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1 Introduction and Overview 
The ISocRob team and its regular participation in RoboCup since 1998 are the 

competition side of the SocRob project1, a research endeavor of the Intelligent 
Systems Laboratory of the Institute for Systems and Robotics at Instituto Superior 
Técnico (ISR/IST), Technical University of Lisbon, which started in 1997. The 
project goal is to develop a novel approach to the design of a population of 
cooperative robots based on concepts borrowed from Systems Theory [3] and 
Distributed Artificial Intelligence [6]. ISocRob has participated in RoboCup Middle-
Size League (MSL) in 1998, 1999, 2000 (European Cup), 2001, 2003 and 2004, as 
well as in the Soccer Simulation League in 2003 and 2004, and started a new Four-
Legged League (4LL) team in 2005. We have pre-registered for MSL and 4LL this 
year. 

For the SocRob project, RoboCup 4LL offers the advantages of a stable hardware 
platform, common to other teams, so that a new team can start from existing hardware 
and software. Furthermore, our regular participations in the MSL have taught us many 
lessons concerning the desirable features of functional and software architectures for 
cooperative robot teams, and we want to test our concepts by using a common 
functional architecture in the two leagues, as well as developing a software 
architecture shared to the maximum possible extent by the MSL and 4LL robots. 

Our approach to the development of a 4LL team as a case study for testing some 
of our research interests was as follows: 

1. Select, among the available code from other teams, the one closest to our 
architecture concepts, modular enough to allow building up new code 
without having to modify (at least substantially) the initial basis. 

2. Adapt the code to fit our functional architecture concepts. 
3. Use, from the existing code, most of the work concerning individual 

behaviors, self-localization, individual ball (and other objects) localization. 
4. Develop new concepts and code concerning cooperation and teamwork, 

mainly cooperative navigation (mutual localization of teammates, formation 
control), cooperative object localization (e.g., using our past work on sensor 
fusion [8], cooperative plan execution. 

In this Team Description Paper, we will describe our reference functional and 
software architectures, its implementation from available code, and the steps already 
taken towards building a cooperative robot team. 

                                                           
1 The acronym of the project stands both for Society of Robots and Soccer Robots, the case 

study where we are testing our population of robots. 



2 Functional and Software Architectures 
The basic functional architecture of the SocRob team is organized in three levels 

of team member responsibility, according to the relations among robots they imply, 
similar to those proposed in [5]: 

• Organizational: Those which are related to the team’s organization, that is, 
the assignment of roles to players. 

• Relational: Those involving two or more teammates, such as performing a 
pass or coordinately defending the goal. 

• Individual: Those which are executed by one single robot.  
Since behaviors are externally displayed and emerge from the application of 

certain operators, the functional architecture can also be viewed from an operator 
standpoint, with three levels of decision: 

• Team Organization Level, where, based on the current world information, a 
strategy (i.e., what to do) is established, including a goal for the team. This 
level considers issues such as modeling the opponent behavior to plan a new 
strategy. Strategies may simply consist of enabling a given subset of the 
operators at each robot, in result of role assignments to each team member. 
In robotic soccer, basic roles can be Goalkeeper, Defender, 
Attacker and Full Player (i.e., simultaneously Defender and 
Attacker). Only the captain robot will have the organization level 
enabled. Should the captain “die”, the next robot in a pre-specified list will 
have its organization level enabled and become the captain. 

• Behavior Coordination Level, where switching among operators, both 
individual and relational, occurs so as to coordinate behavior execution, at 
each robot and among the team robots, towards achieving the team goal, 
effectively establishing the team tactics (i.e., how to do it). We have used 
finite state automata and a rule-based system before in the MSL team to 
implement this level, but other alternative representations are possible, such 
as Petri nets [2]. 

