorithm eventually drain 𝑁𝑜𝑢𝑡 (𝑏) ∩ 𝐾 so that there

is vertex 𝑥 ∈ 𝑁𝑜𝑢𝑡 (𝑏) ∩ 𝐾 such that𝑚𝑖 (𝑥) = 0, which kills 𝑏. It remains to show why the cost is

decreasing every 𝑐 steps, for some positive constant 𝑐 .

For each not yet killed successor 𝑛 ∈ 𝑁𝑏 , we find another not killed vertex 𝑓 (𝑚𝑖 (𝑓) ≠ 0) such

that there is no vertex with a non-zero metered amount which is closer for any possible path to

reach 𝑓 from 𝑛. If𝑚𝑖 (𝑛) ≠ 0, then 𝑓 = 𝑛.

Such a vertex always exists because directed cycles preserve their cost as shown in Lemma 6.15,

and are also initialized with at least one no-zero cost according to Lemma 6.12.

Finally, we select this longest path 𝜋 = {𝑛, . . . , 𝑓 } and let 𝑐′ B |𝜋 | − 1. Then in 𝑐′ steps, the
metered amount for the vertex 𝑛 becomes non-zero. We repeat this for all vertices in 𝑁𝑏 and take

𝑐 − 1 to be the largest of the 𝑐′s. Then, the 𝑐th iteration computes the minimum of all vertices in 𝑁𝑏

which is non-zero, and so the cost of vertices in 𝑁𝑜𝑢𝑡 (𝑏) ∩ 𝐾 decreases. □

It is now trivial to show termination using Theorem 6.20. We define a function 𝑔(𝑖) as the number

of non-killed vertices at iteration 𝑖 . Assume there are 𝑛 vertices before we start the algorithm,

and so 𝑔(0) ≤ 𝑛. We observe that the first iteration is guaranteed to kill the exit vertex, and so

𝑔(1) ≤ 𝑛 − 1.
By Theorem 6.20, it is sufficient to take 𝑐 · (𝑛−1) more iterations to get all the remaining vertices

killed, i.e., obtain 𝑔(𝑐 · (𝑛 − 1) + 1) ≤ 0, which means that the algorithm eventually terminates.

Theorem 6.21. The SPP algorithm computes a valid and safe metering function which is path-
minimal: the number of the metered vertices across any path is minimized.

62 George Mitenkov

Proof. Suppose that the algorithm operates on some graph 𝐺 = (𝑉 , 𝐸). For contradiction,
assume that the computed function𝑚 by the algorithm is not path-minimal. Suppose that 𝑣 ∈ 𝑉
is a vertex such that𝑚(𝑣) ≠ 0 and can be shifted to other vertices in 𝑉 to reduce the number of

metered vertices per path while keeping the metering function valid and safe.

Because the new function has to be safe, then𝑚(𝑣) can only be moved through the incoming

edges of 𝑣 . Because critical edges are split, in order to reach 𝑣 one must go through the predecessors

of 𝑣 . Hence, moving𝑚(𝑣) is equivalent to performing a step of the SPP algorithm. □

6.5.3 Complexity of computing a safe and valid metering function which is path-minimal. With the

SPP algorithm, one can compute the placement of the metering instrumentation which is valid

and safe, as well as minimizes the number of instrumented basic blocks across all paths in the

program. While the algorithm also achieves termination, it uses a fixed-point iteration which can

have unpredictable run-time effects.

In particular, the Algorithm 2 for a CFG with 𝑛 vertices and 𝑚 edges has a time complexity

of 𝑂 (𝛼 (𝑛 +𝑚)) where 𝛼 is a non-zero constant. We note that 𝛼 depends on the diameter of the

graph – the costs have to be propagated from the vertices the furthest away from the entry vertex.

Moreover, cycles add even more complexity. In the presented algorithm, the metering cost can be

propagated through the cycle multiple times. As a result, the run-time complexity becomes highly

data-dependent.

6.5.4 Linear-time computation of a safe and valid metering function which is path-minimal. In
the setting where the code is instrumented by a validator at run time, having data-dependent

time complexity can be a security issue. A malicious user can craft a program that would require

numerous iterations during the instrumentation, affecting the liveness of the network.

In order to avoid that, we propose a technique to speed up the computation of the metering

function for structured control flow. The main idea is to process every vertex once, ensuring that

the order in which they are processed yields a valid metering function.

First, we require additional analyses. In particular, we

• compute the topological ordering of the vertices of the control-flow graph in𝑂 (𝑛 +𝑚) time

where 𝑛 is the number of vertices and𝑚 is the number of edges, and

• identify all loops in the graph, in linear time using dominance [27, 35, 36].

We note that the topological order is not defined for graphs with cycles, however, it is not a problem

because we additionally find all cycles as well.

Then, a valid and safe metering function can be computed as follows. First, we order all vertices

in reverse topological order, to ensure that every vertex precedes its predecessors. Then, for each

vertex 𝑣 :

(1) If 𝑣 does not belong to the cycle, update𝑚(𝑣) using Lemma 6.14, essentially performing an

update step of the iterative SPP algorithm.

(2) If 𝑣 lies on a cycle, record it and continue.

Essentially, this construction allows us to process and record all loop exits. Once all exits for

some loop are recorded, we can compute the values of the metering function for the loop and its

entries, “fast-forwarding” the iterative construction employed by the SPP algorithm we presented

before. The cost of the vertices inside the loop can be computed by processing previously recorded

vertices in their reverse topological order. After the loop has been processed, we continue with the

vertex processing defined above.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 63

6.6 Exploring valid and generous metering functions
We observe that the algorithm presented before computes the safe metering function such that the

number of metered vertices per path is minimized, or simply path-minimal. However, if we forgo
the safety property, the metering function is no longer path-minimal.

This is particularly easy to see with diamonds, as shown in Figure 28. The safe metering function

is non-zero where control flow diverges. As a result, the metering function can have many non-zero

values along a path, and many zero values along the other. Instead, for this example, a better

metering function with a smaller number of metered vertices per path would only meter a single

vertex for any path.

2 3

4

EXIT

ENTRY

2

53

1

EXIT

ENTRY

11

Not safe &
minimal

2

15

13

EXIT

ENTRY

11

Safe &
minimal

Original

A

CB

D E

F

A

C

ED

B

F

A

C

Z

B

D E

F

Fig. 28. On the left, an example CFG annotated with costs. In the middle, a valid and safe metering function
which is path-minimal. We can see that the path A – C – E – F has 3 non-zero values, while the path A – B –
D – F has only one. On the right, a metering function that does not satisfy safety but is minimal. We observe
that all paths traverse only a single non-zero block. Note that we had to split an edge with an artificial vertex
Z in order to obtain a valid function.

In Section 5 we observed that it is not common for smart contracts to run out of budget. Hence,

the safety requirement for these “good” scenarios can be relaxed – it might be acceptable not to

identify immediately that the execution has used all the budget. Therefore, in order to compute

the placement of the metering instrumentation one has to find a valid and generous metering

function, instead of a safe one, in order to ensure that the amount of instrumented basic blocks in

the program is indeed minimized for any path in the control-flow graph. While it is up to the cost

model to decide whether executing over the budget is allowed or not, here we focus solely on the

algorithmic aspects of computing the generous metering function.

In order to compute a path-minimal generous metering function, one can first compute a safe

metering function, and then refine it in a step-by-step fashion into a generous one. However, such

an approach does not always yield minimality.

For example, it can be tempting to use a simple local refinement heuristic for every vertex in the

graph and a metering function𝑚:

• if the vertex 𝑣 is a predicate vertex with 𝑚(𝑣) = 𝑐 , then we refine 𝑚(𝑣) = 0, and set

𝑚(𝑢) =𝑚(𝑢) + 𝑐 for every successor 𝑢 of 𝑣 ;

• otherwise the vertex is untouched.

64 George Mitenkov

While the local refinement can improve the metering function computed by the algorithm in the

case shown in Figure 28, it is not always so. A counterexample can easily be constructed by adding

a long straight-line sequence of vertices in front of a predicate vertex, as shown in Figure 29.

2

3

4 EXIT

2

1

3

535ENTRY

A)

1

EXIT

1

22ENTRY

B)

1

EXIT

22

23

ENTRY

C)

A B

A

A B

B

Fig. 29. An example where propagating metering computed by safe metering function to successors does not
work. A) An original cost function over a CFG. B) A path-minimal safe metering function. Note that applying
the simple local refinement for predicate vertices (A and B) does not help because the predicate vertices have
zero values in the safe metering function. C) A path-minimal generous metering function. Here, the metering
from the first vertex is shifted into the diamond at A which reduces the number of non-zero vertices.

As a result, it is clear that the algorithm has to use stronger properties than the relations between

vertices and their successors. We next consider dominance and post-dominance relations.

6.6.1 Dominators and post-dominators. First, we describe what dominators and post-dominators

are. Given a control-flow graph 𝐺 = (𝑉 , 𝐸) with a single entry 𝑠 ∈ 𝑉 and a single exit 𝑡 ∈ 𝑉 , we
define the dominator and post-dominator relation as follows.

Definition 6.22. A vertex 𝑣 dominates another vertex 𝑢, written as 𝑣 𝑑𝑜𝑚 𝑢, if every path from 𝑠

to 𝑢 must go through 𝑣 . A vertex 𝑣 post-dominates another vertex 𝑢, written as 𝑣 𝑝𝑜𝑠𝑡 𝑢, if every path
from 𝑢 to 𝑡 must go through 𝑣 .

If a vertex has more than one dominator, there is always a unique “closest” dominator called an

immediate dominator. Similarly, there is unique immediate post-dominator.

Definition 6.23. A vertex 𝑣 strictly dominates vertex 𝑢, written as 𝑣 𝑠𝑑𝑜𝑚 𝑢, if and only if 𝑣 𝑑𝑜𝑚
𝑢 and 𝑣 ≠ 𝑢. A vertex 𝑣 is an immediate dominator of vertex 𝑢, written as 𝑣 𝑖𝑑𝑜𝑚 𝑢, if and only if the
following holds for any 𝑥 ∈ 𝑉 :

𝑣 𝑠𝑑𝑜𝑚 𝑢 ∧ 𝑥 𝑠𝑑𝑜𝑚 𝑢 ⇒ 𝑥 𝑑𝑜𝑚 𝑣

Similarly, for post-dominators, a vertex 𝑣 strictly post-dominates vertex 𝑢, written as 𝑣 𝑠𝑝𝑜𝑠𝑡 𝑢, if
and only if 𝑣 𝑝𝑜𝑠𝑡 𝑢 and 𝑣 ≠ 𝑢. A vertex 𝑣 is an immediate post-dominator of vertex 𝑢, written as

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 65

𝑣 𝑖𝑝𝑜𝑠𝑡 𝑢, if and only if the following holds for any 𝑥 ∈ 𝑉 :
𝑣 𝑠𝑝𝑜𝑠𝑡 𝑢 ∧ 𝑥 𝑠𝑝𝑜𝑠𝑡 𝑢 ⇒ 𝑥 𝑝𝑜𝑠𝑡 𝑣

Using the concept of immediate dominators and post-dominators, one can define a dominator
tree (post-dominator tree) in which there is an edge between 𝑣,𝑢 ∈ 𝑉 if and only if 𝑣 𝑖𝑑𝑜𝑚 𝑢 (𝑣 𝑖𝑝𝑜𝑠𝑡

𝑢). Figure 30 shows an example of a CFG, as well as its dominator and post-dominator trees. For a

dominator (post-dominator) tree𝑇 , we say that the vertex 𝑣 ∈ 𝑇 is a leaf if it has no outgoing edges.

G

E

H

F

EXIT

C

B

Original CFG

ENTRY

A

D

ENTRY

A

B

C

D E F

G

H

EXIT

Dominator tree

ENTRY

H

G

B

F

D E

A

EXIT

Post-dominator tree

C

Fig. 30. A simple CFG with corresponding dominator and post-dominator trees. The dominator tree has
leaves H, G, D, E and F. The post-dominator tree has leaves A, C, D, and E.

6.6.2 Using dominators and post-dominators to find a valid and generous metering function. We

now describe how a valid generous metering function can be computed based on the dominator or

post-dominator trees. While the metering function we present here is not optimal, we believe that

using dominance and post-dominance relations is the right way to compute a path-minimal valid

and generous metering function. At the same time, the metering function which we present here is

useful to evaluate the SPP algorithm.

Our main observation is that it is sufficient to instrument the leaves of dominator and post-

dominator trees, as long as the critical edges are split, in order to obtain a valid and generous

metering function. Splitting critical edges is essential for correctness. In particular, it ensures that

all paths are captured by leaves in the dominator/post-dominator trees, with an example shown in

Figure 31.

We observe that the new vertex which is the result of the split is always a leaf in the dominator

tree. Indeed, the source of the edge, say A, dominates the new vertex X and is its parent in the

dominator tree. At the same time, X can only be reached from the entry via A, making it a leaf.

We now prove the main result, showing that it is sufficient to meter the leafs of dominator or

post-dominator trees.

Theorem 6.24. Consider a control-flow graph 𝐺 = (𝑉 , 𝐸), with entry and exit 𝑠, 𝑡 ∈ 𝑉 and with
all critical edges split. Then, metering the leaves of the dominator tree is sufficient to capture any
𝑠 − 𝑡-path in the control-flow graph.

66 George Mitenkov

EXIT

ENTRY

A

B

D

E

C

A) ENTRY

A

B

D E

C

B)

EXIT

ENTRY

A

B

D E

C

X

C)

EXIT

Y Z

Fig. 31. A) A simple control-flow graph with three critical edges A – C, A – B, and B – C. B) A dominator
tree when the critical edge is not split. We observe that the paths A – C – E and A – B – C – E cannot be
distinguished by the leaf vertices D and E of the dominator tree. C) A dominator tree when the critical edge
is split creating new vertices X (between A and C), Y (between A and B), and Z (between B and C). Now, an
extra leaf at X can distinguish between the two aforementioned paths.

