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Abstract. We describe our experiences using Z3 for synthesizing and
optimizing next generation plant configurations for a car manufacturing
company1. Our approach leverages unique capabilities of Z3: a combina-
tion of specialized solvers for finite domain bit-vectors and uninterpreted
functions, and a programmable extension that we call constraints as code.
To optimize plant configurations using Z3, we identify useful formalisms
from Satisfiability Modulo Theories solvers and integrate solving capa-
bilities for the resulting non-trivial optimization problems.

1. Introduction

The digital transformation is widely recognized as an ongoing seismic shift in to-
day’s industries. It encompasses an integration of software technologies in every
aspect of a business. AI advances, overwhelmingly dominated by deep machine
learning, are widely hailed as pivotal to this shift. Meanwhile, advances in sym-
bolic reasoning, exemplified by Microsoft’s Z3 symbolic solver for automated
reasoning, have powered automated programming and analysis engines in the
past decade. They have been transforming software engineering life cycles by
enabling tools for ensuring strong provable guarantees and automatically syn-
thesizing code and configurations. Likewise, digital transformations in the car
industry are powering driving experiences. With new models and factories be-
ing churned out at a brisk pace, there is an urgent need for automating and
optimizing production plants to increase the pace of production while reducing
costs and resource requirements. The organization of production assembly lines
involves a combination of hundreds of assembly stations and thousands of oper-
ators completing tens of thousands tasks with tens of thousands different tools
available. Some tasks must be completed in sequential order, some stations may
not be able to service tasks with conflicting requirements, only a subset of avail-
able operators may be able to work on a given task, and all tasks are packed
into stringent timing bounds on each station.

Planning large scale production lines is thus becoming a complex inhuman
puzzle, that at best takes weeks for an extensively trained expert to solve man-
ually. A manual assignment of tasks comes with no automatic assurance of op-
timality and with no easy way to explore alternatives. Our experiences with Z3
1 The views expressed in this writing are our own. They make no representation on

behalf of others.



are primarily based on software analysis, verification and synthesis. Z3 is a de-
fault tool when it comes to applications around translation validation, symbolic
execution, and program verification. It has taken inhuman tasks out of network
verification in Azure’s operations [21], invoking O(1B) (small) Z3 queries a day,
verifying compiler optimizations [23, 24], and finding or preventing security vul-
nerabilities in complex systems code [6, 17].

Are techniques that have been tested in the area of software analysis usable
for production line scheduling? We have some partial answers that indicate the
underlying technologies in Z3 can be put to good use in combinatorial domains.
The Dynamics product configurator tool [25] ships using Z3 for solving product
configuration tasks. It uses Z3 to enumerate consequences: when an operator
fixes a fabric of a sofa, the color choices narrow and Z3 integrates a custom opti-
mized consequence finding module built tightly with it’s Conflict Driven Clause
Learning, CDCL [34], engine. The production plant design scenario is very dif-
ferent from the Dynamics use case, though. The model is complex and does
not fit within a commoditized environment. It involves solving multi-knapsack
problems with complex side-constraints. We describe our experiences using Z3
for automating next generation production plant designs of a car manufacturing
company. Our journey so far involves a combination of deep cleaning, thus the
activities involved with formalizing a complex model and in the process iden-
tifying and fixing data-entry bugs; and deep solving, that is, the combination
of solver capabilities used to optimize virtual plant configurations. Within the
scope of our experiences we pose and test a hypothesis that solving constraints
using uninterpreted functions, a base theory of SMT solvers, together with solv-
ing for bit-vectors (that capture finite domains), presents a compelling target
for multi-knapsack problems with complex side constraints. We argue that un-
interpreted functions can be used effectively to encode assignment constraints.
Furthermore, solving for these constraints using decision procedures for uninter-
preted functions may have a substantial advantage solving MIP or SAT based
formulations. To handle multi-knapsack constraints we were compelled to ex-
tend Z3 with an interface for user theories: encoding these constraints as code
appeared readily more viable than supporting custom global constraints.

1.1. Complexity without Perplexity

The complexity and difficulty of the problem we are tackling can be character-
ized along two dimensions: the complexity inherent in capturing production line
models and complexity based on the size of production lines that are solved for.
In our case, the production line model requires a few dozen different types of
data points. Each type is represented as a database table, and each data-point
requires at least three and sometimes more than twenty attributes, where each
attribute is represented as a database column. The second dimension of com-
plexity can be measured by the size of database instances that are required to
capture production line models. In our case, the order of magnitude along main
tables are as follows:



– Stations: O(100). A production line is a sequence of stations. Each station is
a collection of around 10 operator positions, of which a subset can be used.

– Operator positions: O(1K).
– Processes: O(1K), each process is a collection of tasks.
– Tasks: O(10K), assigned among the processes.
– Tools: O(1K) are assigned to tasks.

The real killer for straight-forward approaches, though, is that production line
constraints involve joining several large tables.

We approach the first dimension through the lens of software engineering
methodologies: we are creating a formal model of a production plant and synthe-
sizing optimized configurations. We address the second dimension by describing
the technological features we found useful for (efficiently) solving the production
line automation.

