
Evaluating Value-Wise Poison Values for the LLVM Compiler

Filipe Parrado de Azevedo

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. José Carlos Alves Pereira Monteiro
Dr. Nuno Claudino Pereira Lopes

Examination Committee

Chairperson: Prof. Luı́s Manuel Antunes Veiga
Supervisor: Prof. José Carlos Alves Pereira Monteiro

Member of the Committee: Prof. Alexandre Paulo Lourenço Francisco

April 2020

Acknowledgments

Firstly, I would like to thank my two dissertation supervisors, Professor José Monteiro and Nuno

Lopes, for supporting, helping and guiding me in the right direction on the most important project of

my life to date. A compiler is a massive program that I wasn’t really ready to tackle and without their

knowledge and experience this thesis would not have been possible. Knowing that they cared and kept

an eye on me motivated me to work harder than I would have otherwise.

I also would like to thank my father, step-mother and sister for all of their love and support and for

putting up with me all these years. Thank you for fully raising me in what is probably the hardest age to

raise a person, and for your support after the most traumatic event I experienced.

I want to thank my mother, for raising me and for always being by my side and loving me in the first

15 years of my life. The memories I have of her are plenty and beautiful, she shaped me to be the man

I am today and I would not be here without her. Thank you.

I am also grateful to the rest of my family for their continuous support and insight on life, with a

special appreciation to the friendship of all of my cousins, who are sometimes harsh but mostly sources

of laughter and joy.

Lastly, but definitely not least, I want to extend my gratification to all the colleagues and friends I

made over the years, for helping me across different times in my life. Particularly the friends I made over

the last 6 years at IST that helped me get through college with their support and encouragement and for

mentally helping me grow as a person, with a special gratitude to Ana, Catarina and Martim for putting

up with me.

To all of you, and probably someone else I am not remembering – Thank you.

Abstract

The Intermediate Representation (IR) of a compiler has become an important aspect of optimizing

compilers in recent years. The IR of a compiler should make it easy to perform transformations while

also giving portability to the compiler. One aspect of IR design is the role of Undefined Behavior (UB).

UB is important to reflect the semantics of UB-heavy programming languages, like C and C++, namely

allowing multiple desirable optimizations to be made and the modeling of unsafe low-level operations.

Consequently, the IR of important compilers, such as LLVM, GCC or Intel’s compiler, supports one or

more forms of UB.

In this work we focus on the LLVM compiler infrastructure and how it deals with UB in its IR, with the

concepts of “poison” and “undef”, and how the existence of multiple forms of UB conflict with each other

and cause problems to very important “textbook” optimizations, such as some forms of “Global Value

Numbering” and “Loop Unswitching”, hoisting operations past control-flow, among others.

To solve these problems we introduce a new semantics of UB to the LLVM, explaining how it can

solve the different problems stated, while most optimizations currently in LLVM remain sound. Part of

the implementation of the new semantics is the introduction of a new type of structure to the LLVM IR –

Explicitly Packed Structure type – that represents each field in its own integer type with size equal to that

of the field in the source code. Our implementation does not degrade the performance of the compiler.

Keywords

Compilers; Undefined Behavior; Intermediate Representations; Poison Values; LLVM; Bit Fields.

iii

Resumo

A Representação Intermédia (IR) de um compilador tem-se tornado num aspeto importante dos

chamados compiladores optimizadores nos últimos anos. A IR de um compilador deve facilitar a

realização de transformações ao código e dar portabilidade ao compilador. Um aspeto do design de

uma IR é a função do Comportamento Indefinido (UB). O UB é importante para refletir as semânticas

de linguagens de programação com muitos casos de UB, como é o caso das linguagens C e C++, mas

também porque permite a realização de múltiplas optimizações desejadas e a modelação de operações

de baixo nı́vel pouco seguras. Consequentemente, o UB de compiladores importantes, como o LLVM,

GCC ou o compilador da Intel, suportam uma ou mais formas de UB.

Neste trabalho o nosso foco é no compilador LLVM e em como é que esta infra-estrutura lida com UB

na sua IR, através de conceitos como “poison” e “undef”, e como é que a existência de múltiplas formas

de UB entram em conflito entre si e causam problemas a optimizações “textbook” muito importantes, tais

como “Global Value Numbering” e “Loop Unswitching”, puxar operações para fora de fluxo de controlo,

entre outras.

Para resolver estes problemas introduzimos uma nova semântica de UB no LLVM, explicando como

é que esta trata dos problemas mencionados, enquanto mantem as optimizações atualmente no LLVM

corretas. Uma parte da implementação desta nova semântica é a introdução de um novo tipo de estru-

tura na IR do LLVM – o tipo Explicitly Packed Struct – que representa cada campo da estrutura no seu

próprio tipo inteiro com tamanho igual ao do seu campo no código de origem. A nossa implementação

não degrada o desempenho do compilador.

Palavras Chave

Compiladores; Comportamento Indefinido; Representações Intermédias; Valores Poison; LLVM; Bit

Fields

v

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Contributions . 4

1.3 Structure . 4

2 Related Work 5

2.1 Compilers . 7

2.2 Undefined Behavior in Current Optimizing Compilers . 10

2.2.1 LLVM . 10

2.2.2 CompCert . 11

2.2.3 Vellvm . 12

2.2.4 Concurrent LLVM Model . 13

2.3 Problems with LLVM and Basis for this Work . 14

2.3.1 Benefits of Poison . 14

2.3.2 Loop Unswitching and Global Value Numbering Conflicts 15

2.3.3 Select and the Choice of Undefined Behavior . 16

2.3.4 Bit Fields and Load Widening . 17

2.4 Summary . 18

3 LLVM’s New Undefined Behavior Semantics 19

3.1 Semantics . 21

3.2 Illustrating the New Semantics . 24

3.2.1 Loop Unswitching and GVN . 24

3.2.2 Select . 25

3.2.3 Bit Fields . 25

3.2.4 Load Combining and Widening . 27

3.3 Cautions to have with the new Semantics . 28

vii

4 Implementation 31

4.1 Internal Organization of the LLVM Compiler . 33

4.2 The Vector Loading Solution . 34

4.3 The Explicitly Packed Structure Solution . 37

5 Evaluation 41

5.1 Experimental Setup . 44

5.2 Compile Time . 45

5.3 Memory Consumption . 48

5.4 Object Code Size . 52

5.5 Run Time . 55

5.6 Differences in Generated Assembly . 55

5.7 Summary . 57

6 Conclusions and Future Work 59

6.1 Future Work . 61

viii

List of Figures

3.1 Semantics of selected instructions [1]. 22

4.1 An 8-bit word being loaded as a Bit Vector of 4 elements with size 2. 34

4.2 Padding represented in a 16-bit word, alongside 2 bit fields. 36

5.1 Compilation Time changes of benchmarks with -O0 flag. 46

5.2 Compilation Time changes of micro-benchmarks with -O0 flag. 46

5.3 Compilation Time changes of benchmarks with -O3 flag. 47

5.4 Compilation Time changes of micro-benchmarks with -O3 flag. 47

5.5 RSS value changes in benchmarks with the -O0 flag. 48

5.6 VSZ value changes in benchmarks with the -O0 flag. 49

5.7 RSS value changes in micro-benchmarks with the -O0 flag. 49

5.8 VSZ value changes in micro-benchmarks with the -O0 flag. 50

5.9 RSS value changes in benchmarks with the -O3 flag. 50

5.10 VSZ value changes in benchmarks with the -O3 flag. 51

5.11 RSS value changes in micro-benchmarks with the -O3 flag. 51

5.12 VSZ value changes in micro-benchmarks with the -O3 flag. 52

5.13 Object Code size changes in micro-benchmarks with the -O3 flag. 53

5.14 Changes in LLVM IR instructions in bitcode files in benchmarks with the -O0 flag. 53

5.15 Changes in LLVM IR instructions in bitcode files in micro-benchmarks with the -O0 flag. . 54

5.16 Changes in LLVM IR instructions in bitcode files in micro-benchmarks with the -O3 flag. . 54

5.17 Run Time changes in benchmarks with the -O0 flag. 56

5.18 Run Time changes in benchmarks with the -O3 flag. 56

ix

x

List of Tables

2.1 Different alternative of semantics for select . 17

xi

xii

Acronyms

UB Undefined Behavior

IR Intermediate Representation

PHP PHP: Hypertext Preprocessor

ALGOL ALGOrithmic Language

PLDI Programming Language Design and Implementation

CPU Central Processing Unit

SelectionDAG Selection Directed Acyclic Graph

SSA Static Single Assignment

SSI Static Single Information

GSA Gated Single Assignment

ABI Application Binary Interface

GVN Global Value Numbering

SimplifyCFG Simplify Control-Flow Graph

GCC GNU Compiler Collection

SCCP Sparse Conditional Constant Propagation

SROA Scalar Replacement of Aggregates

InstCombine Instruction Combining

Mem2Reg Memory to Register

CentOS Community Enterprise Operating System

xiii

RSS Resident Set Size

VSZ Virtual Memory Size

xiv

1
Introduction

Contents

1.1 Motivation . 3

1.2 Contributions . 4

1.3 Structure . 4

1

2

A computer is a system that can be instructed to execute a sequence of operations. We write these

instructions in a programming language to form a program. A programming language is a language

defined by a set of instructions that can be ran by a computer and, during the last 70 years, these

languages have evolved to abstract themselves from its details, to be easier to use. These are called

high-level programming languages, and examples are the C, Java and Python languages.

However, a computer can only understand instructions written in binary code and usually the high-

level programming languages use natural language elements. To be able to connect these two puzzle

pieces we need the help of a specific program - the compiler.

1.1 Motivation

A programming language specification is a document that defines its behaviors, and is an impor-

tant asset to have when implementing or using that same language. Despite being important, it’s not

obligatory to have a specification and, in fact, some programming languages do not have one and are

still widely popular (PHP only got a specification after 20 years, before that the language was specified

by what the interpreter did). Nowadays, when creating a programming language, the implementation

and the specification are developed together since the specification defines the behavior of a program

and the implementation checks if that specification is possible, practical and consistent. However, some

languages were first specified and them implemented (ALGOL 68) or vice-versa (the already mentioned

PHP). The first practice was abandoned precisely because of the problems that arise when there is no

implementation to check if the specification is doable and practical.

A compiler is a complex piece of computer software that translates code written in one programming

language (source language) to another (target language, usually assembly of the machine it is running

on). Aside from translating the code, some compilers, called optimizing compilers, also optimize it by

resorting to different techniques. For example, the LLVM [2] is an optimizing compiler infrastructure used

by Apple, Google and Sony, among other big companies, and will be the target of this work.

When optimizing code, compilers need to worry about Undefined Behavior (UB). UB refers to the

result of executing code whose behavior is not defined by the language specification in which the code

is written, for the current state of the program, and may cause the system to have a behavior which

was not intended by the programmer. The motivation for this work is the countless bugs that have

been found over the years in LLVM1 due to the contradicting semantics of UB in the LLVM Intermediate

Representation (IR). Since LLVM is used by some of the most important companies in the computer

science area, these bugs can have dire consequences in some cases.

1Some examples are https://llvm.org/PR21412, https://llvm.org/PR27506, https://llvm.org/PR31652, https://

llvm.org/PR31632 and https://llvm.org/PR31633

3

https://llvm.org/PR21412
https://llvm.org/PR27506
https://llvm.org/PR31652
https://llvm.org/PR31632
https://llvm.org/PR31632
https://llvm.org/PR31633

One instance2 of a bug of this type was due to how pointers work with aliasing and the resulting

optimizations. In this particular case, the different semantics of UB in different parts of LLVM was causing

wrong analyses of the program to be made, which resulted in wrong optimizations. This particular bug

had an impact in the industry and was making the Android operating system miscompile.

Another occurrence with real consequences happened in the Google Native Client project3 and was

related to how, in the C/C++ programming languages, a logical shift instruction has UB if the number of

shifts is equal to or bigger than the number of bits of its operand. In particular, a simple refactoring of the

code introduced a shift by 32, which introduced UB in the program, meaning that the compiler could use

the most convenient value for that particular result. As is common in C compilers, the compiler chose to

simply not emit the code to represent the instruction that produced the UB.

There are more examples of how the semantics used to represent UB in today’s compilers are flawed

such as [3] and [4], and that is why the work we develop in this thesis is of extreme importance.

1.2 Contributions

The current UB semantics diverge between different parts of LLVM and are sometimes contradicting

with each other. We have implemented part of the semantics that was proposed in the PLDI’17 paper [1]

that eliminate one form of UB and extend the use of another. This new semantics will be the focus of

this thesis, in which we will describe it, and the benefits and flaws it has. We will also explain how we

implemented some of it. This implementation consisted in introducing a new type of structure to the

LLVM IR – the Explicitly Packed Struct – changing the way bit fields are represented internally in the

LLVM compiler. After the implementation, we measured and evaluated the performance of the compiler

with the changes, which was then compared to the implementation with the current semantics of the

LLVM compiler.

1.3 Structure

The remainder of this document is organized as follows: Section 2 formalizes basic compiler con-

cepts and the work already published related to this topic. This includes how different recent compilers

deal with UB, as well as the current state of the LLVM compiler when it comes to dealing with UB. Sec-

tion 3 presents the new semantics. In Section 4 we describe how we implement the solution in the LLVM

context. In Section 5 we present the evaluation metrics, experimental settings and the results of our

work. Finally, Section 6 offers some conclusions and what can be done in the future to complement the

work that was done and presented here.
2https://llvm.org/PR36228
3https://bugs.chromium.org/p/nativeclient/issues/detail?id=245

4

https://llvm.org/PR36228
https://bugs.chromium.org/p/nativeclient/issues/detail?id=245

2
Related Work

Contents

2.1 Compilers . 7

2.2 Undefined Behavior in Current Optimizing Compilers 10

2.3 Problems with LLVM and Basis for this Work . 14

2.4 Summary . 18

5

6

In this section we present important compiler concepts and some work already done on this topic,

as well as current state of LLVM regarding UB.

2.1 Compilers

Optimizing compilers, aside from translating the code between two different programming languages,

also optimize it by resorting to different optimization techniques. However, it is often difficult to apply

these techniques directly to most source languages, and so the translation of the source code usually

passes through intermediate languages [5, 6], that hold more specific information (such as Control-

Flow Graph construction [7, 8]), until it reaches the target language. These intermediate languages are

referred to as Intermediate Representations (IR). Aside from enabling optimizations, the IR also gives

portability to the compiler by allowing it to be divided into front-end (the most popular front-end for the

LLVM is Clang1, which supports the C, C++ and Objective-C programming languages), middle-end and

back-end. The front-end analyzes and transforms the source code into the IR. The middle-end performs

CPU architecture independent optimizations on the IR. The back-end is the part responsible for CPU

architecture specific optimizations and code generation. This division of the compiler means that we

can compile a new programming language by changing only the front-end, and we can compile to the

assembly of different CPU architectures by only changing the back-end, while the middle-end and all its

optimizations can be shared be every implementation.