Proof. For contradiction, assume that there exist two 𝑠 − 𝑡 paths 𝜋1 and 𝜋2 which cannot be

distinguished by dominator leaves, i.e., the same subset of leaves is visited by both paths.

Because 𝜋1 ≠ 𝜋2, there must be some divergence in control flow at vertex 𝑦 so that paths are

different, possibly a cycle. Let 𝑥 be the vertex where control flow converges, which must be the

case because both paths end in 𝑡 . Let 𝑆1 ⊆ 𝜋1 and 𝑆2 ⊆ 𝜋2 be the corresponding 𝑥 − 𝑦 paths which

differentiate between 𝜋1 and 𝜋2.

We observe that |𝑆1 | > 0 and |𝑆2 | > 0 as otherwise the divergence is because of a single critical

edge, which is a contradiction.

Now we consider two cases. First, suppose that the diverging control flow does not create a cycle.

But then, the predecessors of 𝑦 are leaves in the dominator tree and belong to different paths, which

is a contradiction to our initial assumption. If the divergence in control flow creates a directed

cycle, then we observe that predecessor of 𝑦 which lies on a cycle must be a leaf in the dominator

tree. Moreover, 𝑦 belongs to only one of the paths, which again contradicts our initial assumption.

We illustrate both cases in Figure 32. □

t EXITyxsENTRY

B)

b

a

t EXITyxsENTRY

A) a

Fig. 32. Two cases considered by Theorem 6.24. Dotted arrows represent paths, and are edges otherwise. A)
Suppose 𝜋1 is s-x-y-t and 𝜋2 is s-x-a-y-t, taking the cycle. But then 𝑎 must exist to ensure there are no critical
edges and is also a leaf. B) Suppose 𝜋1 is s-x-a-y-t and 𝜋2 is s-x-b-y-t. Both 𝑎 and 𝑏 must exist to ensure there
are no critical edges, and both are leaves in the dominator tree because the control flow converges at 𝑦.

This result also applies to the post-dominator tree, as it is a “reverse” of dominance relation.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 67

Corollary 6.25. Consider a control-flow graph 𝐺 = (𝑉 , 𝐸), with entry and exit 𝑠, 𝑡 ∈ 𝑉 and with
all critical edges split. Then, metering the leaves of the post-dominator tree is sufficient to capture any
𝑠 − 𝑡-path in the control-flow graph.

While sets of leaves are sufficient, they are not necessarily minimal. Figure 30 provides an

example: metering the vertex F is not required and its cost can be merged into the costs of D and E.

6.6.3 Summary. While we have not constructed an optimal generous metering function in this

work, we identified an alternative construction which still provides a sufficient instrumentation.

The metering function we constructed is particularly useful for evaluating the SPP algorithm in

Section 7, and comparing how the safe and valid metering function compares to the sub-optimal

generous metering function which can be easily computed.

6.7 Loop Invariant Metering Motion
So far we considered an algorithm that computes the placement of metering instrumentation

relying on 1) the structure of the control-flow graph of a program, and 2) its initial costs. However,

similarly to many other compiler optimizations, the program may contain information that can

help improve the placement of the instrumentation. Here, we describe an optimization for loops

that can be used to further minimize the metering overhead. Additionally, we discuss its advantages

and disadvantages.

Recall that the metering instrumentation always has to be placed inside loops, or other kinds of

cycles in the control-flow graph if we also allow for irreducible control flow. It is easy to see why

by considering a simple example of an infinite loop, which, if not instrumented, runs forever.

While loops are not very common in smart contracts, as demonstrated in Section 5, they do occur

with relative frequency. At the same time, instrumentation inside loops may cause substantial run-

time overhead. Therefore, it can be important to optimize the instrumentation for these scenarios.

Here, we discuss such an optimization, which we call Loop Invariant Metering Motion (LIMM).

The goal of LIMM is to hoist metering instrumentation out of loops. Such an optimization also

allows one to efficiently meter tail-recursive functions: a function that uses tail-recursion can be

transformed into a loop first, which can then be further optimized using LIMM. Figure 33 shows a

pair of examples where LIMM can be applied.

1 # original program
2 while i < 100:
3 meter(4)
4 i = i + 1
5
6 # the total cost is 4 * 100
7 meter(400)
8 while i < 100:
9 i = i + 1

A) 1 # original program
2 while i < n:
3 meter(4)
4 i = i + 1
5
6 # the total cost is 5 * n
7 if n > INT_MAX / 4:
8 # out-of-budget handling
9 meter(4 * n)
10 while i < n:
11 i = i + 1

B)

Fig. 33. Examples of how metering instrumentation can be hoisted out of loops. For simplicity, we use Python
and model the metering instrumentation as a function call to meter function. A) A loop with a constant
bound, B) A loop with a statically unknown number of iterations.

It is important to mention that LIMM has to be efficiently implementable. Just like the algorithm

for the instrumentation placement itself, this optimization is performed at run time and therefore

has to be linear or sub-linear in the size of the program. As a result, it is reasonable to specialize on

particular types of loops, preferring frequent and simple patterns.

68 George Mitenkov

Here, we describe two cases in particular: loops with statically known bounds and loops with

dynamic bounds. In the first case, the metering instrumentation can be moved outside of the loop

and, usually, is the product of the loop bound and the cost of the loop body, as shown in Figure 33A.

In the second case, hoisting the metering instrumentation is not as obvious anymore. Because

the number of iterations is unknown, the product may overflow, resulting in the incorrect (and

very small, if overflow wraps the integer value) cost. Hence, it is crucial to insert an overflow check

prior to metering the product expression.

We observe that even such a simple optimization as LIMM has to be carefully implemented

to avoid security vulnerabilities. Moreover, we note that hoisting metering instrumentation also

makes consistency recovery mechanisms more complicated. Particularly, to ensure consistency

one needs to know at which loop iteration the exception has happened. As a result, LIMM may

only be profitable if the loop has no implicit control flow.

We conclude that optimizations like LIMM can be useful as the blockchain ecosystem grows and

demands more performance. However, they also introduce complexity and security risks. Unless

extremely fast execution is necessary, an optimal placement of the metering instrumentation is

sufficient.

6.8 Summary
In this section, we formally defined the properties any metering instrumentation should satisfy,

namely validity, consistency, and safety. We observed that consistency limits the efficiency of the

placed instrumentation, in particular requiring metering instrumentation for instructions with side

effects or instructions that trap. With consistency, even simple per-block placement of the metering

instrumentation is not possible under the blockchain setting.

However, we found that consistency can be ignored by the instrumentation placement algorithm

as long as there is a consistency recovery mechanism – a post-processing step that ensures that

if the program execution fails, the correct execution cost is calculated. Using such a mechanism

allows one to develop more efficient algorithms to place the metering instrumentation.

We then presented the SPP algorithm and the algorithmic framework we used. The algorithm

minimizes the amount of the metering instrumentation for any entry-exit path in a program, while

ensuring safety, i.e., that there is always a sufficient budget to cover for the execution cost. Because

the SPP algorithm we presented uses a fixed-point iteration, we additionally discussed how its run

time can be optimized to be linear.

We also explored how the safety constraint can be relaxed and its impacts on the metering

instrumentation. We found that without safety, the problem of minimum metering instrumentation

becomes significantly harder. Still, we presented techniques that can be used to obtain a generous

metering instrumentation, though sub-optimal.

Lastly, we explored how the metering instrumentation can be optimized further, focusing on

hoisting it outside the loops. We observed that such an optimization is not easy to implement

correctly, and so it might be preferable to use it only for simple loops.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 69

7 EVALUATION
In this section, we evaluate the SPP algorithm for metering instrumentation placement and compare

it with the state-of-the-art approaches, as well as with algorithms that place the metering instru-

mentation generously. In addition, we discuss how the cost model can interact with the algorithm

to prevent attacks on the metering instrumentation.

Below, we highlight the most important observations we made during the evaluation.

• It is crucial to take into account the dominance and cost information for the metering

scheme. For example, we observed that the SPP algorithm outperforms state-of-the-art

approaches on selected programs, often reducing the slowdown due to metering by a factor

of 2. Moreover, in some programs, the instrumentation computed by the SPP algorithm has

nearly zero overhead.

• While splitting critical edges is an essential construction step in the algorithm we developed,

the newly introduced basic blocks may lead to slightly worse run time compared to less

optimal solutions.

• In practice, the iterative SPP algorithm quickly converges, taking around 30 iterations to

obtain nearly optimal placement of the metering instrumentation.

• Safety can be very limiting if the CFGs have many leaves. In particular, we observed that

on tree-like control-flow graphs, the SPP algorithm yields no improvement.

• Only 30.4% of all basic blocks are instrumented by the SPP algorithm on average (if critical

edges are split, and 37.5% otherwise) to obtain a safe and valid metering function.

7.1 Benchmarking methodology
As observed in Section 4, existing VMs used by blockchain systems are not yet performant, instead

prioritizing security. Hence, to evaluate the SPP algorithm close to the real-world scenarios but

also make the evaluation meaningful we consider two settings:

• Real setting, using a set of Wasm microbenchmarks. First, the overhead of metering instru-

mentation placed sub-optimally is high, as seen in Section 4. Second, there are existing

metering implementations that we can compare to.

• Theoretical setting, using weighted graphs and analyzing the metering function computed

by the SPP algorithm – focusing on the number of metered vertices as a metric. Additionally,

we compare how other approaches compare to our algorithm. To make this setting more

realistic, we use control-flow graphs extracted from the most popular Solana contracts.

7.1.1 Wasm microbenchmarks. We use Wasm microbenchmarks to evaluate the instrumentation

placement algorithms on particularly interesting program instances. In total, we selected 9 programs,

summarized in Table 27.

7.1.2 Solana contracts. We consider the ten most popular contracts on Solana, as of 23.09.23. We

previously used these contracts while studying existing approaches to metering in Section 4 and

analyzing on-chain smart contracts in Section 5. They cover a range of applications, including the

NFT marketplaces, token standards, decentralized exchanges, liquidity pools, and oracles to feed

real-world data such as asset prices.

7.1.3 Set-up. For all experiments in this section, we use an Apple M1 Pro CPU with 8 cores and

16 GB of memory. Additionally, we disable multi-threading and frequency scaling.

70 George Mitenkov

Table 27. Selected Wasm microbenchmarks for evaluation and their description.

Name Description

add A straight-line sequence of 64-bit additions. Wasm has wrapping semantics

for addition, so these instructions never trap.

div A straight-line sequence of divisions, which can trap.

tree A sequence of branches that terminate early. The implementation is a se-

quence of nested if-else statements with a return in the then branch, and

another if-else in the other branch. The CFG of this program is a tree.

diamonds A sequence of branches forming a chain of diamonds. We use a sequence of if-
else statements, not nested – so that diamonds are formed.We place arithmetic

instructions on every branch (depending on the experiment, branches can

have an equal or different number of instructions).

fibonacci Computes the 𝑛th Fibonacci number using a while loop.

factorial-iter Computes the factorial of the input using a do-while loop.

factorial-rec Computes the factorial of the input using recursion.

memset-loop Sets all elements in the input array to some arbitrary constant using a loop.

memset-loop-const Sets all elements in the input array of fixed size to some arbitrary constant

using a loop.

Existing algorithms to instrument Wasm code, as well as runtimes, are all implemented in Rust.

To keep benchmarks simple, we use Criterion.rs 29
– a statistics-driven library for microbenchmarks.

All measurements are taken after the warm-up of 1 second, over a period of 60 seconds.

For executing Wasm programs, we use wasmi 30 (version 0.20) – an interpreter-based VM. This

runtime is not the most efficient, but it is chosen because it allows low-effort integration of the

algorithms and libraries for computing the placement of the metering instrumentation, as well as

the microbenchmarks. Because we are primarily interested in the relative performance of programs

when instrumented differently, the real running time is less important.

7.2 Analysis of the run-time overhead of metering instrumentation
In this section, we considerWasmmicrobenchmarks fromTable 27. For each program, we investigate

the slowdown caused by the metering instrumentation placed by different algorithms.

We compute the slowdown using the following formula

𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 =
𝑇𝑚𝑒𝑡𝑒𝑟𝑒𝑑 −𝑇𝑢𝑛𝑚𝑒𝑡𝑒𝑟𝑒𝑑

𝑇𝑢𝑛𝑚𝑒𝑡𝑒𝑟𝑒𝑑

× 100%,

where 𝑇 denotes the running time of the program.

For comparison, we use the metering instrumentation placed by wasm-instrument (version 0.4.0)

and finite-wasm (version 0.5.0) libraries and described in Section 4. We recall that wasm-instrument
instruments multiple basic blocks at once, but the algorithm is based on Wasm structure, rather

than dominance relationships. In contrast, finite-wasm uses a slower but safer approach to metering,

instrumenting every instruction that may trap or may have side effects. It still tries to merge the

instrumentation for multiple instructions together.

29
https://bheisler.github.io/criterion.rs/book/criterion_rs.html

30
https://github.com/paritytech/wasmi

https://bheisler.github.io/criterion.rs/book/criterion_rs.html
https://github.com/paritytech/wasmi

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 71

In addition, we also consider a theoretical instance of the metering instrumentation algorithm

which places the instrumentation generously, which we call the GPP algorithm. Essentially, the GPP

algorithm represents an ideal scenario, where safety can be ignored, and only the placement of the

metering instrumentation has to be minimized. While we have not developed such an algorithm, it

is still interesting to compare the safe algorithm we developed to its generous alternative.