1.2. Domain Engineering - Deep Cleaning

Our approach to production line modeling is very much influenced by concepts
and methodologies honed and developed in the software engineering and most
specifically formal methods communities. Thus, a starting point is to describe
using logical notation a set of domains, functions over the domains, and con-
straints over the signature. At this stage we seek to delay lower level decisions
on how constraints are encoded into a solver. Domain engineering produces a
mathematically unambiguous and machine checkable account for production line
modeling. We also claim our case is distinguished by some level of complexity:
it integrates a combination of many rules and constraints that apply only for
special cases. Our experiences with domain engineering falls into two categories.
Domain invariants are global properties of well-formed production line models.
A production line model that violates domain invariants does not correspond
to a physical production line. Domain constraints capture the solution space
of virtual plants. They can take advantage of domain invariants by assuming
they have been checked and they don’t have to be re-enforced in the constraint
encoding.

To summarize, we distinguish between the two categories:

1.2.1. Domain Invariants They describe well-formedness conditions of virtual
plant configurations, such as:

– Dependencies between processes are acyclic.
– Stations are connected in a rooted tree comprising of sub-lines.
– Sub-lines may be labeled to force processes within bounds, the same label

(called monuments) cannot be used on different branches.

We found that graph visualization tools, in particular MSAGL [26], provided a
highly effective way to both communicate assumptions about domain invariants
and to uncover violations.



Figure 1. SAT, MIP, CP and SMT

1.2.2. Domain Constraints They encode constraints on valid solutions, and
should be:

– Sufficient to capture the solution space of virtual plants.

• Every solution to hard constraints is a virtual plant solution.
• Every virtual plant solution has a solution to hard constraints.

– Usable to map constraint violations back into a root cause analysis for data-
entry errors.

1.3. Solver Engineering - Deep Solving

As the main tool used so far for solving for production lines is Z3, we are going
to mainly describe the approach taken relative to Z3 and SMT technologies.
Figure 1 suggests a classification of main techniques pursued in the CPAIOR
community.

The way to understand the expressiveness/efficiency trad-off is that expres-
siveness comes with the benefit of handling increasingly succinct ways of captur-
ing constraints, their propositional encoded counter-parts being impractical for
SAT solvers. The lower efficiency means that the more expressive solvers use rel-
atively more overhead per succinct constraint than a SAT solver per clause. Each
class of domain is labeled by distinguishing features of their mainstream state-
of-art solvers. Modern SAT solvers are mainly based on a CDCL architecture
that alternates a search for a solution to propositional variables with resolution
inferences when a search dead-ends. These inferences rely on a limited set of



premises. Garbage collection of unused derived clauses is a central ingredient
to make CDCL scalable. MIP solvers use interior point methods, primal and
dual simplex algorithms. Simplex pivoting performs a Gauss-Jordan elimina-
tion, which amounts to globally solving for a selected variable with respect to
all constraints. CP solvers have perfected the art of efficient propagators for
global constraints. Effective propagators narrow the solution space maximally
with minimal overhead.

While we have shamelessly positioned SMT solving as reasonable efficient
while exceedingly expressive relative to peers, the main message of the illustra-
tion is that SMT technologies have been developed, especially since the 2000s,
with an emphasis on software applications and borrowing and stealing techniques
that have otherwise been perfected by peer technologies. This is exemplified by
the fact that Z3’s main solver is based on a SAT solver CDCL architecture; it
uses dual simplex and related global in-processing techniques from SAT solv-
ing to take advantage of global inferences; and finally, our use case illustrates
incorporating global propagators. A well-recognized competing foundation for
integration of solvers is to leverage a MIP solver instead of a CDCL core. This
foundation benefits from global inferences and having strong MIP. Lookahead
solvers, developed in the SAT community in the 90s [19] and revitalized for cube
and conquer solving in the past decade [20], share some of the same traits as
global MIP inferences and are promising methods for partitioning harder prob-
lems for a setting with distributed solving.

The solution to virtual plant configurations we are going to describe relies
on SMT techniques. In particular, we are going to leverage mostly propositional
SAT solving, coupled with a core SMT theory, the theory of uninterpreted func-
tions, and augmented with a CP-inspired plugin for propagating global con-
straints.

2. Virtual Plant Configurations

In the following we describe virtual plant configurations in sufficient detail to
appreciate problem characteristics and the nuances involved. The plant config-
urations are virtual; several points in a design space are explored for planning
final physical configurations. We do omit several details that don’t introduce
crucial different concepts. For example, our full model contains a notion of sub-
line, which are line segments. It contains constraints that limit how processes
can be assigned to common sub-lines. Otherwise, our presentation is purpose-
fully somewhat low level to convey an idea of the number and nature of concepts
required for domain engineering. We use the following main domains to describe
production lines:

Station, Line, Monument, Process, Task, Zone, Operator

Production lines are specific instantiations of these domains. The set Task is
instantiated with O(10K) different tasks and Station comprises of hundreds of
stations.



Figure 2. Elements of a Production Line

The virtual plant optimization problem is, in a nutshell, to assign each Task to
a station and operator on the selected station. Thus, we are synthesizing two
functions:

station : Task → Station
operator : Task → Operator

The assignment is subject to timing, capacity, and precedence constraints, and
optimization objectives to minimize operator use, minimize station utilization,
minimize tool utilization, and minimize height incompatibilities between tasks
assigned to the same station.

Let us first describe the relevant domains and then give an idea of the hard
constraints and optimization objectives.

