
openSDK - An Open-source Implementation of OPEN-R

(Short Paper)
Nuno P. Lopes

nuno.lopes@ist.utl.pt
Pedro U. Lima

pal@isr.ist.utl.pt
Institute for Systems and Robotics

Instituto Superior Técnico
Av. Rovisco Pais, 1049-001 Lisbon, Portugal

ABSTRACT
This paper describes openSDK, an open-source implementa-
tion of Sony's AIBO development kit (OPEN-R). openSDK
is capable of running unmodi�ed AIBO programs (only a
recompilation is necessary) on a standard computer, us-
ing a simulator at full frame rate (currently only USARSim
is supported) or on a di�erent robotic hardware platform.
openSDK also o�ers standard debugging facilities for AIBO
programs.

Categories and Subject Descriptors
I.6.4 [Simulation andModeling]: Applications; I.2.9 [Ar-
ti�cial Intelligence]: Robotics; D.4.9 [Operating Sys-

tems]: Systems Programs and Utilities

General Terms
Design, Experimentation, Languages

Keywords
robot simulation, robot virtual machine, AIBO, OPEN-R

1. INTRODUCTION
The development cycle time of applications designed for

Sony's AIBO robots has always been long and painful, be-
cause of the lack of good debugging tools and of the time it
takes to deploy the binaries to the robot and restart it. Some
four legged league RoboCup teams (e.g. German Team)
have developed mechanisms to help them running their own
code on a standard computer, but they had to duplicate
some parts of the code, worsening the maintenance prob-
lem. Most important is that they still would have to run
the code on the AIBO to test the low-level code that was
duplicated (and thus not run on the PC).
openSDK mitigates this problem by implementing Sony's
AIBO API (named OPEN-R) and by allowing to run code
designed for the AIBO on a standard computer, without
requiring modi�cations to the application (only a recompi-
lation is necessary). Moreover, openSDK is able to emulate
the full AIBO platform (currently only ERS-7 is supported)

Cite as: openSDK - An Open-source Implementation of OPEN-R (Short
Paper), Nuno P. Lopes, Pedro U. Lima, Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008,
Estoril, Portugal, pp. 1207-1210.
Copyright© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: OPEN-R architecture

with the help of an external simulator.
openSDK also eases the transition to new platforms, by en-
abling to run code designed for the AIBO on a new robotic
platform, without modi�cations to the code. The process is
explained later on this paper.
Although the RoboCup committee has decided to end the
four-legged league and thus has shorten the openSDK life-
time, openSDK still constitutes an example of what and how
can be done with future platforms and simulators/emulators.
This paper is organized as follows: in section II we give an
overview of the implementation of openSDK, in section III
we present the results of our experiments using openSDK, in
section IV we present the known limitations of openSDK and
related tools that were used, and in section V we present the
conclusions of this work, as well as possible ideas for future
works.

2. OPENSDK
This section provides an overview of the openSDK archi-

tecture and its implementation details.

2.1 Architecture
The openSDK architecture is itself based on OPEN-R and

Aperios (AIBO's Operating System). It follows the same
event-driven architecture that characterizes the AIBO plat-
form. The top-level architecture of OPEN-R is shown in Fig.
1. What openSDK does is to implement both OPEN-R API
and OVirtualRobot (the sensor input and joint actuator in-
terface) layers. It also provides an OPEN-R module loader
and a generic toolchain for compiling the code to run on
openSDK.



Figure 2: overview of the build process

2.2 Build Process
The typical build process of an AIBO program is shown in

Fig. 2. openSDK is able to compile the code without much
modi�cations to the Make�les (typically it is only needed to
change the OPEN-R root directory variable), by providing
implementations of all the tools involved in the build pro-
cess. The compiler and linker are provided directly by the
system, while stubgen was implemented to generate speci�c
stubs for openSDK (that are not compatible with the stubs
generated by Sony's stubgen). The strip part is often dis-
abled (and the developer is encouraged to do so), so that
debugging tools can generate useful information (e.g. stack
traces). The strip command is also provided by the system.
The *.ocf �les are simply ignored, because they are not rel-
evant on Unix systems. The code is always run in no-TLB
mode (one process, multiple threads: one per OPEN-R ob-
ject) and in user mode and without heap or stack memory
limits (except the ones imposed by the Operating System),
regardless of what the ocf �le says.