We compare the instrumentation produced by the aforementioned libraries and the GPP algorithm

to the SPP algorithm presented in Section 6. For the GPP algorithm, we manually instrument

microbenchmarks to obtain an optimal placement of the metering instrumentation without safety.

The metering is implemented as a host function that updates the counter.

7.2.1 Slowdowns for simple programs with and without implicit control flow. We consider two

simple straight-line workloads – add and div, varying the number of arithmetic instructions from

64 to 1024. The goal of this microbenchmark is to compare how different instrumentation placement

algorithms perform if there is implicit control flow in the program. Figure 34 shows the slowdowns

we observe.

64 256 1024
0

2

4

Number of additions

S
lo
w
d
ow

n
,
%

64 256 1024
0

50

100

Number of divisions

S
lo
w
d
ow

n
,
%

wasm-instrument
finite-wasm
SPP
GPP

Fig. 34. Slowdowns for add and div programs, for a different number of instructions. Lower is better.

Because the add program consists of instructions that always return, all algorithms yield the

same instrumentation – placing a single metering instruction at the start of the program. This leads

to the same slowdowns across all algorithms.

Moreover, in such a case the overhead is nearly insignificant, particularly if the the size of the

un-instrumented program is large enough. The overhead becomes observable (2%) only when the

program consists of a few instructions.

When there is an implicit control flow in the program, e.g., due to possible traps, metering has to

be done carefully. We observe that the programs instrumented by finite-wasm are 2× slower. This

is because finite-wasm conservatively instruments at every instruction which traps, which leads

to instrumenting the whole program. We conclude that for the NEAR blockchain, the possibility

of such a performance regression is not important, in particular when compared to the security

aspects of deterministic metering.

In contrast, we see that the SPP algorithm places the instrumentation optimally: a single metering

instruction at the start of each sequence. Such an optimistic instrumentation allows to have only

1-2% run-time overhead. However, the algorithm must still be consistent, and as seen in Section 4

wasm-instrument fails to do so even though it yields similar run times.

7.2.2 Slowdowns for trees and diamonds. Next, we consider the slowdowns caused when the

programs have explicit control flow. First, we consider the tree benchmark which is a program

consisting of many early returns, with its CFG forming a tree. The program, as well as the instru-

mentation produced by the two algorithms, is shown in Figure 35.

In our experiments, when the whole tree is traversed, we observe that the existing solutions

(wasm-instrument and finite-wasm) have significant run-time overhead because the instrumentation

is placed at every basic block in CFG. Moreover, the SPP algorithm also does not improve the

72 George Mitenkov

running time. This is because the algorithm moves the instrumentation to the start of the program,

leaving the leaves of the CFG empty.

B) SPP C) GPPA) wasm-instrument

2

2

ENTRY

EXIT

2

2 2

2

2

4

ENTRY

EXIT

2

2

8

ENTRY

EXIT

4

6

8

Fig. 35. Instrumentation for tree program. Metered basic blocks are shown in red, with costs written in
bold. Not metered blocks are green. We observe that without safety, the metering function for the CFG has
significantly less metered vertices (C).

In contrast, the GPP algorithm places the instrumentation better – in the leaves of the CFG,

as shown in Figure 35C. This means that there is a single metering instrumentation per path in

the program, which makes the performance very close to the performance of non-instrumented

code. Hence, we conclude that safety limits the optimality of the placed instrumentation when the

control-flow graph has many leaves.

Next, we consider four instances of the diamond microbenchmark, called equal, cheap, random,
and expensive. All of them have 1024 diamonds in sequence. The equal program has equal costs

for all branches in the diamond. The other three programs have non-equal costs between branches,

and differ in the condition that transfers control flow: either a branch of the lowest cost is chosen,

a branch is chosen uniformly at random, or the most expensive one is selected. We present the

slowdowns observed due to instrumentation in Figure 36.

equal cheap random expensive
0

50

100

150

Different types of diamond program

S
lo
w
d
ow

n
,
%

wasm-instrument
finite-wasm
SPP
GPP

Fig. 36. Slowdowns for the diamond program with 1024 diamonds. Lower is better.

We observe that finite-wasm is not even optimizing the instrumentation placement for blocks

that are always dominated, which causes more than 2× slowdown on all instances.

We also observe that both SPP and GPP algorithms outperform state-of-the-art approaches on

equal and cheap instances because they take the costs of branches into account. In both cases, the

execution path has a single instrumentation placed at the start of the program. As a result, the

slowdown is reduced to almost 0%.

On the expensive instance, the instrumentation placed by the SPP and the GPP algorithms

yields the same slowdowns as when using wasm-instrument. This is because, during execution,

each taken branch always contains the instrumentation.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 73

We see a similar trend on the random instance, however, this time using the algorithms we

developed lead to smaller performance regressions of 24% compared to 43% of wasm-instrument.
The slowdown is almost 2× smaller because each branch is taken with a probability of 0.5.

We conclude that for diamonds unless the costs of branches are the same, there is very little

that can be done. One way to improve the metering instrumentation is to place it based on the

branch frequencies obtained via profiling. This approach, however, does not always meet the

safety requirements. We also conclude that for a sequence of diamonds, safety does not impact the

optimality of instrumentation.

7.2.3 Slowdowns for recursive programs. Next, we consider a recursive program which computes a

factorial, factorial-rec. The CFG of the program is a single diamond, where one branch calls the

factorial function recursively. Figure 37 shows the slowdowns for the program when one or the

other branch is taken.

0 25

50

100

150

Arguments supplied to factorial-rec program

S
lo
w
d
ow

n
,
%

wasm-instrument
finite-wasm
SPP
GPP

Fig. 37. Slowdowns of the factorial-rec microbenchmark when there are 0 or more recursive calls. Lower
is better.

We observe that existing algorithms, i.e., finite-wasm and wasm-instrument, are very conservative
and place 4 and 3 metering instrumentations (Figure 38A-B respectively), which results in significant

slowdowns of 70-80% on average, with finite-wasm performing particularly worse when calling

factorial function recursively many times.

In contrast, the SPP and the GPP algorithms produce minimal instrumentation, as shown in Fig-

ure 38C-D. For the SPP algorithm, the slowdowns are greater when factorial is called recursively
because it places additional instrumentation in the first basic block. We observe that relaxing the

safety constraint can significantly improve the run time (1.8×) of the metered program.

It is worth mentioning that the factorial program is tail-recursive and can be optimized into a

while loop, which we look at next.

7.2.4 Slowdowns for while and do-while loops. Here, we evaluate the performance of the SPP

algorithm when using while and do-while loops. We use two microbenchmarks: factorial-iter
which uses a do-while loop, and fibonacci which uses a while loop.

First, we look at fibonacci and the slowdowns caused by the instrumentation, shown in Fig-

ure 39.

As always, for the experiments, we consider different inputs to obtain profiles over multiple

paths in CFG. First, we observe that if the loop is not taken and the program terminates early, the

instrumentation produced by the SPP and GPP algorithms has very low overhead, accounting for

approximately 40% on our benchmark. This is a drastic improvement compared to 80% overhead

when using wasm-instrument of finite-wasm, which instrument at least three basic blocks along

that path, as shown in Figure 40A-B.

74 George Mitenkov

1 def factorial(n):
2 meter(4)
3 if n == 0:
4 meter(1)
5 return 1
6 else:
7 meter(1) # call
8 meter(5) # remaining
9 return n * factorial(n - 1)

A)

1 def factorial(n):
2 meter(4)
3 if n == 0:
4 meter(1)
5 return 1
6 else:
7
8 meter(6)
9 return n * factorial(n - 1)

B)

1 def factorial(n):
2 meter(5)
3 if n == 0:
4
5 return 1
6 else:
7
8 meter(5)
9 return n * factorial(n - 1)

C)

1 def factorial(n):
2
3 if n == 0:
4 meter(5)
5 return 1
6 else:
7
8 meter(10)
9 return n * factorial(n - 1)

D)

Fig. 38. Instrumentation of factorial-rec program, shown in Python for easier readability. A) Instrumenta-
tion produced by finite-wasm, B) Instrumentation produced by wasm-instrument, C) Instrumentation produced
by the SPP algorithm, D) Instrumentation produced by the GPP algorithm.

1 2 50

50

100

Arguments supplied to fibonacci program

S
lo
w
d
ow

n
,
%

wasm-instrument
finite-wasm
SPP
GPP

Fig. 39. Slowdowns of the fibonacci microbenchmark for different execution paths. Lower is better.

4

7 2

4 13

1

ENTRY

EXIT

4

8 2

4 13

ENTRY

EXIT

6

10

17

ENTRY

EXIT

16 6

17

ENTRY

EXIT

C) SPP D) GPPB) wasm-instrumentA) finite-wasm

Fig. 40. Metering functions for the CFG of fibonacci program. A) Metering function computed by finite-
wasm, B) Metering function computed by wasm-instrument, C) Metering function computed by the SPP
algorithm, D) Metering function computed by the GPP algorithm.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 75

Because the SPP algorithm favours the cheapest branches, it leaves the instrumentation both in

the block where the control flow diverges and in the more expensive branch. As a result, we observe

that when the input is 2, the GPP algorithm can produce smaller instrumentation (Figure 39C-D),

which leads to a slowdown of only 20% compared to 40% with the SPP algorithm.

Finally, when the loop is executed many times, we observe that the performance of the SPP and

the GPP algorithms balances out: the run time of the loop dominates the run time of the program.

Both algorithms are better than the state-of-the-art approaches, halving the slowdown of 30%

compared to 60% with wasm-instrument of finite-wasm.

We consider factorial-iter microbenchmark next, which uses a do-while loop instead. The

slowdowns we observe are presented in Figure 41.

1 2 25
20

40

60

80

100

Arguments supplied to factorial-iter program

S
lo
w
d
ow

n
,
%

wasm-instrument
finite-wasm
SPP
GPP

Fig. 41. Slowdowns of the factorial-iter microbenchmark for different execution paths. Lower is better.

Because for the SPP algorithm critical edges are split, we had to adapt the code of factorial-iter
program to split the back-edge of the do-while loop and an edge which returns early, as shown

in Figure 42C-D. Because Wasm uses structured control flow, we have to introduce an additional

branch and block instruction inside the loop.

We observe that when the factorial returns early, finite-wasm experiences the worst slowdown of

approximately 70% compared to 32-35%when using alternative instrumentations. This is because the

last basic block is instrumented, as Figure 42A shows. We also note that the program instrumented

with the GPP algorithm is slightly slower than the programs obtained with wasm-instrument and
the SPP algorithm. We believe that this is due to an additional basic block introduced solely for

metering. Hence, we conclude that less optimal safe metering instrumentation can have better run

time compared to more optimal instrumentation produced by the GPP algorithm.

If the loop body is executed only once, the SPP algorithm outperforms state-of-the-art approaches,

with a slowdown being around 36% compared to 53%. Figure 42 clearly explains why this is the

case: wasm-instrument and finite-wasm instrument one more basic block while the algorithm we

developed moves the instrumentation to the back-edge.

When the loop is executed many times, the run time is dominated by the loop body. In this

scenario, we see that because of the additional basic block for metering added by the SPP algorithm,

state-of-the-art instrumentation algorithms have slightly better run time: 42% against 47-50%.

We conclude that hoisting the instrumentation to the back-edge might not always be profitable:

additional block and branch instructions we added lead to the small run-time overhead. We note

that, however, the results in native code might differ: because we use wasmi interpreter extra
bytecode instructions can impact the runtime, while the extra branch in, say x86 assembly, can

be still relatively fast. In any case, the results we present here show that optimal instrumentation

placement might not always lead to the best running times.

76 George Mitenkov

C) SPP D) GPPB) wasm-instrumentA) finite-wasm

8

12

ENTRY

EXIT

1

8

ENTRY

EXIT

13

12 8

8

ENTRY

EXIT

21

12

7

12

1

ENTRY

EXIT

1

Fig. 42. Metering functions for the CFG of factorial-iter program. A) Metering function computed by
finite-wasm, B) Metering function computed by wasm-instrument, C) Metering function computed by the SPP
algorithm, D) Metering function computed by the GPP algorithm.

7.2.5 Summary. Based on microbenchmarks we observe that:

• For paths that do not dominate the run time of the program, having multiple instrumenta-

tions can be acceptable, as long as other instructions dominate the cost. For example, the

instrumentation produced for diamonds by the SPP algorithm.

• In the presence of leaves in the CFG, placing instrumentation in leaves yields significant

performance benefits. Then, the SPP algorithm is not optimal, yielding the same run-time

overheads as the state-of-the-art approaches.

• Splitting critical edges might not be beneficial, in particular, if we split a back-edge and the

loop body is not large. The code needed for extra basic block jumps, in particular in the

case of Wasm and interpretation, introduces more overhead than metering instrumentation

placed in the loop body.

• We observe that for while loops, it is better to shift the metering away from the critical path.

For do-while loops, it might be better to keep the instrumentation in place. We note that

one can always convert the do-while into while, thus improving the run time.

With these observations, it is possible to adjust the SPP and the GPP algorithms to produce

slightly less optimal instrumentation that yields better running times, e.g., based on profiling

heuristics.

7.3 Analysis of the impact of Loop Invariant Metering Motion on the run time
Next, we consider how Loop Invariant Metering Motion (LIMM) can decrease the running time

of the metered execution and bring it closer to the non-metered one. We consider a memset-loop
program from the selected microbenchmarks – it has a single loop that sets an array of the given

input size to an arbitrary constant.

For the experiments, we consider three variations of the program: 1) unmetered, 2) metered with

the SPP algorithm, and 3) metered with the SPP algorithm and with LIMM applied to it. We run

experiments for different input sizes: from 0 to 8192 in increments of powers of two. The slowdowns

of the metered instances of memset-loop for a different number of loop iterations are shown in

Figure 43.