2.1. Domains

2.1.1. Stations and Monuments Each station supports a subset of viable
operators and has an associated timeout. Tasks assigned to the same operator on
a station must be completed within the station timeout. The optional monument
attribute is used to impose ordering between processes and stations. The reader
can think of a monument as a coloring, and ordering constraints can be imposed



donebegin

Figure 3. A fishbone assembly line. Each circle represents a station. Partially com-
pleted artifacts move between stations. The main line (in the center) carries partial
cars where parts are attached to, while sub-lines flowing to the main line assemble
smaller parts into smaller ones so that they reach the main line as a single part. For
example, doors can be assembled in a sub-line and attached to the car in the main line.
Each station has a different set of tools and machines.

on a set of stations with the same color. Stations are indexed by unique keys.

Station = ⟨
key : Id
monument : [Monument] Optional monument tag
next : [Station] Next station in line
timeout : Numeral Station time bound
line : Line Sub − line where station resides
operators : Operator-set Viable operators on a station

⟩

Stations are organized in a tree structure, also referred to as a fish-bone structure.
Figure 3 illustrates an abstract production line. The next attribute points to the
successor station closer to the root of the tree. It is null if the station is last on
the line.
For the purpose of this paper, monuments and lines are identified by a unique
key.

Monument = ⟨key : Id ⟩
Line = ⟨key : Id ⟩

With each monument, m, the set of stations tagged by m is given by:

stations(m) := { s ∈ Station | s.monument = m ∧ m ̸= null }

2.1.2. Processes, Tasks, Zones, and Operators A process encapsulates a
set of related tasks. Processes may be constrained in three ways: The before and
after attributes are used to constrain processes to be assigned to stations be-
fore/after stations labeled by the given monuments. The predecessor attribute



imposes an ordering between processes and the parallel attribute identifies sib-
ling processes that must be assigned to the same stations (e.g., one cannot fill
coolant without also filling brake fluids). Processes may furthermore be labeled
as under/over body exclusive when they can’t be assigned to a station that
contains both under and over-body work. Thus, we have:

Process = ⟨
key : Id
ubx : Bool
before : [Monument] Monument to precede
after : [Monument] Monument to succeed
predecessor : [Process] Process to succeed
parallel : Process-set Processes to co − assign

⟩

Tasks are associated with a host process and characterized by a completion time,
the height where the task is completed, a set of viable operators that are capable
of servicing the task, and a flag ub, indicating whether the task is completed
below the car.

Task = ⟨
key : Id
process : Process Process where task belongs
time : Numeral task execution time
height : Numeral work height
zone : Zone area where task takes place

⟩

Zone = ⟨
key : Id
operators : Operator-set viable operators for zone
ub : Bool is the zone upper or lower body

⟩

The set of tasks associated with a process p is therefore given by:

tasks(p) := { t ∈ Task | t.process = p }

Finally, there is a finite small set of possible operators per station.

Operator = { Op1, . . .Op10 }

2.2. A Formalization of Domain Constraints

In the following we will describe a representative set of domain constraints. They
capture hard constraints that must be met by physical or policy requirements,
such as, one cannot attach a steering wheel before the dashboard is in place. The



formalization comes close to the working model, but leaves out a few details to
preserve space. Precedence constraints capture ordering requirements between
processes and between stations and processes. Operator constraints capture how
tasks can be assigned to operators on assigned stations. Finally, cycle-time con-
straints bound the number and duration of tasks assignable to a station. To
formulate the precedence constraints we will need a predicate that captures the
partial order on stations.

2.2.1. Station Precedence Encoding The relation

≼: Station × Station → Bool

defines a partial (tree) order on stations. The ordering on stations can be en-
coded by introducing two sequence numbers: The first sequence number leftOrd
is obtained by assigning sequence numbers following a depth-first, left-to-right
order tree traversal, the other, rightOrd from a depth-first, right-to-left traversal.
In other words, the traversal starts with the last station in the line, walks back
and either branches to the left-most sub-line whenever two lines join or branches
to the right-most sub-line. Then ≼ is defined as:

s2 ≼ s1 := leftOrd(s1) ≤ leftOrd(s2) ∧ rightOrd(s1) ≤ rightOrd(s2)

2.2.2. Process precedence constraints For every task t we have the monu-
ment ordering constraints that confine tasks between monuments:

min stations(t.process.after) ≼ station(t) ≼ max stations(t.process.before)

In words: a monument m may be associated with a set of stations S. A process
p := t.process that has m as the before monument, should be assigned to a
station that is before, or including, the last station in S. A process p that has m
as the after monument should take place after, or including, the first station
in S. We conveniently assume min ∅ = −∞ and max ∅ = +∞ to deal with the
cases where the before or after monument attributes are null.

The astute reader will note that it is also possible to have monument at-
tributes, such as t.process.before, that are untethered. That is, there is no station
tagged with the monument. For these monuments, the rule is that all processes
associated with the same untethered monument reside on the same line, so we
impose equations of the form

station(t1).line = station(t2).line

for cases such as t1.process.before = t2.process.before ̸= null with the require-
ment that stations(t1.process.before) = ∅.

Similarly, a precedence relation is imposed by predecessor processes:

t1.process = t2.process.predecessor ⇒ station(t1) ≼ station(t2)



Parallel tasks have to be assigned the same stations:

t1.process ∈ t2.process.parallel ⇒ station(t1) = station(t2)

Tasks belonging to the same process are assigned to the same or at most two
neighboring stations:

t1.process = t2.process ⇒ station(t1) ∈ { station(t2), station(t2).next }
∨ station(t2) ∈ { station(t1), station(t1).next }

2.2.3. Operator constraints Tasks may only be assigned to stations that
supports one of the assignable operators:

operator(t) ∈ t.zone.operators ∩ station(t).operators

Tasks assigned the same zone on a station must use the same operator.