• Behavior Execution Level, where primitive actions run and where they 
interface the sensors and the actuators. Primitive actions are linked to each 
other to implement an operator. Currently, every operator (representing a 
given behavior) is implemented as a finite state automaton whose states are 
the primitive actions and transitions are associated to events that are detected 
by the system. Behaviors can be individual, if their corresponding operators 
run in one robot only, or relational, if two or more robots are running 
operators that are coordinated through commitments and synchronization 
messages to achieve a common goal (e.g., to pass a ball, to avoid moving 
simultaneously towards a ball, to cover a field region while the teammate 
advances in the field through role exchanges). As a result of the latter, a 
relational behavior is displayed. 

The software architecture is the practical implementation of the functional 
architecture, which could be done in any programming language and using different 
software technologies. 

The new software architecture of the SocRob project, depicted in Fig. 1, keeps the 
fundamental principles of the functional architecture the group has been following 



      

since 1999 [7]. Nevertheless, it was completely re-designed to be re-written on C++, 
as well as to improve the matching between software modules and the main functional 
concepts.  The decision-making modules of the architecture are shared between the 
4LL and MSL code. Communications-, sensor- and actuator-related modules can not 
be shared due to their inherent specificity and hardware dependence. 

 
Fig. 1 – SocRob project new software architecture. 

 
A brief summary of the main architecture modules follows. 
The World Info is an object which stores the relevant information about the world, 

such as robot postures, ball position or current score. This information can be 
obtained either by sensor information or messages received from teammates or the 
referee box. 

Table 1. Correspondence between software architectures 

Our Team German Team 
World Info 
Incoming 

Messages 
XABSL Input Symbols 

Outgoing 
Messages 

XABSL Output 
Symbols 

Primitive Actions XABSL Options 
The Behavior Executor decides which primitive action to execute at each step, 

given a selected behavior. World Info data is used to take the decisions. Events are 
determined from World Info data as well, and are used to trigger internal state 
changes in the finite state automaton implementing a behavior. The Behavior 
Coordinator selects which behavior to run next, while the Team Organizer selects 
which role the player will perform. The selected role will only affect the set of 



behaviors a player can run, e.g., if a player has the role of defender, it will only be 
authorized to run defensive behaviors. 

A decision was taken to use the German Team’s architecture [12], as well as part of 
its code, and map it to the SocRob functional architecture. Table 1 lists the relevant 
correspondences. We have also used the Dutch Team 2005 patch [13], due to the 
improved cognition algorithms, as well as the updates for the new rules. Our diff is 
made against German Team 2004 code patched with Dutch Team 2005 diff. 

3 Addressed Research and Future Challenges 
As explained in the previous section, our main research challenges at the moment 

concern: 
• Cooperative Navigation, where the knowledge about the localization of 

team members can be improved by mutual observation (e.g., as in [10] or 
[11]) – ongoing work. This topic will also include formation control, so as 
to distribute the robots across the field dynamically, e.g., by prescribing 
at each step the desired relative distances and orientations between 
teammates; 

• Cooperative Object Localization, where the ball, other relevant objects 
(such as the poles around the field) and opponents are observed by more 
than one team member, and the resulting information is shared and fused 
using a Bayesian approach – ongoing work, mostly based on past 
developed work for the MSL team [8]; 

• Cooperative Plan Execution, mostly related to relational behaviors, 
where each involved robot executes part of the plan while regularly 
synchronizing it with the related teammates. This topic has been subject 
of major attention so far and will be more detailed in the sequel. 

A Discrete Event Systems [3] based approach has been followed to the modeling 
of behaviors and their coordination. Individual behaviors are modeled by finite state 
automata (FSA), and some work has been done by the team on optimal task planning 
by composing primitive actions into FSA, given the uncertainty associated to the 
action effects and the goal of minimizing the time to a goal [9]. Due to their capability 
to model concurrency, Petri nets [2] are particularly suited for modeling relational 
behaviors, as they can capture the concurrent nature of exchanging messages between 
teammates while each of them is executing their own primitive actions. Petri net 
models have been developed based on concepts borrowed from Joint Commitment 
Theory [1][4]. 