We observe that the program instance with the cost of the body hoisted out by LIMM is signifi-

cantly slower for a small number of iterations.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 77

0 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

0
5
0

1
0
0

Number of loop iterations in memset-loop program

S
lo
w
d
ow

n
,
%

SPP
SPP with LIMM

Fig. 43. Slowdown caused to memset-loop due to metering computed by the SPP algorithm and by the SPP
algorithm with LIMM. Lower is better.

To see why, first recall that for memset-loop program, the number of iterations of the loop

is non-constant, so one has to be careful with the multiplication of the cost by the number of

iterations. There, an overflow must be avoided because it is a security issue: it would make the

execution cost of the loop body to be zero.

Hence, the instrumentation placed by the LIMM has to first check for an overflow, in which case

the program halts for not having a sufficiently large budget. If the check passes, the multiplication

is computed and the cost is metered.

This means that if the loop is not taken, there are extra metering instructions that have to be

executed. While in native code that would be just two assembly instructions (multiplication and

jump on overflow), in Wasm there are many more which can degrade the performance when using

an interpreter. As we see in Figure 43, this is indeed the case, which makes the program more than

2× slower.

At the same time, as the number of iterations increases, the slowdown of the program instru-

mented with the SPP algorithm converges to around 40%. We suspect that such a high cost of the

instrumentation is due to the metering implemented as a host function and the use of an interpreter.

In contrast, the slowdown for the program instrumented by the SPP algorithm with LIMM

reduces rapidly and converges towards zero. This happens because the loop body starts to dominate

the run time, and the overhead of instrumentation should converge to zero as 𝑛 grows.

In addition, we verify the hypothesis that the overflow checks for hoisted outside of the loop

metering cause regressions on memset-loop benchmark. We consider another microbenchmark

– memset-loop-const. This program is identical to memset-loop but instead of a user-provided

array size uses a constant-sized array. As a result, the cost of the loop is hoisted out without

additional overflow checks. Figure 44 shows the slowdowns we observe.

Indeed, we observe that this time LIMM allows one to reduce the slowdown to approximately

5% for the large number of iterations. Meanwhile, even if the number of iterations is small, the

observed slowdowns are never larger than the slowdowns of simple instrumentation computed by

the SPP algorithm.

While the focus of this work was not LIMM, we observe that doing this optimization for simple

programs can yield significant performance benefits for the instrumented programs. Still, if the

loop bounds are not constant, the instrumentation algorithm should take into account the cost of

the loop body, the cost of the hoisted instrumentation, and the branch frequency information if

available to decide if the LIMM is profitable or not.

78 George Mitenkov

0 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

0
2
0

4
0

Number of loop iterations in memset-loop program

S
lo
w
d
ow

n
,
%

SPP
SPP with LIMM

Fig. 44. Slowdown caused to memset-loop-const due to metering computed by the SPP algorithm and by
the SPP algorithm with LIMM. Lower is better.

7.4 Analysis of the SPP and the GPP algorithms on Solana contracts
We now analyze the metering function computed by the SPP algorithm in more detail, this time

using more realistic data – CFGs extracted from Solana contracts.

7.4.1 Convergence of the fixed-point SPP algorithm. First, we look at the run time of the SPP

algorithm, analyzing the number of iterations it takes to converge. Figure 45 shows the convergence

rate for different CFGs we selected for experiments.

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

2
0

4
0

6
0

8
0

1
0
0

Number of iterations

In
st
ru
m
en
te
d
b
lo
ck
s,

%

pyth-oracle
serum-dex-v3
token
mango
switchboard-v2
switchboard-oracle
sequence-enforcer
raydium-liquidity-pool-v4
chainlink
magic-eden-v2

Fig. 45. The rate of change in the number of metered basic blocks over the iterations of the SPP algorithm.
For magic-eden-v2 contract, the number of iterations is capped at 100 for visibility.

We observe that for all CFGs we consider, on average 30 iterations are sufficient to compute

nearly optimal valid and safe metering function. Certain contracts take many iterations to converge:

pyth-oracle, switchboard-v2, raydium-liquidity-pool-v4, and magic-eden-v2. However,
for all these contracts the changes to the metering function are marginal.

We conclude that it can be sufficient to run the SPP algorithm for a fixed number of iterations, to

ensure predictable running times and ensure that adversarial programs do not take a very long

time to converge.

7.4.2 The number of metered vertices in a valid metering function. Next, we evaluate the number of

metered vertices in the metering function computed by the SPP algorithm. Because the problem

of the minimum metering instrumentation has not been studied previously, there are no general

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 79

state-of-the-art algorithms that place the metering instrumentation (i.e., compute the metering

function) for arbitrary CFGs.

To add more variety to our evaluation, we additionally consider three algorithms (not necessarily

optimal, safe, and practical for the placement of the metering instrumentation), shown in Table 28.

Table 28. Additional algorithms which can also be used to compute a valid metering function.

Name Description

DomTree Algorithm which instruments the leaves of the dominator tree. As shown in Section 6, it

is sufficient to meter the leaves. We note that the instrumentation based on this algorithm

does not yield a safe and path-minimal metering function.

PostTree Same as DomTree, but instead the leaves of the post-dominator tree are used. For this

algorithm, we add a unique fake exit vertex to ensure that the post-dominator tree exists

even if the contract has multiple exits.

MST The metering function is computed based on the algorithm developed by Knuth to solve

the optimal profiling problem [52, 53]. The goal of optimal profiling is to instrument a

minimal set of vertices in a CFG with integer counters so that from the frequency counts

of instrumented vertices all remaining counts can be inferred. The metering function

can be obtained by multiplying the frequency count of a vertex by its cost.

One can observe that the MST algorithm from Table 28 cannot be used in practice to place the

metering instrumentation. For metering, costs have to be checked at run time, to ensure that the

execution stays within the budget. The MST algorithm, in contrast, first computes the frequency

counts and only after the metering function. If there are no cycles in the control-flow graph, the

MST algorithm is only |𝜋 |-safe where 𝜋 is the longest entry-exit path in the program. However, if

there are cycles in the program, there are no guarantees of termination. While the MST algorithm

is impractical, it is still interesting to compare how the number of metered vertices (instrumented

basic blocks) compares with the instrumentation placed for optimal profiling.

We now compare how many vertices are metered for different CFGs of real Solana contracts,

when using the algorithms listed in Table 28 and the SPP algorithm we developed in this work. First,

we split all critical edges beforehand prior to running the algorithms. We present the experimental

results for such a scenario in Figure 46, showing the percentage of metered vertices.

We observe that both DomTree and PostTree yield the highest percentages of metered vertices

on all benchmarks: 38.7% and 43.6% on average. Interestingly, we observe that using the leaves of

the dominator tree compared to those of the post-dominator tree, on all but one contract, results in

a more optimal metering function, with fewer vertices being metered.

We suspect that this pattern can be explained by branching patterns in CFGs. For example,

inspecting the mango contract, we observe that its vertices have many predecessors, which means

there are more leaves in the post-dominator tree than in the dominator tree. Because using the

leaves of dominator trees reduces the number of metered vertices, we conclude that in Solana

contracts, it is more common for control flow to diverge than to converge.

We observe that the MST algorithm is more optimal than the DomTree and the PostTree al-

gorithms, collecting the frequency counts only for 31.9% of vertices, on average. Similarly, the

SPP algorithm meters on average 30.4% of all vertices, performing slightly better than the MST

algorithm.

Our experiments empirically prove that the placement of the metering instrumentation requires

less instrumentation (-1.5%) than the optimal profiling problem if critical edges are split. Indeed,

80 George Mitenkov

py
th
-o
ra
cl
e

se
ru
m
-d
ex
-v
3

to
ke
n

m
an
go

sw
itc
hb
oa
rd
-v
2

sw
itc
hb
oa
rd
-o
ra
cl
e

se
qu
en
ce
-e
nf
or
ce
r

ra
yd
iu
m
-li
qu
id
ity
-p
oo
l-v
4

ch
ai
nl
in
k

m
ag
ic
-e
de
n-
v2

0

10

20

30

40

50

60

70

In
st
ru
m
en
te
d
b
as
ic

b
lo
ck
s,

%

SPP
MST
DomTree
PostTree

Fig. 46. Percentage of metered vertices using different algorithms: SPP, MST, DomTree, and PostTree. The
total number of vertices used to calculate the percentage is the sum of the number of vertices in the CFG of a
contract, and the number of critical edges. Lower is better.

when computing frequency counts, the values of the counters cannot be combined together. For

metering, it is possible to merge multiple instrumentations if they meter the same cost.

It is important to mention that the SPP, the DomTree, and the PostTree algorithms rely on

splitting critical edges. As a result, when evaluating the number of instrumented vertices previously,

the split edges were taken into account, thereby decreasing the percentage of instrumented vertices.

Hence, in Figure 47 we show the percentages of instrumented basic blocks calculated based on the

size of the original vertex set. We therefore additionally consider another algorithm: MST-no-split
which is identical to MST, but calculates the frequency counts without splitting critical edges.

py
th
-o
ra
cl
e

se
ru
m
-d
ex
-v
3

to
ke
n

m
an
go

sw
itc
hb
oa
rd
-v
2

sw
itc
hb
oa
rd
-o
ra
cl
e

se
qu
en
ce
-e
nf
or
ce
r

ra
yd
iu
m
-li
qu
id
ity
-p
oo
l-v
4

ch
ai
nl
in
k

m
ag
ic
-e
de
n-
v2

0

10

20

30

40

50

60

70

In
st
ru
m
en
te
d
b
as
ic

b
lo
ck
s,

%

SPP
MST
MST-no-split
DomTree
PostTree

Fig. 47. Percentage of metered vertices using different algorithms: SPP, MST, DomTree, and PostTree. The
total number of vertices used to calculate the percentage is the number of vertices in the original CFGs before
critical edges are split. Lower is better.

We observe that because contracts have a large proportion of critical edges as observed in

Section 5, the percentage of instrumented vertices grows significantly for some of the contracts.

In particular, we see that using dominator and post-dominator trees leads to 8.5% and 10.1%

additional instrumentation, producing in total 47.2% and 53.7% instrumented basic blocks. Similarly,

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 81

the instrumentation produced by the SPP algorithm increases to 37.5% compared to the previous

value of 30.4%. We observe that because switchboard-v2 and magic-eden-v2 have the smallest

fraction of critical edges compared to other contracts, the percentage of instrumented blocks does

not change significantly for these programs.

We also observe that the MST algorithm, without splitting edges, produces more optimal in-

strumentation, instrumenting only 31.8% of blocks, on average. Hence, we note that while our

technique to split critical edges minimizes the number of instrumented basic blocks, it has its

overheads – more vertices are added to the program solely for metering. Still, it is not clear if newly

added vertices worsen the run time significantly.

7.4.3 Summary. Based on our experiments, we observe that:

• On real contracts, the convergence rate of the SPP algorithm can vary greatly. Still, on

average a small number of iterations is needed to obtain a nearly optimal placement of the

metering instrumentation which is also safe. Having small cycles with low costs leads to a

large number of iterations.

• Sub-optimal instrumentation using dominator and post-dominator leaves has a significantly

larger percentage of instrumented basic blocks compared to the SPP, while also not satisfying

the safety requirement. In particular, up to 10.1% more basic blocks can be instrumented.

• The SPP algorithm instruments 30.4-37.5% basic blocks, on average.

• Splitting critical edges, while yielding easier implementation and construction of the SPP

algorithm has its overhead. For example, the state-of-the-art approach developed for optimal

profiling problem instruments 5.7% fewer blocks if critical edges are not split compared to

the SPP algorithm.

7.5 Analysis of the cost of consistency recovery and the impact of the cost model
Finally, we analyze how expensive the recovery mechanism proposed in Section 6 is. Here, we have

to consider two scenarios: 1) a malicious contract runs out of budget and 2) a malicious contract

throws an exception.

7.5.1 The cost of consistency recovery when running out of budget. We recall that to recover

consistency, the execution continues on running out of budget until an exception is thrown or

another metering instrumentation is found. Since we consider the case where the execution runs out

of budget, the additional work a validator has to do is equivalent to 𝑐 (𝜋), where 𝑐 is the cost function
and 𝜋 is the path in the CFG between the metering instrumentation where the out-of-budget is

detected for the first time and the metering instrumentation where it is detected for the second

time. Therefore, in the worst case, the cost of recovering consistency is equal to the cost of the

largest interval between a pair of instrumented points in the program.

7.5.2 The cost of consistency recovery when throwing an exception. If the execution fails due to an

exception, the validator has to recalculate the actual cost. One can observe that the complexity of

recalculation depends if refund tables have been pre-computed or not.

Here, we consider a scenario when the refund tables are computed online. In this case, the

additional work the validator has to do is bounded by∑︁
𝑐∈𝑆𝑐𝑎𝑙𝑙

|𝑉𝑐 |

where 𝑆𝑐𝑎𝑙𝑙 is the call stack and 𝑉𝑐 is the number of vertices in the control-flow graph of a function

𝑐 ∈ 𝑆𝑐𝑎𝑙𝑙 .

82 George Mitenkov

7.5.3 Summary. A well-designed cost model must ensure that even if the contract runs out of

budget, or throws an exception, the user who submitted the contract pays for the additional work

performed by the validator.

This can be enforced by ensuring that the user has a sufficient balance to cover for recovery

costs at all times. This can be trivially upper bounded by taking the maximum of

• the sum of the number of vertices in functions that lead to the deepest call stack, and

• the cost of the longest interval between any two instrumentation points in the program

and its callees.