(t1.zone = t2.zone ∧ station(t1) = station(t2))
⇒ operator(t1) = operator(t2)

Tasks that are marked as under-body exclusive cannot be assigned to a station
with tasks having conflicting zones:

(t1.process.ubx ∧ station(t1) = station(t2))
⇒ t1.zone.ub ⇔ t2.zone.ub

At most 6 operators (preferably at least 2) can be assigned to a station:

2 ≤ |{ operator(t) | t ∈ Tasks, station(t) = s }| ≤ 6

The difference between the max and min height used at a station s is bounded
(by 200mm):

StationHeights(s) := { t.height | t ∈ Tasks, station(t) = s }
max StationHeights(s) − min StationHeights(s) ≤ 200

2.2.4. Cycle-time constraints The time taken by tasks assigned in each op-
erator zone on a station cannot exceed the station completion-time. To formulate
this constraint, define the opT ime of operator op on stations s as:

opTime(s, op) :=
∑

{ t.time | t ∈ Task, station(t) = s, operator(t) = op }

Then the cycle time constraints are, for every station s and op ∈ s.operators:

opTime(s, op) ≤ s.timeout



2.3. Objectives

There is no single objective that governs as a metric for the quality of a produc-
tion line. Instead there is a collection of objectives that are desirable. They are
derived from reducing the cost and maximizing throughput of a production line.
Costs are determined by the number of operators and the number of physical
assets, stations, and tools; the main cost reduction objectives are therefore:

– Minimize overall number of operators used in a production line.
– Minimize overall number of utilized stations, that is, stations with a non-zero

number of operators.
– Minimize overall number of different tools used for the production line.

Other auxiliary objectives are indirectly related to cost. For instance, avoiding
lifting and lowering tools and cars between stations, contributes to a smoother
operation with reduced risks for accidents.

– Minimize operator congestion on stations. A station is congested if it uses
more than four operators.

– Minimize process fragmentation, that is minimize the number of processes
that are split.

– Minimize the height differences of tasks within each station and between
adjacent stations.

– Minimize operators that are used, but under-utilized on a station, i.e., the
operator’s assigned tasks can be completed in a small fraction of the station’s
overall timeout.

2.4. Solvable Formalizations

The formalization we just presented fully describes a set of admissible config-
urations. It is, however impractical to work with and a much more compact
encoding is possible by taking advantage of characteristics of the model and by
using specialized code to enforce constraints instead of creating large formulas.

2.4.1. Processes instead of Tasks An intrinsic property of the model is
that tasks are naturally grouped by processes. The grouping is reflected in the
admissible assignments: tasks belonging to the same process can only be assigned
to at most two adjacent stations. The number of tasks is furthermore an order of
magnitude larger than the number of processes. Thus, by formulating constraints
by referring to processes instead of tasks saves roughly an order of magnitude
constraints. So instead of solving for assigning tasks to stations we solve for
assigning processes to stations, and independently determine whether processes
are split. In the modified formulation we are therefore synthesizing the functions:

station : Process → Station
operator : Process × Zone → Operator



Operator assignment takes a work zone as argument to account for that different
tasks within a process are allowed to be assigned different zones.

For processes where all tasks are assigned the same station, all properties of
tasks are preserved. But for processes whose tasks are split between stations,
the reformulation to processes reduces the solution space from the solver. For
splittable processes we partition process tasks into two partitions p.preTasks and
p.postTasks, such that p.preTasks∪ p.postTasks = tasks(p) and p.preTasks∩
p.postTasks = ∅.

Committing early on for whether processes can be split is a potential source
of fragmentation: a solution may not be able to fully utilize station resources
because processes are split while they can still utilize some station time. Char-
acteristics of the production plant models come to the rescue, though. The vast
majority of processes are relatively short running compared to station timeouts
and any internal fragmentation resulting from restricting how they may be split
is a smaller fraction of station timeouts.

To describe the process-based encoding we introduce a predicate:

isSplit : Process → Bool Is process split between stations

and require that split processes reside on the same line:

isSplit(p) ⇒ station(p).line = station(p).next.line

Constraints that are originally formulated using station(t), where t is a task, are
now reformulated using processes, using station(p) for process p containing task
t. Converting the encoding to use processes is relatively straight-forward, thus
we omit it.

2.4.2. Uninterpreted functions to the rescue One approach to encode
height constraints is to introduce two functions:

minHeight : Station → Nat Minimal height of tasks on a station
maxHeight : Station → Nat Maximal height of tasks on a station

and then impose

minHeight(station(t)) ≤ t.height ≤ maxHeight(station(t)) ∀t ∈ Task
maxHeight(s) − minHeight(s) ≤ 200 ∀s ∈ Station

If we did not have functions to our disposal, and instead used two variables
s.minHeight, s.maxHeight per station s, we would have to formulate the bounds
on s.minHeight and s.maxHeight using |Task|×|Station| constraints of the form:

station(t) = s ⇒ s.minHeight ≤ t.height ≤ s.maxHeight,

for each task t and station s.
By using uninterpreted functions we only assert |Task| constraints to enforce

each min-height bound. With hundreds of stations, this saves two orders of mag-
nitudes in the encoding. Furthermore, as we are also only indirectly encoding



station(t) by instead using an assignment of stations on processes, we save an-
other order of magnitude in terms of number of constraints. The process-based
encoding, thus takes the form:

¬isSplit(p) ⇒ minHeight(station(p)) ≤ min{ t.height | t ∈ tasks(p) }
isSplit(p) ⇒ minHeight(station(p)) ≤ min{ t.height | t ∈ p.preTasks }
isSplit(p) ⇒ minHeight(station(p).next) ≤ min{ t.height | t ∈ p.postTasks }

and symmetrically for maxHeight.

