
technology
from seed

Automatic Synthesis of Weakest

Preconditions for Compiler Optimizations

Nuno Lopes

Advisor: José Monteiro

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Expectations for Compilers

• Improve performance

• Reduce code size

• Reduce energy consumption

2

technology
from seed

• LLVM 3.2 introduced a Loop Vectorizer

• Performance improvement of 10-300% in benchmarks

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Compilers Do Deliver

3

technology
from seed

• Yang, Chen, Eide, Regehr [PLDI’12]:

– 79 bugs in GCC (25 P1)

– 202 bugs in LLVM

– 2 wrong-code bugs in CompCert

• Le, Afshari, Su [PLDI’14]:

– 40 wrong-code bugs in GCC

– 42 wrong-code bugs in LLVM

• Last week:

– 395 open wrong-code bug reports in GCC

– 14 open wrong-code bug reports in LLVM

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

But Compilers are Full of Bugs

4

technology
from seed

• +0.5M LoC added to LLVM last year

• 20k commits

• Over 4M LoC in LLVM

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Churn in Compiler’s code

5

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Compilers by Dragon’s Lenses

Frontend Optimizers Backend

100101010
010001011
100110101
101010111
001010110

6

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Loop Unswitching

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

S1, S2 are template statements

B is a template Boolean expression

7

technology
from seed

• Transformation function

• Precondition

• Profitability heuristic

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Specifying Compiler Optimizations

8

technology
from seed

• Automatic weakest precondition synthesis for compiler

optimizations

• Automatic partial equivalence checking, applied to

compiler optimization verification

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Contributions

9

technology
from seed

• Deriving preconditions by hand is hard; WPs are often

non-trivial

• WPs derived by hand are often wrong!

• Weaker preconditions expose more optimization

opportunities

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Why WP Synthesis for Compiler

Optimizations?

10

technology
from seed

// For a logical right shift, we can fold if the comparison is not

// signed. We can also fold a signed comparison if the shifted mask

// value and the shifted comparison value are not negative.

// These constraints are not obvious, but we can prove that they are

// correct using an SMT solver such as "Z3" :

// http://rise4fun.com/Z3/Tslfh

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Verification to the Rescue:

LLVM PR17827

if (ShiftOpcode == Instruction::AShr) {

// There may be some constraints that make this possible,

// but nothing simple has been discovered yet.

CanFold = false;

}

lib/Transforms/InstCombine/InstCombineCompares.cpp

11

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Loop Unswitching

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

12

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Loop Unswitching:

Example Instantiation

…

while I < N do

if N > 5 then

A := A + N

else

A := A + 1

I := I + 1

…

if N > 5 then

while I < N do

A := A + N

I := I + 1

else

while I < N do

A := A + 1

I := I + 1

→

while I < N do

if B then

S1
else

S2
I := I + 1

Instantiation:

𝐵 ⟼ 𝑁 > 5
𝑆1 ⟼ 𝐴 ≔ 𝐴 + 𝑁
𝑆2 ⟼ 𝐴 ≔ 𝐴+ 1

13

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Loop Unswitching:

Weakest Precondition

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

Precondition:

𝐼 ∉ 𝑅 𝐵 ∧
𝑊 𝑆1 ∩ 𝑅 𝐵 = ∅ ∧
𝑊 𝑆2 ∩ 𝑅 𝐵 = ∅

14

technology
from seed

• Read and Write sets for each template

statement/expression

• Arbitrary quantifier-free constraints over read/write sets

• In practice constraints are only over R/W and W/W

intersection

– 𝑣 ∉ 𝑅 𝐵

– 𝑊 𝑆1 ∩ 𝑅 𝐵 = ∅

– 𝑊 𝑆1 ∩𝑊 𝑆2 = ∅

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Language of Preconditions

15

technology
from seed

• Books and developers already informally speak about

read and write sets

• Similar to PEC’s

• Can be efficiently discharged using current compiler

technology:

