
Leveraging Trusted Computing and Model Checking to Build

Dependable Virtual Machines

Nuno Santos†, Nuno P. Lopes†‡

†INESC-ID / Instituto Superior Técnico, Universidade de Lisboa
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Abstract

In the last years, it has emerged a market of virtual ap-

pliances, i.e., virtual machine images specifically con-

figured to provide a given service (e.g., web hosting).

The virtual appliance model greatly reduces the burden

of configuring virtual machines from scratch. However,

the current model involves risks: security threats, mis-

configurations, privacy loss, etc. In this paper, we pro-

pose an approach to build dependable virtual machines.

It is based on trusted computing and model checking:

trusted computing allows for low-level attestation of the

software of a virtual appliance, and model checking pro-

vides for the automatic verification of the software’s

high-level configuration properties. We present our ap-

proach, and discuss open research challenges.

1 Introduction

Fueled by the popularity of virtualized platforms, in par-

ticular cloud computing, a marketplace of virtual appli-

ances has grown. Intuitively, a virtual appliance (VA)

is a virtual machine image (VMI) that behaves like a

single program in the sense that it is tailor-made for a

specific service (e.g., web or database hosting). Typ-

ically, a VA is built by a party (the creator) who in-

stalls and configures the operating system and necessary

software packages. The creator then uploads the result-

ing VA image to an online repository, such as Amazon

EC2’s [1], making it available to others. From a given

VA image, a user can bootstrap VM instances where

data can be processed. Such a model is very convenient

for users, because it relieves them from the error-prone

and burdensome task of manually assembling the VMI.

Creators also have incentives, such as monetary retribu-

tions, publicity of their software, publicity of the infras-

tructure, or simple common good. Incentives from both

parties help explain the proliferation of VA images (as

of May 2011, [23] reported 8448 Linux and 1202 Win-

dows VMIs in Amazon’s datacenters) and the diversi-

fication of VA related services [2, 4, 5, 8], in the cloud

and beyond [1, 6], namely in enterprises [9], universi-

ties [7, 10], and public testbeds [16].

However, the current virtual appliance model offers

scant dependability assurances to users and creators. In-

dependent studies [13, 15, 23] analyzed thousands of

Amazon EC2 images and found numerous images con-

taining: malware, obsolete and unpatched software, un-

licensed software, and poorly configured images (e.g.,

with partially installed packages, or corrupted configu-

ration files). Users of such images could have their data

processed in unexpected ways or incur serious security

risks. Same studies report risks to VA creators too. In

fact, by analyzing existing and deleted files from VMIs

(e.g., including logs), researchers found credentials and

key material (e.g., in SSH files, shell logs), passwords

(e.g., for MySQL databases), users’ browsing history,

personal files, IP addresses of the creator’s machines,

etc. Such sensitive data was unconsciously left over in

many VMIs by their respective creators and could be

abused by malicious users.

In this paper, we make the case for a virtual appliance

model that provides stronger dependability assurances

to both creators and users. In our model, both parties

can specify the dependability properties they wish a VA

to satisfy and a system automatically verifies whether

such properties hold before uploading a VA to the repos-

itory (in the producer’s case) or before using the VA

right after its VM instantiation (in the consumer’s case).

By this, producers could specify privacy restrictions to

make sure their VAs do not leak sensitive secrets, and

consumers specify correctness and security properties

for their VAs. To make this possible, we propose an

approach based on trusted computing and model check-

ing techniques in which the actual configuration of a VA

is generated from an abstract model. Trusted comput-

ing guarantees that a VA is bound to a given model,

and model checking allows for the verification of the de-

pendabilities properties of users and creators against the

abstract VA model. Next, we provide some background,

and then describe our approach and discuss hard techni-

cal challenges that still need to be overcome.