Some compilers have multiple Intermediate Representations, and each one retains and gives priority

to different information about the source code that allows different optimizations, which is the case with

LLVM. In fact, we can distinguish three different IR’s in the LLVM pipeline: the LLVM IR2, which resembles

assembly code and is where most of the target-independent optimizations are done; the SelectionDAG3,

a directed acyclic graph representation of the program that provides support for instruction selection

and scheduling and where some peephole optimizations are done; and the Machine-IR4, that contains

machine instructions and where target-specific optimizations are made.

One popular form of IR is the Static Single Assignment form (SSA) [9]. In the languages that are in

SSA form, each variable can only be assigned once, which enables efficient implementations of sparse

static analyses. SSA is used for most production compilers of imperative languages nowadays and, in

fact, the LLVM IR is in SSA form. Since each variable cannot be assigned more than once, the IR often

creates different versions of the same variable, depending on the basic blocks they were assigned in (a

basic block is a sequence of instructions with a single entry and a single exit). Therefore, there is no way

to know to which version of the variable x we are referencing to when we refer to the value x. The φ-node
1https://clang.llvm.org/
2https://llvm.org/docs/LangRef.html
3https://llvm.org/docs/CodeGenerator.html#introduction-to-selectiondags
4https://llvm.org/docs/MIRLangRef.html

7

https://clang.llvm.org/
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/CodeGenerator.html##introduction-to-selectiondags
https://llvm.org/docs/MIRLangRef.html

solves this issue by taking into account the previous basic blocks in the control-flow and choosing the

value of the variable accordingly. φ-nodes are placed at the beginning of basic blocks that need to know

the variable values and are located where control-flow merges. Each φ-node takes a list of (v, l) pairs

and chooses the value v if the previous block had the associated label l.

The code below represents a C program on the left and the corresponding LLVM IR translation of the

right. It can be observed how a φ-node, phi instruction in LLVM IR, works:

int a;

if(c)

a = 0;

else

a = 1;

return a;

entry:

br %c, %ctrue, %cfalse

ctrue:

br %cont

cfalse:

br %cont

cont:

%a = phi [0, %ctrue], [1, %cfalse]

ret i32 %a

This simple C program simply returns a. The value of a, however, is determined by the control-flow.

There have been multiple proposals to extend SSA, such as the Static Single Information (SSI) [10],

which in addition to φ-nodes also has σ-nodes at the end of each basic block indicating where each

variable’s value goes to, and Gated Single Assignment (GSA) [11, 12], which replaces φ-nodes with

other functions that represent loops and conditional branches. Another variant is the memory SSA form,

that tries to provide an SSA-based form for memory operations, enabling the identification of redundant

loads and easing the reorganization of memory-related code.

Recently, Horn clauses have been proposed as an IR for compilers, as an alternative to SSA, since

despite leading to duplicated analysis efforts, they solve most problems associated with SSA: path

obliviousness, forward bias, name management, etc. [13].

Optimizing compilers need an IR that facilitates transformations and offers efficient and precise static

analyses (analyses of the program without actually executing the program). To be able to do this, one

of the problems optimizing compilers have to face is how to deal with Undefined Behavior (UB), which

can be present in the source programming language, in the compiler’s IR and in hardware platforms. UB

results from the desire to simplify the implementation of a programming language. The implementation

can assume that operations that invoke UB never occur in correct program code, making it the respon-

sibility of the programmer to never write such code. This makes some program transformations valid

which gives flexibility to the implementation. Furthermore, UB is an important presence in compiler’s

IRs not only for allowing different optimizations but also as a way for the front-end to pass information

about the program to the back-end. A program that has UB is not a wrong program, it simply does not

8

specify the behaviors of each and every instruction in it for a certain state of the program, meaning that

the compiler can assume any defined behavior in those cases. Consider the following examples:

a) y = x/0;

b) y = x >> 32;

A division by 0 (a) and a shift of an 32-bit integer value by 32 (b) are UB in C which means that

whether or not the value of y is used in the remainder of the program, the compiler may not generate the

code for these instructions.

As was said before, the presence of UB facilitates optimizations, although some IR’s have been

designed to minimize or eliminate it. The presence of UB in programming languages also sometimes

lessens the amount of instructions of the program when it is lowered into assembly, because, as was

seen in the previous example, in the case where an instruction results in UB, compilers sometimes

choose to not produce the machine code for that instruction.

The C/C++ programming languages, for example, have multiple operations that can result in UB,

ranging from simple local operations (overflowing signed integer arithmetic) to global program behav-

iors (race conditions and violations of type-based aliasing rules) [1]. This is due to the fact that the C

programming language was created to be faster and more efficient than others at the time of its estab-

lishment. This means that an implementation of C does not need to handle UB by implementing complex

static checks or complex dynamic checks that might slow down compilation or execution, respectively.

According to the language design principles, a program implementation in C “should always trust the

programmer” [14,15].

In LLVM, UB falls into two categories: immediate UB and deferred UB. Immediate UB refers to

operations whose results can have lasting effects on the system. Examples are: dividing by zero or

dereferencing an invalid pointer. If the result of an instruction that triggered immediate UB reaches a

side-effecting operation, the execution of the program must be halted. This characteristic gives freedom

to the compilers to not even emit all the code up until the point where immediate UB would be executed.

Deferred UB refers to operations that produce unforeseeable values but are safe to execute otherwise.

Examples are: overflowing a signed integer or reading from an uninitialized memory position. Deferred

UB is necessary to support speculative execution of a program. Otherwise, transformations that rely on

relocating potentially undefined operations would not be possible. The division between immediate and

deferred UB is important because deferred UB allows optimizations that otherwise could not be made.

If this distinction was not made, all instances of UB would have to be treated equally and that means

treating every UB as immediate UB, i.e., programs cannot execute them since it is the stronger definition

of the two.

One last concept that is important to discuss and is relevant to this thesis is the concept of ABI,

9

or Application Binary Interface. The ABI is an interface between two binary program modules and

has information about the processor instruction set and defines how data structures or computational

routines are accessed in machine code. The ABI also covers the details of sizes, layouts and alignments

of basic data types. The ABI differs from architecture to architecture and even differs between Operating

Systems. This work will focus on the x86 architecture and the Linux Operating System.

2.2 Undefined Behavior in Current Optimizing Compilers

The recent scientific works that propose formal definitions and semantics for compilers that we are

aware of all support one or more forms of UB. The presence of UB in compilers is important to reflect the

semantics of programming languages where UB is a common occurrence, such as C/C++. Furthermore,

it helps avoiding the constraining of the IR to the point where some optimizations become illegal, and it

is also important to model memory stores, dereferencing pointers, and other inherently unsafe low-level

operations.

2.2.1 LLVM

The LLVM IR (just like the IR of many other optimizing compilers) supports two forms of UB which

allows it to be more flexible when UB might occur and maybe optimize that behavior away.

Additionally, deferred UB comes in two forms in LLVM [1]: an undef value and a poison value. The

undef value corresponds to an arbitrary bit pattern for that particular type, i.e., an arbitrary value of the

given type, and may return a different value each time it is used. The undef (or a similar concept) is

also present in other compilers, where each use can: evaluate to a different value, as in LLVM and

Microsoft Phoenix; or return the same value, in compilers/representations such as the Microsoft Visual

C++ compiler, the Intel C/C++ Compiler and the Firm representation [16].

There are some benefits and drawbacks of having undef being able to yield a different result each

time. Consider the following instruction:

%y = mul %x, 2

which in CPU architectures where a multiplication is more expensive than an addition can be optimized

to:

%y = add %x, %x

Despite being algebraically equivalent, there are some cases when the transformation is not legal.

Consider that %x is undef. In this case, before the optimization %y can be any even number, whereas

in the optimized version %y can be any number, due to the property of undef being able to assume a

10

different value each time it is used, rendering the optimization invalid (and this is true for every other

algebraically equivalent transformation that duplicates SSA variables). However, there are also some

benefits. Being able to take a different value each time means that there is no need to save it in a register

since we do not need to save the value of each use of undef, therefore reducing the amount of registers

used (less register pressure). It also allows optimizations to assume that undef can hold any value that

is convenient for a particular transformation.

The other form of deferred UB in LLVM is the poison value, which is a slightly more powerful form

of deferred UB than undef, and taints the Data-Flow Graph [8, 17], meaning that the result of every

operation with poison is poison. For example, the result of an and instruction between undef and 0 is

0, but the result of an and instruction between poison and 0 is poison. This way, when a poison value

reaches a side-effecting operation, it triggers immediate UB.

Despite the need to have both poison and undef to perform different optimizations, as illustrated

in Section 2.3.1, the presence of two forms of deferred UB is unsatisfying and the interaction between

them has often been a persistent source of discussions and bugs (some optimizations are inconsistent

with the documented semantics and with each other). This topic will be discussed later in Section 2.3.

To be able to check if the optimizations resulting from the sometimes contradicting semantics of UB

are correct, a new tool, called Alive, was presented in [18]. Alive is based on the semantics of the LLVM

IR and its main goal is to develop LLVM optimizations and to automatically either prove them correct

or else generate counter-examples. To explain how an optimization is correct, or legal, we need to first

introduce the concept of domain of an operation: the set of values of input for which the operation is

defined. An optimization is correct/legal if the domain of the source operation (original operation present

in the source code) is smaller than, or equal to the domain of the target operation (operation that we

want to get to by optimizing the source operation). This means that the target operation needs to at least

be defined for the set of values for which the source operation is defined.

2.2.2 CompCert

CompCert, introduced in [19], is a formally verified (which in the case of CompCert means the com-

piler guarantees that the safety properties written for the source code hold for the compiled code), real-

istic compiler (a compiler that realistically could be used in the context of production of critical software),

developed using the Coq proof assistant [20]. CompCert holds proof of semantic preservation, meaning

that the generated machine code behaves as specified by the semantics of the source program. Having

a fully verified compiler means that we have end-to-end verification of a complete compilation chain,

which becomes hard due to the presence of Undefined Behavior in the source code and in the IR, and

due to the liberties compilers often take when optimizing instructions that result in UB. CompCert, how-

ever, focuses on a deterministic language and in a deterministic execution environment, meaning that

11

changes in program behaviors are due to different inputs and not because of internal choices.

Despite CompCert being a compiler of a large subset of the C language (an inherently unsafe lan-

guage), this subset language, Clight [21], is deterministic and specifies a number of undefined and

unspecified behaviors present in the C standard. There is also an extension to CompCert to formalize

an SSA-based IR [22], which will not be discussed in this report.

Behaviors reflect accurately what the outside world the program interacts with can observe. The

behaviors we observe in CompCert include termination, divergence, reactive divergence, and “going

wrong”5. Termination means that, since this is a verified compiler, the compiled code has the same

behavior of the source code, with a finite trace of observable events and an integer value that stands

for the process exit code. Divergence means the program runs on forever (like being stuck in an infinite

loop) with a finite trace of observable events, without doing any I/O. Reactive divergence means that the

program runs on forever with an infinite trace of observable events, infinitely performing I/O operations

separated by small amounts of internal computations. Finally, “going wrong” behavior means the pro-

gram terminates but with an error, by running into UB, with a finite trace of observable events performed

before the program gets stuck. CompCert guarantees that the behavior of the compiled code will be

exactly the same of the source code, assuming there is no UB in the source code.

Unlike LLVM, CompCert does not have the undef value nor the poison value to represent Undefined

Behavior, using instead “going wrong” to represent every UB, which means that it does not exist any

distinction between immediate and deferred UB. This is because the source language, Clight, specified

the majority of the sources of UB in C, and the ones that Clight did not specify, like an integer division

by zero or an access to an array out of bounds, are serious errors that can have devastating side-effects

for the system and should be immediate UB anyway. If there existed the need to have deferred UB, like

in LLVM, fully verifying a compiler would take a much larger amount of work since, as mentioned in the

beginning of this section, compilers take some liberties when optimizing UB sources.

2.2.3 Vellvm

The Vellvm (verified LLVM) introduced in [23] is a framework that includes formal semantics for LLVM

and associated tools for mechanized verification of LLVM IR code, IR to IR transformations, and analy-

ses, built using the Coq proof assistant just like CompCert. But, unlike the CompCert compiler, Vellvm

has a type of deferred Undefined Behavior semantics (which makes sense since Vellvm is a verifica-

tion of LLVM): the undef value. This form of deferred UB of Vellvm, though, returns the same value for

all uses of a given undef, which differs from the semantics of the LLVM. The presence of this partic-

ular semantics for undef, however, creates a significant challenge when verifying the compiler - being

able to adequately capture the non determinism that originates from undef and its intentional under-

5http://compcert.inria.fr/doc/html/compcert.common.Behaviors.html

12

http://compcert.inria.fr/doc/html/compcert.common.Behaviors.html

specification of certain incorrect behaviors. Vellvm doesn’t have a poison value which means that it

suffers from the same problems that LLVM has without it - some important textbook transformations are

not allowed because using undef as the only semantics for UB does not cover every transformation

when it comes to potentially undefined operations.

In the paper [23], the authors start by giving the LLVM IR a small-step, non-deterministic semantics

- LLVMND (small-step semantics refer to semantics that evaluate expressions one computation step

at a time). The authors justified their choices by explaining that the non-deterministic behaviors that

come with the undef value correspond to choices that would be resolved by running the program with a

concrete memory implementation.

Although these non-deterministic semantics are useful for reasoning about the validity of LLVM pro-

gram transformations, Vellvm introduced a refinement of LLVMND, a deterministic, small-step semantics

- LLVMD. These semantics provide the basis for testing programs with a concrete memory implemen-

tation, and give undef a more deterministic behavior. In LLVMD, undef is treated as a 0 and reading

uninitialized memory returns a 0. It is over these LLVMD semantics that the Vellvm works and verifies the

LLVM compiler. Since the semantics that the Vellvm uses are stricter than the LLVM ones, if a program

is correct under the Vellvm semantics, than it is also correct under the LLVM semantics, but the opposite

may not be true.

These semantics produce unrealistic behaviors when compiling C-style programming languages to

the LLVM IR but the cases in which the semantics actually differs already correspond to unsafe programs.

2.2.4 Concurrent LLVM Model

With the arrival of the multicore era, programming languages introduced first-class platform inde-

pendent support for concurrent programming. LLVM had to adapt to these changes with a concurrency

model of its own to determine how the various concurrency primitives should be compiled and optimized.

The work by [24] proposes a formal definition of the concurrency model of LLVM, how it differs from the

C11 model and what optimizations the model enables.

A concurrency model is a set of premises that a compiler has to fulfill and that programmers can

rely upon [24]. The LLVM compiler follows the concurrency model of C/C++ 2011, in which a data race

between two writes results in UB, but with a crucial difference: while in C/C++ a data race between a

non-atomic read and a write is declared to be immediate UB, in LLVM such a race has defined behavior

- the read returns an undef value. Despite being a small change, this has a profound impact in the

program transformations that are allowed.

In summary, write-write races always result in immediate UB, non atomic read-write races end with

the result of the read being undef, and reads from a location before any write to that same location also

return the value undef.

13

2.3 Problems with LLVM and Basis for this Work

As we discussed in the previous section, the presence of two kinds of deferred Undefined Behavior

is the cause of inconsistencies in the compilation of programs in LLVM. In this section we will take a look

at these inconsistencies and why they exist.