– Memory dependence analysis

– Alias/pointer analysis

– Loop analysis

– Range analysis

– …

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Language of Preconditions:

Suitability

16

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Synthesizing WP for Loop

Unswitching

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

17

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

1) Find counterexample

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

I < N

B

S1
I := I + 1

I < N

¬B
S2
I := I + 1

I ≥ N

B

I < N

S1
I := I + 1

I < N

S1
I := I + 1

I ≥ N

Pre = true

18

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

2) Synthesize WP for counterexample:

VC Gen

I < N

B

S1
I := I + 1

I < N

¬B
S2
I := I + 1

I ≥ N

I0 < N0 ˄
B0 ˄
I1 = ite(wS1I, S1I0, I0) ˄

N1 = ite(wS1N, S1N0, N0) ˄

I2 = I1 + 1 ˄

I2 < N1 ˄
¬B1 ˄
I3 = ite(wS2I, S2I0, I2) ˄

N2 = ite(wS2N, S2N0, N1) ˄

I4 = I3 + 1 ˄

I4 ≥ N2

19

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

2) Synthesize WP for counterexample:

Conditional Ackermannization

I0 < N0 ˄
B0 ˄
I1 = ite(wS1I, S1I0, I0) ˄

N1 = ite(wS1N, S1N0, N0) ˄

I2 = I1 + 1 ˄

I2 < N1 ˄
¬B1 ˄
I3 = ite(wS2I, S2I0, I2) ˄

N2 = ite(wS2N, S2N0, N1) ˄

I4 = I3 + 1 ˄

I4 ≥ N2

B0 and B1 are equal if the values of the

variables in R(B) are equal

𝐼 ∈ 𝑅 𝐵 → 𝐼0 = 𝐼2 ⋀

𝑁 ∈ 𝑅 𝐵 → 𝑁0 = 𝑁1
→ 𝐵0 = 𝐵1

20

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

2) Synthesize WP for counterexample:

Final constraint

∃𝑆 ∀𝑉 𝑃𝑎𝑡ℎ ∧ 𝐴𝑐𝑘𝑒𝑟𝑚𝑎𝑛𝑛 ∧ 𝑀𝑢𝑠𝑡𝑊𝑟𝑖𝑡𝑒 ∧ … → 𝑃𝑎𝑡ℎ𝐼𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡

S = Read/Write sets

V = Vars from VCGen, Must-write vars

A possible model:

𝑊 𝑆1 = ∅
𝑅 𝑆1 = ∅
𝑅 𝐵 = ∅

I < N

B

S1
I := I + 1

I < N

¬B
S2
I := I + 1

I ≥ N

B

I < N

S1
I := I + 1

I < N

S1
I := I + 1

I ≥ N

21

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

2) Synthesize WP for counterexample:

Disjunction of all models

Precondition:

𝐼 ∉ 𝑅 𝐵 ∧
𝑊 𝑆1 ∩ 𝑅 𝐵 = ∅

I < N

B

S1
I := I + 1

I < N

¬B
S2
I := I + 1

I ≥ N

B

I < N

S1
I := I + 1

I < N

S1
I := I + 1

I ≥ N

22

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

3) Iterate until no more

counterexamples can be found

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

Precondition:

𝐼 ∉ 𝑅 𝐵 ∧
𝑊 𝑆1 ∩ 𝑅 𝐵 = ∅ ∧
𝑊 𝑆2 ∩ 𝑅 𝐵 = ∅

23

technology
from seed

1) Find counterexample

2) Generate WP that rules out the counterexample

3) Iterate until no more counterexamples can be found

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Algorithm

24

technology
from seed

• Model generalization

• Exploit UNSAT cores

• Bias towards R/W and W/W intersections

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Optimizations

25

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

PSyCO: Results

26

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Example of Synthesized WP:

Software Pipelining

Precondition:

(Weaker than

PEC’s [PLDI’09])