2 Background and Related Work

The current virtual appliance model. A virtual ap-

pliance (VA) is a virtual machine image (VMI) espe-

cially configured for providing a well-defined service,

and it is targeted to run on a specific VM monitor, such

as Xen [11]. Table 1 lists a few popular VAs and their re-

spective configurations. LAMP, for example, is a widely
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Appliance Type Description Software Setup

LAMP WH Web platform commonly used to run dynamic

web sites and servers

Linux, Apache HTTP Server, MySQL, PHP

Email Server IT Email server with SPAM and virus filtering, and

IMAP access for clients

Linux, Postfix, SpamAssassin, ClamAV, Dovecot

MS SQL IT/WH Relational database server Windows, MS SQL Server

File Server IT Network attached storage service (supports

SMB, SFTP and rsync)

Linux, Samba, vsftpd, rsync

Joomla WA Content management system Linux, Apache HTTP Server, MySQL, PHP, Joomla

Hadoop DC Open source map-reduce framework Linux, JRE, Hadoop

Table 1: Examples of popular virtual appliances. Columns indicate the name, type, description, and software of VAs.

The type can be: web application (WA), web hosting (WH), IT infrastructure (IT), and distributed computing (DC).

used VA that provides web hosting services. It is built

out of four software components: Linux, Apache HTTP

Server, MySQL, and PHP. To create an appliance such

as LAMP, the creator uses a monitor-specific toolchain

to perform the following sequence of steps: (i) create a

clean slate virtual machine, (ii) select a target OS (e.g.,

Linux) and bootstrap the newly created VM to the pre-

selected OS, (iii) install and configure the OS, and (iv)

install and configure the remaining software packages

(e.g., Apache, MySQL, and PHP), and (v) shutdown the

VM. The toolchain generates a large file containing the

data and meta-data of the VA image, which can then be

uploaded to a repository and be instatiated by authorized

users to VMs on a platform such as Amazon EC2 [1].

Dependability of existing virtual appliances. Al-

though generating VAs is rather straightforward, ensur-

ing they work correctly and securely is hard. This is be-

cause of their complexity. A VA requires a guest OS and

numerous other packages containing system tools, li-

braries, and applications (see Table 1). This software de-

pends on configuration settings that must be properly set

up, e.g., by creating login or database credentials, defin-

ing user and process permissions, and applying security

patches. Vulnerabilities can be easily introduced given

the heterogeneity and number of configuration files to

be updated, allied to the fact that this operation is per-

formed manually and in an ad-hoc fashion. For users,

misconfigurations (e.g., using unpatched software ver-

sion or file permissions improperly set) can lead to se-

curity breaches or incorrect behavior. For creators, pri-

vacy breaches can arise from sensitive data left over in

the VA. Such vulnerabilities have been previously found

in numerous public VMIs [13, 15, 23].

Risk mitigation in commercial cloud services. Cur-

rently, commercial cloud services provide no mecha-

nisms to mitigate such risks. At best, cloud providers

recommend their customers to follow a list of best prac-

tices when producing and sharing VAs [3]: “build AMIs

using the most up-to-date operating systems, packages,

and software”, “architect your AMI to deploy as a min-

imum installation to reduce the attack surface”, “be

aware of the top 10 vulnerabilities for web applications

and build your applications accordingly”, etc. However,

neither users nor creators of VAs can be really sure that

these recommendations have been followed and whether

such guidelines are sufficient.

Risk mitigation based on VMI sanitization. Prior

research has focused on reducing the privacy and secu-

rity risks incurred by VA creators and users. In particu-

lar, Wei et al. [36] proposed a management system that

provides high integrity of VMIs and enables their secure

sharing. Deployed in the back-end of cloud services,

this system automatically runs programs (called filters)

to scrub creators’ data from VMI images and sanitize

them (e.g., by removing malware, detecting unlicensed

software, upgrading obsolete software, and patching in-

secure software); this procedure gives users better as-

surances of the VMI’s software quality. However, be-

cause it relies on heuristics, sanitization can only be par-

tially guaranteed. Moreover, it is silent with respect to

conveying to customers what software is shipped in the

VMI and whether is has been correctly configured.