We observe that such a bound is not straightforward to compute, and therefore even larger

bounds can be used by validators as long as they are efficiently computable. For example, the size

of the contract and all other contracts it depends on can be used.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 83

8 REVISITING COST MODELS FOR BLOCKCHAINS
Having studied existing cost models in Section 3 and their implementations (metering) in Section 4,

we observe that the models have been designed with the only goal in mind – to approximate the

cost of real execution of a contract. This design leads to multiple problems, including but not limited

to inefficient metering or poorly written low-cost code which can impact the earnings of validators

and the liveness of the blockchain itself.

We believe that the source of the problem is the approach taken when a cost model is designed.

Typically, a cost model is created first. Then, based on the cost model developers or compilers

optimize contracts to reduce execution costs. When a contract is executed, validators use the

existing cost model to meter execution as efficiently as possible. In short, the cost model does not

incentivize smart contract developers or compilers to produce good and efficient programs that

can be easily metered.

In this section, we propose a new approach to designing a cost model for blockchains (or similar

domains), which we call the Cost Model Standard (CMS). The goal of the CMS is to define a set

of rules and guidelines which incorporate the economic interests of all parties – smart contract

developers, compilers, and validators, as well as to penalize abnormal and malicious behaviour.

Essentially, this enforces certain semantics on the cost model, which can be used to reason about

the smart contract language and the runtime. Such a standard enables multiple implementations of

compilers, VMs, and cost models, to boost the diversity in the blockchain space. While there does

not exist an ideal cost model, we believe that the CMS is a first step forward in this direction.

We start by considering the stakeholders involved in the development and execution of contracts,

listed in Table 29. For each stakeholder, we consider what they supply to the system, and what it

needs in return.

Table 29. Stakeholders in the blockchain system. Each stakeholder can bring value to the system (supply), as
well as needs something in return (demand).

Stakeholder Supply Demand

Smart contract

developers

Popular, useful, and low-cost con-

tracts. If the contract is cheap,

there might be a higher demand

for it.

A reliable compiler that produces the cheapest

possible code. Just like in regular software, devel-

opers do not want to manually optimize contracts.

Compilers Produce low-cost code. A cost model to know what to optimize for.

Validators Provide their computational re-

sources and execute contracts for

a fee.

Since validators want to maximize their profits,

they prefer fast and expensive contracts, which

also admit efficient metering. The last condition

is crucial, as we have seen that metering can sig-

nificantly reduce the profits of validators.

Blockchain The overall infrastructure, includ-

ing distributed consensus and

long-term storage.

Reliable validators, contract developers to write

applications that attract users, many users to satu-

rate the network capacity, and a cheap cost model

to be competitive with other platforms.

Regular users Transactions to be executed. A reliable and cheap system.

Malicious users Halt the blockchain network, af-

fect its performance or bankrupt

validators.

Minimize the fees paid when attacking.

84 George Mitenkov

With that, we can list the requirements CMS must enforce for any cost model. Ideally, it should

ensure that the involved stakeholders can (or cannot in the case of malicious users) reach their

goals but also satisfy their demands.

(1) The cost model should be a deterministic approximation of the execution cost, e.g., the hard-

ware and the software a validator uses to run contracts. This requirement has been used by

existing cost models already. Moreover, the cost model should avoid leaking implementation

details when assigning costs.

(2) The cost model should prevent malicious users from attacking the network. We note that

cost models usually rapidly scale the cost of execution as the resource consumption grows

when a contract is executed. For example, if we recall the equation for the cost of memory

expansion on Ethereum we observe that the cost grows linearly for the first 724 bytes,

and then becomes quadratic for the number of bytes expanded. However, this is a reactive

measure, i.e., when a malicious user attempts to consume a lot of memory, the cost is

calculated. Some cost models, e.g., those by Aptos or Solana instead opt for enforcing hard

limits on the resource consumption, which can be limiting for applications. Therefore, the

cost model, where possible, should enforce a set of preventive measures to ensure that the

network cannot be attacked. We discuss such measures later in this section.

(3) The cost model should be efficiently implementable. Where possible, the cost model should

incentivize programs that can be metered efficiently.

Based on the aforementioned requirements, and our findings from the previous sections, we now

present the CMS standard. In the rest of the section we present a set of rules any cost model under

the CMS must satisfy, as well as guidelines on how certain rules can be enforced in practice.

8.1 The Cost Model Standard 1.0
8.1.1 Base cost. A cost model must always account for the fixed amount of work used to execute

a transaction. The cost should account for at least the following: the start-up cost of the VM,

transaction validation, long-term storage of the transaction details, and the consensus protocol. The

base cost must be fixed because the implementation details cannot be leaked outside of a particular

protocol implementation.

The base cost has to be calculated based on the system and the load of the network (e.g.,

transaction history). It has to account for the cost of the common case (e.g., taking an average over

a sliding window of the most recent transactions, or a median).

8.1.2 Code size cost. It is crucial to have a fee associated with the size of the contract. The cost

should be proportional to the code size, e.g., 𝑂 (𝑛) for a contract with 𝑛 instructions.

There are multiple factors why the code size has to be taken into account by the cost model.

(1) Code is stored on-chain, and there should be a fee for long-term storage.

(2) Code validation (or running any analysis at run time) is done for the whole contract.

Accounting only for executed instructions is not sufficient because then the analysis of the

not executed code is not metered.

(3) JIT compilation, if available, can also compile the whole contract. Again, this suffers from

the same problem as code validation.

Such a design also mitigates an attack vector where some dead code can be injected into the

contract which is very computationally-intensive to analyze but is never executed.

8.1.3 Code analysis cost. On-chain code can be analyzed and processed at run time, e.g., for

bytecode verification or for placing the metering instrumentation. In this case, the cost for code

analysis should also be included depending on the run-time of the algorithms.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 85

In practice, algorithms have to be linear in program size (or worst-case sub-linear, e.g.,𝑂 (𝑛 log𝑛)
for code with 𝑛 instructions or 𝑛 basic blocks) as otherwise, the cost would grow astronomically

fast. In this case, the cost of analysis is already taken into account by the cost of the code size.

While this approach incentivizes the design of better linear-time algorithms, it is not always

possible to achieve that. For example, algorithms that use fixed-point iteration (which are popular

in bytecode verification analyses) can be a vulnerability. While in practice, these algorithms have a

small number of iterations, each with an effective complexity of𝑂 (𝑛), there exist program instances

for which a fixed-point iteration can have non-linear polynomial complexity.

In these cases, there are different ways the problem can be mitigated. We suggest:

• to associate a per-iteration cost (or cost for each meet operation of a fixed-point), or

• to limit the number of iterations.

For example, in Section 7 we saw that the iterative SPP algorithm achieves nearly optimal

placement of the metering instrumentation under 30 iterations, whereas on certain contracts it

takes more than 100 iterations. In this case, using a bounded number of iterations is reasonable.

We also note that it is better to avoid performing code analysis at run time, as suggested by the

following guidelines:

• If possible, the analyses are performed at the contract deployment time, either when a

contract is created or upgraded. This is particularly applicable to bytecode verification,

which we would use as an example of how the proposed framework would work.

• Once the code is deployed to a blockchain, it cannot be tampered with, and therefore if it

passed verification before it would so still.
31
This means that extra run-time overhead and

additional costs are only added at deployment time.

8.1.4 Instruction costs. Instructions costs have been a good approximation of the actual execution

costs. Therefore, under the CMS all instructions have to be assigned a constant cost (there can

be extra dynamic costs for certain instructions still, but should be discouraged). The existing cost

models have already been doing that. However, one has to also scale the cost of instructions with

implicit control flow.

8.1.5 Transaction failure cost. The cost model should, where possible, use a deposit-based system

to incentivize successful execution of transactions and penalize for abnormal termination.

We recall that there are multiple ways when executing a smart contract can result in an unex-

pected failure. For example, if the VM enforces a stack limit when executing a program, the program

that violates the limit has to be halted. Similarly, if the program runs out of the user-defined budget,

the execution abnormally terminates.

To date, when submitting a transaction to the blockchain, users also submit a maximum fee they

are willing to pay for the execution. The fee can be typically estimated by locally simulating the

execution of a transaction based on the most recent state of the blockchain.

In addition to the fee, we propose to use a failure deposit. The role of the deposit is to freeze a

fixed amount of the sender’s balance before a transaction is executed. If the transaction successfully

terminates within the specified budget or terminates with an expected failure (e.g., failed assertion),

the deposit is returned. Otherwise, the deposit is consumed.

The deposit system achieves multiple goals:

• First, more optimal metering instrumentation placement algorithms can be used by valida-

tors. We have observed in Section 6 that it is sufficient to enforce the validity of metering

31
An argument against such an approach would be that the bytecode verifier itself can have a bug, which can be fixed after

some contracts are deployed. However, we do not believe such logic should guide the decision-making, as any software can

have bugs.

86 George Mitenkov

placement and use a recovery mechanism to achieve consistency when the program ab-

normally halts. Setting the right deposit, proportional to the cost of recovery, allows one

to optimally place the instrumentation, increase the revenue of validators, and ensure

faster execution of transactions. In case the program runs out of budget, thereby violating

consistency, the deposit is large enough to account for the work a validator has to do to

recover the correct state.

• Second, such a deposit incentivizes developers to write robust and well-tested code. For

example, contract developers have to ensure that the code does not terminate with unex-

pected exceptions, such as divide-by-zero, by inserting more checks where necessary. The

compiler or the runtime can then determine if the check is redundant and optimize it away.

• Lastly, the deposit system only affects malicious users which aim at slowing down or halting

the network by using code that abnormally terminates.

We note that the deposit fee system does not open a way to arbitrage and does not influence

transaction selection for execution. Firstly, it can simply be not included in the fees distributed

to validators. At the same time, even if it is, validators are unlikely to prioritize transactions with

large failure deposits. We believe that this is due to the following reasons.

• A higher failure deposit means a higher cost of recovery, and therefore for the validator, it

becomes a high-risk gain.

• The fact whether the program will fail unexpectedly is not deterministic, and in general

cannot be predicted by a validator.

• Contract developers and users are aware of such an arbitrage and are incentivized to write

code that is robust to these cases and is guaranteed not to fail.

We note that failure deposits impact the predictability of the latency and make it harder to pack

transactions into the block with a fixed cap on the maximum amount of computation. However,

deposits are designed so that they are not paid normally, and therefore we believe that they can be

disregarded when estimating transaction latency.

8.1.6 Bucketed billing. If possible, a bucket-based billing mechanism should be preferred. This

approach has been already used by Sui network [76], and based on their documentation
32
because

of the two reasons:

• it incentivizes developers not to optimize contracts for marginal gains, and instead prioritize

optimizations that lead to significant cost reductions, and

• the developers of the Sui protocol can adapt the cost model without introducing additional

costs for users or disrupting their services, thereby allowing gas costs to stay stable over

time.

While such an approach and reasoning are favourable, we note that there is an additional impor-

tant benefit. Having bucket-based billing allows to avoid high failure deposits and computationally

expensive recovery mechanisms.

Consider an example shown in Figure 48. If the SPP algorithm for placing the metering instru-

mentation from Section 6 is used, then when the program aborts on implicit exception, the actual

cost has to be calculated. However, with the bucket-based approach, if the last metered cost fits

within the bucket, its cost does not have to be recalculated. We note that recovery is still needed to

differentiate between out-of-budget and program exceptions.

8.1.7 Control-flow costs. We have seen that control flow is a problem for smart contracts. First,

the execution time can vary unpredictably in the presence of branches, as we have observed with

32
https://docs.sui.io/learn/tokenomics/gas-in-sui

https://docs.sui.io/learn/tokenomics/gas-in-sui

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 87

1

3
1
3

2

1) five instructions with
different costs

Meter 10
1

3
1
3

2

2) third instruction
throws an exception

3) the cost has to
be recalculated on
recovery, i.e., it
should be 6 and
not 10.

Meter 10
1

3
1
3

2
Using bucket’s of size 10,
no need to recalculate
the cost because 6 is
rounded up to 10 in any
case.

Fig. 48. Example, where using the bucket-based instruction cost billing allows one to avoid the recovery
mechanism if instruction throws an exception. Here, if buckets have a cost of 10, then the real cost to reach
instruction that throws is not needed.

SBF programs for instance. Moreover, the control flow also complicates the implementation of

the cost model – the placement of the metering instrumentation. For example, the SPP algorithm

presented in Section 6 splits critical edges, and similarly, state-of-the-art approaches place the

instrumentation when the control flow diverges.

Therefore, the cost model has to take control flow into account. We note that the higher costs

for branching instructions can already be used to implicitly price the divergence in control flow.

However, we propose to have additional costs for critical edges.

Splitting critical edges is a well-known technique in compilers, used to enable some optimizations

or better register allocation, and to be able to place instrumentation for profiling, computing

coverage, or as we have seen – metering. Moreover, when translating from Static Single Assignment

(SSA) form critical edge splitting is also used [41].

Additionally, the cost model must have a cost assigned to loops. While loops are not common in

smart contracts as we have seen in Section 5, if they are used, they are typically located on the hot

path throughout the execution and can account for the majority of the run time.

Loops (or even worse, arbitrary cycles in the control-flow graph) in particular cause problems

with placing the metering instrumentation. Therefore, we propose to have an additional cost

associated with cycles in the control-flow graph, based on the following taxonomy:

(1) natural loops, with known iteration space,

(2) natural loops, with unknown iteration space,

(3) cycles due to unstructured control flow.

The rationale is the following. If the loop has known iteration space, e.g., an affine loop, then

it enables more optimizations, allowing for faster execution, such as LIMM to hoist the metering

instrumentation outside of the loop.

Otherwise, the metering instrumentation has to be kept inside the loop body. Moreover, loops

can be implemented as a random-access pattern, and so such loops are computationally more

expensive.

We in particular distinguish between structured and unstructured control flow. Natural loops

satisfy certain properties which can be used to place metering instrumentation even faster and

more optimally. With unstructured control flow, it is no longer possible. Moreover, a malicious user

can use the unstructured control flow to slow down the execution.

