Boosting Inlining Heuristics

Nuno P. Lopes
November 29, 2010

Abstract

Most compilers’ algorithms are not optimal, since they often target
either NP-hard or even undecidable problems. Therefore, these algorithms
require good heuristics in order to solve their problems efficiently and
to compute a good solution at the same time. However, deriving good
heuristics is a time-consuming task, since each heuristic must be tuned
for each particular architecture the compiler aims to support. In this
paper we apply statistical techniques (namely boosting) to automatically
derive a heuristic for inlining.

1 Introduction

Most compilers’ algorithms target either NP-hard or even undecidable problems.
Therefore, these algorithms are not optimal and rely on heuristics to deliver good
results in an efficient manner. However, producing these heuristics is a time-
consuming task. Each heuristic must be carefully tuned for each combination
of CPU, operating system, memory architecture, cache size, and so on, that the
compiler supports.

In this paper we apply techniques from the statistical domain to the problem
of automatically deriving heuristic functions for compilers. We apply the Ad-
aBoost algorithm [6] to derive a heuristic function for the inlining optimization.
This function decides whether a given call site should have its callee inlined or
not, and therefore it influences the final binary size and its performance.

Inlining can significantly improve the performance of a program, since it
not only removes the overhead of the call instructions sequence, but it may
expose opportunities for other optimizations. However, excessive inlining may
negatively influence the performance of a program due to a possible increase in
instruction cache misses and increased register pressure. It can also result in a
bigger binary file (not desirable for embedded systems).

In this paper, we derive two heuristic functions for the inlining compiler
optimization: one that optimizes for speed, and one that optimizes for code size.
The techniques presented in the paper are directly applicable to other objective
functions and to other heuristic functions commonly found in compilers.

2 Related Work

We briefly describe other attempts to apply machine learning techniques to the
domain of compiler optimizations.

Dean and Chambers [5] memoize inlining decisions and their impact on the
program’s running time.

Monsifrot et al. [12] applied a boosting algorithm with decision trees to
derive a heuristic for loop unrolling.

Stephenson et al. [14] propose the usage of genetic algorithms to automati-
cally derive heuristic functions for compilers. They generated heuristics for the
hyperblock formation, register allocation, and data prefetching algorithms.

Cavazos and Moss [1] used a rule set induction algorithm to derive a heuristic
to predict which blocks will benefit the most from instruction scheduling.

Cavazos and O’Boyle [3] applied a genetic algorithm to tune the five param-
eters of the inliner of the Jikes compiler.

Cavazos et al. [2] used a rule induction algorithm to derive a heuristic to
choose which register allocation algorithm should be used in each function.

The MILEPOST project [7] uses genetic algorithms to predict the best opti-
mization ordering for each program. The authors of COLE [8] propose a method
based on SPEA2 Pareto optimization to derive the set of optimization passes for
each of the optimizations levels (e.g., ¢-02’, ‘-O3’, -Os’, etc). A recent study [4]
showed that tuning the optimizations order yields significant speedups over the
manually derived orders shipped in current compilers.

Leather et al. [10] applied genetic algorithms to learn the best set of features,
where the feature space is described by a grammar.

Leather et al. [11] describe a methodology to compare the performance of
different versions of the same program. Instead of always running the programs
for a fixed number of times, they use a statistical approach to decide how many
times the programs should be run, since the noise in the measurements can be
significant [13].

3 Methodology

Our methodology to derive a heuristic function for inlining consists in the fol-
lowing steps:

1. Compile a set of benchmark programs to the compiler’s intermediate rep-
resentation (IR).

2. Run each program with its input and measure the running time, IR size,
and binary size.

3. For each call site in each program, inline the function call, run the bench-
marks, and record the running time, IR size, binary size, and the features.

4. Decide for each call site if the inlining was beneficial.

5. Train a heuristic function using AdaBoost and incorporate it in the com-
piler.

In the following sections we detail each of the points above.

3.1 Compilation of the Benchmarks

We first compile a set of benchmark programs to IR without performing any
optimization. We use the clang C/C++ front-end of the LLVM compiler [9] to
generate LLVM bitcode. After this step, we have one .bc file for each program
that contains all of its code.

3.2 Measuring the Baseline Performance

The second step is to run each program with the training input to measure the
baseline performance (i.e., measure the performance of the program without
performing inlining). The programs are compiled with the ‘-O2’ set of opti-
mizations, with the exception of the inlining pass that is disabled. We measure
the running time, the LLVM bitcode size, and the binary size.