Risk mitigation leveraging trusted computing. An-

other class of systems leverages trusted computing hard-

ware to attest the software state of VM instances. Exist-

ing systems, however, represent such a state either par-

tially or too low level to be meaningful for creators and

users. In the simplest form of attestation [14, 17, 33],

the state representation of a VM instance consists of an

authenticated hash chain of the software stack’s boot-

strap sequence. Every time a machine boots, the hashes

of the software are computed and stored in a set of reg-

isters located in a trusted piece of hardware, typically

the Trusted Platform Module (TPM) [19]. These hashes

can be securely transmitted to a user by signing both the

hashes and a nonce previously chosen by the user using

a private part of an asymmetric key pair called Attesta-

tion Identity Key (AIK). Because the private part of the
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Figure 1: Workflow of the depliance model.

AIK is accessible in its cleartext form inside the TPM

only, the user can authenticate the hash chain by vali-

dating the signature against the AIK’s public key. These

hashes, however, are too coarse grained; they typically

cover measurements of the entire OS [17] or of sim-

ple functions only [29], lacking extensive coverage of

software packages and their configurations. More ad-

vanced attestation schemes [20, 34] raise the level of

abstraction, but focus on single processes only. Other

proposals broaden the scope of attestation to cover sys-

tem wide properties. Jaeger et al. [24] suggests that the

attestation report includes a mandatory access control

policy enforced by the OS. While this method enables

remote users to check system-wide integrity policies, it

does not convey information on how the system or ap-

plications are configured. In an alternative scheme [31]

developed for Linux, the attestation report includes in-

tegrity measurements of programs (and optionally con-

figuration files) that are allowed to be executed in the

system. With this scheme, individual programs and re-

spective configuration files can be validated before they

get executed. However, to validate the semantics of con-

figuration files, users need to implement specific valida-

tion scripts which is a burdensome and error-prone task

we wish to avoid. Property-based attestation [30,32,33]

allows for mapping low-level hash-chain values to high-

level human-readable attributes. For example, for a

LAMP VMI, its hash chain would be mapped to string

“LAMP” and the attestation protocol returns this string

signed by a trusted party that endorses the correctness of

the mapping. In such systems, however, endorsement of

property mappings is performed manually by humans,

and therefore subject to the errors we seek to mitigate.

Verification of configuration properties. Existing

work focuses primarily on detecting misconfigurations

of deployed systems [35, 37] or on reconfiguring them

automatically [12]. In our work, we validate the con-

figuration of VMIs prior to their deployment. For this

purpose, we adopt model checking, a technique that

has been successfully applied to the verification of pro-

grams [25], but not of software configurations.

3 Proposed Approach

To improve dependability of virtual appliances, we pro-

pose a model for building virtual appliances such that

creators and users have the ability to check configura-

tion properties of a VA before its effective creation and

usage. Our model builds on prior work on trusted com-

puting and adopts model checking principles to validate

high-level configuration properties of virtual appliances.

A VA built under our model is called depliance.

Overview. Figure 1 represents the workflow of a

depliance’s lifecycle. Each step is assisted by dedi-

cated tools or runtime components. The creator starts

the entire process by producing a formal model of the

VA (template) and defining a specification of configura-

tion properties that must be satisfied (creation manifest).

Next, the creator runs a model checker to verify whether

the template satisfies the required dependability proper-

ties (1). If so, the VA image can be generated safely us-

ing a generator tool (2). Later, based on the VA image,

a user can instantiate a VM on a hosting platform using

a platform-specific client tool (3). After bootstrapping,

the VM can be remotely attested by the user. Attestation

yields the template that originally produced the image of

the running VM (4). If attestation succeeds, the user can

determine whether the VM is configured according to

her needs by specifying relevant properties in a usage

manifest file, and verifying, using a model checker, that

the template satisfies such properties (5). If validation

passes, the VM is deemed trustworthy, and it is ready to

be used. Essentially, compliance guarantees are given to

the creator and users in steps 1 and 5, respectively. Next,

we describe this workflow in more detail using a simple

depliance example.