27

technology
from seed

• Template statements/expressions become UFs over the

read and write sets

– S1 -> 𝑆1(𝑥, 𝑦, 𝑧) w/ 𝑅 𝑆1 = 𝑥, 𝑦, 𝑧

• Originates 2 UF+IA programs

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Verifying Optimizations with CORK

28

technology
from seed

1. UFs abstracted by polynomials

– 𝑆1(𝑥, 𝑦, 𝑧) -> 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 (w/ 𝑢 𝑆1 ≤ 2)

2. Loops summarized using recurrences

3. Sequential composition

– Reduces to safety checking of loop-free + integer arithmetic

program

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

CORK: Partial Equivalence Checking

of UF+IA Programs

29

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

CORK: Polynomial Interpolation

f(a)

f(b)

f(c) f(d)

-4

-2

0

2

4

6

8

10

12

-2 -1 0 1 2 3 4 5 6 7 8

30

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

CORK: Results

31

technology
from seed

• Apply to production compilers

• Synthesize implementation of optimizations (pattern

matching, VC Gen, code transformation)

• Explain reasons for optimization failure

• Preserve debug info automatically

• Preserve analysis data across optimizations

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Future Work

32

technology
from seed

• There is significant on-going effort to improve compilers,

which compromises correctness

• Presented the first algorithm for the automatic synthesis of

WPs for compiler optimizations

• Presented the first algorithm for automatic partial

equivalence checking of UF+IA programs

– Applied to verification of compiler optimizations

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Conclusion

33

technology
from seed

technology
from seed

technology
from seed

• 𝑓 𝑥1, … , 𝑥𝑛 = 𝛼∙1≤𝑑 𝐶𝛼𝑋
𝛼

• 𝑢 𝑓 ≤ 𝑛+𝑑
𝑛

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

CORK: UFs -> Polynomials

35

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

2) Synthesize WP for counterexample:

Must-write vs may-write

I0 < N0 ˄
B0 ˄
I1 = ite(wS1I, S1I0, I0) ˄

N1 = ite(wS1N, S1N0, N0) ˄

I2 = I1 + 1 ˄

I2 < N1 ˄
¬B1 ˄
I3 = ite(wS2I, S2I0, I2) ˄

N2 = ite(wS2N, S2N0, N1) ˄

I4 = I3 + 1 ˄

I4 ≥ N2

If a variable is in the write set of a

statement, it may or may not be written.

𝑤𝑆1𝐼 → 𝐼 ∈ 𝑊 𝑆1
𝑤𝑆1𝑁 → 𝑁 ∈ 𝑊 𝑆1

36

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Optimizers by Dragon’s Lenses

Optimization nOptimization 1Analysis 1 Analysis n…

37

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

An Optimizer from the Future

Pattern Matching VC Gen Code Transformer

Analysis 1 Analysis n…

38

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

An Optimizer from the Future:

Pattern Matching

Pattern Matching VC Gen Code Transformer

Analysis 1 Analysis n…

…

while I < N do

if N > 5 then

A := A + N

else

A := A + 1

I := I + 1

…

if B then

S1

𝐵 ⟼ 𝑁 > 5
𝑆1 ⟼ 𝐴 ≔ 𝐴 +𝑁

39

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

An Optimizer from the Future:

Verification

Pattern Matching VC Gen Code Transformer

Analysis 1 Analysis n…

𝐵 ⟼ 𝑁 > 5
𝑆1 ⟼ 𝐴 ≔ 𝐴 +𝑁

+ Precondition = φ

Duality

HSF

Terminator

…

Range Analysis

Alias Analysis

Scalar Evolution

…

40

technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

An Optimizer from the Future:

Code Transformation

Pattern Matching VC Gen Code Transformer

Analysis 1 Analysis n…

if B then

S1

𝐵 ⟼ 𝑁 > 5
𝑆1 ⟼ 𝐴 ≔ 𝐴 +𝑁

S1
if B then

skip

A := A + 1

if N > 5 then

skip

41