3.3 Inlining Trials

In the third step we compile and run each program several times. One for each
call site'.

In each iteration, we inline a different call site, and we record the value of
the features (listed in Appendix A) for that particular call site. We modified
the LLVM’s inline optimization to do that. The program is then run, and the
running time, the LLVM bitcode size, and the binary size are logged together
with the features.

This task can be easily parallelizable, since each iteration can be run inde-
pendently, although we have not done so.

3.4 Categorization

In the fourth step, we have a list of features and measurements, and we need
to decide which inlining trials were beneficial. Answering this question depends
on the objective: we may want to optimize for speed, we may want to optimize
for code size, or a combination of both.

Optimizing for size seems trivial, since we just need to decide to inline when
the inlining resulted in a smaller binary. However, since the binaries are padded,
small reductions (or increases) in the code size of a function do not impact the
final binary size (or even the code section — .text — size). On the other hand,
the size of the bitcode is not padded, and thus the changes will be visible there.
However, changes in the bitcode size are not directly related with changes in the
binary size, due to the long chain of optimizations, instruction selection, and
register allocation algorithms and heuristics, through where the bitcode has to
pass by.

Optimizing for speed is difficult. We need to run the programs over a set
of representative inputs and measure the difference in the running time against
the baseline time. As noted in [13], these kind of measurements are very noisy.
We chose to run each program for three times and then use the average of
the three runs. If the average of the running time is similar with the baseline
time (£0.5%), we choose to inline if there was a reduction in the binary size.

1We actually limit the number of runs of each program by 500, so that the training step
finishes in a reasonable time.

Test Name # Functions | # Call sites | Bitcode size | Binary size
400.perlbench 1,663 14,725 3,170,988 889,703
401.bzip2 73 330 178,264 57,134
429.mcf 23 78 28,192 17,327
445.gobmk 2,582 9,606 3,759,744 3,530,303
456.hmmer 250 2,402 354,516 135,143
458.sjeng 124 1,238 280,092 123,812
462.libquantum 79 354 35,400 24,450
464.h264ref 462 3,395 1,390,112 505,273

Table 1: Benchmark programs characteristics: number of functions, number of
call sites, and bitcode and binary size without performing inlining (in bytes).

Otherwise, we inline if the running time was smaller than the baseline time,
regardless of the bitcode or the binary size.

3.5 Training

The final step consists in generating a heuristic function from the data we col-
lected. We use the AdaBoost algorithm [6] to do the training. After generating
the heuristic function, we incorporate it in the compiler.

4 Evaluation

We run two set of experiments: one to optimize the code for speed, and one
to optimize for code size. The objective was to check whether the proposed
methodology produces better inlining heuristics that those found in the compil-
ers for these two common usage scenarios.

4.1 Setup

We implemented our experiments in the LLVM compiler [9] 2.8-svn (r107138)
with the clang front-end, and we used the ENTOOL MATLAB classification
toolbox?. We used the AdaBoost algorithm [6] (40 iterations) for learning.

We used the integer SPEC CPU 2006 benchmarks (only those in C) for
training and for the evaluation. The 403.gcc benchmark was excluded from our
tests because, at time of writing, clang was miscompiling it. The characteristics
of the benchmark programs are shown in Table 1.

The training was done with the ‘train’ dataset, and the final benchmarking
was done with the ‘ref’ dataset. We limited the number of inline trials to 500
call sites per program for training. Each benchmark/training run was performed
three times, and we considered the average of the running times.

The benchmarks were run in a machine with an Intel Core 2 Duo 3.0 GHz
CPU and with 4 GB of RAM, running the linux kernel 2.6.33.

2 Available from http://www.j-wichard.de/entool/.

Test Name No inline | LLVM heur. | Our heur. Improvement
No inline | LLVM
400.perlbench 535 532 534 0.2% | -0.5%
401.bzip2 677 689 676 0.2% 2.0%
429.mcf 374 361 367 21% | -1.5%
445.gobmk 579 574 564 25% | 1.7%
456.hmmer 843 842 846 -0.3% | -0.5%
458.sjeng 653 644 656 -0.5% | -1.9%
462.libquantum 1061 1061 1057 0.4% 0.4%
464.h264ref 852 843 874 -2.6% | -3.6%
Average 0.2% | -0.5%

Table 2: Running time of the programs without performing inlining, and per-
forming inlining with the LLVM heuristic and with our heuristic (in seconds),
plus the percentage of improvement of the running time with our heuristic over
the no inlining and the LLVM heuristic builds.

