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Abstract. Frequent configuration churn caused by maintenance, up-
grades, hardware and firmware failures regularly leads to costly outages.
Preventing network outages caused by misconfigurations is important for
ensuring high network availability. Dealing with production datacenters
with thousands of routers is a major challenge.
Network verification inspects the forwarding tables of routers. These ta-
bles are determined by the so-called control plane, which is given by the
steady state of the routing protocols. The ability to simulate routing pro-
tocols given router configuration files and thus obtain the control plane
is a key enabling technology.
In this paper, we present FastPlane, an efficient BGP simulator. BGP
support is mandated by modern datacenter designs, which choose BGP
as the routing protocol. The key to FastPlane’s performance is our
insight into the routing policy of cloud datacenters that allows the us-
age of a generalized Dijkstra’s algorithm. The insight reveals that these
networks are monotonic, i.e., route advertisements decrease preference
when propagated through the network.
The evaluation on real world, production datacenters of a major cloud
provider shows that FastPlane 1) is two orders of magnitude faster
than the state-of-the-art on small and medium datacenters, and 2) goes
beyond the state-of-the-art by scaling to large datacenters. FastPlane
was instrumental in finding several production bugs in router firmware,
routing policy, and network architecture.

1 Introduction

Preventing network outages caused by misconfigurations is important for ensur-
ing high network availability. It is particularly relevant for public cloud infras-
tructures where an outage can affect thousands of customers [35].

Computing the network control plane is a crucial building block to prevent
outages, as it consists of routing tables (RIBs) that determine network connectiv-
ity. These tables can be automatically inspected to check validity of configuration
intents related to connectivity, as well as fault-tolerance and performance.

The ability to compute control planes from router configuration files and
topology information enables static, dynamic, and design-time verification sce-
narios. Statically, i.e., before deploying a configuration into production, we first
compute the control plane and verify its properties. If all checks pass, the config-
uration can be deployed with increased confidence. Some configuration intents
can also be validated when the network is designed. For example, the computed
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control plane can demonstrate whether the required level of fault-tolerance and
load-balancing is achievable. Unfortunately, static checks are not sufficient, due
to bugs in router firmware. Hence there is a need for dynamic checking as well,
i.e., once a configuration is already deployed. Cross-checking the computed con-
trol plane with the one from production routers can uncover firmware bugs.

Due to lack of adequate validation tools, frequent configuration churn in dat-
acenter networks caused by maintenance, upgrades, hardware and firmware fail-
ures regularly leads to costly outages. Scaling control plane computation to thou-
sands of datacenter routers and network prefixes is still an open problem [42].

In this paper we present FastPlane, a tool for fast BGP simulation of
large datacenters. Support for BGP is mandated by best practices in modern
datacenter design, where BGP runs on each router [6, 31,32]. The key to Fast-
Plane’s scalability is our insight into the routing policy that is revealed through
a study of production configurations deployed by a major cloud provider. The
insight shows that the network is monotonic, i.e., route advertisements decrease
preference when propagated through the network [44]. It allows the deployment
of a generalized form of Dijkstra’s algorithm. FastPlane executes Dijkstra’s
algorithm over route advertisements instead of numeric path weights.

We adapt Dijkstra’s algorithm to directly perform route advertisement prop-
agation. Instead of numeric weight addition when traversing a graph edge, we ap-
ply routing policy determined by configuration files. The order of priority queue
is no longer arithmetic comparison, but route preference order determined by
BGP RFC/vendor specifications. The result corresponds to the control plane of
the datacenter network once it reached a stable state [25].

We evaluated FastPlane on all production datacenters of a major cloud
provider, and compared it with the state-of-the-art control plane verifier Batfish.
For small and medium datacenters, FastPlane is two orders of magnitude faster
than Batfish. For large datacenters, FastPlane finishes in a few minutes while
Batfish either times out after one CPU week or runs out of memory.

Control planes computed by FastPlane exposed several bugs. A bug in the
redistribution policy of connected routes was discovered by comparing computed
RIBs with expected entries specified by network operators. This bug was fixed
in production. A firmware bug that caused the RIB to contain different next-
hops than the forwarding table was caught by cross-checking production against
computed control planes. By similar cross-checking we also discovered a bug in
high level routing architecture that causes a non-deterministic drop in fault-
tolerance and load-balancing. Mitigation measures for this bug are underway.

In summary, we contribute a scalable algorithm for fast BGP simulation of
datacenter networks. It exploits monotonicity of datacenter routing policy, from
which we derive the applicability of a shortest path-based characterization of the
control plane, yet, for the first time, expressed over route advertisements instead
of numeric weights. Our implementation scales to large production datacenters,
which are out of reach for the state-of-the-art.
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RIB:
10.0.0.0/24 -> L0

RIB:
10.0.1.0/24 -> L0

R1
ASN 1 

R2
ASN 2

R3
ASN 3

…

RIB:
(empty)

Fig. 1. Example network with three routers running BGP. We show the initial RIB of
each router, i.e., before any information has been exchanged between neighbors.

! ---------------- Router R1 -----------------------

interface Ethernet0 ! physical port connected to R2

ip address 172.16.0.0/31

bgp router 1 ! run BGP with ASN 1

network 10.0.0.0/24 ! export prefix to neighbors

neighbor 172.16.0.1 remote-as 2 ! peer with R2

! ---------------- Router R2 -----------------------

interface Ethernet0 ! physical port connected to R1

ip address 172.16.0.1/31

bgp router 2 ! run BGP with ASN 2

! export prefix if any sub-prefix in RIB

aggregate-address 10.0.0.0/16 summary-only

neighbor 172.16.0.0 remote-as 1 ! peer with R1

neighbor 172.16.0.3 remote-as 3 ! peer with R3

Fig. 2. Configuration fragments for routers R1 and R2 in Fig. 1. R1 exports the prefix
used by directly connected servers. R2 aggregates and exports the prefix 10.0.0.0/16
whenever a more specific prefix exists in the RIB. At the same time, R2 blocks adver-
tisement of the more specific prefixes.