2.4.3. Avoiding pairwise constraints Modeling with uninterpreted functions
comes with some useful tricks of the trade. For example, if we wish to enforce
that a function f is injective, it can be encoded by requiring for every pair of
argument combination x, y:

f(x) = f(y) ⇒ x = y

But a much more succinct encoding uses an auxiliary partial inverse function g
with constraints

g(f(x)) = x

for every x. This can have a dramatic effect if the domain of f is large; say
the number of tasks is O(10K), then the pairwise encoding requires O(100M)
constraints. A phenomenon related to injectivity surfaces when encoding zone
assignments and under-body mutual exclusion. Recall the requirements

(t1.zone = t2.zone) ∧ (station(t1) = station(t2)) ⇒ operator(t1) = operator(t2)
t1.process.ubx ∧ (station(t1) = station(t2)) ⇒ (t1.zone.ub ⇔ t2.zone.ub)

They consider all pairs of tasks. The first requirement can be captured more
succinctly by introducing a predicate that tracks which work zones are used on
a station and a function wz2op that assigns operators to work zones on stations.
The second can be handled using a similar idea that uses a predicate that tracks
whether a station is assigned an under-body exclusive task.

Thus, for each process p:

¬isSplit(p) ⇒ wzUsed(station(p), z) ∀z ∈ { t.zone | t ∈ tasks(p) }
isSplit(p) ⇒ wzUsed(station(p), z) ∀z ∈ { t.zone | t ∈ p.preTasks }
isSplit(p) ⇒ wzUsed(station(p).next, z) ∀z ∈ { t.zone | t ∈ p.postTasks }

If the process has p.ubx set to true, we add also:

¬isSplit(p) ⇒ wzUbx(station(p), z) ∀z ∈ { t.zone | t ∈ tasks(p) }
isSplit(p) ⇒ wzUbx(station(p), z) ∀z ∈ { t.zone | t ∈ p.preTasks }
isSplit(p) ⇒ wzUbx(station(p).next, z) ∀z ∈ { t.zone | t ∈ p.postTasks }

Note that since practically all tasks associated with each process share the same
zone, there are in the common case only three constraints per process for wzUsed,
and for wzUbx, respectively.



For station s and each work zone z

wzUsed(s, z) ⇒ wz2op(s, z) ∈ z.operators ∩ s.operators
∧ wzUbx(s, z) ⇒ (ubUsed(s) ⇔ z.ub)

Note how the predicate ubUsed(s) gets constrained to be true if z.ub is true and
wzUbx(s, z) is implied based on some task occupying the workzone z on station
s.

2.4.4. Cycle time constraints as code Finally, we omit encoding cycle time
constraints entirely in our formulation. A major issue with fully expanding cycle
time constraints is that it requires in the worst case to include the possibility that
each task is assigned to every possible station and operator zone. Thus, it requires
|Station| × |Operators| constraints each adding up |Task| terms. Section 4.4
describes our encoding of cycle time constraints as a custom propagator using
an API of Z3 that allows encoding constraints as code.

3. Experiences with Domain Engineering

Section 2 described a formalization of virtual plant configurations. Let us de-
scribe how the formalization was used to debug virtual plan configurations. In-
stances of virtual plant configurations are stored in SQL tables. Enforcing the
domain constraints is well outside the scope of domain-agnostic database con-
sistency guarantees, but we can take a software-inspired view and treat configu-
rations as code and check invariants as if we are checking assertions of software.

3.1. Model visualization

The value of model visualization is very well recognized in the CP and model-
based development communities [33]. The MSAGL tool [26] was initially de-
veloped to support model-based software development using abstract state ma-
chines [3], but has since been used broadly, such as in Visual Studio [30]. In our
case, graph visualization proved to be an effective way to communicate how a
virtual plant model in a database is interpreted in a formal model.

3.2. Checking Global Model Invariants

Initial experiments with visualization suggested that the virtual plant repre-
sentation in the database did not contain sufficient information to reproduce a
physically connected production plant. Omitted data-entries or data-entry errors
would render product sub-lines disconnected. Similarly, precedence relations be-
tween processes could end up being cyclic as a result of data-entry errors. The
situation is analogous to software development: a type checker can catch a large
class of unsafety bugs cheaply.

A common type of bugs we encountered was in the processes’ precedence
relations. We found several cases where a process preceding another process



donebegin

OOB transport

Figure 4. Out-of-band transportation of parts between the main line and sub-lines.
We cannot have a precendence relation between the producer and consumer of these
parts as these processes run in parallel lines.

was supposed to run in a parallel sub-line. This is not possible as stations in
parallel sub-lines have no precedence relation between them (ordering of stations
is partial). This was caused by a confusion when the data was entered. These
processes effectively run one before the other in a deployed production line if we
consider the sub-lines side-by-side. However, there was no process precedence; it
was just an artifact of the current solution.
Another kind of precedence bugs we found was related with processes that are
not explicitly modeled. For example, some parts are removed from the chassis
of the car in one station. Then they are transported on the side to a subsequent
station where they get re-attached (Figure 4). The transportation of these parts
is not modeled because we know it can be done in a timely fashion and does not
happen in the main conveyor belt, which is what we model. However, initially the
processes that receive the removed parts had precedence on the processes that
remove these parts, even when the receiving processes were in stations what were
not successors of the removing stations. The fix was to remove the precedence
relation and consider it on paper only (i.e., the process engineers have to ensure
the out-of-band transportation can be done in a timely fashion).