2.3.1 Benefits of Poison

When people realized that there was a need to have UB represented in the IR, the undef value was

created. However, having UB represented by only the undef is not enough since some optimizations

become illegal.

Suppose we have the following code: a + b > a. We can easily conclude that a legal optimization is

b > 0. Now suppose that a = INT_MAX and b = 1. In this case, a + b would overflow, returning undef,

and a + b > a would return false (since undef is an arbitrary value of the given type and there is no

integer value greater than INT_MAX), while b > 0 would return true. This means that the semantics of

the program were changed, making this transformation illegal. Aside from these types of optimizations

there are others that become illegal with just the undef value representing every type of deferred UB. The

poison value solves these types of problems. Suppose that a = INT_MAX and b = 1, just like before.

But now, overflow results in a poison value. This means that a + b > a evaluates to poison and b > 0

returns true. In this case, we are refining the semantics of the program by optimizing away the Undefined

Behavior, which makes the optimization legal.

Another example of optimizations that are not legal with only undef values are hoisting instructions

past control-flow. Consider this example:

if(k != 0) {

while(c) {

use(1/k);

}

}

which can be transformed to

if(k != 0) {

m = 1/k;

while(c) {

use(m);

}

}

Since 1/k is loop invariant one possible optimization is hoisting the expression out of the loop. This

operation should be safe since the condition in the if-statement is already checking if k equals 0, therefore

making it impossible to have a division by 0. However, if we consider k to be undef, it is possible that the

14

condition k != 0 is cleared and still have a division by 0 due to the property of undef having a different

value each time it is used.

To be able to perform these optimizations (among others) the poison values were introduced. Al-

though this solved some optimizations, like the two previous cases we have observed, there are many

more that are also inconsistent with the semantics of poison. Aside from that, some optimizations

that poison values and undef values provide become inconsistent when both types of deferred UB are

present.

2.3.2 Loop Unswitching and Global Value Numbering Conflicts

One example of the incompatibilities of the semantics of UB becomes apparent when we consider

the case of Loop Unswitching and Global Value Vumbering, and the contradictions they cause on how

the decisions about branches should be made.

Loop Unswitching is an optimization that consists in switching the conditional branches and the loops,

if the if-statement condition is loop invariant, as in the following example:

while(c) {

if(c2) {foo}

else {bar}

}

to

if(c2) {

while(c) {foo}

} else {

while(c) {bar}

}

For Loop Unswitching to be sound, branching on poison cannot be UB, because then we would be

introducing UB if c2 was poison and c was false.

Global Value Numbering (GVN) [25] corresponds to finding equivalent expressions and then pick a

representative and remove the remaining redundant computations. For example in the following code:

t = x + 1;

if (t == y) {

w = x + 1;

foo(w);

}

if we apply GVN, the resulting code would be:

t = x + 1;

if (t == y) {

foo(y);

}

15

Consider now that y is poison and w is not. If the semantics say that branching on poison is not UB,

but simply a non-deterministic choice, as we did for Loop Unswitching, in the original program we would

not have UB but in the optimized version we would pass a poison value as a parameter to the function.

However, if we decide that branching on poison is UB, then loop unswitching will become unsound while

GVN becomes a sound transformation, since the comparison t == y would be poison and therefore

the original program would already be executing UB. In other words, loop unswitching and GVN require

conflicting semantics for branching on poison in the LLVM IR to become correct. Hence, by assuming

conflicting semantics they perform conflicting optimizations, which enables end-to-end miscompilations.

2.3.3 Select and the Choice of Undefined Behavior

The select instruction, which, just like the ternary operation ?: in C, uses a Boolean to choose

between its arguments, is another case where the conflicting semantics of UB in LLVM are apparent.

The choice to produce poison if any of the inputs is poison, or just if the value chosen is poison can be

the basis for a correct compiler, but LLVM has not consistently implemented either one. The SimplifyCFG

pass performs a transformation of conditional branches to select instructions, but for this transformation

to be correct select on poison cannot be UB if branch on poison is not. Sometimes LLVM performs the

reverse transformation, and for that case to be correct, branch on poison can only be UB if select on

a poison condition is UB. Since we want both transformations to be achievable, we can conclude that

select on poison and branching on poison need to have the same behavior.

If select on a poison condition is Undefined Behavior, it becomes hard for the compiler to replace

arithmetic operations with select instructions, such as in the next example, which has to be valid for

any constant C less than 0:

%r = udiv %a, C

to:

%c = icmp ult %a, C

%r = select %c, 0, 1

But if select on a poison condition is UB, then the transformed program would execute UB if %a was

poison, while the original would not. However, as we have seen previously, select and branch on

poison not being UB makes GVN optimizations illegal, which would make the transformation above

unsound. It is also sometimes desirable to perform the inverse transformation, replacing select with

arithmetic instructions, which makes it necessary for the return value of select to be poison if any of

the arguments is poison, contradicting the branch to select transformation. Currently, different parts of

LLVM implement different semantics for this instruction, originating end-to-end miscompilations.

16

Aside from the problems related to the semantics of poison, there are other instances where the

simultaneous presence of both undef and poison in the same instruction result in wrong optimizations.

For example, LLVM currently performs the following substitution:

%v = select %c, %x, undef

to:

%v = %x

However, this optimization is wrong because %x could be poison, and poison is a stronger form of

deferred UB than undef, meaning that we might be introducing stronger UB when there is no need to.

In Table 2.1 we can observe the different alternative of semantics for select. The table assumes that

branch on poison is UB. As we can see, there are no columns where all the rows are checked, meaning

that there is no single semantics in which all the transformations we are interested in doing are correct.

As can be concluded, something else needs to be implemented in the IR to solve this problem.

Table 2.1: Different alternative of semantics for select6.

UB if %c poison +
conditional poison

UB if %c poison + poison

if either %x/%y poison

Conditional poison +
non-det choice if %c poison

Conditional poison +
poison if %c poison

Poison if any of
%c/%x/%y are poison

SimplifyCFG X X X
Select → control-flow X X
Select → arithmetic X X
Select removal X X X X
Select hoist X X X
Easy movement X X X

2.3.4 Bit Fields and Load Widening

Another problem poison creates is when accessing bit fields. Some programming languages, such

as C/C++, allow bit fields in their structures, that is, a bit or group of bits that can be addressed individu-

ally but that are usually made to fit in the same word-sized field.

struct {

unsigned int a : 3;

unsigned int b : 4;

} s;

In this example, we can observe that both variables a and b fit in the same 32-bit word. While this

method saves space, if one of those fields is poison, then the other bit will become poison as well if we

access either one, since they are both stored in the same word. Since every store to a bit field requires

a load to be done first, because the shortest store that can be done is the size of the bit width of the

type, we need to load the entire word, perform the operation needed and then combine the different
6http://lists.llvm.org/pipermail/llvm-dev/2017-May/113272.html

17

http://lists.llvm.org/pipermail/llvm-dev/2017-May/113272.html

fields and store them. Since a load of an uninitialized position returns poison, if we are not careful, the

first store to a bit field will always result in poison being stored.

Another complication that poison generates is about load combining/widening. Sometimes it is use-

ful to combine or widen the loads to make them more efficient. For example, if the size of a word in a

given processor is 32 bits, and we want to load a 16-bit value, it is often useful to load the entire 32-bit

word at once. If we do not take care, however, we might end up “poisoning” both values if one of them

is poison.

2.4 Summary

As we can see, UB, which was implemented in the LLVM’s IR to enable certain useful optimizations,

currently has inconsistent semantics between different LLVM parts and between both forms of deferred

UB. Aside from that, with the current implementation, some optimizations require that UB have specific

semantics that make some other optimization become unsound. All this has led to conflicting assump-

tions by compiler developers and to end-to-end miscompilations. The rest of this work consists in our

attempt to solve these problems.

18

3
LLVM’s New Undefined Behavior

Semantics

Contents

3.1 Semantics . 21

3.2 Illustrating the New Semantics . 24

3.3 Cautions to have with the new Semantics . 28

19

20

In the previous section we showed that the current state of UB in LLVM is unsatisfactory, in the

sense that a considerable part of optimizations that should be made possible by representing UB in the

IR are actually unsound for many cases.

The solution proposed by [1] to resolve these issues was to change the semantics of LLVM to a

new semantics that discards undef and only uses poison instead. To be able to solve some problems

that come from the removal of undef, a new instruction freeze is introduced that non-deterministically

chooses a value if the input is poison, and is a nop otherwise. All operations over poison return poison

except freeze, select and phi, and branching on poison is immediate UB. The introduction of the

freeze instruction which was already created as patches123 to the LLVM by the authors of [1].

The choice to eliminate either poison or undef was made because the presence of both forms

of UB created more problems than the ones it solved. According to [1], phi and select were made

to conditionally return poison because it reduces the amount of freeze instructions that had to be

implemented. Defining branch on poison to be UB enables analyses to assume that the conditions

used on branches hold true inside the target block (e.g., when we have if(x > 0) { ... } we want

to be able to assume that inside the if block, x is greater than 0). One problem with the use of the

freeze instruction though is that it disables further optimizations that take advantage of poison (since the

optimizations are done in passes, if one optimization uses freeze to remove poison from the program,

consequent optimizations cannot take advantage of it).

3.1 Semantics

The paper by [1] defines the semantic domain of LLVM as follows:

Num(sz) ::= {i | 0 ≤ i < 2sz}

[[isz]] ::= Num(sz)] {poison }

[[ty∗]] ::= Num(32)] {poison }

[[〈sz×ty〉]] ::= {0, . . . , sz − 1} → [[ty]]

Mem ::= Num(32) 9 [[〈8×i1〉]]

Name ::= {%x, %y , . . . }

Reg ::= Name→ { (ty, v) | v ∈ [[ty]] }

1https://reviews.llvm.org/D29011
2https://reviews.llvm.org/D29014
3https://reviews.llvm.org/D29013

21

https://reviews.llvm.org/D29011
https://reviews.llvm.org/D29014
https://reviews.llvm.org/D29013

Figure 3.1: Semantics of selected instructions [1].

Here, Num(sz) refers to any value between 0 and 2sz, where sz refers to the bit width of the value.

[[isz]] refers to the set of values of bit width sz or poison (disjoint union). [[ty]] corresponds do the set

of values of type ty, which can be either poison or fully defined value of base types, or element-wise

defined for vector types. [[ty∗]] denotes the set of memory addresses (we assume that each address has

a bit width of 32 for simplicity). [[〈sz× ty〉]] is a function representing a vector of sz elements, each one of

type [[ty]], meaning that the vector itself is of type [[ty]]. The memory Mem is a partial function and it maps

a 32 bit address to a byte (partial because not every address is allocated at a given instance). Name

alludes to the space of names fit to be a variable name. And finally, the register file Reg corresponds to

a function that maps the name of a variable to a type and a value of that type.

The new semantics for selected instructions are defined in Figure 3.1, where they follow the standard

operational semantics notation. It shows how each instruction updates the register file R ∈ Reg and

memory M ∈ Mem, in the form R, M ↪→ R’, M’. The value [[op]]R of operand op over register R is given

by: [[r]]R = R(r), for a register; [[C]]R = C, for a constant; and [[poison]]R = poison, for poison. The

Load(M,p, sz) operation only returns the loaded bit representation if p is a non-poisonous, previously

allocated pointer to a valid block of at least sz bits wide in memory M . The Store(M,p, v) operations

only stores the value v at the position p in memory M and returns the updated memory, if p is a non-

poisonous, previously allocated pointer to a valid block of at least bitwidth(v) bits wide.

Consider the sdiv instruction with the exact flag, which states that the result of the division is poison

22

if the remainder is different than 0:

(r = sdiv exact ty op1, op2)

[[op1]]R = poison
R, M ↪→ R′[r 7→ poison],M

[[op2]]R = poison
R, M ↪→ R′[r 7→ poison],M

[[op1]]R = v1 6= poison [[op2]]R = v2 6= poison v1 % v2 6= 0

R, M ↪→ R′[r 7→ poison],M

[[op1]]R = v1 6= poison [[op2]]R = v2 6= poison
R, M ↪→ R′[r 7→ v1 / v2],M

This example shows the semantics of the sdiv instruction with the exact keyword and how it affects

Reg and Mem on x86 processors, in the case of deferred Undefined Behavior. Here we can observe

that if either op1 or op2 are poison, then the result is poison. The exact keyword makes the result of the

instruction poison if its remainder is different from 0 (as was said before). There are two more cases

that are not represented in which the instruction is not defined: the case where op2 is 0, since division

by 0 is immediate UB; and the case where op1 is equal to MIN INT and op2 is equal to -1, since in this

case the result would overflow, which in x86 processors also results in immediate UB, causing a crash.

In Figure 3.1, there can also be seen two meta operations, used to define the semantics of instruc-

tions: ty ↓ (function where its domain is the set of values of type [[ty]] and its codomain is the set of bit

vectors representation which represent those values) and ty↑ (function where its domain is the set of bit

vectors of bitwidth(ty) size and its codomain is the set of values of type [[ty]]):

ty↓ ∈ [[ty]]→ [[〈bitwidth(ty)×i1〉]]

ty↑ ∈ [[〈bitwidth(ty)×i1〉]]→ [[ty]]

23

isz ↓(v)or ty∗↓(v) =

{
λ .poison if v = poison
(std) otherwise

〈sz×ty〉↓(v) = ty↓(v[0])++ . . .++ ty↓(v[sz − 1])

isz ↑(b)or ty∗↑(b) =

{
poison if ∃i.b[i] = poison
(std) otherwise

〈sz×ty〉↑(b) = 〈ty↑(b0) . . . ty↑(bsz−1)〉

where b = b0 ++ . . . ++ bsz−1

These two meta operations were defined in [1]. ty ↓ transforms poisonous base types into a bitvector

of all poison bits (λ means every bit), and into their standard low-level representation, otherwise. In the

case of vector types, ty↓ transforms values element wise, where ++ denotes the bitvector concatenation.

On the other hand, ty ↑ transforms base types bitvectors with at least one poison bit into poison, and

non-poisonous bitvectors into the respective base type value. For vector types, ty ↑ works like ty ↓,

transforming the values element-wise.

3.2 Illustrating the New Semantics

In Section 2.3, we discussed the benefits but also the conflicting optimizations brought by the intro-

duction of poison values to the LLVM IR. In this section, we will see how the new proposed semantics

deals with those problems and what new problems arise by eliminating the undef values.

3.2.1 Loop Unswitching and GVN

It was previously showed in Section 2.3 that Loop Unswitching and GVN required conflicting UB

semantics for both optimizations to be correct, making it impossible for them to be sound simultaneously.

With the introduction of the freeze instruction this is no longer the case. The new semantics say that

branch on a poison value is UB, making the GVN optimization sound, while Loop Unswitching becomes

unsound. However, freeze can be used to effectively “freeze” the value of the conditional branch, which

would be the cause of UB in case the Loop Unswitching optimization was made. Take a look at the

previous example of Loop Unswitching, but with a freeze instruction on the value of the conditional

branch:

24

if(freeze(c2)) {

while(c) {foo}

} else {

while(c) {bar}

}

To put it differently, if c2 is a defined value then the optimization is correct. If c2 is a poison value, then

the freeze instruction would “freeze” c2 and non deterministically choose an arbitrary value of the same

type of c2, therefore transforming the condition of the jump into a defined value. Since the original code

was refined and the UB was taken away, the optimization is now correct.