2 Datacenters and BGP

Modern datacenter designs choose BGP as the routing protocol to compute
RIBs [2, 23, 32]. By running BGP each datacenter router participates in a dis-
tributed best path computation, where information about the best paths is ex-
changed between direct neighbors. The cost metric is not, however, the number
of hops in the path, but rather a lexicographic order of several path attributes.

Each router has an autonomous system number (ASN). ASNs are used to
keep track of the path an advertisement has taken. Datacenter routers have
different ASNs between layers such that external BGP (eBGP) is used.

We will now show how BGP propagates best path information. Fig. 1 shows
an example network with three routers and Fig. 2 shows fragments of two con-
figuration files. RIBs are initialized with locally exported prefixes. For example,
router R1 exports 10.0.0.0/24, and therefore this prefix is inserted in its RIB.

The second step of BGP is to continuously exchange information with neigh-
bor routers about newly learnt prefixes and about prefixes that the router can
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RIB:
10.0.0.0/24 -> L0

RIB:
10.0.1.0/24 -> L0

R1 R2 R3
RIB:
10.0.0.0/24 -> R1 [s]
10.0.1.0/24 -> R3 [s]
10.0.0.0/16 -> null

10.0.0.0/24

RIB:
10.0.0.0/24 -> L0
10.0.0.0/16 -> R2

RIB:
10.0.1.0/24 -> L0
10.0.0.0/16 -> R2

R1 R2 R3

10.0.0.0/16

10.0.1.0/24
(a)

(b)

10.0.0.0/16

Fig. 3. Example of BGP running on the network of Fig. 1. [s] indicates a suppressed
entry, which will not be advertised to the neighbors.

no longer reach. In our example, R1 advertises 10.0.0.0/24 to R2 and, similarly,
R3 advertises 10.0.1.0/24 to R2, as can be seen in Fig. 3 (a). Since R2 does not
block any advertisement from its neighbors, both of these prefixes are installed
in the RIB of R2.

Router R2 has an “aggregate summary-only” command, which blocks any
sub-prefix of 10.0.0.0/16 from being advertised to neighbors. Therefore, the pre-
fixes received from R1 and R2 are marked with [s] in the RIB, meaning they
are suppressed. Additionally, the aggregated prefix is installed in the RIB.

Router R2 then advertises the new entries in its RIB to its neighbors, as
shown in Fig. 3 (b). The only new non-suppressed entry is 10.0.0.0/16 and it is
sent to both neighbors, which install it in their RIBs.

As a final step, routers R1 and R3 try to advertise the new prefix to their
neighbor (R2), but since this prefix was sent to them by R2 and BGP does not
send a prefix back to the router that advertised it, routers R1 and R3 do not
advertise anything further. Therefore, the RIBs in Fig. 3 (b) are the stable state
of the network and no further communication occurs until some RIB changes.

Although we have presented the execution of BGP as a sequence of steps,
the protocol does not run in a synchronous way: advertisements can be sent in
any order.

3 Illustration

In this section we illustrate several key aspects of our algorithm. The first exam-
ple introduces the algorithm through a simple step-by-step run and shows how
different prefixes interact with each other. The second one focuses on how the
order of propagation of route advertisements through the network is determined
by our algorithm, and highlights how this order is fundamentally different from
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R1 R2

R3

R4

10.0.1.0/24 Agg. 10.0.0.0/16 10.0.1.0/24

10.0.0.0/24

Fig. 4. Example network with four routers and prefixes they export. R2 aggregates
10.0.0.0/16.

the propagation happening during an actual, distributed execution of BGP. The
last example shows that preference decrease across route advertisement is a nec-
essary condition, as otherwise our algorithm fails to compute a correct answer.

For each example we assume that a router named Ri is configured to have
the AS number i and they run eBGP.

3.1 Prefix Interaction

First we show how our algorithm computes routing tables for the example net-
work of Fig. 4.

Each router R1, R3, and R4 exports a single prefix. Router R2 aggregates
sub-prefixes of 10.0.0.0/16. This prefix is initially not exported by R2 because
R2 has no sub-prefix in its RIB to trigger the aggregation.

In the first step of the algorithm, we collect all seed advertisements, i.e.,
all advertisements that routers in the network export on their own. In this
example, we have three such advertisements that we will represent as tuples
(router , prefix ,AS path). Note that in practice BGP advertisements have many
more attributes, but for the sake of simplicity we omit them. We use 〈〉 to repre-
sent the empty AS path. The seed advertisements are a1 = (R1, 10.0.1.0/24, 〈〉),
a3 = (R3, 10.0.0.0/24, 〈〉), and a4 = (R4, 10.0.1.0/24, 〈〉). These advertisements
are then grouped by prefix as follows.

((10.0.0.0/24, {a3}), (10.0.1.0/24, {a1, a4}))

Our algorithm will now iterate over this list of seeds and consume its elements.
Later we will see how additional items are placed on the list.

Routes are computed for each prefix individually, since routing policies may
differ for different prefixes. We need to start with more specific prefixes and
continue with less specific prefixes, for reasons that will be explained later. In
our example, the list only has two prefixes and they have equal prefix length,
which is 24, so they are incomparable and hence we can pick either of them
arbitrarily. We chose to start with 10.0.0.0/24.

After we picked the prefix, we consider the corresponding set of seed adver-
tisements, {a3}. Now we propagate this set of advertisements to every router.
That is, every router needs to learn a best path to reach 10.0.0.0/24 at R3.

We show our adaptation of Dijkstra’s shortest path algorithm for this task.
First we initialize a work list WL with the seed advertisements, i.e., WL =
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{a3}. Then the algorithm takes advertisements from the work list, one-by-one,
processes them, and iterates until the work list becomes empty. So, we take the
only present element in the work list, a3, and re-advertise it to all neighbors
of R3, which happens to be only router R2. To re-advertise, we create a new
advertisement by copying a3 and prepending R3’s ASN to the AS path, and
obtain a2′ = (R2, 10.0.0.0/24, 〈3〉). This new advertisement is then added to
the work list, hence we obtain WL = {a2′}. After the first re-advertisement we
obtain the following RIB entries.