3.3. Root-cause analysis using Unsatisfiable Cores

Global invariants only ensure that solutions to satisfiable constraint encodings
correspond to feasible plant configurations. They don’t ensure that constraints
are feasible. Infeasible constraints are as inevitable as software bugs: they orig-
inate from manual data-entry errors that are difficult to avoid because consis-
tency is a global property involving thousands of entries. Bug localization using
unsatisfiable cores and program repair using correction sets is already well rec-
ognized [22, 31, 36]. In Figure 5 we show an example of an unsatisfiable core
that was encountered in one of our runs. It involves chaining several equalities
and arriving at the equality 1 = 3.

To make the inconsistency palatable in terms of concepts used in the data-
model, we tracked each assertion by originator information and used this to
produce an error report that could be digested at the level of the model, as
opposed to the raw encoding. Figure 6 illustrates the same unsatisfiable core,
but rendered from the perspective of the database.



line(103) == 1
line(119) == 3
line(station(WHEEL ASSEMBLY INSTALL FR RH)) == line(119)
line(station(LIFTGATE LATCH TO LIFTGATE INSTALL)) == line(103)
line(station(WHEEL CAP INSTALL - FR LH)) ==

line(station(WHEEL ASSEMBLY INSTALL FR RH))
line(station(WHEEL CAP INSTALL - FR LH)) ==

line(station(LIFTGATE SEAL - RIP CORD LH))
line(station(LIFTGATE SEAL - RIP CORD LH)) ==

line(station(LIFTGATE LATCH TO LIFTGATE INSTALL))

Figure 5. Unsatisfiable core from Z3

stations [TR1-240-R-N] are on line [TR]
stations [FN1-150-R-N] are on line [FN]
processes [WHEEL ASSEMBLY INSTALL FR RH] must be assigned to the

same line as their monuments at [FN1-150-R-N]
processes [WHEEL CAP INSTALL - FR LH] sharing untethered monument

[WHEEL ASSEMBLY INSTALL FR RH, LIFTGATE SEAL - RIP CORD LH] must
be assigned to the same line

processes [LIFTGATE LATCH TO LIFTGATE INSTALL] must be assigned to the
same line as their monuments at [TR1-240-R-N]

processes [LIFTGATE SEAL - RIP CORD LH] sharing untethered monument
[LIFTGATE LATCH TO LIFTGATE INSTALL] must be assigned to the same line

Figure 6. Explanation From Unsat Core



Z3 uses MiniSAT’s approach [16] by using tracking literals to extract unsat-
isfiable cores. Cores are optionally minimized using a greedy core minimization
algorithm that forms the basis of SAT-based MUS extraction tools [4].

4. Experiences With Solver Engineering

We will be describing the elements used in our current solver. It finds feasible
solutions to production lines within a couple of minutes and then yields optimized
solutions in a steady stream as the solver explores Pareto fronts. The journey
to our current approach took several iterations. During initial iterations, finding
just one feasible solution was elusive.

We tried three conceptually different approaches, prior to the eventual so-
lution we describe next. These approaches were differentiated by how they at-
tempted to address the special complexity of cycle-time constraints.

– A first approach created an encoding of all domain constraints, except cycle-
time constraints. Then the solver would assign a small batch of processes by
adding cycle-time constraints at a time. The approach scaled to less than a
dozen processes per batch and it took around 20 hours to solve for 10% of
all processes.

– In a second experiment we added cycle-time constraints for processes one
by one, and greedily assigned them to stations. The experiment relied on
auxiliary static analysis to narrow the range of possible station assignments
for every process and we would prioritize processes with the narrowest range
of feasible stations. With this approach we could assign 80% of processes
using 10 hours CPU processor time.

– A third experiment aimed to build a CP engine on top of Z3 by augmenting
the greedy approach with backtracking so that it could assign all processes.
The idea was that the external CP engine would make branching decisions
on how to assign processes and also manage backtracking. While engineer-
ing this approach was too complex to fully realize, it served as a guide for
the approach we arrived at with constraints as code. Here, branching deci-
sions remain inside of Z3, but conflict detection and theory propagation is
programmed by a CP module for cycle-time constraints.

4.1. SMT Theories and Solvers

Z3 supports a rich collection of formalisms that go well beyond the features
used in this work. It supports theories of bit-vectors, uninterpreted functions, ar-
rays, algebraic datatypes, floating points, strings, regular expressions, sequences,
bounded recursive function unfolding and partially ordered relations. To support
the many formalisms and different classes of formulas Z3 contains a plethora of
powerful engines. A CDCL(T) core glues together most supported theories in a
combined reasoning engine. The core also integrates with quantifier instantiation
engines. Other reasoning cores can be invoked in stand-alone ways, including a



core for non-linear real Tarskian arithmetic, decidable quantified theories, and
a Horn clause solver [12]. The work described in this paper draws on only a
few of the available formalisms and engines: bit-vectors and uninterpreted func-
tions. Central to the art of solver engineering is choosing the best theories and
encoding for a particular problem.