3.2.2 Select

As was said before, the select instruction is similar to the ternary operator ?:, in C. In some CPU

architectures, it is beneficial to transform a select instruction into a series of branches. This transfor-

mation is made correct by the introduction of a freeze instruction in the following way:

%x = select %c, %a, %b

is transformed into:

%c2 = freeze %c

br %c2, %true, %false

true:

br %merge

false:

br %merge

merge:

%x = phi [%a, %true], [%b, %false]

Although it was decided that select conditionally returns poison by selecting either value %a or

%b according to the condition %c, in the case where the condition %c is itself poison, select triggers

immediate UB. This is because of a design choice to define branch on poison to be immediate UB, as

was discussed in the beginning of Section 3 . By introducing a freeze instruction in the transformation,

therefore “freezing” the condition, we can take away the UB that could stem from it, consequently refining

the semantics of the program, making the optimization legal.

3.2.3 Bit Fields

As was addressed before, in Section 2.3.4, some programming languages allow bit fields in their

structures: a bit or group of bits that can be addressed individually but that are usually made to fit in

25

the same word-sized field. However, if we access bit fields the way they are in the LLVM IR we might

“poison” adjacent bit fields. Right now the LLVM IR loads or stores the entire word where a certain bit

field resides. If we have a structure with two 16-bit bit fields, both bit fields will be stored in a single 32-bit

word. To access the field stored in the 16 least significant bits, the generated code will be the following:

x = mystruct.myfield;

into

%val = load i32, i32* %mystruct

%val2 = and i32 %val, 65535

%myfield = trunc %val2 to i16

store %myfield, %x

By loading the 32-bit word as a whole and if one of those bit fields is poison, the other bit field is already

contaminated.

The proposal of [1] was to simply “freeze” the loaded bit field value before combining it with the new

one, like the following example:

mystruct.myfield = foo;

into

%val = load %mystruct

%val2 = freeze %val

%val3 = ...combine %val2 and %foo...

store %val3, %mystruct

However, when we load the entire word where the bit field that needs to be accessed is, all the

adjacent bit fields are already being contaminated by poison even before freezing the word. This

means that we would first poison the entire word, then by freezing it we would be choosing a non-

deterministic value for every bit, altering the value of every bit field in that word, which is what we were

trying to avoid in the first place.

Our proposed solution is to create a new type of structure in the LLVM IR where each bit field is

stored in its own word. As an example, the current IR of the previous structure s, defined in Section

2.3.4 would be:

%struct.s = type { i8, [3 x i8] }

while the new structure would be represented by:

%struct.s = type { i3, i4, i1, [3 x i8] }

26

where the last 1-bit word corresponds to padding so that the final size of the word where the bit fields are

stored is a multiple of 8 bits, and the array of 3 8-bit elements is another padding introduced to bring the

total size of the structure to 32 bits, which is the space the type of the field in the structure, in this case

an integer, would occupy. This padding is automatically appended by the ABI, referred in Section 2.1.

The ABI covers the sizes of data types and, in this case, it determines the amount and size of words that

are needed to store the bit fields of a structure and inserts the needed padding at the end.

By expressing the structures this way in the IR, the bit-wise operations that are needed to access bit

fields would not need to be emitted here. What we are doing with this solution is to delay the emission of

all the bit field operations, and emitting them further down the pipeline, in the next IR – the SelectionDAG.

Although we try to optimize away poison in the LLVM IR, it still exists in the SelectionDAG, giving our

solution to stop the spreading of poison between bit fields in the LLVM IR only a temporary status, in

the sense that this same bit field problem can appear later in the pipeline. In theory we can propagate

this new bit field type to the SelectionDAG, getting rid of the problem completely, as the next IR in the

LLVM pipeline – the MachineIR – does not contain poison.

There are other ways of lowering bit fields to the LLVM IR, such as using vectors or the structure type,

but these are currently not well supported by the LLVM’s backend [1]. There is no risk of “poisoning” the

adjacent bit fields with these solutions - by loading the fields as a vector (for example) one element does

not contaminate the others. In this next example we can see a store using a vector of 32 bits for the

load (loading each field separated from the others), instead of loading and storing a single 32-bit word,

as is usual:

%val = load <32 x i1> %mystruct

%val2 = insertelement %foo, %val, ...

store %val2, %mystruct

The insertelement instruction inserts an element into the aggregate type. However, the example is

summarized since insertelement can only insert one element to an aggregate type at a time. So, in

the case of a bit field with a size of multiple bits, the same amount of insertelement instructions would

need to be emitted (bit field of 5 bits implies 5 insertelement instructions).

3.2.4 Load Combining and Widening

Also in Section 2.3.4 we discussed the cautions we must have to not “poison” adjacent values when

combining or widening loads. To deal with this, load combining and widening is lowered using vector

loads. In a CPU architecture where a word is 32 bits, instead of just loading 16 bits:

%a = load i16, %ptr

we could load the entire 32 bit word with a vector type, like this:

27

%tmp = load <2 x i16>,

%ptr = extractelement %tmp, 0

The extractelement instruction is the opposite of the insertelement, extracting one element of an

aggregate type at a time.

3.3 Cautions to have with the new Semantics

There are some problems that arise when we take the freeze instruction into account. The first one

is that the duplication of freeze instructions should not be allowed. Since freeze may return a different

value every time it is used, if its input is poison we cannot do some optimizations that rely on sinking

instructions into a loop, for instance, which can be helpful when the loop is rarely executed.

The transformation of:

x = a << b;

y = freeze(x);

while(...) {

call(y)

}

into:

while(...) {

x = a << b;

y = freeze(x);

call(y)

}

is not allowed, for example.

Another problem comes from static analyses of programs. In LLVM, static analyses return a value

that only holds if none of the analyzed values are poison. Static analyses do not take poison into

account because in the case where one of the possible values is poison, the analysis returns the worst

case scenario - a poison value - therefore making it useless. This is not a problem when the analysis

are used for expression rewriting because in that case both the original and transformed expressions

will return poison if any of its inputs is poison. However, if we use the analysis to hoist an expression

past control-flow, for example, if it does not take poison into account and it says that the expression is

safe to hoist, then we might be introducing UB into the program. Consider the next piece of code:

while(c)

x = 1/y;

In this example, since 1/y is loop invariant, we want to hoist it out of the loop. To do this we run a

static analysis over y to make sure that we will not ever be executing a division by 0. If y turns out to be

poison though, the static analysis will consider the transformation safe, but we would be introducing UB.

28

In conclusion, there is a trade-off in the semantics of static analyses. We do not want to take poison

values into account to not always return the worst value possible but, on the other hand, by not taking

them into account we cannot depend on the results of the analyses since they can be wrong.

29

30

4
Implementation

Contents

4.1 Internal Organization of the LLVM Compiler . 33

4.2 The Vector Loading Solution . 34

4.3 The Explicitly Packed Structure Solution . 37

31

32

This section details how the proposed solution was implemented into the LLVM compiler, starting by

explaining what needs to be changed inside the LLVM to implement a new feature (Section 4.1). We

started by implementing the solution to poison in the bit fields. That task, however, proved to be complex

enough to be in a document of its own. With this in mind, this section will focus on the two proposed

solutions to deal with poison in bit fields: 4.2 explains the attempt at a Vector Loading solution and

talks about the pros and cons of this approach, and 4.3 explains in detail the new type of a structure we

introduced in LLVM and how it solves poison at the LLVM IR level. Since the LLVM compiler is mostly

written in C++ that was the language we used.

Our implementation can be found at https://github.com/FilipeAz/llvm-project.

4.1 Internal Organization of the LLVM Compiler

The source code of the LLVM compiler is incredibly complex, with tens of thousands of files, often

with thousands of lines of code each. To change or implement a new feature into the compiler, a great

number of parts of the compiler need to be updated to accommodate the new changes. As Section 2.1

describes, the LLVM compiler is divided into 3 different layers. These segments are the front-end, which

in our case the focus will be on the C language family front-end, Clang, the middle-end and the back-end,

our target being the x86 architecture. Since we wanted to update/create a type in the IR, our feature

affected all 3 layers of the compiler.

We can divide the changes to the Clang front-end into two. First of all, the parser has to be updated

to generate the extra information. In our case, since what we are is changing the structure type, we

have to make sure that every structure that contains bit fields is flagged accordingly. Secondly, the

implementation of what the new IR should look like: this means updating the emission of instructions to

the IR and, in our case, also updating and making sure that the information on structures and sizes of

its fields that is present in the current IR implementation is not lost.

The middle-end layer mostly has to do with optimizations to the LLVM IR. When it comes to the

architecture-independent optimizations, changing how a type is represented, introducing a new type or

even introducing a new instruction, such as the freeze instruction, to the LLVM IR implies that a great

deal of optimizations also need to change to recognize it.

Finally, the back-end deals with the emission of the SelectionDAG, the emission of assembly code

and architecture-specific optimizations. The SelectionDAG is the next IR in the LLVM pipeline (an in-

termediate representation where each instruction is represented in a data dependence DAG). Selec-

tionDAG nodes usually translate directly from LLVM IR instructions, but when implementing a new type

or a new instruction in the IR, the emission of the corresponding nodes need to be updated/implemented

in the SelectionDAG as well. The emission of assembly code follows the rules of emitting SelectionDAG

33

https://github.com/FilipeAz/llvm-project

Poison Poison 010000

1 2 3 4

Figure 4.1: An 8-bit word being loaded as a Bit Vector of 4 elements with size 2.

nodes when it comes to a new type/instruction, and the same is true for the architecture-dependent

optimizations.

4.2 The Vector Loading Solution

As was stated before, the first solution to prevent the propagation of poison between bit fields of the

same word was to freeze the loaded word. This doesn’t work since when we load the word in the first

place, we are already spreading poison to the other bit fields. Having realized this we quickly turned to

the second solution presented by [1], Vector Loading. Vector Loading is in theory a better option than

“freezing” the loaded word since there is no need to introduce an extra instruction, freeze, and also

provides load widening optimizations.

Vector Loading means we first need to transform the word we want to load in a bit vector, where

every position of the vector corresponds to a bit of the same word. Then the word could be loaded as

a vector, and every bit of the same bit field could be rebuilt by oring the corresponding bits, eliminating

the problem of poison contamination and the need to freeze the load. Unfortunately, in the LLVM IR

the load of a variable and the variable have to be of the same type. With this in mind we come to the

conclusion that every word of the structure that contains a bit field needs to be declared as a vector of

bits.

We started by noticing that it didn’t necessarily have to be a bit vector, but simply a vector where

every element had the size of the greatest common divisor of every bit field in that word. For example,

if there were 2 bit fields in an 8 bit word, one with a size of 2 bits, and another with a size of 6 bits, the

vector to load could be a vector with 4 elements, where each element was of size 2, meaning that the

first bit field was stored in the first element and the second was divided between the second through

fourth elements. Figure 4.1 provides a visual representation of this example, where the size 2 bit field

is poison and the size 6 bit field (divided between the second through fourth elements of the vector) is

storing the value 2. This way the amount of work needed to build the bit field from their respective bits

would be reduced. Having a large greatest common divisor between every bit field in the same word

was not common but it was also not impossible.

Despite this, and as we witnessed before, there is sometimes padding at the end of the words, after

34

the bit fields. This padding exists because the size of words is given by the ABI (mentioned in Section

3.2.3), which decides that every word is a multiple of 8 bits, to be able to more easily translate the IR

to machine code. In fact, at the processor level the size of words is even more restricted, with the x86

architecture needing the size of a word to be a power of 2 starting at 8 bits, or a byte. A simple example

is the following C code:

struct {

int i : 15;

int j : 15;

}

As can be seen, both bit fields would fit in a 30-bit sized word. 30 is not a multiple of 8, so the ABI

decides that a 32-bit word is necessary with 2 bit of padding at the end.

On top of this restriction, the ABI decides the size of the word where each field will be stored de-

pending on the type of that same field and depending on the structure being packed or not (which we

will be talking about later). So the following structure written in C:

struct {

int i : 3;

char c : 6;

}

Will produce the following LLVM IR:

type { i8, i8, [2 x i8] }

This means that even though a 16-bit integer would have sufficed to store both bit fields, where the

char field would have an offset of 3 bits, the ABI decides to separate them in two different 8-bit words

(the vector at the end is padding also appended by the ABI to bring the size of the structure to 32 bits

since in some architectures unaligned accesses to memory are not allowed, making the padding at the

end obligatory). This happens because a char’s size is usually 8 bits, and here we would have a char

technically occupying more than one 8-bit word by being stored in the last 5 bits of the first 8-bit word

and in the first bit of the second 8 bit word. Of course, in this particular example of how the ABI chooses

the sizes of the words there would be no problem in accessing the bit fields the standard way, since both

bit fields are stored in different words. So let’s take a look at a structure where the padding conflicted

with our greatest common divisor idea:

struct {

int i : 3;

int c : 6;

}

With the corresponding LLVM IR:

35

00 00000000100001

Paddingci

Figure 4.2: Padding represented in a 16-bit word, alongside 2 bit fields.

type { i16, [2 x i8] }

In this case, since both bit fields are of the integer type, and neither occupy more than one 32-bit

word, the ABI decides to emit a single 16-bit word to store them. This means that we have the bit field i

starting at the offset 0, the bit field c starting at the offset 3, and then 7 bits of padding, from the 10th bit

until the 16th bit, as can be seen in Figure 4.2. We can observe that the padding is 7 bits. Even though

the greatest common divisor between the size of both bit fields is 3, if we were to create a vector load to

access either bit field i or c, each element of the vector had to be smaller than the desired size of 3 bits

since with padding the size of the word is 16 bits and the greatest common divisor between both fields’

sizes and the size of the word is just 1.

With all this in mind, we come to the conclusion that due to padding that more often than not exists

at the end of words, whose size was computed by the ABI, the greatest common divisor between every

bit field of a word and the padding was usually 1.

We previously mentioned that the size of each word generated by the ABI also depends on the

structure being packed or not. In the C programming language a structure can either be packed or non

packed. On top of the difference of size in emitted words, a non packed structure aligns every one of

its fields to the address boundaries of their types, by adding padding after each one (if needed), making

sure that every memory access is aligned, which in turn results in faster accesses. If we have a structure

composed of 3 fields, a char, an int and a char, the compiler will add 3 bytes of padding to the first char

so that the int field, which has a size of 4 bytes, can be stored in a multiple of 4 address, and add 3

bytes of padding to the last char so that the size of the structure can be a multiple of 4 too, effectively

making the size of the structure 12 bytes instead of 6, double of what is actually needed. We can tell

the compiler to not add this padding in C by specifying that the structure we are creating is packed,

by passing the directive __attribute((__packed__))__ to the header of the structure. The LLVM IR

represents packed structures by adding a < and a > to the beginning and the end of structures. In the

previous example, with a packed structure we would only occupy 6 bytes.