R2 R3

a2′ = (R2, 10.0.0.0/24, 〈3〉) a3 = (R3, 10.0.0.0/24, 〈〉)

The algorithm then advertises a2′ to R2’s neighbors R1 and R4. Two new
advertisements a1′ = (R1, 10.0.0.0/24, 〈2, 3〉) and a4′ = (R4, 10.0.0.0/24, 〈2, 3〉)
are created. Note how R2’s ASN is prepended to the AS path. The work list
becomes WL = {a1′ , a4′}.

We now reach a new case in our algorithm, in which the work list WL has
more than one element. The choice of the next advertisement to process is im-
portant. Like in Dijkstra’s algorithm we pick a vertex that is labeled with the
smallest distance value: we need to visit a most preferred advertisement first.
We assume that a partial order relation ≺ captures BGP’s advertisement pref-
erence order. We can obtain ≺ from the description of the BGP’s best path
selection algorithm, which specifies that advertisements with shorter AS paths
are preferable to advertisements with longer AS paths, among other criteria.

The order ≺ is partial, since BGP advertisements are not always comparable.
One of the main reasons we particularly notice lack of totality is that the BGP
best path selection algorithm was designed to be used within a single router,
while our work list contains advertisements that reside at different routers. In
our example, both advertisements in the work list have the same AS path length,
so they are equally preferable. We will break the tie through an auxiliary lexi-
cographic order on names of routers that store the advertisements, i.e., R1 and
R4. As a result, our algorithm deterministically picks a1′ from the work list.

Advertisement a1′ can only be re-advertised back to R2 since R1 has no other
neighbor. However, R2 rejects this advertisement because its own ASN occurs in
the AS path 〈2, 3〉. A similar advertisement rejection happens with a4′ . Finally,
the work list WL becomes empty and the advertisement propagation loop fin-
ishes. We computed four RIB entries, one for each of the routers in the network,
since there are no policies in our example network that block advertisements of
the considered prefix and all routers are reachable from R3.

Now we inspect if aggregation is configured on any of the routers. Router
R2 has an aggregate for 10.0.0.0/16 which was not previously enabled since the
RIB of R2 was empty. With the installation of a2′ in R2’s RIB, the aggregation
becomes active because the prefix of a2′ is a sub-prefix of the aggregate. There-
fore, we generate a new advertisement a2′′ = (R2, 10.0.0.0/16, 〈〉), which tracks
the enabled aggregate. The list with seed advertisements we had before is now
extended to include the new advertisement and its prefix as follows.

((10.0.1.0/24, {a1, a4}), (10.0.0.0/16, {a2′′}))
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R1 R2

R3

R4

10.0.0.0/24

R5

Fig. 5. Example network with five routers. Only R3 advertises a prefix.

We are now considering a case when it matters which prefix we take from
the seed list to process next. Note that aggregate advertisements, like a2′′ , are
created and installed due to advertisements for sub-prefixes being installed in
the RIB. The attributes of a2′′ are computed by applying appropriate aggre-
gation functions on the attributes of sub-prefixes. Therefore, we advertise all
sub-prefixes before advertising the aggregate, and hence avoid the problem of
updating advertisement attributes and propagating the effect of such updates
through additional route advertisements. This is why we iterate over the seed list
by starting with more specific prefixes and proceeding with less specific prefixes.

The BGP RFC [41, § 9.2.2.2] mandates that the aggregated AS path should
be the largest common prefix of the AS paths of advertisements of sub-prefixes.
In our example, we set the AS path of the aggregate to 〈〉, which is not what the
BGP specification mandates, but it is how it is implemented by some relevant
vendors, e.g., Cisco.

Our algorithm proceeds with a new run of the modified Dijkstra’s algorithm
that advertises 10.0.1.0/24. The only difference to what we described previously
is that now we have two seed advertisements, a1 and a4. These are inserted in
the work list WL and the rest of the algorithm proceeds as before. Finally, all
advertisements for 10.0.0.0/16 are computed and our algorithm terminates.

The forwarding tables (FIBs) of the routers can be computed from the RIBs
by taking the best advertisements for each prefix. In our example, each router
only has one advertisement for each prefix, so all advertisements are propagated
to the FIB.

3.2 Globally vs. Locally Preferred Advertisements

In this example we show how the order of propagation of route advertisements
used by our algorithm differs from what a (distributed) execution of BGP in
a real network can choose. This difference is important in ensuring that any
propagated route advertisement will never be superseded by a better one.

To illustrate the above point, we change our example network to include an
additional link from R1 to R4 and an extra router R5, as shown in Fig. 5. We
also add a route map to router R2 that applies to advertisements going out to
R4. This route map augments the AS path by prepending the AS number 2
twice. The configuration change in router R2 to include this route map is as
follows.



8 Nuno P. Lopes and Andrey Rybalchenko

route-map prepend permit 10

set as-path prepend 2 2

!

router bgp 2

neighbor 10.1.0.4 route-map prepend out ! R4

In this example, we only have one seed advertisement a3 =
(R3, 10.0.0.0/24, 〈〉). This propagates to R2 as a2 = (R2, 10.0.0.0/24, 〈3〉). Ad-
vertisement a2 is then propagated to the neighbors of router R2, and so
we obtain two new advertisements a1 = (R1, 10.0.0.0/24, 〈2, 3〉) and a4 =
(R4, 10.0.0.0/24, 〈2, 2, 2, 3〉). The work list becomes WL = {a1, a4}, together
with the RIB entries shown below. Note that for brevity we only show the AS
path in each of the advertisements.