8.1.8 Memory costs. The cost model, if possible, should prefer static memory allocations performed

prior to execution. Dynamic allocations can still be possible but have to be more costly. Ideally, the

cost per byte of allocation should scale down with the number of bytes allocated to incentivize

bulk allocations.

88 George Mitenkov

It is well-known that memory allocations and deallocations can worsen the performance of

a program significantly. Moreover, the impact might not be predictable because the underlying

system used to execute the contract can move and remap the memory, or re-organize pages. Also,

dynamic allocations can fragment memory and introduce metering instrumentation with variable

costs, which is significantly harder to optimize efficiently.

In case thememory is allocated using an instruction such as grow_memory inWasm, it is important

to enforce that given two such instructions, it should be less costly to compute the total allocation

first and allocate once, instead of using two allocations.

The cost model ideally should also take access patterns into account. From the performance

optimization standpoint, it is well-known that consecutive or repeated accesses improve cache

locality (spatial or temporal). Hence, we propose for the cost model to adjust the cost of the memory

accesses in the following way:

• The cost of any memory access is estimated based on the latency of a RAM access on the

standard validator hardware, scaled by a constant of choice. Note that the disk accesses are

very unlikely, and therefore setting a slightly higher cost per access should cover occasional

long-latency accesses that go to the disk.

• Certain access patterns have a discount. The rationale is that this approach makes the costs

cheaper, but only for a fixed set of cases that are almost guaranteed to have small latencies

(e.g., cache hits). This allows one to keep the system secure and protect it from malicious

users. In addition, it is easier for compilers to optimize towards a certain pattern, e.g., tiled

or vectorizable loop.

8.1.9 Historical behaviour and the ranking system. We propose to use transaction history for

profiling smart contracts directly on-chain. The idea is to inject counters into smart contract code,

which, as code is executed many times, will collect online statistics about branch frequencies,

success rates, etc. Based on these values, the system can adjust its behaviour:

• Adapt the strategy for placing the metering instrumentation – if the contract fails many

times, it might be better to instrument it using a straightforward metering scheme.

• If there is a contract with high demand, it might be profitable to JIT compile it.

The benefit of this approach over local profiling is that 1) all validators will make the same

decisions because they observe the same global profiling information, and 2) it makes it possible to

penalize malicious behaviour, e.g., redundant JIT compilation, again, because the profiling happens

globally.

Lastly, we propose that the cost model has to take the on-chain profiling information into account

to rank contracts. For example, the contracts can be ranked on how likely they are to fail.

One can think of this as a credit score used by the banks: if the credit score is high, it means that

a person is likely to pay the bills on time, and this results in more favourable terms when taking

a mortgage, credit, etc. At the same time, if the credit score is low, the conditions are worse and

more fees have to be paid.

In the blockchain system, this means that validators should prefer to execute contracts with low

failure rates and potentially predictable execution paths.

8.2 The future and the takeaways of the Cost Model Standard
We highlight that the proposed standard is only the first small step to defining the semantics of cost

models for blockchains, e.g., we have not even considered costs for storage here. Most importantly,

the goal of the standard is to build incentives between multiple stakeholders involved in the

blockchain execution: contract developers, optimizing compilers, validators, and their runtimes. In

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 89

this way, developers and compilers can be incentivized to produce code that validators can execute

securely, quickly, and also meter efficiently.

There are many missing pieces in the proposed standard, including

• how to price long-term persistent storage,

• how to price upgrades of smart contracts,

• how to price cross-contract calls and code caching,

• how to price protocol-related costs, such as execution of a block of transactions or sharding.

However, we leave this as a future work.

90 George Mitenkov

9 RELATEDWORK
9.1 Blockchains and cost models
While this work covers the cost models of Ethereum, Solana, NEAR, and Aptos, other existing

blockchains do not have significantly different cost models.

The networks that support smart contracts primarily use gas to determine the execution cost

of a transaction, similar to Ethereum. Examples of such networks are Binance Smart Chain [14],

Polkadot [80], FileCoin [54], or Avalanche [71].

Due to the low transaction throughput of Ethereum, so-called L2 networks such as Polygon [50]

emerge, offering more efficient execution. While the transaction fees are lower on these networks,

contracts are still executed using EVM or EVM-compatible virtual machines that meter the compu-

tation in gas.

Sui [76] is another blockchain that, like Aptos, originated from Diem and uses gas to price the

computation. In contrast to other gas-based chains, it uses bucket-based gas metering, where final

gas costs are rounded up towards a fixed value. This approach allows Sui to have more stable gas

costs. Tron [11] uses the concept of energy very similar to gas. Its difference from the other chains

is that the native token is locked before transaction execution to ensure there are sufficient funds

to pay for it at all times.

While widely used, the concept of gas is not the only way of assigning costs to computations. The

most prominent and well-known blockchain, Bitcoin [67], uses a flat fee based on the transaction

size in bytes. Because Bitcoin is designed as a distributed ledger, such a simple model suffices.

Cardano [5] also uses a simple fee structure, accounting for the transaction size and applying a

linear function to it (defined by the protocol).

9.2 Gas price estimation
While this work explores the metering of instruction costs (or gas) at run time, there is an alternative

approach of determining the execution cost statically prior to execution.

For example, Grech et. al. [47] proposed a static analysis tool called MadMax to detect vulnera-

bilities in smart contracts due to out-of-gas behaviours. The tool is based on symbolic execution

and finds cases when an out-of-gas exception leaves the contract in an invalid state.

Another application of static gas-cost analysis is to infer the gas usage for a particular contract.

In particular, it helps users set the gas limit when submitting a transaction, and developers make

the contracts cheaper. GASPER [39] is a tool that uses symbolic execution to identify expensive

code patterns automatically. Another tool, Gasol [24], allows one to infer an upper bound on gas

usage for Solidity contracts or EVM bytecode. It allows one to select from multiple cost models,

e.g., measure only the cost of storage instructions. GASTAP [25] is similar to Gasol but can also

infer parametric upper bounds on the gas cost. The parameters used in the inferred bounds are the

inputs or contract sizes. Marescotti et. al. [61] determine worst-case gas consumption of Ethereum

contracts using symbolic model checking. They unroll the loops to a limit to calculate the gas

consumption. Recently, Le et. al. [57] proposed to use machine learning and historical data to

estimate gas costs.

While the majority of related work aims at estimating the gas costs on the client side, the work

by Das and Qadeer [40] presents a static analysis technique to find the exact gas costs and verify

them in linear time, thus making it useful for validators and blockchain runtimes. The authors

claim their tool can eliminate the need for dynamic gas metering. However, the proposed approach

does not work with unbounded loops or unstructured control flow, limiting its applicability in

practice.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 91

9.3 Optimal instrumentation placement
The problem of optimally placing the instrumentation is well-known, with applications ranging

from profile-guided optimization [56] to software testing.

A classical instance of the problem is computing the frequency counts of the basic blocks, which

are used to obtain the profile of a program. The research was pioneered by Nahapetian [66] who

studied how many basic blocks are sufficient and necessary to instrument to obtain the frequency

counts for all basic blocks. He proposed an approach based on Kirchhoff circuit laws and network

flows. An alternative formulation was proposed by Knuth and Stevenson [52, 53]. They presented

an algorithm based on computing the minimum spanning tree of a control-flow graph, which is

now used in numerous modern instrumentation-based profiling tools.

Later, Ball and Larus [28] proposed a taxonomy of profiling problems based on what to profile

(i.e., vertices or edges of the control-flow graph) and where to place the instrumentation (i.e., in

vertices or on edges). In particular, it was shown that while some instances of the problem admit

an optimal solution, some do not [69].

Ball and Larus [29, 30] also studied the path profiling problem. The goal of the problem is to

determine how many times each acyclic path in a control-flow graph executes.

Another application where optimal instrumentation placement is important is computing the

basic block coverage. The goal is to use the boolean flags to identify which basic blocks are executed.

Using boolean flags significantly reduces the code size compared to frequency counts, which are 64-

bit integers. Agrawal [22, 23] studied how to find a small subset of vertices in a control-flow graph

that can be used to infer the coverage of remaining blocks in a program. The techniques he developed

decreased the cost of coverage testing. Tikir and Hollingsworth [78] proposed an approach to

dynamically insert and remove instrumentation code to reduce the impact of computing the code

coverage at runtime. Recently, Chen et. al. [38] proposed a taxonomy of coverage problems, similar

to the profiling problems introduced by Ball and Larus. Additionally, they proposed a linear-time

algorithm to compute the minimum block coverage.

At the same time, there is no academicwork on placing themetering instrumentation. Still, placing

the metering instrumentation is a widely used technique employed by many blockchains such as

Solana, NEAR, or Polkadot. Additionally, existing WebAssembly runtimes such as Wasmer [13] and

wasmtime [16] have a built-in notion of metering. However, they do not optimize the placement of

the metering instrumentation.

9.4 Serverless computing
Serverless computing, which is widely popular today, shares a lot in common with existing

blockchain systems. In contrast to traditional cloud computing, serverless vendors charge users

based on computation rather than a fixed amount of CPU hours or bandwidth. Typical serverless

services include Backend-as-a-Service (BaaS) and Function-as-a-Service (FaaS). FaaS is extremely

similar to the blockchain setting and smart contracts: the code is deployed to a serverless platform

and can be invoked by a request from a client.

Nowadays, many companies provide serverless services, including but not limited to AWS

Lambda [1], Cloudflare Workers [6], and Google BigQuery [42]. Serverless applications can be built

using different languages, e.g., JavaScript or Rust, and are similar to smart contracts written in

general-purpose languages.

Serverless platforms, akin to blockchains, also meter the usage of resources. Metering is crucial

to make auto-scaling decisions, e.g., detecting over-provisioned resources and re-assigning them

to under-provisioned ones [82]. In addition, similarly to blockchains, serverless providers enforce

limits on resource consumption to protect from DoS attacks by adversarial requests that can

92 George Mitenkov

overload the system. Usually, the limits are applied to CPU resources, memory, and disk [60]. In

addition, there are limits on the maximum amount of time for a function to complete and the

number of concurrent function executions.

However, a fundamental difference from blockchains is that in the serverless setting, there is

no need for determinism (both for metering and enforcing the limits). Even though the execution

time of functions can vary significantly [45], there is no need for reproducibility. In contrast,

reproducibility is crucial for blockchains: it should be possible to re-execute the whole transaction

history and obtain the same results as any other node in the system, irrespective of its geographical

location or hardware.

To meter and limit resources at run time, serverless platforms use significantly less expensive

approaches than blockchain systems. Usually, serverless functions run inside a container, such as

Docker [63], which allowsmeasuring resource consumption per container instance. In addition, light

VMs such as Firecracker [21] implement resource limiters that cap the bandwidth and throughput.

Usually, they leverage OS-level primitives to get the resource consumption of a process, e.g.,

getrusage on Linux.

Alternative approaches to metering were proposed recently. F. Alder et al. [26] studied how

metering can be done reliably in an adversarial setting and proposed to use a pair of threads for

metering the compute time: one for the worker running the computation, and one for the timer.

Another interesting metering strategy was proposed by Shaffer et al. [72]. They implement function-

level resource monitoring by polling resource consumption of a process at regular intervals.

While serverless providers offer fine-grained billing as low as one millisecond, it is not clear how

such a metering is implemented and what is the overhead. To the best of our knowledge, there are

no publicly available studies on the overhead of metering execution in serverless providers.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 93

10 CONCLUSION
In this work, we studied multiple popular blockchains, namely Ethereum, Solana, NEAR, and Aptos,

focusing on how they execute smart contracts and calculate transaction fees for the execution. We

learned that while existing blockchain systems have different VM and bytecode specifications and

semantics, they use similar cost models.

In particular, all existing cost models are chain-oriented, i.e., they are designed 1) to protect the

network from Denial-of-Service (DoS) attacks, 2) to ensure users pay their share for the load on

the infrastructure, and 3) to cap the consumption of certain computational resources. Because the

cost model is an approximation, we found that generally, blockchains have simple models where

the total cost of execution is a weighted sum of

• a base cost to cover for the protocol and VM implementations,

• costs for executed bytecode instructions,

• a cost for the amount of memory consumed by the VM,

• and a cost for the used long-term storage.

We identified that the instruction costs used by existing cost models do not always reflect the

real execution cost. In particular, by conducting some experiments we discovered that instructions

that can trap or control-flow instructions are under-priced. While typically they have costs similar

to other instructions, the variance in latency can lead to 10 − 30× slower execution. This, in turn,

reduces the blockchain’s throughput and decreases the profits validators receive for processing

transactions.

We also observed that existing cost model implementations (metering) are not always efficient,

and fail to incentivize the right set of behaviour from the users or smart contract developers. We

found that the state-of-the-art approaches fail to scale and can be attacked by malicious users

when the metering is implemented by instrumenting the contract’s code. In particular, metering

schemes used by blockchains often place an excessive amount of instrumentation code, leading to

slowdowns of more than 2× on some programs or increasing their code size by at least 30%. We

showed that this can be exploited by malicious users in order to slow down the network and reduce

validators’ earnings.

Such a defensive strategy to instrument smart contracts is used because the goal of the cost

model is to protect the network from DoS attacks and to ensure that even malicious users pay

their fair share of the costs. However, by analyzing the execution behaviour of smart contracts

on multiple popular blockchains we observed that such scenarios are unlikely. We found that,

in general, transactions have a very low failure rate of around 5-10%, and usually because of

user-defined exceptions. For example, on the Aptos blockchain, failures due to running out of gas

correspond to less than 1% of all traffic. Even though out-of-gas exceptions are rare, all validators

are paying the cost for the defensive metering.