The above example, of a structure with a char and an integer bit fields where both bit fields were

stored in different 8-bit words is true for a non packed structure but, in fact, the size of the word generated

by the Clang ABI changes to a 16 bit word in case of a packed structure. In this case there would be a

need to vector loading to not poison the other bit field.

36

Aside from the road blocks the ABI can create, the main problem that kept us from trying this ap-

proach was the lack of LLVM IR support to load or store more than one element of a vector or array in a

single load or store instruction. This means that in the worst case scenario of a bit field that occupies

63 bits, the number of total instructions that would be needed to load its value was 252 extra instructions

in the IR since every bit of the bit field would need a gep instruction to figure out the place in memory, a

load instruction to actually load that bit, followed by a shift and an or instructions to build the correct

value stored in the bit field. Of course the number of instructions in the assembly code would be the

same but this implementation would clutter the IR and make it hard to optimize, while also making it very

hard to read for the developers.

Another problem we haven’t discussed here is the limitations regarding the access of information

needed to build these vectors in the LLVM source code. Not being able to access, for example, the size

of all the fields of the structure in the function where we needed to figure out the size of each element of

the vector for the load would force us to alter multiple functions across different levels of the front- and

the back-end of the compiler.

4.3 The Explicitly Packed Structure Solution

After being faced with all the problems explained above we decided to try the new structure type in

the LLVM IR solution.

As was already discussed in Section 3.2.3, the goal of this solution was to delay the emission of the

bit wise operations needed to access bit fields to the next intermediate representation in the pipeline

(SelectionDAG). In this new representation we take the information computed by the ABI and separate

the bit fields, associating each with its own word (in the LLVM IR), eliminating the worry of propagating

poison to the other bit fields if any of them was poison, since now each load or store only targets an

individual bit field. We also decided to calculate the padding (if needed) in between words and insert

it in the array that contained the types of the fields (hence the name Explicitly Packed: the structure is

already packed with padding, even though the structure might not be a packed structure; also because

the IR usually does not emit the final padding at the end of the structure, which would only appear in

the generated assembly, sometimes confusing programmers). This padding in between words refers, for

example, to the padding of 3 bytes inserted by the ABI after a char field so that every field is stored in a

multiple of 4 address, as discussed in Section 4.1. We use slashes to denote that a particular structure

has explicit packing.

This approach seemed to work when it came to visible results of programs. However, the back-end

was not emitting the correct code, or at least the code we wanted it to emit (the code in itself was valid).

This is easily understandable if we look at an example. So if we have the following structure in the C

37

programming language:

struct {

char c : 2;

int i : 2;

}

The corresponding LLVM IR will become:

%struct.anon = type \{ i2, i2, i4, [3 x i8] }/

Instead of:

%struct.anon = type { i8, [3 x i8] }

For this structure with two bit fields, a char and an int, both with size 2, the generated assembly

allocated 8 bits for each field. This obviously makes sense since the processor can only process things

in bytes, or multiple of 8 bits. It was fairly simple to resolve this problem however, as all we had to do

was to group each bit field by word according to its size, and initialize each word accordingly, before

generating the information for the next IR in the pipeline. Before this new structure, the LLVM IR took

this into account: as we can see by the old LLVM IR code, that 8-bit word stored the values of both the

c and i bit fields and was ready to be emitted to assembly.

As an example, with this new type of structure, if we want to store a 1 into the integer field i, the new

LLVM IR will be:

%1 = i2* getelementptr (%struct.anon, %struct.anon* @s, i32 0, i32 1)

store i2 1, i2* %1

where in the old LLVM IR (current representation used by Clang) we have:

%1 = i8* getelementptr (%struct.anon, %struct.anon* @s, i32 0, i32 0)

%2 = load i8, i8* %1

%3 = and i8 %2, -13

%4 = or i8 %3, 4

store i8 %4, i8* %1

where @s is the name of the variable of the structure type. The getelementptr instruction returns the

address of a subelement of an aggregate data structure (arrays, vectors and structures), meaning that

it only performs address calculation and does not access memory, as opposed to the load and store

instructions. The other instructions are self explanatory. As can be observed by the example, what

needs to happen to store a value into a bit field are several instructions in the following order: first we

need to load the word where the bit field is stored (minimum of 8 bits, or a byte), then we need to check

the offset of the bit field in the word, so if the word is 8 bits and the bit field, in this case with size 2,

only starts on the third bit of the word, we need to replace the third and fourth bits with zero (erasing the

38

previous content of the bit field) with an and instruction. Then we need to prepare the value we want to

store, and since the offset is 2, we need to shift that value by 2 (value 4 in the or instruction). Finally we

or the value and the original word (with the third and fourth bits now equal to zero) and store the result

in memory.

The current representation used by Clang emits to the IR the bit wise operations, while our new

implementation doesn’t. Of course this does not mean that we have less instructions in the end, it just

means that the bit arithmetic that was previously done in the IR is not there anymore. However, it still

needs to be emitted. The next intermediate representation is the SelectionDAG. Before, the translation

to SelectionDAG nodes from the IR was straight-forward, with almost a one to one translation of the

IR instructions to SelectionDAG nodes. Now we have to add the bit wise operations ourselves to the

SelectionDAG: basically, every time we were processing either a load or a store node we would check if

the address we were accessing was a bit field and insert the different bit-wise operations nodes in the

DAG, if necessary.

The main benefit of this new representation is to stop the propagation of poison to the adjacent bit

fields. Aside from that, the Explicitly Packed Structure type gives readability to the IR code by represent-

ing the bit fields like the C programming language, while also telling the programmer the exact size the

structure will have in memory by showing in the IR the entire padding.

One major difference is the size of the IR code and the optimizations that it entails. This new type

delays the emission of the bit wise operations to the SelectionDAG, meaning that the size of the IR will

usually be smaller than the size of the current representation used by Clang. However, if we are storing

or loading multiple adjacent bit fields the previous IR could emit less instructions since only one store

and load was needed for adjacent bit fields. This difference will affect some optimizations that take the

size of the code into account to decide when to fire, as is the case with Inlining, an optimization that

replaces the call site of a function with the body of that same function.

There are other optimizations that will benefit from this representation: ones that depend on analysis

of the program and can more easily track the values of adjacent bit fields, since they are now separate

as opposed to being bundled in a single word.

As a last note, by changing the way a type is represented and used at all the different parts of LLVM

means that the community will have to understand and get used to this new IR, since it affects all of the

LLVM pipeline.

39

40

5
Evaluation

Contents

5.1 Experimental Setup . 44

5.2 Compile Time . 45

5.3 Memory Consumption . 48

5.4 Object Code Size . 52

5.5 Run Time . 55

5.6 Differences in Generated Assembly . 55

5.7 Summary . 57

41

42

During the development of our implementation, we used the LLVM regression tests to check the

correctness of the compiler. In the end, all tests passed except the ones that checked the IR of structure

types that contained bit fields, in which case the only difference was that the old IR did not have the ’\’

and ’/’ characters and the words used to store the fields were now different.

After implementing our solution we used the LLVM Nightly test-suite to test it. The LLVM Nightly test-

suite is a test suite that contains thousands of different benchmarks and test programs. Unfortunately,

in our case, only the tests that contained bit fields were relevant to measure, which brought our number

of tests down to 121. From this 121 tests, 113 were single source micro-benchmark tests, designed to

mostly test the correctness of the compiler, and 8 were multi-source benchmarks and applications, more

important to test the performance of the compiler.

Due to the way that we marked the explicitly packed structures in the LLVM IR (with the ’\’ and ’/’

characters) it is much easier to spot structures that contain bit fields there than it is in the C source code.

With this in mind we used the gllvm1 tool to check which tests contained bit fields. The gllvm is a tool that

provides wrappers that work in two phases: first they invoke the LLVM compiler as usual, then they call

the LLVM bitcode compiler that generates bitcode files of each object file and store them in a dedicated

section of the object file. When object files are linked together, the contents of the dedicated sections

are concatenated. After the build completes, we can read the contents of the dedicated section and link

all of the bitcode into a single whole-program bitcode file.

Since the LLVM test-suite is built using cmake, it is not easy to produce LLVM IR from the source

files, due to the compiler checks that cmake runs over the produced files. By using gllvm as the compiler,

we run make in the LLVM test-suite and then produce bitcode files from the object files, which could then

be translated to LLVM IR files using the LLVM disassembler (llvm-dis), we were able to pinpoint which

were the relevant tests to run.

Aside from these tests we also decided to use version 4.0.0 of the GCC compiler as a benchmark,

since we had access to its single file source code2. This GCC file has over 754k lines of C code and

over 2700 structures that contain bit fields, making it arguably the most important benchmark.

In fact, the GCC benchmark helped us debug our compiler thoroughly during development. To be

able to compile it we had to face and correct various bugs that we would never encounter by just running

the LLVM regression tests or the LLVM test-suite. Unfortunately, pinpointing what is the problem in a

program with a source code of this dimension is not easy. To help us find the part of the code that

created a problem we started using the C-Reduce3 tool. Introduced by [26] as a way to help reporting

compiler bugs, where one needs to find a small case test that triggers the bug, C-Reduce is a tool that

takes large C, C++ or OpenCL files that have a property of interest (our property of interest is triggering

1https://github.com/SRI-CSL/gllvm
2https://people.csail.mit.edu/smcc/projects/single-file-programs/
3https://embed.cs.utah.edu/creduce/

43

https://github.com/SRI-CSL/gllvm
https://people.csail.mit.edu/smcc/projects/single-file-programs/
https://embed.cs.utah.edu/creduce/

a specific compiler bug) and automatically produces a much smaller file that has the same property.

The use of the C-Reduce tool was a step in the right direction. However, with a file this large,

C-Reduce would take a long time to produce a file which we could work on. And even when it finally

produced that file, that program would only reproduce the first bug we found while trying to compile GCC.

Fortunately, we discovered another tool, created by the same researchers that created C-Reduce, called

Csmith4. The Csmith tool was introduced in [27] and is a tool that can generate random C programs.

Since it is a random program generator, it has options to tune the properties of the generated code, like

the C subset, the size of the program, and other properties. One of these other properties was to only

generate programs that have bit fields.

Using a combination of Csmith and C-Reduce, we debugged the whole GCC single source file. On

top of that we ran both tools a couple more times to make sure that only a very small amount of bugs

persisted with the -O0 flag, in which the compiler doesn’t run any optimization. After making sure that the

GCC single source file compiled and that executable actually worked as the GCC compiler (comparing

code produced by the GCC compiled with our compiler with code produced by the GCC compiled with

the LLVM commit from which we forked our own) we started running the tests.

5.1 Experimental Setup

To evaluate our compiler we measured running time and peak memory consumption, running time of

compiled programs, and generated object file size. In addition we also measured number of instructions

in the LLVM IR of the programs.

To estimate compilation and running time, we ran each test three times and took the median value.

To estimate peak memory consumption, we used the ps tool and recorded the RSS and VSZ columns

every 0.02 seconds. To measure object file size, we recorded the size of .o files and the number of IR

instructions in LLVM bitcode files. All programs were compiled with -O0 and -O3 and the comparison

was done between our prototype and the version of LLVM/Clang from which we forked.

We disabled Fast Instruction Selection for the getelementptr instruction, a class designed to emit

poor code quickly, which is the case with the -O0 flag, where the quality of the generated code is ir-

relevant when weighed against the speed at which the code can be generated. The reason for this is

that we now need to store some information present in the getelementptr instruction to emit Selec-

tionDAG nodes that represent the instructions that access bit fields, which meant that the FastISel class

had to return the job of emitting code to the SelectionDAGBuilder class. This is only needed when the

getelementptr instruction is doing arithmetic to access bit fields but since we have no way of knowing

when a field is a bit field in the original LLVM, we decided to disable FastISel for every getelementptr

4https://embed.cs.utah.edu/csmith/

44

https://embed.cs.utah.edu/csmith/

instruction.

On top of that, we also disabled some optimizations that malfunction with our new implementation

of structures. These optimizations are SCCP (Sparse Conditional Constant Propagation), an optimiza-

tion that removes dead code and tries to propagate constants in the program, and GVN (Global Value

Numbering), explained in Section 2.3.2 that from our experience generated wrong code when optimizing

code with bit fields.

There are two other optimizations that generated wrong code with our new type of structure but

that we unfortunately cannot disable. This is because these optimizations clean the code and put it in

a canonical IR form on which subsequent optimizations depend (for ease of implementation of those

optimizations), meaning that these next optimizations would also be disabled. These two optimizations

are SROA (Scalar Replacement of Aggregates) and the InstCombine optimization. The SROA is an

optimization that tries to identify elements of an aggregate that can be promoted them to registers,

and promotes them. The InstCombine optimization simply combines instructions to form fewer, simple

instructions. We subsituted SROA for Mem2Reg, another optimization similar in nature that did not

generate wrong code with the new structures. InstCombine however does not have other similar opti-

mization that could be switched out for so in this case we simply disabled it in any function that had an

access to a bit field in our implementation, where in the original LLVM we left InstCombine as is. This

will have some impact in the results of the -O3 flag, which will be discussed later.

Unfortunately, even with these changes, there were some tests that did not pass with the -O3 flag,

bringing the total number of tests down to 96, from 122 (including the GCC single file program). Of the

96 remaining programs, only 3 were regular benchmarks while the other 93 were micro-benchmarks.

The machine we used to run the tests on had an Intel Xeon CPU at 2.40GHz, 86.3GB of RAM and

was running CentOS Linux 8.

The results will be shown according to their change in percentages, with a negative percentage indi-

cating that performance improved and a positive percentage indicating that performance degraded. We

will also be separating the benchmarks/applications from the micro-benchmarks, since the benchmarks

are more important to the evaluation.

5.2 Compile Time

Compile time was largely unaffected by our changes, either with the -O0 or the -O3 flag. Most

benchmarks were in the range of ±2% as can be seen in Figure 5.1.

With the micro-benchmarks we decided to only represent the tests that took more than 5 seconds

to compile, shown in Figure 5.2, as any small change in the rest of the tests would equate to a bigger

difference that does not represent the reality. Even so, this can still be observed by the almost +6%

45

change in the micro-benchmark “GCC-C-execute-20000815-1”.

The results with the -O3 flag were identical to the ones with -O0. The benchmarks were in the range

of ±1% as can be seen in Figure 5.3. Again we only show the micro-benchmarks that took more than 5

seconds to compile and there are bigger changes in the smallest programs (Figure 5.4).

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

G
CC

O
bs

eq
ui

SI
Bs

im
4

sq
lit

e3

bu
lle

t

fh
ou

rs
to

ne
s3

.1

co
ns

um
er

-la
m

e

co
ns

um
er

-t
yp

es
et

pa
q8

p

Ch
an

ge
 in

 C
om

pi
la

tio
n

Ti
m

e
(%

)

Figure 5.1: Compilation Time changes of benchmarks with -O0 flag.

-2
-1
0
1
2
3
4
5
6
7

G
CC

-C
-e

xe
cu

te
-2

00
00

11
3-

1

G
CC

-C
-e

xe
cu

te
-2

00
00

81
5-

1

G
CC

-C
-e

xe
cu

te
-2

00
40

70
9-

2

G
CC

-C
-e

xe
cu

te
-2

00
40

70
9-

3Ch
an

ge
 in

 C
om

pi
la

tio
n

Ti
m

e
(%

)

Figure 5.2: Compilation Time changes of micro-benchmarks with -O0 flag.