R1 R2 R3 R4 R5

a1 = 〈2, 3〉 a2 = 〈3〉 a3 = 〈〉 a4 = 〈2, 2, 2, 3〉

The next advertisement to explore is a1, since it is more preferred than a4,
i.e., a1 ≺ a4. Advertising a1 to R1’s neighbors results in a new advertisement
a4′ = (R4, 10.0.0.0/24, 〈1, 2, 3〉), while R2 drops the advertisement from R1 due
to the occurrence of its ASN in the AS path of a1. We now have two competing
advertisements at R4. One was received from R1, a4′ , and the other from R2,
a4. A router only advertises a most preferred advertisement, which in this case is
a4′ since a4′ ≺ a4 as the AS path 〈1, 2, 3〉 for a4′ is shorter than 〈2, 2, 2, 3〉 for a4.
Therefore, we replace a4 with a4′ in the work list to get WL = {a4′}. We point out
that advertisement a4 is nevertheless stored in the RIB of R4, but is not adver-
tised further. Finally, the algorithm computes a5 = (R5, 10.0.0.0/24, 〈4, 1, 2, 3〉)
for R5. The final result is that each router has one entry in the RIB, except R4
which has two entries, where one is singled out as a best advertisement.

In this example we observed that since the work list stores advertisements
across all routers, when we take the globally most preferred advertisement for
exploration, the exploration of the most preferred advertisement within a given
router may be delayed. Here we speak of a global preference order. It is essential
for avoiding recomputation of advertisements due to arrival of more preferred
ones, as it happens when BGP runs in a distributed setting over real networks
in which a router propagates an advertisement that is most preferred among the
locally present ones. In this case we speak of a local preference order.

In contrast, when running BGP on our example and following the local order
on the RIBs containing advertisements a1, . . . , a5, R4 may advertise a4 before
it receives a4′ , which leads to a5′ = (R5, 10.0.0.0/24, 〈4, 2, 2, 2, 3〉). After the ad-
vertisement of a4, R1 may advertise a1 to R4 which results in a4′ appearing on
R4. At this point R4 discovers that a4 is no longer the most preferred advertise-
ment, while a4′ is. So it needs to ask R5 to withdraw advertisement a5′ . In a
larger network, by transitivity all advertisements that were sent out because of
a4′ would need to be withdrawn, which could be a significant effort.

By following the global order, instead of the local ones, our algorithm never
withdraws advertisements, which helps in scaling to large datacenter networks.
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R1

R5

R2

R610.0.0.0/24

R3 R4

Fig. 6. Example network, where only router R1 advertises a prefix. R3 has a route
map that increases local preference on incoming advertisements from R6.

3.3 Necessity of Monotonic Increase of Preference

We showed how our algorithm avoids recomputation of advertisements by prop-
agating only globally optimal advertisements. However, this procedure is only
correct if the routing policy produces advertisements that never increase in pref-
erence. This means that the preference of a route advertisement at the destina-
tion router cannot be higher than the preference of the originating advertisement
at the source router. However, some features supported by BGP routing policies
can lead to violation of this property.

The following example illustrates the necessity of the monotonic increase
property, and shows that without it our algorithm computes an incorrect result.

We consider the network in Fig. 6. Router R3 has a route map that increases
the local preference of advertisements incoming from R6 to 200, while the
default value is usually 100. The route map is as follows.

route-map in_r6 permit 10

set local-preference 200

!

router bgp 3

neighbor 10.1.0.3 route-map in_r6 in

Note that the BGP best path selection algorithm states that the adver-
tisement with the highest local preference is preferred. If advertisements have
an equal value of the local preference attribute, then the advertisement with
the shortest AS path is preferred.

Since we now need to track the local preference attribute, we will represent
advertisement as tuples (router , prefix , local pref ,AS path).

The seed advertisement is a1 = (R1, 10.0.0.0/24, 100, 〈〉). Our algorithm
propagates a1 from R1 to R2 and R5 resulting in a2 = (R2, 10.0.0.0/24, 100, 〈1〉)
and a5 = (R5, 10.0.0.0/24, 100, 〈1〉). The resulting work list is WL = {a2, a5}.

As a2 and a5 are equally preferred, our algorithm picks the advertise-
ment located at the router with the lowest identifier (in order to stay de-
terministic), which is a2 in this case. We propagate a2 to R3 and obtain
a3 = (R3, 10.0.0.0/24, 100, 〈2, 1〉) and WL = {a3, a5}. We then take a5 from the
work list and compute a6 = (R6, 10.0.0.0/24, 100, 〈5, 1〉) and WL = {a3, a6}.
Afterward we take a3 and compute a4 = (R4, 10.0.0.0/24, 100, 〈3, 2, 1〉) and
WL = {a4, a6}. The resulting RIBs (with just the local preference and AS path
attributes) are shown below.
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R1: a1 = (100, 〈〉) R2: a2 = (100, 〈1〉) R3: a3 = (100, 〈2, 1〉)

R4: a4 = (100, 〈3, 2, 1〉) R5: a5 = (100, 〈1〉) R6: a6 = (100, 〈5, 1〉)

We now arrive at the problematic part. When we take a6 from the work
list and advertise it to R3, the incoming route map at R3 sets the local
preference of the incoming advertisement to 200. Therefore we obtain a3′ =
(R3, 10.0.0.0/24, 200, 〈6, 5, 1〉). This advertisement is more preferred than a3 that
was received previously from R2, i.e., a3′ ≺ a3 since 200 > 100. This means that
R3 now has a more preferred advertisement than the one previously present in
its RIB and therefore the new advertisement needs to be propagated, with all
the related withdrawals and re-advertisements, while a3 is still kept in the RIB.

Unfortunately, we already propagated a3 to R4 by following the global pref-
erence order. To fix the problem, we would need to remove a4 from R4’s RIB,
as well as remove any advertisements transitively derived from a4, potentially
spanning the whole network. However, due to the monotonic increase assump-
tion, our algorithm does not anticipate such an issue and hence is not able to
delete RIB entries. As a consequence, we obtain a wrong result for this network.

To summarize, our algorithm only produces a correct result when the net-
work’s routing policies ensure monotonic increase of preference. Fortunately, sev-
eral studies (including ours) confirm that industrial datacenter networks have
this property.

4 Algorithms

In this section we describe an algorithm for efficient simulation of BGP in data-
center networks. Our algorithm is based on Dijkstra’s shortest path algorithm,
and adapts it to our setting by using BGP route advertisements to track distance,
comparing distances using BGP path selection function, and updating distance
using BGP route maps. We also show how to deal with equal-cost multi-path
routing (ECMP) and aggregation.