2.3 Operating System APIs
OPEN-R isn't the only available API for AIBO devel-

opers. The Aperios Operating System also exports some
standard functions (e.g. open, read, etc...) into userland.
However some of these functions perform di�erently from
the ones found in most Unix systems (e.g. case-insensitive
�le system and no relative paths allowed). In order to em-
ulate the AIBO platform, it was needed to replace some
of these system functions with AIBO's equivalents. This
is done at link-time, using ld's �wrap argument to redi-
rect some function calls to openSDK wrappers. However,
openSDK doesn't wrap (at least yet) C++ functions calls

(e.g. fstream::open()). This means that the C++ �le sys-
tem related function calls aren't case-insensitive.
strtok() is also wrapped, to make it use local thread storage
through the usage of the non-standard strtok_r() function.
This e�ectively eliminates potential race-conditions between
OPEN-R objects (which do not occur in the AIBO because
the memory space of the objects is separated).

2.4 Module Loader
Each AIBO module is compiled to a .BIN �le, which is

nothing more than a gzipped Dynamic Shared Object (DSO).
So the module loader decompresses these �les at run-time
and loads them using standard APIs (i.e. dlopen()).
Each module is run on a di�erent thread, which resembles
the no-TLB mode of the Aperios Operating System (the
memory space is shared across modules). In order to guar-
antee that no symbol or variable clash occur (because two
modules may have two variables with the same name), a
GNU libc speci�c dlopen() trick is used (RTLD_DEEPBIND).
More details on this feature are provided in [1].
After loading the module, a special entry-point function
(generated by the stubgen2 script) __start_module() is called.
This function is responsible for running the DoInit(), DoStop(),
etc.. methods and for delivering the messages to the correct
event handlers.

2.5 OVirtualRobot: Sensors and Joints Data
openSDK supports sensor data injection through sockets

(Unix sockets are used for performance reasons). It also
supports joint data export in real-time in the same manner.
Data import/export is done using a client/server architec-
ture and the clients can be changed at run-time without loss
of data. For example, one can feed a recorded AIBO camera
video or just a �xed image. One can also send the joint val-
ues to a real robot or simply print them to the screen, etc...
The sensor data is sent to the robot at �xed intervals (in
the case of the AIBO ERS-7 it sends new data - four frames
- every 32 ms). If no fresh data is available (for example,
USARSim currently provides data at a lower frequency: �ve
times per second only), the old data is sent instead. This is
done to guarantee the timings of the AIBO platform, which
many programs rely on.
OVirtualRobot is the module that makes it possible to run
AIBO code on either a simulator or on a new robotic hard-
ware platform. By replacing this module (or just read/write
data to the current one), one can run the code on a new plat-
form without much trouble.

2.6 Simulation
openSDK also supports robot simulation, using the US-

ARSim [9] simulator with the AIBO module [10]. USARSim
runs on top of the industrial game engine of Unreal Tour-
nament 2004. It is able to feed camera images and sensor
data to the simulated robot, as well as feeding joint data
commands back to the simulator.
A sample camera image (as seen by the robot) simulated by
USARSim can be seen in Fig. 3.
Currently running multiple robots in USARSim with live
image feeding is not yet supported. This is due to the US-
ARSim image server being only able to feed images from one
robot at a time. There is some ongoing work to properly �x
this. More details about the problem and possible solutions
can be found in [10].



Figure 3: USARSim camera image simulation

2.7 Thread Safety
Thread safety is an important issue, and thus great care

has been taken to insure that openSDK is thread-safe. All
global message queues and resources are protected with mu-
texes. Local object resources aren't protected because there
isn't concurrency inside the OPEN-R objects.
Also read the "Operating System APIs" section above for a
note about strtok() thread-safety.

3. RESULTS
This section provides an overview of our experiments us-

ing openSDK with AIBO programs used in the RoboCup
context.