46

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

bu
lle

t

co
ns

um
er

-la
m

e

pa
q8

p

Ch
an

ge
 in

 C
om

pi
la

tio
n

Ti
m

e
(%

)

Figure 5.3: Compilation Time changes of benchmarks with -O3 flag.

-12
-10

-8
-6
-4
-2
0
2
4
6
8

G
CC

-C
-e

xe
cu

te
-2

00
00

11
3-

1

G
CC

-C
-e

xe
cu

te
-2

00
00

81
5-

1

G
CC

-C
-e

xe
cu

te
-2

00
01

10
1

G
CC

-C
-e

xe
cu

te
-2

00
11

11
3-

1

Ch
an

ge
 in

 C
om

pi
la

tio
n

Ti
m

e
(%

)

Figure 5.4: Compilation Time changes of micro-benchmarks with -O3 flag.

47

5.3 Memory Consumption

As was explained before, to estimate peak memory consumption we used the ps tool and recorded

the RSS and VSZ columns every 0.02 seconds. The RSS (Resident Set Size) column shows how much

memory is allocated to a process and is in RAM. The VSZ (Virtual Memory Size) column shows how

much memory the program can access, including memory that is swapped out, memory that is allocated,

and memory from shared libraries.

For all benchmarks with the -O0 flag peak memory consumption was unchanged, both RSS and

VSZ, all within the ±1% range, as can be seen in Figures 5.5 and 5.6. The micro-benchmarks saw a

RSS value fluctuating between ±4% (Figure 5.7) while the VSZ value maintained values in the ±0.4%

(Figure 5.8).

Regarding the results with the -O3 flag, the peak memory consumption for the benchmarks kept a

±2% range with a single exception, a test called “paq8p” that saw a significant increase to 11% in the

RSS value and 6% in the VSZ value, as shown in Figures 5.9 and 5.10. This benchmark is a C++

program with only 2 bit fields and we verified that this difference in peak memory consumption remained

even when we transformed the bit fields into regular structure fields. This indicates that the problem

is in one of the classes of the LLVM source code, where new fields and functions were introduced to

accommodate the Explicitly Packed Struct type, either in the StructType class or the DataLayout class.

This test generates millions of instances of different structures, which might mean that other tests with

these conditions might see a similar rise in peak memory consumption.

On the other hand, the micro-benchmarks stayed unchanged (Figures 5.11 and 5.12).

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

G
CC

O
bs

eq
ui

SI
Bs

im
4

sq
lit

e3

bu
lle

t

fh
ou

rs
to

ne
s3

.1

co
ns

um
er

-la
m

e

co
ns

um
er

-t
yp

es
et

pa
q8

p

Ch
an

ge
 in

 R
SS

 (%
)

Figure 5.5: RSS value changes in benchmarks with the -O0 flag.

48

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

G
CC

O
bs

eq
ui

SI
Bs

im
4

sq
lit

e3

bu
lle

t

fh
ou

rs
to

ne
s3

.1

co
ns

um
er

-la
m

e

co
ns

um
er

-t
yp

es
et

pa
q8

p

Ch
an

ge
 in

 V
SZ

 (%
)

Figure 5.6: VSZ value changes in benchmarks with the -O0 flag.

-5

-4

-3

-2

-1

0

1

2

3

4

5

G
CC

-C
-e

xe
cu

te
-2

00
00

11
3-

1
G

CC
-C

-e
xe

cu
te

-2
00

11
11

3-
1

G
CC

-C
-e

xe
cu

te
-2

00
31

20
1-

1
G

CC
-C

-e
xe

cu
te

-2
00

40
30

7-
1

G
CC

-C
-e

xe
cu

te
-2

00
40

70
5-

1
G

CC
-C

-e
xe

cu
te

-2
00

40
70

9-
2

G
CC

-C
-e

xe
cu

te
-2

00
71

21
1-

1
G

CC
-C

-e
xe

cu
te

-2
01

80
92

1-
1

G
CC

-C
-e

xe
cu

te
-9

21
01

6-
1

G
CC

-C
-e

xe
cu

te
-9

30
62

1-
1

G
CC

-C
-e

xe
cu

te
-9

31
03

1-
1

G
CC

-C
-e

xe
cu

te
-9

60
60

8-
1

G
CC

-C
-e

xe
cu

te
-9

91
11

8-
1

G
CC

-C
-e

xe
cu

te
-b

f-
pa

ck
-1

G
CC

-C
-e

xe
cu

te
-b

itf
ld

-1

G
CC

-C
-e

xe
cu

te
-c

om
p-

go
to

-1
G

CC
-C

-e
xe

cu
te

-p
r1

96
89

G
CC

-C
-e

xe
cu

te
-p

r3
11

36
G

CC
-C

-e
xe

cu
te

-p
r3

14
48

G
CC

-C
-e

xe
cu

te
-p

r3
93

39
G

CC
-C

-e
xe

cu
te

-p
r4

89
73

-1

G
CC

-C
-e

xe
cu

te
-p

r4
97

68
G

CC
-C

-e
xe

cu
te

-p
r5

29
79

-2

G
CC

-C
-e

xe
cu

te
-p

r5
73

44
-2

G
CC

-C
-e

xe
cu

te
-p

r5
85

70
G

CC
-C

-e
xe

cu
te

-p
r6

00
17

G
CC

-C
-e

xe
cu

te
-p

r6
65

56
G

CC
-C

-e
xe

cu
te

-p
r7

06
02

G
CC

-C
-e

xe
cu

te
-p

r7
81

70
G

CC
-C

-e
xe

cu
te

-p
r7

97
37

-2

G
CC

-C
-e

xe
cu

te
-p

r8
87

39
G

CC
-C

-e
xe

cu
te

-s
tr

uc
t-

in
i-2

G
CC

-C
-e

xe
cu

te
-ie

ee
-f

p-
cm

p-
4f

Re
gr

es
si

on
-C

-2
00

3-
05

-2
1-

Bi
tf

ie
ld

H
an

dl
in

g

Re
gr

es
si

on
-C

++
-2

01
1-

03
-2

8-
Bi

tf
ie

ld
20

05
-0

7-
15

-B
itf

ie
ld

-A
BI

20
09

-0
4-

16
-B

itf
ie

ld
In

iti
al

iz
at

io
n

m
s_

st
ru

ct
-b

itf
ie

ld

Ch
an

ge
 in

 R
SS

 (%
)

Figure 5.7: RSS value changes in micro-benchmarks with the -O0 flag.

49

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

G
CC

-C
-e

xe
cu

te
-2

00
00

11
3-

1
G

CC
-C

-e
xe

cu
te

-2
00

11
11

3-
1

G
CC

-C
-e

xe
cu

te
-2

00
31

20
1-

1
G

CC
-C

-e
xe

cu
te

-2
00

40
30

7-
1

G
CC

-C
-e

xe
cu

te
-2

00
40

70
5-

1
G

CC
-C

-e
xe

cu
te

-2
00

40
70

9-
2

G
CC

-C
-e

xe
cu

te
-2

00
71

21
1-

1
G

CC
-C

-e
xe

cu
te

-2
01

80
92

1-
1

G
CC

-C
-e

xe
cu

te
-9

21
01

6-
1

G
CC

-C
-e

xe
cu

te
-9

30
62

1-
1

G
CC

-C
-e

xe
cu

te
-9

31
03

1-
1

G
CC

-C
-e

xe
cu

te
-9

60
60

8-
1

G
CC

-C
-e

xe
cu

te
-9

91
11

8-
1

G
CC

-C
-e

xe
cu

te
-b

f-p
ac

k-
1

G
CC

-C
-e

xe
cu

te
-b

itf
ld

-1
G

CC
-C

-e
xe

cu
te

-c
om

p-
go

to
-1

G
CC

-C
-e

xe
cu

te
-p

r1
96

89
G

CC
-C

-e
xe

cu
te

-p
r3

11
36

G
CC

-C
-e

xe
cu

te
-p

r3
14

48
G

CC
-C

-e
xe

cu
te

-p
r3

93
39

G
CC

-C
-e

xe
cu

te
-p

r4
89

73
-1

G
CC

-C
-e

xe
cu

te
-p

r4
97

68
G

CC
-C

-e
xe

cu
te

-p
r5

29
79

-2
G

CC
-C

-e
xe

cu
te

-p
r5

73
44

-2
G

CC
-C

-e
xe

cu
te

-p
r5

85
70

G
CC

-C
-e

xe
cu

te
-p

r6
00

17
G

CC
-C

-e
xe

cu
te

-p
r6

65
56

G
CC

-C
-e

xe
cu

te
-p

r7
06

02
G

CC
-C

-e
xe

cu
te

-p
r7

81
70

G
CC

-C
-e

xe
cu

te
-p

r7
97

37
-2

G
CC

-C
-e

xe
cu

te
-p

r8
87

39
G

CC
-C

-e
xe

cu
te

-s
tr

uc
t-

in
i-2

G
CC

-C
-e

xe
cu

te
-ie

ee
-f

p-
cm

p-
4f

Re
gr

es
si

on
-C

-2
00

3-
05

-2
1-

Bi
tf

ie
ld

H
an

dl
in

g
Re

gr
es

si
on

-C
++

-2
01

1-
03

-2
8-

Bi
tf

ie
ld

20
05

-0
7-

15
-B

itf
ie

ld
-A

BI
20

09
-0

4-
16

-B
itf

ie
ld

In
iti

al
iz

at
io

n
m

s_
st

ru
ct

-b
itf

ie
ld

Ch
an

ge
 in

 V
SZ

 (%
)

Figure 5.8: VSZ value changes in micro-benchmarks with the -O0 flag.

-4

-2

0

2

4

6

8

10

12

14

bu
lle

t

co
ns

um
er

-la
m

e

pa
q8

p

Ch
an

ge
 in

 R
SS

 (%
)

Figure 5.9: RSS value changes in benchmarks with the -O3 flag.

50

-2

-1

0

1

2

3

4

5

6

7

bu
lle

t

co
ns

um
er

-la
m

e

pa
q8

p

Ch
an

ge
 in

 V
SZ

 (%
)

Figure 5.10: VSZ value changes in benchmarks with the -O3 flag.

-6

-4

-2

0

2

4

6

8

G
CC

-C
-e

xe
cu

te
-2

00
00

11
3-

1
G

CC
-C

-e
xe

cu
te

-2
00

01
10

1
G

CC
-C

-e
xe

cu
te

-2
00

20
40

4-
1

G
CC

-C
-e

xe
cu

te
-2

00
31

21
1-

1
G

CC
-C

-e
xe

cu
te

-2
00

40
30

7-
1

G
CC

-C
-e

xe
cu

te
-2

00
51

01
2-

1
G

CC
-C

-e
xe

cu
te

-2
00

81
11

7-
1

G
CC

-C
-e

xe
cu

te
-9

21
01

6-
1

G
CC

-C
-e

xe
cu

te
-9

30
12

6-
1

G
CC

-C
-e

xe
cu

te
-9

30
63

0-
1

G
CC

-C
-e

xe
cu

te
-9

31
03

1-
1

G
CC

-C
-e

xe
cu

te
-9

60
30

1-
1

G
CC

-C
-e

xe
cu

te
-9

80
60

2-
2

G
CC

-C
-e

xe
cu

te
-b

f-
la

yo
ut

-1
G

CC
-C

-e
xe

cu
te

-b
f-s

ig
n-

2
G

CC
-C

-e
xe

cu
te

-b
itf

ld
-4

G
CC

-C
-e

xe
cu

te
-c

om
pn

dl
it-

1
G

CC
-C

-e
xe

cu
te

-p
r1

96
89

G
CC

-C
-e

xe
cu

te
-p

r3
07

78
G

CC
-C

-e
xe

cu
te

-p
r3

11
69

G
CC

-C
-e

xe
cu

te
-p

r3
14

48
G

CC
-C

-e
xe

cu
te

-p
r3

84
22

G
CC

-C
-e

xe
cu

te
-p

r4
04

04
G

CC
-C

-e
xe

cu
te

-p
r4

89
73

-1
G

CC
-C

-e
xe

cu
te

-p
r4

91
23

G
CC

-C
-e

xe
cu

te
-p

r5
22

09
G

CC
-C

-e
xe

cu
te

-p
r5

29
79

-2
G

CC
-C

-e
xe

cu
te

-p
r5

73
44

-1
G

CC
-C

-e
xe

cu
te

-p
r5

73
44

-3
G

CC
-C

-e
xe

cu
te

-p
r5

85
70

G
CC

-C
-e

xe
cu

te
-p

r5
93

88
G

CC
-C

-e
xe

cu
te

-p
r6

52
15

-3
G

CC
-C

-e
xe

cu
te

-p
r6

65
56

G
CC

-C
-e

xe
cu

te
-p

r7
05

66
G

CC
-C

-e
xe

cu
te

-p
r7

10
83

G
CC

-C
-e

xe
cu

te
-p

r7
81

70
G

CC
-C

-e
xe

cu
te

-p
r7

97
37

-1
G

CC
-C

-e
xe

cu
te

-p
r8

21
92

G
CC

-C
-e

xe
cu

te
-p

r8
91

95
G

CC
-C

-e
xe

cu
te

-s
tr

uc
t-

in
i-3

Re
gr

es
si

on
-C

-2
00

3-
05

-2
1-

Bi
tf

ie
ld

H
an

dl
in

g
Re

gr
es

si
on

-C
-P

R1
38

6
20

03
-0

9-
18

-B
itF

ie
ld

Te
st

20
06

-0
1-

23
-U

ni
on

In
it

20
09

-0
4-

16
-B

itf
ie

ld
In

iti
al

iz
at

io
n

m
s_

st
ru

ct
-b

itf
ie

ld
-in

it-
1

m
s_

st
ru

ct
_p

ac
k_

la
yo

ut

Ch
an

ge
 in

 R
SS

 (%
)

Figure 5.11: RSS value changes in micro-benchmarks with the -O3 flag.