4.1 Generalizing Dijkstra’s Algorithm

We begin by revisiting Dijkstra’s algorithm, in order to fix a particular version
as there are different ways of setting up and maintaining the distance and work
list data structures. See Fig. 7.

Dijkstra’s algorithm works as follows. It initializes the distance from the
source vertex to itself as zero and adds the vertex to the queue (lines 1–2). Then
it iterates over the queue until it is empty. At each iteration of the loop it picks
the vertex u from the queue with the smallest distance from the source vertex
(lines 3–5). The algorithm then iterates over each neighbor v of vertex u and
updates the best known distance so far to v if it is the first path we discover
to v or if the previously known path was longer (lines 6–10). When the queue
becomes empty, the function returns function dist which contains the shortest
distance from vertex v0 to all the other reachable vertexes in the graph (line 12).
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function Dijkstra
input
E : V × V – set of edges
v0 : V – initial vertex
length : V × V → N – edge length

vars
dist : V → N – distance from source to other vertexes
queue : P(V ) – queue with vertexes pending processing

begin
dist(v0) := 0
queue := {v0}
while queue 6= ∅ do
u = arg min<

w∈queue dist(w)
queue := queue \ {u}
for each v ∈ E(u) do
if v /∈ dom(dist) ∨ dist(u) + length(u, v) < dist(v) then

dist(v) := dist(u) + length(u, v)
queue := queue ∪ {v}

done
done
return dist

end

Fig. 7. Dijkstra computes the shortest path between a source vertex in the graph
and all other vertexes. E(u) is the set of neighbors of u. arg min< chooses a minimum
with respect to the relation <.

We gave a brief description of how Dijkstra’s algorithm works. It is important
to note that the result is a labeling of vertexes with a natural number: the
shortest distance from the source to that vertex. We will now consider a few
operations in Dijkstra’s algorithm in a more general setting. In particular, we
will consider the labels of vertexes to be of an arbitrary type D , with the ordering
≺ between these labels. We assume that a function trans can be used to compute
labeling of a neighboring vertex. The generalized version of Dijkstra’s algorithm
is shown in Fig. 8.

The deviations from Dijkstra’s algorithm are as follows. For initialization
(lines 1–2), we now take the initial label of the source vertex d0 as input, instead
of setting it to zero. Secondly, the order of extraction of vertexes from the queue
is given by a label order ≺ given as input (line 4). Finally, the new label com-
puted for a neighbor is computed by the trans function given as input instead of
computing a path length explicitly (line 7–8). Old and new labels are compared
with ≺ as well.

We relate Dijkstra’s algorithm with the generalized version as follows.

Dijkstra(E, v0, length) = GDijkstra〈N〉(E, v0, 0, λd u v.d+ length(u, v), <)

Here we set the initial label of the source vertex to zero. The label of a neighbor
is the label of the current vertex u, i.e., the distance between source and u, plus
the length of the path from u to v.



12 Nuno P. Lopes and Andrey Rybalchenko

1
2
3
4
5
6
7
8
9
10
11
12

function GDijkstra〈D〉
input
E : V × V – set of edges
v0 : V – initial vertex
d0 : D – initial label
trans : D × V × V → D – transform label along an edge
≺ : P(D ×D) – label ordering

vars
dist : V → D – distance from v0 to other vertexes
queue : P(V ) – queue with vertexes pending processing

begin
dist(v0) := d0
queue := {v0}
while queue 6= ∅ do
u = arg min≺w∈queue dist(w)
queue = queue \ {u}
for each v ∈ E(u) do
if v /∈ dom(dist) ∨ trans(dist(u), u, v) ≺ dist(v) then

dist(v) := trans(dist(u), u, v)
queue := queue ∪ {v}

done
done
return dist

end

Fig. 8. GDijkstra computes min. labels that reach each vertex from v0 labeled by d0.

We now state the correctness of the generalized Dijkstra’s algorithm.

Theorem 1. If ≺ is a strict partial order and function trans is monotonically
increasing, i.e.,

∀d ∀(u, v) ∈ E : ¬(trans(d, u, v) ≺ d) ,

then GDijkstra labels each vertex with a minimal label that can be computed
by traversing the set of edges E starting at vertex v0 with label d0 and using
function trans to label edges.

4.2 Advertising a Single Prefix

We now show how to simulate BGP for the advertisement of a single prefix using
our generalized version of Dijkstra’s algorithm.

Vertexes correspond to routers and edges the peering relations established
between them. The label type D will be route advertisements. The source vertex
will be the router that exports the prefix. The source label will be an initial
advertisement as mandated by the BGP standard, e.g., with empty AS path,
with the origin type indicating how this advertisement was produced, etc.

The order between advertisements is given by ≺BGP . For example, a ≺BGP a′

holds if the local preference of a is greater than that of a′. If a ≺BGP a′ holds, we
say that a is preferred to a′. Order ≺BGP corresponds to the best past selection
algorithm of BGP, which is a lexicographic order on advertisement attributes.



Fast BGP Simulation of Large Datacenters 13

The transform function trans has to do several things. Firstly, it needs to
check if the advertisement can be propagated any further. One example of an
advertisement that is blocked is when there is a summary-only aggregate whose
prefix intersects with the prefix being advertised. This type of aggregates blocks
contributing advertisements (i.e., advertisements of more specific prefixes) from
being propagated to neighbors. Secondly, this function needs to transform the
advertisement for the given neighbor, e.g., prepend its own ASN to the AS path,
and then apply the outgoing route map of the sender and the incoming route
map of the neighbor (if any). Any of these route maps may rewrite some fields
of the advertisement or even block it from being advertised or added to the RIB,
respectively for outgoing and incoming route maps. We need to compute a new
advertisement for each neighbor because routers can have different policies for
different neighbors and incoming route maps may also differ between neighbors.