4.2. Uninterpreted functions

We already mentioned that we use the theory of uninterpreted functions, also
known as EUF. It is basic to first-order logic and treated as a base theory for SMT
solvers. EUF admits efficient saturation using congruence closure algorithms [14].
Uninterpreted functions are well recognized in SMT applications as useful for
abstracting data [13] and in model checking of hardware designs [2]. Congruence
closure consumes a set of equalities over terms with uninterpreted functions and
infers all implied equalities over the terms used in the equalities. Consider for
example, the two equalities

x = f(g(f(x))), x = g(f(x))

We can use the second equality to simplify the first one: by replacing the sub-
term g(f(x)) in f(g(f(x))) by x, the first equality reduces to x = f(x). This new
equality can be used to simplify the second equality by replacing the sub-term
f(x) in g(f(x)) by x. The resulting equality is x = g(x). Congruence closure al-
gorithms perform such inferences efficiently, without literally substituting terms
in equations.

Using EUF instead of encoding directly into SAT is not necessarily without
a cost. By default, SMT solvers allow only inferences over EUF that do not
introduce new terms. This prevents the solvers from producing short resolution
proofs in some cases, but has the benefit of avoiding bloating the search space
with needless terms. Efficient solvers seek a middle-ground by introducing tran-
sitive chaining of equalities and Ackerman reductions on demand [9, 15]. For
the use case described in this paper, even these on-demand reductions turn out
to be harmful and slow down search. They are disabled for this application.
Furthermore, we found it useful to delay restarts to give the solver time to per-
form model-repair in contrast to producing resolvents. Precisely how to tune
SAT solvers for satisfiable instances is a topic [7, 27, 29] where new insights are
currently developed.

4.3. Bit-vectors

The first few encoding attempts used the theory of arithmetic and integers to rep-
resent all domains. While not exclusively responsible for inferior performance, we
noticed an order of magnitude speedup on the same formulations when switching
to bit-vectors. Finite domains can be encoded directly using bounded integers.
The usual ordering ≤ on integers can then be used whenever requiring precedence
relations or comparing heights. Except for cycle-time constraints that we deal



with separately, there is however very little or practically no arithmetic involved
with the constraints. By using bit-vectors instead of integer data-types we can
force Z3 to use bit-vector reasoning for finite domains. The theory of bit-vectors
is used to capture machine arithmetic, with noteworthy applications for anal-
ysis of binary code or compiler intermediary languages, thus two-complements
arithmetical operations over 32-bit or 64-bit arithmetic found in machine code.
Comparison, ≤ is defined for both signed and unsigned interpretations of bit-
vectors. These operations are used extensively for modeling operator precedence
and height constraints. The bit-vector representation and reasoning was order of
magnitudes more efficient than using encoding relying on arithmetic. It conforms
to common experiences where using arithmetic for finite domain combinatorial
problems is rarely an advantage. Mainstream SMT solvers solve bit-vectors by a
reduction to propositional SAT. It works well for this domain, in contrast to con-
straints involving multiplication of large bit-vectors. Handling larger bit-widths
is a long standing open challenge for SMT solvers.

4.4. Constraints as Code

Early experiments suggested that adding Pseudo-Boolean inequalities corre-
sponding to cycle-time constraints would be a show-stopper. It is an instance
where existing built-in features do not allow for a succinct encoding. These con-
straints highlighted a need for exposing a flexible approach for extending Z3
with ad-hoc, external, theory solvers. Z3 exposed a way for encoding external
solvers more than a decade ago [8]. External theories were subsequently removed
from Z3 because not all capabilities of internal theory solvers could be well sup-
ported for external solvers. Moreover, with Z3 being open source, the path was
prepared for external contributions, such as Z3Str3 [5]. But we found that the
cycle-time constraints are not easily amenable to a new theory; the conditions
for when they propagate consequences or identify conflicts depend on proper-
ties that are highly specific to this particular model. It is thus much easier to
represent propagation and conflict detection in code than in constraints.

We will illustrate the user propagator by a simple example borrowed from [10].
It illustrates a Pseudo-Boolean constraint that requires a quadratic size encod-
ing. In contrast, the user propagator does not suffer from this encoding overhead.
The example constraint is:

3 |{ (i, j) | i < j ∧ xi + xj = 42 ∧ (xi > 30 ∨ xj > 30) }|
+ |{ (i, j) | i < j ∧ xi + xj = 42 ∧ xi ≤ 30 ∧ xj ≤ 30 }| ≤ 100

For illustration, we instantiate the example with 8 bit-vectors each with 10 bits
over Python:
from z3 import *

xs = BitVecs(["x%d" % i for i in range(8)], 10)

Then a user-propagator can be initialized by sub-classing to the UserPropagateBase
class that implements the main interface to Z3’s user propagation functionality.



class UserPropagate(UserPropagateBase):
def __init__(self, s):

super(self.__class__, self).__init__(s)
self.add_fixed(self.myfix)
self.add_final(self.myfinal)
self.xvalues = {}
self.id2x = { self.add(x) : x for x in xs }
self.x2id = { self.id2x[id] : id for id in self.id2x }
self.trail = []
self.lim = []
self.sum = 0

The map xvalues tracks the values of assigned variables and id2x and x2id
maps tracks the identifiers that Z3 uses for variables with the original variables.
The sum maintains the running sum of according to our unusual constraint.

The class must implement methods for pushing and popping backtrackable
scopes. We use a trail to record closures that are invoked to restore the previous
state and lim to maintain the the size of the trail for the current scope.