Depliance modeling. To build a depliance, the cre-

ator must first write a template in a domain-specific lan-

guage (DSL). The template specifies a model of the VA

configuration that describes all modules necessary and

sufficient for building the VA. To illustrate this concept

with an example, Figure 2 represents a simplified tem-

plate of a Joomla depliance (see Table 1). The boxes

represent the modules of the Joomla depliance: virtual

hardware, and the software packages Linux, MySQL,

Apache HTTP Server, PHP, and Joomla. Arrows indi-

cate dependencies between modules. Each module fea-

tures a set of configuration attributes and files annotated

to the module’s left- and right-hand sides, respectively.

Together, configuration attributes and files (which in-
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clude executables, libraries, etc.) parameterize the be-

havior of a given module. As we explain next, from a

VA template it is possible to (i) verify relevant proper-

ties, and (ii) generate the VA image.

Property verification. Based on a template, the cre-

ator (and users) can check for specific properties using a

model checker. To enable property verification, the be-

havior of each module is expressed as a state machine.

Each state machine depends on its module’s configura-

tion and file attributes. The creator specifies the verifica-

tion properties in the DSL as logic conditions over such

attributes, enabling a model checker to validate them (or

not, if there is indeed a problem). This general tech-

nique allows for the verification of multiple properties,

such as the following ones:

• Efficiency: For example, in the Joomla depliance,

ensure proper configuration of the maximum num-

ber of concurrent threads for Apache (MaxClients)

and PHP (nthreads) based on the memory (Mem)

and cores (CPU Cores) available on the virtual

hardware.

• Confidentiality: For example, validate user and

password data of modules (e.g., Root Pass of

MySQL or Admin Pass of Joomla) by checking that

the private identity of the creator is not revealed and

that the modules’ default, and therefore insecure,

access credentials have been overridden.

• Integrity: For example, validate the version of

each module’s software, and check for missed

patches.

• Authenticity: For example, check that only certi-

fied software can be installed in the VA, or even

restrict software installation to certain entities.

• Accountability: For example, provide that the VA

is configured with a logging mechanism.

• Reliability: For instance, verify that a backup soft-

ware module is properly set up.

Image generation. From a properly validated VA

template, the next step is to generate a complete

VA image. Since each module has specific exe-

cutables and configuration files, this operation is per-

formed by module-specific helper programs that trans-

late the high-level model representation into low-level

package-specific installation and configuration com-

mands. For example, the helper program for mod-

ule “Apache HTTP Server” must interpret the con-

figuration attribute that sets the maximum number of

worker threads (MaxClients) and edit Apache’s config-

uration file /etc/httpd.conf accordingly. To make sure

Figure 2: Simplified template of Joomla depliance.

that the VA image corresponds to the template’s descrip-

tion, helper programs must be correctly implemented by

trusted third parties, such as software package builders,

open source communities, specialized certification com-

panies, etc.

VM instantiation. From the VA image produced pre-

viously, VM instances can be bootstrapped and executed

on a virtualized platform using standard client side tools.

Remote attestation. After booting up a VM, a user

must check whether the VM currently instantiated satis-

fies her dependability requirements. To make this pos-

sible, the user’s client tool implements a remote attes-

tation protocol that yields a digitally signed copy of

the original template, allowing the user to validate rel-

evant properties using a model checker. To ensure that

the template returned by the attestation protocol corre-

sponds to the packages installed and configured during

the VM generation stage, the VMI must be produced by

a trusted entity that guarantees the overall integrity of

the VMI and includes a cryptographic digest of the tem-

plate in the VMI.

Usage scenarios. Our virtual appliance model is suit-

able for a variety of usage scenarios targeting the cloud

setting. In the most obvious case, creators are re-

sponsible for modeling and building the VA. The cloud

provider stores the VA images and manages the in-

frastructure where VM instances run. Users run client

side tools that interact with the VM instances exter-

nally. While this model suits nicely the current cloud

paradigm, the creators must be trusted to build the VMI

correctly and therefore no VMI integrity assurances can
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be given in the face of a malicious creator (who can

intentionally tamper with the VMI). To avoid trusting

the creators, the VM bundling operation can be out-

sourced to the cloud provider: if the users trust the cloud

provider for hosting VM instances, it is not unreason-

able to trust the same provider to generate VA images

out of templates submitted by creators. However, if no

single cloud provider is involved, or if it is not trusted,

the VA bundling and hosting stages can be performed

entirely by the user, who only needs to obtain the VA

template from the creator and run the necessary tools ac-

cordingly. Naturally, the depliance model could be em-

ployed in other contexts beyond cloud computing, e.g.,

within enterprises or for personal use.