A simplified version of the transform function can be represented by the
following pseudo code. We refer to [47] for an example of a formal discussion.
In the pseudo code we use ∞ to denote a least preferred advertisement with
respect to ≺BGP . We use ∞ to model the case when a route map rejects an
advertisement. Such advertisements can be ignored upon the termination of
the algorithm, when installing advertisements into the RIBs of their respective
routers.

transBGP (a, u, v) :=
if u should not advertise a then

return ∞
a′ := create advertisement for v from a
a′′ := OutRouteMap(u, a′)
if v should not accept a′′ then

return ∞
return InRouteMap(v, a′′)

In practice, function transBGP can be quite complicated and needs to faith-
fully implement vendor-specific details. For example, there are more cases that
block advertisements from being propagated besides summary-only aggregates,
such as when an advertisement is tagged with the “no export” or “no advertise”
communities, and when an advertisement is received from an iBGP peer it can-
not be advertised to other iBGP peers. Also, some vendors do not support the
advertisement of IPv4 prefixes to neighbor routers that are connected over IPv6.

A reason to reject an incoming advertisement is, e.g., if the AS path contains
the ASN of the receiving router. This check can only be performed after the
outgoing transformations, since outgoing route maps are allowed to change the
AS path.

Putting everything together, we define a function BGPOne that computes a
RIB for a given prefix. Here v0 is the router that exports the initial advertisement
d0 for the prefix, and E is defined by the BGP peering between routers.

BGPOne(E, v0, d0) := GDijkstra(E, v0, d0, transBGP ,≺BGP )
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To be able to use GDijkstra and obtain a correct result, we need to establish
the two assumptions made by the algorithm: (1) ≺BGP is a strict partial order,
and (2) transBGP is monotonically increasing. Assumption (1) holds because
≺BGP is a lexicographic order on advertisement attributes.

In general, transBGP is not monotonically increasing. For example, route
maps may increase local preference, which ranks higher in the best path selection
than the AS path length which usually increases by one when an advertisement
is propagated to a neighbor. In this work, since we target datacenter networks,
we deal with transBGP that is monotonically increasing.

4.3 Computing All Advertisements for a Single Prefix

In the previous section, we showed how to use our generalized version of Dijk-
stra’s algorithm to compute advertisements that are propagated to every router
from a given prefix. This is very close to what BGP actually computes, but not
exactly. BGP records at each router not only the most preferred advertisement it
has received for a given prefix, but also all the received advertisements. This way
the router can, e.g., promote the second best advertisement to become the most
preferred one if the neighbor that sent the original most preferred advertisement
becomes unreachable. As we have done, a router only propagates most preferred
advertisements to its neighbors.

We need a further extension in Dijkstra’s algorithm to keep track of all
advertisements, including non-best ones. The new (and final) generalization is
shown in Fig. 9. This algorithm tracks distance from the source as a set of labels
instead of a single label. It stores at vertex v all labels computed by traversing
paths from the neighbors of v to v, instead of keeping only the smallest label.
The creation of a new label for a neighbor of vertex v continues to depend only
on a minimal label of v as previously (c.f. arguments to trans function).

We note that min≺ dist(v) in this algorithm in line 7 is exactly the same value
as dist(v) in the previous algorithm GDijkstra in line 7. Therefore, the only
change in behavior of GDijkstraSet is in line 9. Previously we only stored
the minimal label found so far, so the assignment of dist(v) was inside the if
statement. Now, we moved the assignment out of the if statement such that the
assignment is executed regardless whether the new label is ≺-better than the
previous one.

We now define BGP tracking all advertisements in terms of the set-tracking
generalization of Dijkstra’s algorithm.

BGPAll(E, v0, d0) := GDijkstraSet(E, v0, d0, transBGP ,≺BGP )

The function BGPAll correctly computes propagation of a single prefix in an ef-
ficient way. The network must, however, respect the monotonic increase property
we mentioned previously.

We now state the correctness of BGPAll.

Theorem 2. Given a monotonically increasing BGP network, BGPAll com-
putes a stable state of RIBs in the network.
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function GDijkstraSet〈D〉
input
E : V × V – set of edges
v0 : V – initial vertex
d0 : D – initial label
trans : D × V × V → D – transform label along an edge
≺ : P(D ×D) – label ordering

vars
dist : V → P(D) – distance from v0 to other vertexes
queue : P(V ) – queue with vertexes pending processing

begin
dist(v0) := {d0}
queue := {v0}
while queue 6= ∅ do
u = arg min≺w∈queue(min≺ dist(w))
queue := queue \ {u}
for each v ∈ E(u) do
if v /∈ dom(dist) ∨ trans(min≺ dist(u), u, v) ≺ (min≺ dist(v)) then

queue := queue ∪ {v}
dist(v) := {trans(min≺ dist(u), u, v)} ∪ (dist(v) if v ∈ dom(dist) else ∅)

done
done
return dist

end

Fig. 9. GDijkstraSet computes a set of minimal labels at each vertex, as well as
keeps track of all labels that are propagated to a vertex, a so called one-hop history.

In this section we assumed that there is only one source router for each prefix.
This is not true in general, however. For example, we may want to load balance
traffic for a service between different racks in a datacenter, and so the routers of
all such racks have to advertise the same prefix corresponding to the service.

Extending the given algorithm for multiple sources is straightforward. Instead
of taking a single source vertex and advertisement, the algorithm can take a set
instead. Then the queue is populated with all the advertisements and these will
be explored in order.

4.4 Computing RIBs for All Prefixes

In the previous section we presented an algorithm to compute BGP advertise-
ments for a single prefix. We now show an algorithm that computes BGP ad-
vertisements for all prefixes originating in a monotonic network, and produces
the RIBs for all the routers. The algorithm consists of a loop invoking the single
prefix-propagating algorithm for each prefix and a prefix composition step.

We compute a separate control plane for each prefix since prefixes are ex-
ported at varying locations. Moreover, different routers in a network are often
configured to accept and/or modify advertisements differently depending on the
prefix. Therefore we cannot simply run the set-generalized Dijkstra algorithm
for all prefixes at once.
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The algorithm to compute the RIB for all routers is as follows.