4.2 Optimizing for Speed

The results for the heuristic that optimizes for speed are shown in Table 2. Our
heuristic improves the performance over the build with no inlining in five tests,
achieving 0.2% of average performance improvement, while LLVM’s heuristic
achieves 0.7%. When compared with LLVM’s heuristic, we improve the running
time of three tests (including 401.bzip2, which is the only test where LLVM
degrades the performance). However, we degrade the performance of five tests,
achieving an average decrease of 0.5%. This means that LLVM’s current inlining
heuristic is better in average than our automatically generated one.

In terms of binary size, the increased performance of LLVM’s heuristic comes
at the cost of a 17% increase in average, while ours shows only a 2.6% increase
in average.

The trained function achieves 94% of accuracy in the training data.

4.3 Optimizing for Code Size

The results for the heuristic that optimizes for code size are shown in Table 3.
We can see that the heuristic reduces the code size for five tests, while it does
not significantly increase the code size for the other three tests. The average
reduction is still 3.3% when compared with compilation with no inlining at all.
When comparing with LLVM’s ‘-Os’ inlining heuristic, i.e., the heuristic that
optimizes for code size, our heuristic still shows an average reduction of 0.9%,
although there is a slight increase in code size in four tests.

In terms of performance, our heuristic increases the running time by 0.2%,
which can be explained by the fact that we trained the heuristic for aggres-
sive code size reduction without any attempt to improve (or at least do not
deteriorate) the performance. LLVM’s heuristic reduces the running time by
0.5%.

The trained function achieves 95% of accuracy in the training data.

Test Name LLVM heuristic Our heuristic Reduction
bitcode binary bitcode binary | No inline | LLVM
400.perlbench 3,322,928 910,766 | 3,206,000 886,686 -0.3% | -2.6%
401.bzip2 191,536 58,939 194,780 58,994 3.2% 0.1%
429.mcf 30,820 13,956 28,728 13,967 -19.6% 0.1%
445.gobmk 3,817,472 | 3,526,082 | 3,782,132 | 3,525,929 -0.1% 0.0%
456.hmmer 385,832 139,893 355,728 133,807 -1.0% | -4.4%
458.sjeng 290,420 125,465 288,532 125,763 1.6% 0.2%
462.libquantum 34,240 21,671 31,924 21,913 -10.4% 1.1%
464.h264ref 1,476,076 515,345 | 1,447,768 506,054 02% | -1.8%
Average -3.3% | -0.9%

Table 3: Bitcode and binary sizes of the programs compiled with the LLVM
‘-Os’ inlining heuristic and with ours, plus the percentage of reduction of the
binary size when compared with no inlining and with LLVM’s inlining heuristic.

5 Future Work

We leave as future work several improvements to the performance of the pro-
posed method.

First, as each inlining trial is independent of the others, this task can be
easily parallelized (provided that a cluster of identical machines is available).

Second, there is a more efficient way to do the inlining trials than inlining
just one call site per benchmark run as we currently do. A possible way to
do multiple trials per run is to inline one call site per function and then use
a profiler or instrument the program to dump the CPU performance counters
with function granularity. Then, instead of using the overall running time of the
program to decide whether inlining was beneficial, we gather the running time
of each function, and thus of each call site (since we only inline at most one call
site per function), to make several decisions per run. The number of runs can
be minimized if the choice of call sites is cleverly guided by the call graph.

These two improvements combined should allow the number of inlining trials
to grow by several orders of magnitude, potentially yielding better heuristics.

6 Conclusions

In this paper, we presented a methodology to derive heuristics for compiler
optimizations in a completely automated fashion, which uses the AdaBoost
algorithm for learning.

We applied the proposed method to derive two heuristics for the inlining
algorithm of the LLVM compiler. One that optimizes for speed, and another
that optimizes for code size. The first heuristic improves the running time, but
by a smaller amount than LLVM’s heuristic. The second heuristic, consistently
reduces the binary size, and reduces more in average than when using LLVM’s
heuristic.

There are three explanations for the bad results achieved by the first heuris-
tic. First, the number of features is small, and some features could be split in
multiple features as well. Second, the performance impact of inlining one partic-
ular call site is hard to judge, since the improvement or decrease of performance

can be easily misclassified as noise in the experiment. Third and last, the recent
x86 hardware is not a good target to test inlining algorithms, since the cost of
a call instruction is negligible. The performance improvements should be much
more noticeable in CPUs without out-of-order execution, VLIW CPUs, or CPUs
that do not have the call instruction excessively optimized.