3.1 SocRob-4LL
SocRob-4LL [2] is our team's code. The low-level part

is based on Team Chaos [3] code base. A sample run of
openSDK with our code can be seen in Fig. 4.
At �rst the code didn't compile with gcc 4.1 because it is
much stricter and standard conformant than the old gcc
version used by Sony's AIBO toolchain (gcc 3.3.2). After
patching the errors spotted by gcc, the code would still not
run (it was segfaulting). After diagnosing the problem, it
was found that 'cout � "string"' was the problem. After
removing all references to it, the code run just �ne. It is
still under investigation if it is a gcc/libstd++ bug or if it
is some problem in openSDK.
Another interesting problem we had was that once the code
was crashing in the real robots, but not in openSDK. Af-
ter investigation it was found that the problem was a CPU
Floating-Point exception that was being triggered (related
with unwanted mathematical operations with NaNs). Inves-
tigation on how to report these problems in openSDK (or
simply crash it) in a portable way is yet to be done (possibly
use the CPU con�guration registers and make the Operat-
ing System trigger a SIGFPE signal).
openSDK proved extremely useful when implementing the
communication protocols (it was only tested in openSDK
and then it worked without modi�cations in the real robots
as expected) and for debugging memory-related problems
(including memory leaks and crashes). Valgrind [4] with its
Memcheck tool [6] was the tool of choice when debugging the
problems and it worked very well when using �chroot=no
(described below).
With a Pentium M 2.0 Ghz (single core) we were able to
run up to two robots on the same machine when forcing
the camera images frame rate at 30 fps. When not forc-
ing this high frame rate (and thus serve images at the rate

Figure 4: SocRob-4LL code running on openSDK

sent by the USARSim image server), we were able to run up
to �ve robots on the same machine. The USARSim image
server frame rate was always lower than 9 fps. USARSim
was running on a Pentium 4 2.0 Ghz computer and the two
computers were connected with a short 100 Mbps ethernet
cable (to reduce latency). While a lower frame rate can be
useful to run more robots on the same computer, it can pro-
duce unexpected behaviors, because some programs heavily
rely on the correct timings of the sensor and image data
event delivery.

3.2 CMU CMPack 2004
CMU's CMPack 2004 [8] code is also one of the major

players in the RoboCup. However, due to the aging factor
it won't compile cleanly with a recent gcc version (i.e. 4.0
onwards). After patching the problems and relaxing the
new gcc diagnostics and restrictions (with -fpermissive),
the code run without much problems under openSDK.

3.3 Tekkotsu
Tekkotsu [7] is a general-purpose development framework

for the AIBO. Although the latest release at time of writ-
ing (3.0) didn't compile with gcc 4.1, the development CVS
version compiled just �ne, without any kind of modi�ca-
tions. However, it was not possible to run Tekkotsu under
openSDK because of a "dirty" trick that it uses to speed-up
the compilation time (it searches and replaces binary strings
by "hand" in an object �le). As a result, when trying to run
Tekkotsu, openSDK would fail to load and report missing
symbols, due to the broken ELF symbol table. Further in-
vestigation on how to �x the problem was not carried on.

4. KNOWN LIMITATIONS
During this work we found many bugs in the toolchain

programs and in most debugging software we tried. There-
fore we describe here the limitations we came across. We
also describe some known limitations in openSDK itself.



4.1 Multiple Robots
Running multiple robots on the same machine with openSDK,

while possible, poses some problems. The most obvious
is the processing power (in particular the latency of com-
mands, because of the real-time processing as insured by the
AIBO Operating System), although with the arise of multi-
core CPUs the problem should smooth down very quickly.
Other problem is the network ports used by the robots, as
most of them will bind to the same ports. This is important
because the host Operating System (in this case, linux) will
refuse to have multiple listeners on the same port. Some
RoboCup teams (e.g. German Team [5]) already bind each
of their robots to di�erent ports, though.

4.2 Operating Systems
openSDK currently only supports the Linux platform. This

means that we were not able to run the German Team 2004
[5] code due to the lack of support of the Cygwin platform.

4.3 Pthreads implementations
openSDK is a highly concurrent program and thus re-

quires a good Pthreads implementation. We found a bug in
the old LinuxThreads Pthreads implementation that didn't
allow openSDK to run correctly. As this implementation
is deprecated, it is advised to use the new NTPL Pthreads
implementation (the default since glibc 2.4 and most recent
linux distributions).