RIB := ∅
seeds := InitSeeds()

while seeds 6= ∅ do
(prefix , adverts) := take most specific prefix from seeds
RIB := RIB ∪ {(r, prefix ) 7→ a | (r, a) ∈ BGPAll(E, adverts)}
seeds := UpdateSeeds(RIB, prefix , seeds)

done
return RIB

The procedure starts by computing the set of seed advertisements. grouped
by prefix. Seed adverts consist of the prefixes advertised by each router through,
e.g., the network command, or via aggregation of locally installed routes.

The order of iteration through prefixes is relevant for features where there is a
dependency between different prefixes, i.e., features that make advertisement of
prefixes to not be independent of each other. For example, an aggregated prefix,
say 10.0.0.0/8, depends on contributing prefixes, say 10.0.1.0/24. In this case we
need to iterate through more specific prefixes before the less specific ones, e.g.,
we need to execute BGPAll on 10.0.1.0/24 before executing it on 10.0.0.0/8.

Function UpdateSeeds creates and updates existing seed advertisements.
These new and/or updated seeds need to be iterated over later. It is guaranteed,
however, that any new seed is of a less specific prefix than any other already
processed. Since we iterate from more specific to less specific prefixes, we never
miss any update to a seed or explore the same prefix more than once.

4.5 Updating Seed Advertisements

Sometimes there are dependencies between different IP prefixes, and installing
an entry in the RIB may automatically trigger the installation (or update) of an
entry for another prefix.

One such case is aggregation. For example, if a router is configured to aggre-
gate 10.0.0.0/16 but has no initial seed with a sub-prefix, initially 10.0.0.0/16
will not be installed in the RIB since there is no contributing advertisement. If
later this router receives an advertisement for, e.g., 10.0.0.1/32, the aggregated
prefix becomes active and thus it becomes a seed since it needs to be advertised
to the neighbors.

Another case is when an aggregated prefix is already active and the router
installs another sub-prefix. In this case, we may need to update the seed adver-
tisement for the aggregated prefix since it depends on all contributing advertise-
ments. For example, the origin type of an aggregated advertisement is the result
of combining the origin type of all contributing advertisements. Other attributes
of advertisements are often combined using vendor-specific functions.

Function UpdateSeeds takes the last prefix that was advertised as input
and checks if that prefix is a potential contributor to any aggregated prefix in
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the routers. If so, it creates a new seed advertisement for the aggregated prefix
in case it does not exist yet, or updates the existing seed.

It is guaranteed that any created or updated seed advertisement has not been
visited yet by the BGPAll algorithm. This is because the main loop traverses
prefixes from more specific to less specific, and the created/updated seeds have
a less specific address than in the current loop iteration, otherwise the adver-
tisements created in the current iteration could not possibly be contributors to
the created/updated seeds of aggregated prefixes.

5 Evaluation

To evaluate the proposed algorithm, we implemented a prototype called Fast-
Plane in C++17. It supports several router vendors, including Arista, Cisco
(IOS and Nexus), Force10, and Juniper. The range of implemented features in-
cludes BGP (internal and external), communities, BGP multipath, route maps,
prefix aggregation, ACLs, ECMP, static routes, IPv4, and IPv6.

We compare the running time of FastPlane with Batfish [20], which is the
state-of-the-art tool for RIB computation supporting general networks (as op-
posed to FastPlane, which only supports monotonic ones). As far as we are
aware, Batfish is the only publicly available tool that can parse significant por-
tions of industrial router configurations and that scales to thousands of routers.

Setup We took the configuration files for all datacenters (DCs) of a major public
cloud provider. Overall we collected a few (single digit) GBs of configuration files
containing hundreds of millions of lines.

The network architecture of these DCs is a fat-tree running eBGP between all
routers [23]. The dataset contains DCs with several variants of the architecture,
depending on the DC size and age (since the architecture keeps evolving). We
validated that the monotonicity property holds for all DCs in our dataset.

The machine used to run the experiments had 2x Intel Xeon E5-2660 CPUs
(16 cores total), with 112 GBs of RAM. We used Batfish revision b004dff from
11/Jan/2018, with a limit of 100 GBs of memory for the JVM.

Performance Results For each datacenter, we computed RIBs and FIBs for
all routers using FastPlane and Batfish, and measured the table size and the
running time. The total number of entries in the RIBs of all devices of a single
datacenter varied between several thousands and hundreds of millions.

We present the CPU time taken to compute the RIBs and FIBs in Fig. 10.
Datacenters are grouped into five buckets, according to their number of routers.
For each bucket we show the average time for the datacenters in that bucket.

Fig. 10 shows that FastPlane is about two orders of magnitude faster than
Batfish. Given 100 GBs of memory, Batfish does not scale beyond 2,000 routers.
Moreover, Batfish only supports IPv4, while FastPlane supports IPv6 as well.

FastPlane only executes one round of BGP propagation, since it stratifies
the computation. This is possible for monotonic networks. Batfish, on the other
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Fig. 10. CPU time (in seconds) to compute the RIBs and FIBs of all routers in each
datacenter vs. datacenter size (number of routers).

hand, does not pick any particular propagation order, which leads to several
iterations. In our dataset, we see Batfish requiring up to eight BGP iterations.
This shows that choosing the right propagation order has significant impact on
the efficiency of the algorithm.

Besides the higher number of BGP rounds, Batfish is fundamentally slower
than FastPlane for two other reasons: 1) Batfish supports generic BGP net-
works while FastPlane only supports monotonic networks, and 2) Batfish’s
fixed-point check resembles the so-called naive Datalog evaluation (as opposed
to the more efficient semi-naive [13]).

Batfish does not simulate BGP through message passing like C-BGP. Instead,
a router’s RIB is computed by peeking into the neighbor’s RIBs and importing
those (subject to routing policies, and so on). Batfish keeps two sets of RIBs
per router: one from the previous iteration and another for the current iteration,
which is computed based on the neighboring RIBs from the previous iteration.
Therefore, Batfish keeps two RIBs per router in memory at a time.