51

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

G
CC

-C
-e

xe
cu

te
-2

00
00

11
3-

1
G

CC
-C

-e
xe

cu
te

-2
00

01
10

1
G

CC
-C

-e
xe

cu
te

-2
00

20
40

4-
1

G
CC

-C
-e

xe
cu

te
-2

00
31

21
1-

1
G

CC
-C

-e
xe

cu
te

-2
00

40
30

7-
1

G
CC

-C
-e

xe
cu

te
-2

00
51

01
2-

1
G

CC
-C

-e
xe

cu
te

-2
00

81
11

7-
1

G
CC

-C
-e

xe
cu

te
-9

21
01

6-
1

G
CC

-C
-e

xe
cu

te
-9

30
12

6-
1

G
CC

-C
-e

xe
cu

te
-9

30
63

0-
1

G
CC

-C
-e

xe
cu

te
-9

31
03

1-
1

G
CC

-C
-e

xe
cu

te
-9

60
30

1-
1

G
CC

-C
-e

xe
cu

te
-9

80
60

2-
2

G
CC

-C
-e

xe
cu

te
-b

f-
la

yo
ut

-1
G

CC
-C

-e
xe

cu
te

-b
f-s

ig
n-

2
G

CC
-C

-e
xe

cu
te

-b
itf

ld
-4

G
CC

-C
-e

xe
cu

te
-c

om
pn

dl
it-

1
G

CC
-C

-e
xe

cu
te

-p
r1

96
89

G
CC

-C
-e

xe
cu

te
-p

r3
07

78
G

CC
-C

-e
xe

cu
te

-p
r3

11
69

G
CC

-C
-e

xe
cu

te
-p

r3
14

48
G

CC
-C

-e
xe

cu
te

-p
r3

84
22

G
CC

-C
-e

xe
cu

te
-p

r4
04

04
G

CC
-C

-e
xe

cu
te

-p
r4

89
73

-1
G

CC
-C

-e
xe

cu
te

-p
r4

91
23

G
CC

-C
-e

xe
cu

te
-p

r5
22

09
G

CC
-C

-e
xe

cu
te

-p
r5

29
79

-2
G

CC
-C

-e
xe

cu
te

-p
r5

73
44

-1
G

CC
-C

-e
xe

cu
te

-p
r5

73
44

-3
G

CC
-C

-e
xe

cu
te

-p
r5

85
70

G
CC

-C
-e

xe
cu

te
-p

r5
93

88
G

CC
-C

-e
xe

cu
te

-p
r6

52
15

-3
G

CC
-C

-e
xe

cu
te

-p
r6

65
56

G
CC

-C
-e

xe
cu

te
-p

r7
05

66
G

CC
-C

-e
xe

cu
te

-p
r7

10
83

G
CC

-C
-e

xe
cu

te
-p

r7
81

70
G

CC
-C

-e
xe

cu
te

-p
r7

97
37

-1
G

CC
-C

-e
xe

cu
te

-p
r8

21
92

G
CC

-C
-e

xe
cu

te
-p

r8
91

95
G

CC
-C

-e
xe

cu
te

-s
tr

uc
t-

in
i-3

Re
gr

es
si

on
-C

-2
00

3-
05

-2
1-

Bi
tf

ie
ld

H
an

dl
in

g
Re

gr
es

si
on

-C
-P

R1
38

6
20

03
-0

9-
18

-B
itF

ie
ld

Te
st

20
06

-0
1-

23
-U

ni
on

In
it

20
09

-0
4-

16
-B

itf
ie

ld
In

iti
al

iz
at

io
n

m
s_

st
ru

ct
-b

itf
ie

ld
-in

it-
1

m
s_

st
ru

ct
_p

ac
k_

la
yo

ut

Ch
an

ge
 in

 V
SZ

 (%
)

Figure 5.12: VSZ value changes in micro-benchmarks with the -O3 flag.

5.4 Object Code Size

We measured the size of .o files and the number of IR instructions in the LLVM bitcode files to

estimate the size of the object code.

Regarding the size of the .o files compiled with the -O0 flag most benchmarks were unchanged when

compared to the .o files compiled with the original LLVM: only GCC and the benchmark “consumer-

typeset” were smaller than the original by about 0.71% and 0.75%, respectively. The micro-benchmarks

were also mostly unchanged with a maximum increase of 1.37% in the size of .o file for the micro-

benchmark “GCC-C-execute-pr70602”.

When compiling with the -O3 flag, only the benchmark “bullet” saw an increase of the original by

0.37% while the rest of the benchmarks stayed identical. The micro-benchmarks also remained mostly

unchanged with a variation of ±1.6% as can be observed in Figure 5.13, with the exception of the “GCC-

C-execute-990326-1” micro-benchmark which saw an increase of 31% compared to the original. The

reason for this outlier is that this benchmark in particular extensively tests accesses to fields of structures

meaning that almost every function has an access to a bit field. Since InstCombine skips over functions

with accesses to bit fields, almost all of the program code is not optimized by InstCombine and the

subsequent optimizations.

About the number of instructions in the LLVM bitcode file, there was no benchmark/micro-benchmark

with a number of instructions superior to their original counter-parts, when compiling with the -O0 flag.

This is represented in figures 5.14 and 5.15.

52

-5

0

5

10

15

20

25

30

35

G
CC

-C
-e

xe
cu

te
-2

00
20

40
4-

1

G
CC

-C
-e

xe
cu

te
-2

00
40

33
1-

1

G
CC

-C
-e

xe
cu

te
-2

00
51

01
2-

1

G
CC

-C
-e

xe
cu

te
-9

21
20

4-
1

G
CC

-C
-e

xe
cu

te
-9

30
12

6-
1

G
CC

-C
-e

xe
cu

te
-9

31
03

1-
1

G
CC

-C
-e

xe
cu

te
-9

90
32

6-
1

G
CC

-C
-e

xe
cu

te
-b

f-
si

gn
-1

G
CC

-C
-e

xe
cu

te
-p

r2
33

24

G
CC

-C
-e

xe
cu

te
-p

r4
91

23

G
CC

-C
-e

xe
cu

te
-p

r4
97

68

G
CC

-C
-e

xe
cu

te
-p

r6
65

56

G
CC

-C
-e

xe
cu

te
-p

r7
17

00

20
09

-0
4-

16
-B

itf
ie

ld
In

iti
al

iz
at

io
n

Ch
an

ge
 in

 O
bj

ec
t C

od
e

Si
ze

 (%
)

Figure 5.13: Object Code size changes in micro-benchmarks with the -O3 flag.

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

G
CC

O
bs

eq
ui

SI
Bs

im
4

bu
lle

t

fh
ou

rs
to

ne
s3

.1

co
ns

um
er

-la
m

e

co
ns

um
er

-t
yp

es
et

pa
q8

p

Ch
an

ge
 in

 N
um

be
r o

f I
ns

tr
uc

tio
ns

in

 B
itc

od
e

Fi
le

 (%
)

Figure 5.14: Changes in LLVM IR instructions in bitcode files in benchmarks with the -O0 flag.

53

-60

-50

-40

-30

-20

-10

0

G
CC

-C
-e

xe
cu

te
-2

00
00

11
3-

1
G

CC
-C

-e
xe

cu
te

-2
00

11
11

3-
1

G
CC

-C
-e

xe
cu

te
-2

00
31

20
1-

1
G

CC
-C

-e
xe

cu
te

-2
00

40
30

7-
1

G
CC

-C
-e

xe
cu

te
-2

00
40

70
5-

1
G

CC
-C

-e
xe

cu
te

-2
00

40
70

9-
2

G
CC

-C
-e

xe
cu

te
-2

00
71

21
1-

1
G

CC
-C

-e
xe

cu
te

-2
01

80
92

1-
1

G
CC

-C
-e

xe
cu

te
-9

21
01

6-
1

G
CC

-C
-e

xe
cu

te
-9

30
62

1-
1

G
CC

-C
-e

xe
cu

te
-9

31
03

1-
1

G
CC

-C
-e

xe
cu

te
-9

60
60

8-
1

G
CC

-C
-e

xe
cu

te
-9

91
11

8-
1

G
CC

-C
-e

xe
cu

te
-b

f-
pa

ck
-1

G
CC

-C
-e

xe
cu

te
-b

itf
ld

-1

G
CC

-C
-e

xe
cu

te
-c

om
p-

go
to

-1
G

CC
-C

-e
xe

cu
te

-p
r1

96
89

G
CC

-C
-e

xe
cu

te
-p

r3
11

36
G

CC
-C

-e
xe

cu
te

-p
r3

14
48

G
CC

-C
-e

xe
cu

te
-p

r3
93

39

G
CC

-C
-e

xe
cu

te
-p

r4
89

73
-1

G
CC

-C
-e

xe
cu

te
-p

r4
97

68

G
CC

-C
-e

xe
cu

te
-p

r5
29

79
-2

G
CC

-C
-e

xe
cu

te
-p

r5
73

44
-2

G
CC

-C
-e

xe
cu

te
-p

r5
85

70
G

CC
-C

-e
xe

cu
te

-p
r6

00
17

G
CC

-C
-e

xe
cu

te
-p

r6
65

56
G

CC
-C

-e
xe

cu
te

-p
r7

06
02

G
CC

-C
-e

xe
cu

te
-p

r7
81

70
G

CC
-C

-e
xe

cu
te

-p
r7

97
37

-2

G
CC

-C
-e

xe
cu

te
-p

r8
87

39
G

CC
-C

-e
xe

cu
te

-s
tr

uc
t-

in
i-2

G
CC

-C
-e

xe
cu

te
-ie

ee
-f

p-
cm

p-
4f

Re
gr

es
si

on
-C

-2
00

3-
05

-2
1-

Bi
tf

ie
ld

Ha
nd

lin
g

Re
gr

es
si

on
-C

++
-2

01
1-

03
-2

8-
Bi

tf
ie

ld

20
05

-0
7-

15
-B

itf
ie

ld
-A

BI
20

09
-0

4-
16

-B
itf

ie
ld

In
iti

al
iz

at
io

n

m
s_

st
ru

ct
-b

itf
ie

ld

Ch
an

ge
 in

 N
um

be
r o

f I
ns

tr
uc

tio
ns

in

 B
itc

od
e

Fi
le

 (%
)

Figure 5.15: Changes in LLVM IR instructions in bitcode files in micro-benchmarks with the -O0 flag.

-500

0

500

1000

1500

2000

2500

3000

3500

G
CC

-C
-e

xe
cu

te
-2

00
00

11
3-

1
G

CC
-C

-e
xe

cu
te

-2
00

01
10

1
G

CC
-C

-e
xe

cu
te

-2
00

20
40

4-
1

G
CC

-C
-e

xe
cu

te
-2

00
31

21
1-

1
G

CC
-C

-e
xe

cu
te

-2
00

40
30

7-
1

G
CC

-C
-e

xe
cu

te
-2

00
51

01
2-

1
G

CC
-C

-e
xe

cu
te

-2
00

81
11

7-
1

G
CC

-C
-e

xe
cu

te
-9

21
01

6-
1

G
CC

-C
-e

xe
cu

te
-9

30
12

6-
1

G
CC

-C
-e

xe
cu

te
-9

30
63

0-
1

G
CC

-C
-e

xe
cu

te
-9

31
03

1-
1

G
CC

-C
-e

xe
cu

te
-9

60
30

1-
1

G
CC

-C
-e

xe
cu

te
-9

80
60

2-
2

G
CC

-C
-e

xe
cu

te
-b

f-
la

yo
ut

-1
G

CC
-C

-e
xe

cu
te

-b
f-

si
gn

-2
G

CC
-C

-e
xe

cu
te

-b
itf

ld
-4

G
CC

-C
-e

xe
cu

te
-c

om
pn

dl
it-

1
G

CC
-C

-e
xe

cu
te

-p
r1

96
89

G
CC

-C
-e

xe
cu

te
-p

r3
07

78
G

CC
-C

-e
xe

cu
te

-p
r3

11
69

G
CC

-C
-e

xe
cu

te
-p

r3
14

48
G

CC
-C

-e
xe

cu
te

-p
r3

84
22

G
CC

-C
-e

xe
cu

te
-p

r4
04

04
G

CC
-C

-e
xe

cu
te

-p
r4

89
73

-1
G

CC
-C

-e
xe

cu
te

-p
r4

91
23

G
CC

-C
-e

xe
cu

te
-p

r5
22

09
G

CC
-C

-e
xe

cu
te

-p
r5

29
79

-2
G

CC
-C

-e
xe

cu
te

-p
r5

73
44

-1
G

CC
-C

-e
xe

cu
te

-p
r5

73
44

-3
G

CC
-C

-e
xe

cu
te

-p
r5

85
70

G
CC

-C
-e

xe
cu

te
-p

r5
93

88
G

CC
-C

-e
xe

cu
te

-p
r6

52
15

-3
G

CC
-C

-e
xe

cu
te

-p
r6

65
56

G
CC

-C
-e

xe
cu

te
-p

r7
05

66
G

CC
-C

-e
xe

cu
te

-p
r7

10
83

G
CC

-C
-e

xe
cu

te
-p

r7
81

70
G

CC
-C

-e
xe

cu
te

-p
r7

97
37

-1
G

CC
-C

-e
xe

cu
te

-p
r8

21
92

G
CC

-C
-e

xe
cu

te
-p

r8
91

95
G

CC
-C

-e
xe

cu
te

-s
tr

uc
t-

in
i-3

Re
gr

es
si

on
-C

-2
00

3-
05

-2
1-

Bi
tf

ie
ld

Ha
nd

lin
g

Re
gr

es
si

on
-C

-P
R1

38
6

20
03

-0
9-

18
-B

itF
ie

ld
Te

st
20

06
-0

1-
23

-U
ni

on
In

it
20

09
-0

4-
16

-B
itf

ie
ld

In
iti

al
iz

at
io

n
m

s_
st

ru
ct

-b
itf

ie
ld

-in
it-

1
m

s_
st

ru
ct

_p
ac

k_
la

yo
ut

Ch
an

ge
 in

 N
um

be
r o

f I
ns

tr
uc

tio
ns

in

 B
itc

od
e

Fi
le

 (%
)

Figure 5.16: Changes in LLVM IR instructions in bitcode files in micro-benchmarks with the -O3 flag.

54

On the other hand, when compiling with the -O3 flag to enable optimizations, the benchmarks re-

mained mostly unchanged, with a maximum increase of 2% for the “bullet” benchmark. However, most

of the micro-benchmarks experienced an increase in number of IR instructions, to a maximum of 3000%,

as we can see in Figure 5.16.

The reason for these discrepancies is simple: when no optimization is done, our new LLVM IR will

always have less instructions simply because the operations needed to access bit fields are no longer

emitted in the LLVM IR, but in the next IR the SelectionDAG. On the contrary, when we compile the

tests with the -O3 flag, the InstCombine optimization fires for every function in the original compiler,

while in our implementation InstCombine skips a function whenever there is a bit field access. Since

InstCombine is also responsible for rewriting the IR in a canonical form on which further optimizations

depend, this particular function won’t be as optimized as the original. This adds up over time and we

end up with a couple of micro-benchmarks with functions with a couple of instructions that should have

been optimized to a single return 0 instruction.

5.5 Run Time

The run time performance was mostly unchanged for benchmarks compiled with the -O0 flag with a

maximum decrease in run time of 2% as is shown in Figure 5.17. The compilation with -O3 flag however

saw an increase in one of the tests by 4.7%, as can be observed in Figure 5.18. The increase can be

explained by the lack of optimizations after the InstCombine disabling.

5.6 Differences in Generated Assembly

Aside from the measurements taken, we think that it is also important to discuss the differences in

the generated assembly, even though the compiled programs have the same behavior when ran. We

witnessed two major differences when comparing the assembly: the code generated when accessing

some bit fields, and the extra number of spills and reloads our implementation produced when compared

to the LLVM/Clang from which we forked, especially in large programs like GCC and bullet.

Spills and reloads in assembly mean that there were no more available registers to store informa-

tion, and that information had to be stored in memory. The reason for this rise in spills and reloads

is the fact that the heuristic that is in charge of register and memory allocation is not familiar with our

implementation.