4.4 Debugging Tools
Most debugging tools used (Valgrind, GDB and Intel Thread

Checker) have shown several limitations when instrument-
ing openSDK while running OPEN-R programs (all prob-
lems have already been reported to their authors). Some
workarounds have already been added to the code, although
most tools still fail miserably with the chroot() call that
openSDK issues (to guarantee that it handles the abso-
lute paths - /MS/... - correctly). It was added an op-
tion to openSDK to skip the chroot() call (�chroot=no),
that should be used when debugging with one of the men-
tioned programs, otherwise they won't produce meaningful
stack traces. Not using chroot() shouldn't be a problem
as openSDK wraps the open() and fopen() function calls
and handles the absolute paths automatically. openSDK
isn't able (at least yet) to wrap C++ functions calls (e.g.
fstream::open()), though.

5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions
In this paper we have described an open-source imple-

mentation of OPEN-R that is able to run code designed for
AIBO on a standard computer, as well as act as a simulator,
or emulate the AIBO on a di�erent robotic hardware plat-
form, and all this without any modi�cation to the sources
(only a recompilation is necessary).
Although openSDK is still far from perfect, it already consti-
tutes a great platform for all AIBO developers by reducing
the development cycle time considerably.

5.2 Future Work
openSDK currently only supports Linux, but ongoing work

to support Cygwin and MacOS is being done. Supporting

AIBO models other than ERS-7 is also something we would
like to accomplish. Sound input and output will be also
looked at in the future.
In terms of simulation, we would like to be able to control
more accurately the speed of the simulation (real-time and
speedup/slowdown) and allow the user to control it. We
also would like to add camera image �lters to degrade the
image fed by the simulator, to provide a more realistic en-
vironment.
We will also export some USARSim speci�c features into
userland code and/or through an interface. These features
include: ball and robots manual repositioning, as well as ab-
solute location, orientation and velocity input for each robot
(so that one can run a simulation without image processing,
thus saving much computing power).
A full emulator of the AIBO platform based on an exis-
tent MIPS emulator (e.g. QEMU) is also being considered.
This would allow running an AIBO memory stick without
any kind of modi�cations (not even recompilations would
be necessary) in another platform (including another legged
robot).

6. ACKNOWLEDGMENTS
The authors gratefully acknowledge the contribution of

Marco Barbosa, who developed the initial network imple-
mentation (OPEN-R ANT) for openSDK and all the SocRob-
4LL team for their feedback.
This work was supported by the Portuguese Fundação para
a Ciência e Tecnologia under ISR/IST pluriannual fund-
ing through the POS_Conhecimento Program that includes
FEDER funds.

7. REFERENCES
[1] U. Drepper. How To Write Shared Libraries 4.0, 2006.

[2] L. Iocchi, L. Marchetti, D. N. and. P. U. Lima,
M. Barbosa, H. Pereira, and N. Lopes. SPQR +
ISocRob - RoboCup 2007 Quali�cation Report, 2007.

[3] K. LeBlanc, S. Johansson, J. Malec, H. Martínez, and
A. Sa�otti. Team Chaos 2004, 2004.

[4] N. Nethercote and J. Seward. Valgrind: A Framework
for Heavyweight Dynamic Instrumentation. In PLDI
2007, 2007.

[5] T. Rofer, R. Brunn, I. Dahm, M. Hebbel, J. Ho�mann,
M. Jungel, T. Laue, M. Lotzsch, W. Nistico, and
M. Spranger. German team robocup 2004. 2004.

[6] J. Seward and N. Nethercote. Using Valgrind to detect
unde�ned value errors with bit-precision. In
USENIX'05 Annual Technical Conference, 2005.

[7] E. Tira-Thompson. A Rapid Development Framework
for Robotics. Master's thesis, CMU, 2004.

[8] M. Veloso, P. Rybski, S. Chernova, D. Vail, S. Lenser,
C. McMillen, J. Bruce, F. Tamburrino, J. Fasola,
M. Carson, and A. Trevor. CMPack'04: Team Report,
2004.

[9] J. Wang, M. Lewis, and J. Gennari. A game engine
based simulation of the NIST Urban Search & Rescue
arenas. In 2003 Winter Simulation Conference, 2003.

[10] M. Zaratti, M. Fratarcangeli, and L. Iocchi. A 3d
simulator of multiple legged robots based on usarsim.
In Robocup Symposium, 2006.