4 Open Challenges and Future Work

We are currently building the framework tools for depli-

ance implementation support. In this section, we dis-

cuss the most relevant open challenges we are facing,

and how we plan to overcome them.

Comprehensive appliance modeling. In a typical

VA, all software combined counts thousands of config-

uration options. If the DSL exposes all these options

to the VA creator, templates will result in complex and

overwhelming specifications. On the other hand, re-

stricting the set of options that can be tuned at the DSL

level can hinder the configuration flexibility of depli-

ances. To combine manageability and flexibility, we

borrow some ideas from Click [27], a router emulator

that allows for the modular development and integra-

tion of software router components. Essentially, our ap-

proach will be to decouple the language abstractions of

the DSL from the software packages’ so that a config-

uration attribute in DSL needs not to map directly to a

specific option in a configuration file, but can be made

to configure a set of low-level options. This allows for

different degrees of fine-tuning capability.

Efficient property verification. The properties listed

in Section 3 can be verified using standard model check-

ers, such as HSF [18], PRISM [28], SPIN [22], and Z3

µZ [21]. However, which model checker to use depends

on several factors, including the type of property. In

fact, different properties vary in difficulty. Such a prop-

erty diversity also makes it unclear, at this point, what

will be the shape and size of the verification conditions.

Therefore, further investigation is required to determine:

(i) which logic to use in order to encode the verifica-

tion conditions (e.g., temporal or SMT logics), and (ii)

whether existing verification tools, such as model check-

ers, SAT/SMT solvers, and theorem provers, are able

to efficiently discharge the verification conditions. New

logic fragments and/or new tools might be necessary to

verify depliance models. We also plan to investigate

whether our technique could be employed to mitigate

side-channel attacks, e.g., by detecting the presence of

cryptographic libraries resilient to timing attacks.

Correct VA generation. To generate a VA from a

template, we rely on trusted helper programs that

translate high-level template specification into low-level

commands responsible for implementing the necessary

installation and configuration operations. The smaller

these programs are, the higher are the chances that their

code is correct and that existing software verification

techniques can be used to verify these programs [26].

To make helper programs small, we will exploit existing

similarities in the configuration mechanisms commonly

used in software packages. Note that we assume that the

programs to be installed are correct; it is not within the

scope of our work to verify the correctness of applica-

tion code.

Untrusted VA generation. To make sure that remote

attestation is correct, the VA generation performed by

helper programs cannot be adulterated, otherwise no as-

surances could be given to users that the VA template

returned by a successfully attested VM would reflect

the VA implementation. Therefore, in order to be trust-

worthy, the VA generation step must be performed by

a trustworthy entity, namely a trusted cloud provider or

the user himself. Being able to delegate the VA genera-

tion to an untrusted party, such as the VA creator, could

further facilitate this operation. Achieving this, how-

ever, is hard. To overcome this challenge, we wish to

explore whether it is possible to create an integrity mea-

sured log of operations performed during VA generation

that could be included in the attestation report, so that

users could check it before the model validation stage.

5 Conclusions

This paper proposed a novel approach for improving de-

pendability of virtual appliances. Our approach enables

building virtual appliances — referred to as depliances

— whose configuration properties can be verified by re-

spective creators and users. To achieve this, we leverage

trusted computing and model checking techniques.

To the best of our knowledge, this is the first work

to focus on verifying the configuration of full virtual ap-

pliances. In this paper, we discussed open research chal-

lenges of implementing our approach, endeavor that we

leave out for future work.
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