Motivated by this, and the lack of formalism and soundness in existing approaches to metering,

we formally defined the requirements any metering scheme should satisfy. Based on the observation

about the unlikeliness of failures, the algorithms used for metering should be tailored towards

successful execution, and, in case of failure, fallback to a recovery mechanism to calculate the exact

execution cost. As a result, one can develop algorithms that can simultaneously meter multiple

basic blocks in the contract, even in the presence of implicit control flow, exceptions, or function

calls.

To develop even more efficient algorithms for instruction cost metering, we formulated a new

problem of the minimum metering instrumentation, which aims to find a minimal set of instru-

mentation points in the control-flow graph of a program so that when the program is executed, the

total cost of the executed instructions is known and that there is almost always enough budget to

94 George Mitenkov

cover for execution cost at any point during the run time. While being similar to the problems of

frequency counts solved by Knuth, or minimal coverage instrumentation, the minimal metering

instrumentation problem is different because it requires online checks for a sufficient budget.

Moreover, the metering instrumentation that covers the paths with identical costs can be combined.

To the best of our knowledge, the problem had not been studied before.

In this work, we proposed an iterative algorithm to calculate the minimum metering instrumen-

tation under the condition that the budget has to be large enough at any point during the execution

of a program. The algorithm, evaluated on multiple microbenchmarks and real-world contracts

allows one to reduce the run-time overhead of metering instrumentation by a factor of 2. Moreover,

we showed that it is sufficient to instrument only 30.4-37.5% of the basic blocks in real contracts.

We also observed that if the condition of having a sufficient budget at any point at run time is

relaxed, the problem becomes significantly harder. While we have not presented an algorithm to

solve this instance of the minimum metering instrumentation problem, the experimental results

suggest that the run-time overhead of metering can be reduced further.

Since the problem of minimum metering instrumentation had not been yet studied, our work

paves the way for future research and further improvements. First, one can develop algorithms

that solve the relaxed version of the minimum metering instrumentation, or show its hardness.

Also, it would be interesting to understand the trade-offs between the different requirements of

the metering schemes, to find the right balance between security and optimality of the placed

instrumentation. It is also worth exploring whether the metering instrumentation can be optimized,

e.g., by hoisting it outside loops. Another interesting future direction is to improve the running time

of computing the placement of the metering instrumentation. For example, the instrumented code

can be stored on-chain and verified when loaded by the VM. Alternatively, a tiered-compilation

approach can be used – interleaving computations of the metering instrumentation with execution.

Finally, after conducting a detailed study on existing cost models and metering schemes, we

realized that the current design of the cost models needs re-thinking and should not be chain-

oriented only. Instead, we propose to include multiple stakeholders such as users, smart contract

developers, compilers, validators, and the blockchain itself. We believe that by identifying and

matching the right set of behaviour amongst the interested parties, it is possible to ensure that the

cost model:

• penalizes malicious behaviour, e.g., running out of budget during execution or DoS attacks,

• incentivizes fast, cheap, and analyzable code, and

• can be efficiently metered.

We presented the Cost Model Standard – a first attempt to describe the relationship between

different stakeholders and their needs and bring this over to the cost model. While not yet complete,

we believe the standard we propose is the first step towards defining safe, robust, and simple cost

models for blockchains, making the networks more secure, performant, and cheaper.

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 95

REFERENCES
[1] 2014. AWS Lambda. https://aws.amazon.com/lambda, visited on 10.08.2023.

[2] 2015. Go Ethereum: Official Go implementation of the Ethereum protocol. https://github.com/ethereum/go-ethereum,

visited on 31.07.2023.

[3] 2015. Solidity: A statically-typed programming language designed for developing smart contracts that run on Ethereum.

https://soliditylang.org, visited on 08.08.2023.

[4] 2016. The Ethereum EVM JIT. https://github.com/ethereum/evmjit, visited on 31.07.2023.

[5] 2017. Cardano (ADA). https://cardano.org

[6] 2017. Cloudflare Workers. https://workers.cloudflare.com, visited on 10.08.2023.

[7] 2017. NearVM implementation. https://github.com/near/nearcore/tree/master/runtime/near-vm, visited on 14.08.2023.

[8] 2017. Vyper. https://docs.vyperlang.org/en/stable, visited on 08.08.2023.

[9] 2018. A Library for WebAssembly Module Instrumentations. https://github.com/paritytech/wasm-instrument, visited

on 31.07.2023.

[10] 2018. Rust virtual machine and JIT compiler for eBPF programs, adapted by Solana blockchain. https://github.com/

solana-labs/rbpf, visited on 31.07.2023.

[11] 2018. TRON: Advanced Decentralized Blockchain Platform. https://tron.network/static/doc/white_paper_v_2_0.pdf,

visited on 12.10.2023.

[12] 2018. wasmi – WebAssembly (Wasm) Interpreter. https://github.com/paritytech/wasmi, visited on 27.09.2023.

[13] 2018. WebAssembly Runtime. https://github.com/wasmerio/wasmer, visited on 31.07.2023.

[14] 2019. BNB Smart Chain: A Parallel Blockchain to Beacon Chain to Enable Smart Contracts. https://github.com/bnb-

chain/whitepaper/blob/master/WHITEPAPER.md, visited on 10.10.2023.

[15] 2019. Evmone: fast Ethereum Virtual Machine implementation. https://github.com/ethereum/evmone, visited on

31.07.2023.

[16] 2019. wasmtime: A standalone runtime for WebAssembly. https://github.com/bytecodealliance/wasmtime, visited on

26.09.2023.

[17] 2020. The Libra Blockchain. https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-

26.pdf, visited on 08.08.2023.

[18] 2020. Proposal for exception handling in WebAssembly. https://github.com/WebAssembly/exception-handling/blob/

master/proposals/exception-handling/Exceptions.md, visited on 08.08.2023.

[19] 2022. Move Virtual Machine implementation adapted for Aptos blockchain. https://github.com/aptos-labs/aptos-

core/tree/main/third_party/move, visited on 31.07.2023.

[20] 2023. fiite-wasm: Cheating a little to solve the halting problem at scale. https://github.com/near/finite-wasm, visited

on 26.09.2023.

[21] Alexandru Agache, Marc Brooker, Andreea Florescu, Alexandra Iordache, Anthony Liguori, Rolf Neugebauer, Phil

Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight Virtualization for Serverless Applications. In

Proceedings of the 17th Usenix Conference on Networked Systems Design and Implementation (NSDI’20). https:

//www.usenix.org/system/files/nsdi20-paper-agache.pdf

[22] Hiralal Agrawal. [n. d.]. Dominators, Super Blocks, and Program Coverage. In Proceedings of the 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’94). https://doi.org/10.1145/174675.175935

[23] Hira Agrawal. 1999. Efficient Coverage Testing Using Global Dominator Graphs. In Proceedings of the 1999 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE ’99). https://doi.org/10.

1145/316158.316166

[24] Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Díez, and Albert Rubio. 2020. GASOL: Gas Analysis

and Optimization for Ethereum Smart Contracts. In Tools and Algorithms for the Construction and Analysis of Systems.
https://doi.org/10.1007/978-3-030-45237-7_7

[25] Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Díez, and Albert Rubio. 2021. Don’t run on

fumes—Parametric gas bounds for smart contracts. Journal of Systems and Software 176 (2021), 110923. https:

//doi.org/10.1016/j.jss.2021.110923

[26] Fritz Alder, N. Asokan, Arseny Kurnikov, Andrew Paverd, and Michael Steiner. 2019. S-FaaS: Trustworthy and

Accountable Function-as-a-Service Using Intel SGX. In Proceedings of the 2019 ACM SIGSAC Conference on Cloud
Computing Security Workshop (CCSW’19). https://doi.org/10.1145/3338466.3358916

[27] Stephen Alstrup, Dov Harel, Peter W. Lauridsen, and Mikkel Thorup. 1999. Dominators in Linear Time. SIAM J.
Comput. 28, 6 (1999), 2117–2132. https://doi.org/10.1137/S0097539797317263

[28] Thomas Ball and James R. Larus. 1994. Optimally Profiling and Tracing Programs. ACM Trans. Program. Lang. Syst. 16,
4 (jul 1994), 1319–1360. https://doi.org/10.1145/183432.183527

[29] Thomas Ball and James R. Larus. 1996. Efficient Path Profiling. In Proceedings of the 29th Annual ACM/IEEE International
Symposium on Microarchitecture (MICRO 29). https://doi.org/10.1109/MICRO.1996.566449

https://aws.amazon.com/lambda
https://github.com/ethereum/go-ethereum
https://soliditylang.org
https://github.com/ethereum/evmjit
https://cardano.org
https://workers.cloudflare.com
https://github.com/near/nearcore/tree/master/runtime/near-vm
https://docs.vyperlang.org/en/stable
https://github.com/paritytech/wasm-instrument
https://github.com/solana-labs/rbpf
https://github.com/solana-labs/rbpf
https://tron.network/static/doc/white_paper_v_2_0.pdf
https://github.com/paritytech/wasmi
https://github.com/wasmerio/wasmer
https://github.com/bnb-chain/whitepaper/blob/master/WHITEPAPER.md
https://github.com/bnb-chain/whitepaper/blob/master/WHITEPAPER.md
https://github.com/ethereum/evmone
https://github.com/bytecodealliance/wasmtime
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://github.com/WebAssembly/exception-handling/blob/master/proposals/exception-handling/Exceptions.md
https://github.com/WebAssembly/exception-handling/blob/master/proposals/exception-handling/Exceptions.md
https://github.com/aptos-labs/aptos-core/tree/main/third_party/move
https://github.com/aptos-labs/aptos-core/tree/main/third_party/move
https://github.com/near/finite-wasm
https://www.usenix.org/system/files/nsdi20-paper-agache.pdf
https://www.usenix.org/system/files/nsdi20-paper-agache.pdf
https://doi.org/10.1145/174675.175935
https://doi.org/10.1145/316158.316166
https://doi.org/10.1145/316158.316166
https://doi.org/10.1007/978-3-030-45237-7_7
https://doi.org/10.1016/j.jss.2021.110923
https://doi.org/10.1016/j.jss.2021.110923
https://doi.org/10.1145/3338466.3358916
https://doi.org/10.1137/S0097539797317263
https://doi.org/10.1145/183432.183527
https://doi.org/10.1109/MICRO.1996.566449

96 George Mitenkov

[30] Thomas Ball, Peter Mataga, and Shmuel Sagiv. 1998. Edge profiling versus path profiling: the showdown. In ACM-
SIGACT Symposium on Principles of Programming Languages. https://doi.org/10.1145/268946.268958

[31] Martin Becze. 2015. EVM 2.0. https://github.com/ethereum/EIPs/issues/48

[32] Alex Beregszaszi, Andrei Maiboroda, and Pawel Bylica. 2021. EIP-3670: EOF - Code Validation. https://eips.ethereum.

org/EIPS/eip-3860

[33] Stefano Bistarelli, Gianmarco Mazzante, Matteo Micheletti, Leonardo Mostarda, Davide Sestili, and Francesco Tiezzi.

2020. Ethereum smart contracts: Analysis and statistics of their source code and opcodes. Internet of Things 11 (2020),
100198. https://doi.org/10.1016/j.iot.2020.100198

[34] Sam Blackshear, Evan Cheng, David L. Dill, Victor Gao, Ben Maurer, Todd Nowacki, Alistair Pott, Shaz Qadeer, Rain,

Dario Russi, Stephane Sezer, Tim Zakian, and Runtian Zhou. 2019. Move: A Language With Programmable Resources.

https://developers.diem.com/papers/diem-move-a-language-with-programmable-resources/2019-06-18.pdf

[35] Adam L. Buchsbaum, Loukas Georgiadis, Haim Kaplan, Anne Rogers, Robert E. Tarjan, and Jeffery R. Westbrook.

2008. Linear-Time Algorithms for Dominators and Other Path-Evaluation Problems. SIAM J. Comput. 38, 4 (2008),
1533–1573. https://doi.org/10.1137/070693217

[36] Adam L. Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery R. Westbrook. 1998. A New, Simpler Linear-Time

Dominators Algorithm. ACM Trans. Program. Lang. Syst. 20, 6 (nov 1998), 1265–1296. https://doi.org/10.1145/295656.

295663

[37] Vitalik Buterin, Eric Conner, Rick Dudley, Matthew Slipper, Ian Norden, and Abdelhamid Bakhta. 2019. EIP-1559: Fee

market change for ETH 1.0 chain. https://eips.ethereum.org/EIPS/eip-1559

[38] Li Chen, Ellis Hoag, Kyungwoo Lee, Julian Mestre, and Sergey Pupyrev. 2022. Minimum Coverage Instrumentation.

arXiv:2208.13907

[39] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. 2017. Under-optimized smart contracts devour your money. In

2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER). https://doi.org/10.

1109/SANER.2017.7884650

[40] Ankush Das and Shaz Qadeer. 2020. Exact and Linear-Time Gas-Cost Analysis. In Static Analysis: 27th International
Symposium, SAS 2020, Virtual Event, November 18–20, 2020, Proceedings. https://doi.org/10.1007/978-3-030-65474-0_15

[41] Maarten Faddegon. 2011. SSA Back-Translation: Faster Results with Edge Splitting and Post Optimization. Master’s

thesis. TU Delft.