# overrides a base class method
def push(self):

self.lim.append(len(self.trail))

# overrides a base class method
def pop(self, num_scopes):

lim_sz = len(self.lim)-num_scopes
trail_sz = self.lim[lim_sz]
while len(self.trail) > trail_sz:

fn = self.trail.pop()
fn()

self.lim = self.lim[0:lim_sz]

We can then define the main callback used when a variable tracked by identifier
id is fixed to a value e. The identifier is returned by the solver when calling
the function self.add(x) on term x. It uses this identifier to communicate the
state of the term x. When terms range over bit-vectors and Booleans (but not
integers or other types), the client can register a callback with self.add_fixed
to pick up a state where the variable is given a full assignment. For our example,
the value is going to be a bit-vector constant, from which we can extract an
unsigned integer into v. The trail is augmented with a restore point to the old
state and the summation is then updated and the Pseudo-Boolean inequalities
are then enforced.

def myfix(self, id, e):
x = self.id2x[id]
v = e.as_long()



old_sum = self.sum
self.trail.append(lambda : self.undo(old_sum, x))
for w in self.xvalues.values():

if v + w == 42:
if v > 30 or w > 30:

self.sum += 3
else:

self.sum += 1
self.xvalues[x] = v
if self.sum > 100:

self.conflict([self.x2id[x] for x in self.xvalues])
elif self.sum < 10 and len(self.xvalues) > len(xs)/2:

self.conflict([self.x2id[x] for x in self.xvalues])

It remains to define the last auxiliary methods for backtracking and testing.

def undo(self, s, x):
self.sum = s
del self.xvalues[x]

def myfinal(self):
print(self.xvalues)

s = SimpleSolver()
for x in xs:

s.add(x % 2 == 1)
p = UserPropagate(s)
s.check()
print(s.model())

4.5. Solving for multiple objectives

Z3 supports optimization modulo theories out of the box [11], including weighted
MaxSAT and optimization of linear objectives. It can also be instructed to enu-
merate Pareto fronts or combine objectives through a lexicographic combination.
In our case we are not, at present, using these features for optimizing objec-
tives. Instead, we built a custom Pareto optimization mechanism on top of the
user propagator. It is inspired by the branch-and-bound method for MaxSAT
from [28]. The idea is that each objective function is registered with an indepen-
dent constraint handler. Each handler maintains a current cost. The current cost
is incremented when a variable gets fixed in a way that adds to the running cost.
For example, when a task is assigned a station, the tool used by the task is added
to the pool of tools used, unless the tool is already used at the station. When
then number of used tools exceeds the current running best bound for tools, the



handler registers a conflict. Handlers may also cause unit propagation when the
current bound is reached. This approach has the benefit from producing partial
results as soon as they are available. Several improvements are possible over this
scheme, such as neighborhood search around current solutions. We leave this
for future explorations, as the current approach is sufficient within the generous
time budget for the plant configuration domain.

5. Experiences with MiniZinc

We also developed a plant model in MiniZinc. Following MiniZinc best prac-
tices, we used so-called global constraints that deal with functions/relations as
first-class values, hence avoiding quantified constraints over individual elements.
First, we used a channel constraint to connect a function that assigns a station to
a process with its inverse (given that the inverse is used for various aggregations
over station’s processes). This channel dramatically improved the solving per-
formance, compared to its equivalent formulation using universal quantification.
Furthermore we used a bin packing constaint to ensure fit of processes into a sta-
tion. Finally, we had to address the shortcoming of global constraints that they
cannot be driven by decision variables and hence require an eager case distinc-
tion as a work-around. To reduce the ranges of decision variables participating
the bin packing constraint, i.e., to avoid assuming that any process could be
placed in any station, we developed an abstract-interpretation style approxima-
tion of the set of stations for a given process. Technically, this approximation is
computed iteratively as the least-fixpoint of the propagation operator manually
derived from the constraints.

We observed that the resulting performance with the Gecode solver backend
is comparable with the Z3. We left it for future work to automate the construc-
tion of approximation operators.

6. Perspective

We described our experiences with using SMT and CP techniques for solving
virtual plant configurations for production plants. The domain shares character-
istics of job-shop scheduling and constrained knapsack problems. The scenario
integrates a plethora of side constraints. Our perspective in tackling this do-
main is heavily influenced by methods adapted in the software-engineering, and
particularly model-driven engineering and formal methods communities. Several
synergies with configuration domains and advances in software engineering com-
munities seem ripe to be explored: Automated software synthesis has gained
considerable traction in the software engineering community [1]. SMT and SAT
solvers are some of the popular options for handling software synthesis and
program sketching problems. Super-compilation can be recast as a quantifier in-
stantiation problem and template-based methods use a template space defined
by abstract grammars to define a search space for synthesis problems. CVC4 [32]
builds in grammar based synthesis as an extension of its quantifier instantiation



engine; efficient, custom, synthesis tools such as Prose [18], Rosette [37], and for
program sketching [35], integrate specialized procedures.

Our SMT solution is based on Z3 with uninterpreted functions, bit-vectors
and user-programmed constraint propagators. The virtual plant configuration
solver is currently actively used for planning next generation production facil-
ities. There are still many exciting avenues to pursue for super-charging vir-
tual plant configurations, or network cloud configurations and policies for that
matter: methodologies and tools developed for programming languages have sub-
stantial potential to transform configuration management; configurations can be
improved using feedback measurements from deployments; and symbolic solving
have a central role in checking integrity constraints, and synthesizing solutions
while exploring a design space.
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