The communication (either implicit, e.g., by mutual observation, or explicit, e.g., 
using communications) between the two players involved in the relational behavior is 
essential. 

The messages sent by the two players can be of two different kinds: 
• commitment related messages – to establish or break a commitment; 
• behavior flow messages – to synchronize the execution of the behavior by 

both parties. In the pass example, the player who would receive the pass 
would send a message saying that it was waiting for the pass. 

In our work, behaviors are modeled by PNs as follows: 



      

• each place in the Petri net is labeled by an associated primitive action (e.g., 
moving to a given posture, kicking the ball, 
intercepting the ball) or resource (e.g., availability of an object, or 
of a robot, or of a communication signal); 

• each transition in the Petri net is labeled by an event, defined in this context 
as occurring when a change of (logical conditions over) predicate values 
(from TRUE  to FALSE or FALSE to TRUE) takes place, e.g., event 
lost_ball occurs when predicate has(ball)value changes from TRUE  
to FALSE. 

A token in a place means that the primitive action associated to that place is 
currently active (i.e., it is running) or that the resource labeling that place is currently 
available. Transitions are enabled when all its input places have at least one token 
each, meaning that the pre-conditions for the next step are satisfied. A transition is 
fired if its enabled and the associated event occurs.  

 
Acknowledgments 

This work was supported by ISR/IST Pluriannual funding from the Fundação 
para a Ciência e a Tecnologia and POSI, in the frame of the EC FP6. 
 
References 
[1] P. Cohen, H. Levesque. “Teamwork”, Nous, Vol. 35, pg. 487-512. (1991) 
[2] C. Girault, R. Valk, Petri Nets for Systems Engineering, Springer, (2003) 
[3] S. Lafortune, C. Cassandras, Introduction to Discrete Event Systems, Kluwer Academic 
Publ., (1999) 
[4] B. Van der Vecht, P. Lima, “Formulation and Implementation of Relational Behaviors for 
Multi-Robot Cooperative Systems”, RoboCup-2004: Robot Soccer World Cup VIII, Springer-
Verlag, Berlin (2005) 
[5] A. Drogoul, A. Collinot, ''Applying an Agent-Oriented Methodology to the Design of 
Artificial Organizations: A Case Study in Robotic Soccer'', Autonomous Agents and Multi-
Agent Systems, Vol 1, pp. 113-129, Kluwer Academic Publ., (1998)  
[6] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, 
Addison-Wesley, 1999 
[7] P. Lima, L. Custódio, R. Ventura, P. Aparício, “A Functional Architecture for a Team of 
Fully Autonomous Cooperative Robots”, RobCup-99: Robot Soccer World Cup III, Springer-
Verlag, Berlin (1999) 
[8] P. Marcelino, P. Lima, “Bayesian Sensor Fusion for Cooperative Object Localization and 
World Modelling”. Proceedings of the 8th Conference on Intelligent Autonomous Systems, 
Amsterdam, The Netherlands (2004) 
[9] B. Damas, P. Lima, “Stochastic Discrete Event Model of a Multi-Robot Team Playing an 
Adversarial Game”, Proc. of 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles 
- IAV2004, Lisboa, Portugal, (2004) 
[10] S. I. Roumeliotis, G. A. Bekey. “Distributed Multirobot Localization”, IEEE Transactions 
on Robotics and Automation, vol. 18, no. 5, Ooctober 2002,  
[11] D. Fox, W. Burgard, H. Kruppa, S. Thrun, “A Probabilistic Approach to Collaborative 
Multi-Robot Localization”, In Special issue of Autonomous Robots on Heterogeneous Multi-
Robot Systems, 8(3), 2000,. 
[12] T. Röfer et al, “German Team – RoboCup 2004”, Center for Computing Technology, 
Universität Bremen, pp. 23-116. (2004) 
[13] J. Sturm, A. Visser, N. Wijngaards , “Dutch Aibo Team: Technical Report RoboCup 
2005” 