[42] Sérgio Fernandes and Jorge Bernardino. 2015. What is BigQuery?. In Proceedings of the 19th International Database
Engineering & Applications Symposium (IDEAS ’15). https://doi.org/10.1145/2790755.2790797

[43] Agner Fog. 2022. Instruction tables: Lists of instruction latencies, throughputs and micro-operation breakdowns for

Intel, AMD and VIA CPUs. Copenhagen University (2022). https://www.agner.org/optimize/instruction_tables.pdf

[44] Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang, George Danezis, Zekun Li, Dahlia Malkhi, Yu Xia, and Runtian

Zhou. 2023. Block-STM: Scaling Blockchain Execution by Turning Ordering Curse to a Performance Blessing. In

Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming (PPoPP
’23). https://doi.org/10.1145/3572848.3577524

[45] Samuel Ginzburg and Michael J. Freedman. 2021. Serverless Isn’t Server-Less: Measuring and Exploiting Resource

Variability on Cloud FaaS Platforms. In Proceedings of the 2020 Sixth International Workshop on Serverless Computing
(WoSC’20). https://doi.org/10.1145/3429880.3430099

[46] Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50, 1 (1987), 1–101. https://doi.org/10.1016/0304-

3975(87)90045-4

[47] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2020. MadMax:

Analyzing the out-of-Gas World of Smart Contracts. Commun. ACM 63, 10 (sep 2020), 87–95. https://doi.org/10.1145/

3416262

[48] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon

Zakai, and JF Bastien. 2017. Bringing the Web up to Speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2017). https://doi.org/10.1145/3062341.3062363

[49] Timo Hanke, Mahnush Movahedi, and Dominic Williams. 2018. DFINITY Technology Overview Series, Consensus

System. arXiv:1805.04548

[50] Jaynti Kanani, Sandeep Nailwal, and Anurag Arjun. 2017. Polygon (previously Matic) Whitepaper. https://github.

com/maticnetwork/whitepaper, visited on 10.10.2023.

[51] Sital Kedia. 2023. AIP-27: Sender Aware Transaction Shuffling. https://github.com/aptos-foundation/AIPs/blob/main/

aips/aip-27.md, visited on 09.10.2023.

[52] Donald E. Knuth. 1973. The Art of Computer Programming, Volume 1 (2nd Ed.): Fundamental Algorithms. Addison
Wesley Longman Publishing Co., Inc.

[53] Donald E. Knuth and Francis R. Stevenson. 1973. Optimal measurement points for program frequency counts. BIT
Numerical Mathematics 13 (1973), 313–322. https://doi.org/10.1007/BF01951942

https://doi.org/10.1145/268946.268958
https://github.com/ethereum/EIPs/issues/48
https://eips.ethereum.org/EIPS/eip-3860
https://eips.ethereum.org/EIPS/eip-3860
https://doi.org/10.1016/j.iot.2020.100198
https://developers.diem.com/papers/diem-move-a-language-with-programmable-resources/2019-06-18.pdf
https://doi.org/10.1137/070693217
https://doi.org/10.1145/295656.295663
https://doi.org/10.1145/295656.295663
https://eips.ethereum.org/EIPS/eip-1559
https://arxiv.org/abs/2208.13907
https://doi.org/10.1109/SANER.2017.7884650
https://doi.org/10.1109/SANER.2017.7884650
https://doi.org/10.1007/978-3-030-65474-0_15
https://doi.org/10.1145/2790755.2790797
https://www.agner.org/optimize/instruction_tables.pdf
https://doi.org/10.1145/3572848.3577524
https://doi.org/10.1145/3429880.3430099
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/3416262
https://doi.org/10.1145/3416262
https://doi.org/10.1145/3062341.3062363
https://arxiv.org/abs/1805.04548
https://github.com/maticnetwork/whitepaper
https://github.com/maticnetwork/whitepaper
https://github.com/aptos-foundation/AIPs/blob/main/aips/aip-27.md
https://github.com/aptos-foundation/AIPs/blob/main/aips/aip-27.md
https://doi.org/10.1007/BF01951942

Metering the Meter, or How to Efficiently and Deterministically Charge the Execution of Smart Contracts 97

[54] Protocol Labs. 2017. Filecoin: A Decentralized Storage Network. https://filecoin.io/filecoin.pdf, visited on 31.07.2023.

[55] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transfor-

mation. In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-Directed and
Runtime Optimization (CGO ’04). https://doi.org/10.1109/CGO.2004.1281665

[56] Kyungwoo Lee, Ellis Hoag, and Nikolai Tillmann. 2022. Efficient Profile-Guided Size Optimization for Native Mobile

Applications. In Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction (CC 2022).
https://doi.org/10.1145/3497776.3517764

[57] Chunmiao Li, Shijie Nie, Yang Cao, Yijun Yu, and Zhenjiang Hu. 2020. Dynamic Gas Estimation of Loops Using

Machine Learning. In Blockchain and Trustworthy Systems. https://doi.org/10.1007/978-981-15-9213-3_34

[58] Chao Liu, Jianbo Gao, Yue Li, and Zhong Chen. 2020. Understanding Out of Gas Exceptions on Ethereum. In Blockchain
and Trustworthy Systems. https://doi.org/10.1007/978-981-15-2777-7_41

[59] Yulin Liu, Yuxuan Lu, Kartik Nayak, Fan Zhang, Luyao Zhang, and Yinhong Zhao. 2022. Empirical Analysis of EIP-1559:

Transaction Fees, Waiting Times, and Consensus Security. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’22). https://doi.org/10.1145/3548606.3559341

[60] Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya. 2022. A Holistic View on Resource Management in

Serverless Computing Environments: Taxonomy and Future Directions. ACM Comput. Surv. 54, 11s, Article 222 (sep
2022). https://doi.org/10.1145/3510412

[61] Matteo Marescotti, Martin Blicha, Antti E. J. Hyvärinen, Sepideh Asadi, and Natasha Sharygina. 2018. Computing

Exact Worst-Case Gas Consumption for Smart Contracts. In Leveraging Applications of Formal Methods, Verification
and Validation. Industrial Practice: 8th International Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9, 2018,
Proceedings, Part IV. https://doi.org/10.1007/978-3-030-03427-6_33

[62] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Architecture for User-Level Packet Capture.

In Proceedings of the USENIX Winter 1993 Conference Proceedings on USENIX Winter 1993 Conference Proceedings
(USENIX’93). https://www.usenix.org/legacy/publications/library/proceedings/sd93/mccanne.pdf

[63] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent Development and Deployment. Linux J.
2014, 239, Article 2 (mar 2014). https://dl.acm.org/doi/10.5555/2600239.2600241

[64] Matthias Mettler. 2016. Blockchain technology in healthcare: The revolution starts here. In 2016 IEEE 18th International
Conference on e-Health Networking, Applications and Services (Healthcom). https://doi.org/10.1109/HealthCom.2016.

7749510

[65] E. Morel and C. Renvoise. 1979. Global Optimization by Suppression of Partial Redundancies. Commun. ACM 22, 2

(feb 1979), 96–103. https://doi.org/10.1145/359060.359069

[66] A. Nahapetian. 1973. Node Flows in Graphs with Conservative Flow. Acta Inf. 3, 1 (mar 1973), 37–41. https:

//doi.org/10.1007/BF00288650

[67] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. Cryptography Mailing list at
https://metzdowd.com (2009).

[68] Daniel Perez and Benjamin Livshits. 2019. Broken Metre: Attacking Resource Metering in EVM. arXiv:1909.07220

[69] R. L. Probert. 1982. Optimal Insertion of Software Probes in Well-Delimited Programs. 8, 1 (jan 1982), 34–42.

https://doi.org/10.1109/TSE.1982.234772

[70] Nathan Reiff. 2023. The Collapse of FTX: What Went Wrong With the Crypto Exchange? https://blog.chain.link/

reentrancy-attacks-and-the-dao-hack, visited on 12.10.2023.

[71] Kevin Sekniqi, Daniel Laine, Stephen Buttolph, and Emin Gün Sirer. 2020. Avalanche Platform. https://www.avalabs.

org/whitepapers, visited on 09.10.2023.

[72] Tim Shaffer, Zhuozhao Li, Ben Tovar, Yadu Babuji, TJ Dasso, Zoe Surma, Kyle Chard, Ian Foster, and Douglas Thain.

2021. Lightweight Function Monitors for Fine-Grained Management in Large Scale Python Applications. In 2021 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). https://doi.org/10.1109/IPDPS49936.2021.00088

[73] Yunhe Shi, Kevin Casey, M. Anton Ertl, and David Gregg. 2008. Virtual Machine Showdown: Stack versus Registers.

ACM Trans. Archit. Code Optim. 4, 4, Article 2 (jan 2008), 36 pages. https://doi.org/10.1145/1328195.1328197

[74] Avi Spielman. 2016. Digitally rebuilding the real estate industry. Master’s thesis. MIT. https://dspace.mit.edu/handle/

1721.1/106753

[75] The Aptos Team. 2022. The Aptos Blockchain: Safe, Scalable, and Upgradeable Web3 Infrastructure. https://aptos.

dev/aptos-white-paper

[76] The MystenLabs Team. 2023. The Sui Smart Contracts Platform. https://docs.sui.io/paper/sui.pdf

[77] The NEAR Team. 2017. The NEAR White Paper. https://near.org/papers/the-official-near-white-paper.

[78] Mustafa M. Tikir and Jeffrey K. Hollingsworth. 2002. Efficient Instrumentation for Code Coverage Testing. In

Proceedings of the 2002 ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’02). https:

//doi.org/10.1145/566172.566186

https://filecoin.io/filecoin.pdf
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/3497776.3517764
https://doi.org/10.1007/978-981-15-9213-3_34
https://doi.org/10.1007/978-981-15-2777-7_41
https://doi.org/10.1145/3548606.3559341
https://doi.org/10.1145/3510412
https://doi.org/10.1007/978-3-030-03427-6_33
https://www.usenix.org/legacy/publications/library/proceedings/sd93/mccanne.pdf
https://dl.acm.org/doi/10.5555/2600239.2600241
https://doi.org/10.1109/HealthCom.2016.7749510
https://doi.org/10.1109/HealthCom.2016.7749510
https://doi.org/10.1145/359060.359069
https://doi.org/10.1007/BF00288650
https://doi.org/10.1007/BF00288650
https://arxiv.org/abs/1909.07220
https://doi.org/10.1109/TSE.1982.234772
https://blog.chain.link/reentrancy-attacks-and-the-dao-hack
https://blog.chain.link/reentrancy-attacks-and-the-dao-hack
https://www.avalabs.org/whitepapers
https://www.avalabs.org/whitepapers
https://doi.org/10.1109/IPDPS49936.2021.00088
https://doi.org/10.1145/1328195.1328197
https://dspace.mit.edu/handle/1721.1/106753
https://dspace.mit.edu/handle/1721.1/106753
https://aptos.dev/aptos-white-paper
https://aptos.dev/aptos-white-paper
https://docs.sui.io/paper/sui.pdf
https://near.org/papers/the-official-near-white-paper
https://doi.org/10.1145/566172.566186
https://doi.org/10.1145/566172.566186

98 George Mitenkov

[79] Gavin Wood. 2014. Ethereum: A Secure Decentralised Generalised Transaction Ledger. Ethereum Project Yellow Paper
2014 (2014). https://gavwood.com/paper.pdf

[80] Gavin Wood. 2016. Polkadot: Vision for a Heterogeneous Multi-Chain Framework. https://assets.polkadot.network/

Polkadot-whitepaper.pdf

[81] Anatoly Yakovenko. 2017. Solana: A new architecture for a high performance blockchain v0.8.13. https://solana.com/

solana-whitepaper.pdf.

[82] Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park. 2022. Accelerating Serverless Computing by Harvesting

Idle Resources. In Proceedings of the ACM Web Conference 2022 (WWW ’22). https://doi.org/10.1145/3485447.3511979

https://gavwood.com/paper.pdf
https://assets.polkadot.network/Polkadot-whitepaper.pdf
https://assets.polkadot.network/Polkadot-whitepaper.pdf
https://solana.com/solana-whitepaper.pdf
https://solana.com/solana-whitepaper.pdf
https://doi.org/10.1145/3485447.3511979

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchains and smart contracts
	2.2 Global state of blockchains
	2.3 Blockchain fee system and gas
	2.4 Transaction validation and execution
	2.5 Cost models for blockchains
	2.6 Cost model implementation and metering schemes in blockchains
	2.7 On-chain code representation and virtual machines
	2.8 Bytecode verification, interpretation and JIT-compilation in blockchains
	2.9 Summary

	3 Blockchain Cost Models: A Study
	3.1 Measuring computations on blockchains
	3.2 Gas and computational units
	3.3 Base costs
	3.4 Run-time limits
	3.5 Costs for bytecode instructions

	4 Metering Schemes: A Study
	4.1 Instruction cost metering
	4.2 Memory and storage costs metering
	4.3 Summary

	5 Smart Contracts Analysis & Statistics
	5.1 Frequency of transaction failures
	5.2 Distribution of instruction opcodes
	5.3 Control-flow structure
	5.4 Summary

	6 Minimum Safe Metering Instrumentation
	6.1 Properties of metering instrumentation
	6.2 Per-block placement of metering instrumentation
	6.3 Consistency recovery mechanisms
	6.4 Algorithmic framework
	6.5 Computing valid and safe metering function which is path-minimal
	6.6 Exploring valid and generous metering functions
	6.7 Loop Invariant Metering Motion
	6.8 Summary

	7 Evaluation
	7.1 Benchmarking methodology
	7.2 Analysis of the run-time overhead of metering instrumentation
	7.3 Analysis of the impact of Loop Invariant Metering Motion on the run time
	7.4 Analysis of the SPP and the GPP algorithms on Solana contracts
	7.5 Analysis of the cost of consistency recovery and the impact of the cost model

	8 Revisiting Cost Models for Blockchains
	8.1 The Cost Model Standard 1.0
	8.2 The future and the takeaways of the Cost Model Standard

	9 Related Work
	9.1 Blockchains and cost models
	9.2 Gas price estimation
	9.3 Optimal instrumentation placement
	9.4 Serverless computing

	10 Conclusion
	References