The reason why the code to access the bit fields is different is quite simple: even though the load

and store instructions are the only bit field accessing operations that continue present in the LLVM IR,

these too were changed. Now they only need to target integers with the size of the actual bit field, and

55

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

G
CC

O
bs

eq
ui

SI
Bs

im
4

sq
lit

e3

bu
lle

t

fh
ou

rs
to

ne
s3

.1

co
ns

um
er

-la
m

e

co
ns

um
er

-t
yp

es
et

pa
q8

p

Ch
an

ge
 in

 R
un

 T
im

e
(%

)

Figure 5.17: Run Time changes in benchmarks with the -O0 flag.

-2

-1

0

1

2

3

4

5

bu
lle

t

co
ns

um
er

-la
m

e

pa
q8

p

Ch
an

ge
 in

 R
un

 T
im

e
(%

)

Figure 5.18: Run Time changes in benchmarks with the -O3 flag.

56

not a whole word, as was exemplified by the last example of section 4.2. So when the nodes of the

bit field accessing instructions in the SelectionDAG are created, we decided to only load or store the

minimum amount of bits necessary.

This choice of implementation can lead to different assembly being emitted. On one hand, the

number of and, or or shift instructions can be reduced: with a bit field of 8 bits perfectly aligned in

memory we only need to load that 8-bit word, while the original implementation will load 32 bits and use

shift, or and and instructions to get its value. A good example of this case can be observed below,

which shows a copy of a bit field value with size 8 bits aligned in memory to another, also with size 8

and aligned in memory. On the left is the assembly of the original implementation and on the right the

assembly of our implementation.

mov eax, dword ptr [rdi]

shr eax, 16

and eax, 255

mov ecx, dword ptr [rsi]

and eax, 255

shl eax, 16

and ecx, -16711681

or ecx, eax

mov dword ptr [rsi], ecx

mov cl, byte ptr [rdi + 2]

mov byte ptr [rsi + 2], cl

On the other hand, sometimes the value of a bit field has to be used with another value of a bigger

size, prompting an extra movzx or movsx instruction in the assembly, instructions to zero-extend or sign-

extend a value, respectively. This case is seen in the code below, where a 16-bit bit field aligned in

memory has to be compared with a 32-bit integer. Again, on the left is the original assembly code, with

a load of 32 bits and an and instruction to isolate the bit field value, and on the right is the code emitted

by our compiler, with just a 16-bit load but an extra zero extend instruction to be able to compare the

value with the 32-bit integer.

mov ecx, dword ptr [rax]

and ecx, 65535

cmp ecx, 48

mov cx, word ptr [rax]

movzx edx, cx

cmp edx, 48

5.7 Summary

To conclude, this section compares all the tests of the LLVM Nightly test-suite that contain bit fields,

as well as the single file program GCC compiler, when compiled with our new implementation of LLVM/-

Clang with a new type for structures in the LLVM IR, and when compiled with the original LLVM/Clang

implementation from which we forked.

57

The results are promising as they don’t show a particular change in performance of the new com-

piler while solving the poison problem for bit fields and keeping the new IR more understandable. The

biggest performance improvement is in the Object Code Size when it comes to number of instructions

in the bitcode file. This decrease in IR instructions might have an impact in some target-independent

optimizations, such as Inlining. However, only one other metric saw such an overall increase in perfor-

mance: the peak memory consumption of the compiler, particularly the virtual memory size of a program.

However, the increase in peak memory consumption in the “paq8p” benchmark should be investigated

further.

58

6
Conclusions and Future Work

Contents

6.1 Future Work . 61

59

60

The representation of Undefined Behavior (UB) in a compiler has become a very important topic

in compiler design. The reason being that it allows the Intermediate Representation (IR) to reflect

the semantics of programming languages where UB is a common occurrence, avoid the constraining

of the IR to the point where some optimizations become illegal, and also to model memory stores,

dereferencing pointers, and other inherently unsafe low-level operations. Because of this, most recent

compilers have a way to represent UB in their IR, and the LLVM compiler is no exception representing

UB by having the undef keyword and the concept of poison.

In this work we discuss the pros and cons of having two types of UB representation in the IR and

present new semantics to solve these problems, introduced by [1]. In this new semantics we propose

to eliminate the undef keyword and expand the use of poison while also introducing a new instruction,

freeze, that can simulate the use of undef, by “freezing” a poison value. This provides a solution to the

problems identified with the current representation of UB in the LLVM compiler.

Unfortunately, the solution proposed to the bit fields problem by the new semantics was not correct.

With this in mind we introduced a new type of structure type in the LLVM IR - the Explicitly Packed

Structure. This new type represents each field of the structure in its own integer with size equal to that

of the field. Aside from that, it also shows the padding and packing (if needed) that would eventually

appear in the assembly code, directly in the structure type in the IR. This way, it allows the programmer

to easily identify the fields of the structure in the IR while also preventing the propagation of poison to

the remaining bit fields since, before our implementation, there was a one-to-one translation between a

word in the IR and a word in memory, meaning that adjacent bit fields were bundled in the same word.

Finally we compared our implementation to the LLVM/Clang implementation from which we forked

by running the tests of the LLVM Nightly test-suite that contained bit fields, as well as the GCC com-

piler source code. We measured and compared Compile Time, Peak Memory Consumption, Object

Code Size and Run Time of the tests when compiled with both implementations of the LLVM compiler,

either with no optimizations (-O0 flag) or most of the “textbook” compiler optimizations we know today

(-O3 flag). The results showed were on par with the performance of the original implementation of the

LLVM/Clang compiler, which was what we aimed to achieve.

6.1 Future Work

As future work is concerned our solution to the problem of propagating poison to the adjacent bit

fields is not yet finished. Firstly, and as was mentioned before, the new Explicitly Packed Structure

type only stops the propagation in the LLVM IR, meaning that the same problem still exists in the next

intermediate representation - the SelectionDAG. So a reproduction of this solution in the SelectionDAG

is still needed. Also, and as was apparent in section 5, there are still optimizations that do not take our

61

implementation into account, which needs to be addressed.

It would also be important to implement the vector loading solution to this problem and see how it

would fare against our implementation. Despite the IR becoming more confusing perhaps in the end the

performance will improve. One thing that vector loading of bit fields has in its favor is the fact that there

is no need to implement anything new to the compiler, as all it needs already exists in the IR: store the

bit fields as vectors instead of integers, and change the way bit field accessing works by accessing each

bit of a field individually.

Finally, the rest of the semantics still need to be implemented as we only worked on part of the

overall poison value implementation. Loop Unswitching, GVN and Select have to be updated and other

optimizations need to be aware of this new semantics to be able to optimize the new IR, which is a

crucial aspect of an optimizing compiler.

62

Bibliography

[1] J. Lee, Y. Kim, Y. Song, C.-K. Hur, S. Das, D. Majnemer, J. Regehr, and N. P. Lopes, “Taming

Undefined Behavior in LLVM,” SIGPLAN Not., vol. 52, no. 6, pp. 633–647, Jun. 2017. [Online].

Available: http://doi.acm.org/10.1145/3140587.3062343

[2] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program Analysis & Transfor-

mation,” in Proceedings of the 2004 International Symposium on Code Generation and Optimization

(CGO’04), Palo Alto, California, Mar 2004.

[3] W. Dietz, P. Li, J. Regehr, and V. Adve, “Understanding Integer Overflow in C/C++,”

in Proceedings of the 34th International Conference on Software Engineering, ser. ICSE

’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 760–770. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=2337223.2337313

[4] X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama, “Towards optimization-safe

systems: Analyzing the impact of undefined behavior,” in Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, ser. SOSP ’13. New York, NY, USA: ACM, 2013,

pp. 260–275. [Online]. Available: http://doi.acm.org/10.1145/2517349.2522728

[5] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools

(2Nd Edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2006.

[6] J.-P. Tremblay and P. G. Sorenson, Theory and Practice of Compiler Writing, 1st ed. New York,

NY, USA: McGraw-Hill, Inc., 1985.

[7] F. E. Allen, “Control Flow Analysis,” SIGPLAN Not., vol. 5, no. 7, pp. 1–19, Jul. 1970. [Online].

Available: http://doi.acm.org/10.1145/390013.808479

[8] J. Stanier and D. Watson, “Intermediate Representations in Imperative Compilers: A

Survey,” ACM Comput. Surv., vol. 45, no. 3, pp. 26:1–26:27, Jul. 2013. [Online]. Available:

http://doi.acm.org/10.1145/2480741.2480743

63

http://doi.acm.org/10.1145/3140587.3062343
http://dl.acm.org/citation.cfm?id=2337223.2337313
http://dl.acm.org/citation.cfm?id=2337223.2337313
http://doi.acm.org/10.1145/2517349.2522728
http://doi.acm.org/10.1145/390013.808479
http://doi.acm.org/10.1145/2480741.2480743

[9] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently

Computing Static Single Assignment Form and the Control Dependence Graph,” ACM

Trans. Program. Lang. Syst., vol. 13, no. 4, pp. 451–490, Oct. 1991. [Online]. Available:

http://doi.acm.org/10.1145/115372.115320

[10] C. S. Ananian, “The Static Single Information Form,” 1999.

[11] K. J. Ottenstein, R. A. Ballance, and A. B. MacCabe, “The Program Dependence Web: A

Representation Supporting Control-, Data-, and Demand-driven Interpretation of Imperative

Languages,” SIGPLAN Not., vol. 25, no. 6, pp. 257–271, Jun. 1990. [Online]. Available:

http://doi.acm.org/10.1145/93548.93578

[12] P. Tu and D. Padua, “Efficient Building and Placing of Gating Functions,” SIGPLAN Not., vol. 30,

no. 6, pp. 47–55, Jun. 1995. [Online]. Available: http://doi.acm.org/10.1145/223428.207115

[13] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey, “Horn Clauses as an

Intermediate Representation for Program Analysis and Transformation,” Theory and Practice of

Logic Programming, vol. 15, no. 4-5, p. 526–542, 2015.

[14] C. Hathhorn, C. Ellison, and G. Roşu, “Defining the Undefinedness of C,” SIGPLAN Not., vol. 50,

no. 6, pp. 336–345, Jun. 2015. [Online]. Available: http://doi.acm.org/10.1145/2813885.2737979

[15] W. . ISO/IEC JTC 1, SC 22, “Rationale for international standard — programming languages —

C. Technical Report 5.10, Intl. Org. for Standardization.” http://www.open-std.org/jtc1/sc22/wg14/

www/C99RationaleV5.10.pdf, 2003, [Online; accessed 3-December-2018].

[16] M. Braun, S. Buchwald, and A. Zwinkau, “Firm - a graph-based intermediate representation,” Karl-

sruhe, Tech. Rep. 35, 2011.

[17] J. B. Dennis, “Data Flow Supercomputers,” Computer, vol. 13, no. 11, pp. 48–56, Nov. 1980.

[Online]. Available: http://dx.doi.org/10.1109/MC.1980.1653418

[18] N. P. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr, “Provably Correct Peephole

Optimizations with Alive,” SIGPLAN Not., vol. 50, no. 6, pp. 22–32, Jun. 2015. [Online]. Available:

http://doi.acm.org/10.1145/2813885.2737965

[19] X. Leroy, “Formal Verification of a Realistic Compiler,” Commun. ACM, vol. 52, no. 7, pp. 107–115,

Jul. 2009. [Online]. Available: http://doi.acm.org/10.1145/1538788.1538814

[20] Y. Bertot and P. Castran, Interactive Theorem Proving and Program Development: Coq’Art The

Calculus of Inductive Constructions, 1st ed. Springer Publishing Company, Incorporated, 2010.

64

http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/93548.93578
http://doi.acm.org/10.1145/223428.207115
http://doi.acm.org/10.1145/2813885.2737979
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf
http://dx.doi.org/10.1109/MC.1980.1653418
http://doi.acm.org/10.1145/2813885.2737965
http://doi.acm.org/10.1145/1538788.1538814

[21] S. Blazy and X. Leroy, “Mechanized Semantics for the Clight Subset of the C Language,”

Journal of Automated Reasoning, vol. 43, no. 3, pp. 263–288, Oct 2009. [Online]. Available:

https://doi.org/10.1007/s10817-009-9148-3

[22] G. Barthe, D. Demange, and D. Pichardie, “Formal Verification of an SSA-based Middle-end for

CompCert,” University works, Oct. 2011. [Online]. Available: https://hal.inria.fr/inria-00634702

[23] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic, “Formalizing the LLVM Intermediate

Representation for Verified Program Transformations,” SIGPLAN Not., vol. 47, no. 1, pp. 427–440,

Jan. 2012. [Online]. Available: http://doi.acm.org/10.1145/2103621.2103709

[24] S. Chakraborty and V. Vafeiadis, “Formalizing the Concurrency Semantics of an LLVM Fragment,”

in Proceedings of the 2017 International Symposium on Code Generation and Optimization,

ser. CGO ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 100–110. [Online]. Available:

http://dl.acm.org/citation.cfm?id=3049832.3049844

[25] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global Value Numbers and Redundant

Computations,” in Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, ser. POPL ’88. New York, NY, USA: ACM, 1988, pp. 12–27. [Online].

Available: http://doi.acm.org/10.1145/73560.73562

[26] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case reduction for c compiler

bugs,” in Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design

and Implementation, ser. PLDI ’12. New York, NY, USA: Association for Computing Machinery,

2012, p. 335–346. [Online]. Available: https://doi.org/10.1145/2254064.2254104

[27] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding bugs in c

compilers,” SIGPLAN Not., vol. 46, no. 6, p. 283–294, Jun. 2011. [Online]. Available:

https://doi.org/10.1145/1993316.1993532

65

https://doi.org/10.1007/s10817-009-9148-3
https://hal.inria.fr/inria-00634702
http://doi.acm.org/10.1145/2103621.2103709
http://dl.acm.org/citation.cfm?id=3049832.3049844
http://doi.acm.org/10.1145/73560.73562
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/1993316.1993532

66

67

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Structure

	2 Related Work
	2.1 Compilers
	2.2 Undefined Behavior in Current Optimizing Compilers
	2.2.1 LLVM
	2.2.2 CompCert
	2.2.3 Vellvm
	2.2.4 Concurrent LLVM Model

	2.3 Problems with LLVM and Basis for this Work
	2.3.1 Benefits of Poison
	2.3.2 Loop Unswitching and Global Value Numbering Conflicts
	2.3.3 Select and the Choice of Undefined Behavior
	2.3.4 Bit Fields and Load Widening

	2.4 Summary

	3 LLVM's New Undefined Behavior Semantics
	3.1 Semantics
	3.2 Illustrating the New Semantics
	3.2.1 Loop Unswitching and GVN
	3.2.2 Select
	3.2.3 Bit Fields
	3.2.4 Load Combining and Widening

	3.3 Cautions to have with the new Semantics

	4 Implementation
	4.1 Internal Organization of the LLVM Compiler
	4.2 The Vector Loading Solution
	4.3 The Explicitly Packed Structure Solution

	5 Evaluation
	5.1 Experimental Setup
	5.2 Compile Time
	5.3 Memory Consumption
	5.4 Object Code Size
	5.5 Run Time
	5.6 Differences in Generated Assembly
	5.7 Summary

	6 Conclusions and Future Work
	6.1 Future Work

	Bibliography