Validation of BGP Semantics To increase confidence in our implementation
of BGP, in particular in vendor-specific features, we compared the RIBs and
FIBs computed by FastPlane with the ones from production routers in the
datacenters.

Since datacenters operate in an open environment and receive external ad-
vertisements, we had to define a boundary delimiting what we would simulate.
Routers outside of the given datacenter, i.e., the Internet, other datacenters,
and load balancers, were modeled as dummy BGP neighbors that replayed the
advertisements received by the production routers at the boundary.

This validation was effective. We found several bugs in our semantics of
BGP, differences between the BGP implementations of different vendors, as well
as bugs in the network. After validation, FastPlane computes FIBs and RIBs
that are equivalent to those of several thousand routers we compared against.

One interesting bug we found was a difference in the behavior of BGP aggre-
gation between Cisco and Arista: Arista follows the RFC and sets the AS path to
the longest common prefix of the contributing advertisements’ AS paths, while
Cisco always creates aggregates with empty AS paths.
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Production Bugs Found We give a high-level description of some of the bugs
found in datacenter networks while doing the cross-checking explained in the
previous section.

One of the bugs was in the redistribution policy of connected routes. A net-
work operator specified how the RIB of each device type is expected to look like.
For example, ToRs must have all prefixes exported by load balancers. We then
checked if the computed RIBs matched the expectations, and the check failed. In
particular, there were unexpected advertisements. The routing policy was fixed
to block them, and FastPlane was used to validate the fix before deployment.

We also found a bug in a router’s firmware that resulted in the FIB’s next-
hops to be incorrect for some prefixes, due to a race condition in the code that
updates the FIB. This bug would have been hard to find without FastPlane,
which provides the ground truth for the router behavior.

Another type of bug was a problem with the network architecture. The ar-
chitecture allows the network control plane to converge to different stable states,
due to non-determinism. We found that some of these states have reduced load
balancing and fault tolerance. We confirmed that the problem manifests in pro-
duction and a fix is underway.

6 Related Work

Control plane verification is closely related to our work. Existing tools use a vari-
ety of techniques to compute the control plane, including simulation of message
passing of routing protocols, Batfish [20] and C-BGP [40], and SMT encodings
of BGP, Bagpipe [47], MineSweeper [8]. ERA [17] uses BDDs for reachability
analysis between endpoints. ARC [22] and [48] compute an abstraction of the
control plane. These tools are less scalable than FastPlane when applied to
obtain the entire control plane, but they often support more BGP features and
more complex interactions between routing protocols. We believe that our algo-
rithm could be used to scale existing tools to large datacenters, while keeping
the applicability of general methods when needed.

CrystalNet [34] uses the router’s firmware in a virtualized environment to
compute the control plane. It is bug-compatible with production networks, but
it is significantly more resource intensive and slower than FastPlane.

There also exists static analysis of configuration files, similarly to compiler
warnings. Such tools, e.g., rcp [18], do not compute the control plane.

Another area of network verification is data plane verification [52]. These
tools operate over given FIBs, which can be either be computed from RIBs, or ob-
tained directly from production routers, which unfortunately precludes verifica-
tion before deployment. Tools for data plane verification employ a range of tech-
niques including specialized algorithms and data structures, e.g., HSA [29], Net-
Plumber [28], VeriFlow [30], ddNF [12], TenantGuard [46], Datalog solvers, e.g.,
NoD [36], predicate abstraction, e.g., AP [49], SAT solvers, e.g., Anteater [37]
and NetSAT [51], BDDs, e.g., FlowChecker [3], symmetry reduction [39], local-
ized, per router, properties, e.g., SecGuru [11], and symbolic execution [14].
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Software defined networks (SDNs) offer an alternative to BGP or OSPF, how-
ever they are not yet deployed at datacenter scale. There exist model checkering
tools for SDN controllers, e.g., Kuai [38], VeriCon [7], and SDNRacer [16].

Correct by construction is an alternative approach to network reliability.
Tools for configuration synthesis include Propane [9,10], and Genesis [45]. There
is also work on synthesizing ACLs [27, 50]. We anticipate that synthesis tools
could improve scalability by applying our monotonicity observation.

There are new languages to declaratively specify routing behavior, e.g.,
NetKAT [5], and firewalls, e.g., Mignis [1].

There is related work in the area of routing algebras [4, 24, 25, 44]. For ex-
ample, [26] proves that monotonicity of the edge labeling function, which cor-
responds to our transBGP , with respect to the label order, which is our ≺BGP ,
ensures convergence of the routing protocol. [43] gives a generalization of Dijk-
stra’s algorithm, but using numerical weights, while the generalization in [33] is
for arbitrary, totally ordered, cost functions. [15] also gives a generalization of
Dijkstra’s algorithm, but does not handle aggregation, unlike our algorithm.

[19] gives an algorithm to compute the control plane of an iBGP mesh
with several routers peering with other ASs. [21] gives guidelines for configuring
routers that peer with other organizations to ensure convergence of BGP.

7 Future Work

In this paper we presented an algorithm for computing routing tables that is
applicable only when a certain subset of features of BGP is used. Further re-
search is needed to broaden and precisely characterize what is the set (or sets)
of features that can be used together and is still compatible with the proposed
algorithm (or similar monotonic reasoning approach).

Dually, further research is needed to characterize protocol features to avoid
in order to support efficient verification. Moreover, there is little understanding
of if/how to replace non-monotonic features by monotonic ones. This could not
only improve efficiency of network verification, but also speed up convergence
time in production networks, since fewer advertisements would be withdrawn.

Another avenue is a study of non-determinism in control planes. ≺ is some-
times not a total order, which means there may exist different stable states in the
network. This has disadvantages, such as making troubleshooting more difficult.
Our current prototype deliberately computes a single stable state in a consistent,
deterministic way so that the results are reproducible. However, this stable state
may not be identical to the state in which the real network stabilizes.

8 Conclusion

We studied datacenter networks of a major cloud provider and confirmed their
monotonicity. We then presented an efficient algorithm that leverages this fact
to compute routing tables of that kind of networks. The evaluation shows that
our prototype, FastPlane, scales to large production datacenters.
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