References

[1]

[10]

J. Cavazos and J. E. B. Moss. Inducing Heuristics To Decide Whether To
Schedule. In Proc. of the ACM SIGPLAN 2004 Conference on Program-
ming Language Design and Implementation (PLDI), June 2004.

J. Cavazos, J. E. B. Moss, and M. F. P. O’Boyle. Hybrid Optimizations:
Which Optimization Algorithm to Use? In Proc. of the 15th International
Conference on Compiler Construction (CC), Mar. 2006.

J. Cavazos and M. F. P. O’'Boyle. Automatic Tuning of Inlining Heuris-
tics. In Proc. of the ACM/IEEE SC2005 Conference on High Performance
Networking and Computing, Nov. 2005.

Y. Chen, Y. Huang, L. Eeckhout, G. Fursin, L. Peng, O. Temam, and
C. Wu. Evaluating Iterative Optimization Across 1000 Datasets. In Proc.
of the 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), June 2010.

J. Dean and C. Chambers. Towards Better Inlining Decision Using Inlining
Trials. In Proc. of the 1994 ACM Conference on LISP and Functional
Programming, June 1994.

Y. Freund and R. E. Schapire. A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting. Journal of Computer and
System Sciences, 55(1):119-139, Aug. 1997.

G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks,
B. Mendelson, E. Bonilla, J. Thomson, H. Leather, C. Williams,
M. O’Boyle, P. Barnard, E. Ashton, E. Courtois, and F. Bodin. MILE-
POST GCC: machine learning based research compiler. In Proc. of the
GCC Developers’ Summit, July 2008.

K. Hoste and L. Eeckhout. COLE: Compiler Optimization Level Explo-
ration. In Proc. of the 6th annual IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), Apr. 2008.

C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proc. of the 2nd International
Symposium on Code Generation and Optimization (CGO), Mar. 2004.

H. Leather, E. Bonilla, and M. OBoyle. Automatic Feature Generation
for Machine Learning Based Optimizing Compilation. In Proc. of the 18th
International Conference on Compiler Construction (CC), Mar. 2009.

[11]

[12]

[13]

H. Leather, M. O’Boyle, and B. Worton. Raced Profiles: Efficient Selec-
tion of Competing Compiler Optimizations. In Proc. of the ACM SIG-
PLAN/SIGBED 2009 Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), Apr. 2009.

A. Monsifrot, F. Bodin, and R. Quiniou. A Machine Learning Approach
to Automatic Production of Compiler Heuristics. In Proc. of the 10th
International Conference on Artificial Intelligence: Methodology, Systems,
and Applications (AIMSA), Sept. 2002.

T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Producing
Wrong Data Without Doing Anything Obviously Wrong! In Proc. of the
14th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Mar. 2009.

M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly. Meta
Optimization: Improving Compiler Heuristics with Machine Learning. In
Proc. of the ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementation (PLDI), June 2003.

A Feature List

Number | Description Type
fto Number of callee’s arguments integer
ft1 Is the callee a library function that is known to be small? boolean
ft2 Direct function call? boolean
ft3 Callee returns? boolean
ft4 Estimate of the benefit of localizing arguments integer
ftb Estimate of the benefit of constant propagation through arguments | integer
ft6 Callee uses setjmp()? boolean
ft7 Callee calls itself recursively? boolean
ft8 Callee has indirect branches? boolean
ft9 Callee uses dynamic stack allocation? boolean
ft10 Callee’s number of instructions integer
ft11 Callee’s number of basic blocks integer
ft12 Callee’s number of function calls integer
ft13 Callee’s number of instructions with vector operands integer
ft14 Callee’s number of return statements integer
ft15 Callee’s number of users integer
ft16 Callee’s calling convention set

ft17 Callee’s linkage type set

ft18 Caller uses setjmp()? boolean
ft19 Caller calls itself recursively? boolean
ft20 Caller has indirect branches? boolean
ft21 Caller uses dynamic stack allocation? boolean
ft22 Caller’s number of instructions integer
ft23 Caller’s number of basic blocks integer
ft24 Caller’s number of function calls integer
ft25 Caller’s number of instructions with vector operands integer
ft26 Caller’s number of return statements integer

