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Expectations for Compilers

• Improve performance

• Reduce code size

• Reduce energy consumption
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• LLVM 3.2 introduced a Loop Vectorizer

• Performance improvement of 10-300% in benchmarks
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Compilers Do Deliver
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• Yang, Chen, Eide, Regehr [PLDI’12]:

– 79 bugs in GCC (25 P1)

– 202 bugs in LLVM

– 2 wrong-code bugs in CompCert

• Le, Afshari, Su [PLDI’14]:

– 40 wrong-code bugs in GCC

– 42 wrong-code bugs in LLVM

• Last week:

– 395 open wrong-code bug reports in GCC

– 14 open wrong-code bug reports in LLVM
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But Compilers are Full of Bugs
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• +0.5M LoC added to LLVM last year

• 20k commits

• Over 4M LoC in LLVM
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Churn in Compiler’s code
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Compilers by Dragon’s Lenses

Frontend Optimizers Backend

100101010
010001011
100110101
101010111
001010110
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Loop Unswitching

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

S1, S2 are template statements

B is a template Boolean expression
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• Transformation function

• Precondition

• Profitability heuristic
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Specifying Compiler Optimizations
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• Automatic weakest precondition synthesis for compiler 

optimizations

• Automatic partial equivalence checking, applied to 

compiler optimization verification
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Contributions
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• Deriving preconditions by hand is hard; WPs are often 

non-trivial

• WPs derived by hand are often wrong!

• Weaker preconditions expose more optimization 

opportunities
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Why WP Synthesis for Compiler 

Optimizations?
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// For a logical right shift, we can fold if the comparison is not

// signed. We can also fold a signed comparison if the shifted mask

// value and the shifted comparison value are not negative.

// These constraints are not obvious, but we can prove that they are

// correct using an SMT solver such as "Z3" :

// http://rise4fun.com/Z3/Tslfh
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Verification to the Rescue:

LLVM PR17827

if (ShiftOpcode == Instruction::AShr) {

// There may be some constraints that make this possible,

// but nothing simple has been discovered yet.

CanFold = false;

}

lib/Transforms/InstCombine/InstCombineCompares.cpp
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Loop Unswitching

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→
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Loop Unswitching:

Example Instantiation

…

while I < N do

if N > 5 then

A := A + N

else

A := A + 1

I := I + 1

…

if N > 5 then

while I < N do

A := A + N

I := I + 1

else

while I < N do

A := A + 1

I := I + 1

→

while I < N do

if B then

S1
else

S2
I := I + 1

Instantiation:

𝐵 ⟼ 𝑁 > 5
𝑆1 ⟼ 𝐴 ≔ 𝐴 + 𝑁
𝑆2 ⟼ 𝐴 ≔ 𝐴+ 1
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Loop Unswitching:

Weakest Precondition

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

Precondition:

𝐼 ∉ 𝑅 𝐵 ∧
𝑊 𝑆1 ∩ 𝑅 𝐵 = ∅ ∧
𝑊 𝑆2 ∩ 𝑅 𝐵 = ∅

14



technology
from seed

• Read and Write sets for each template 

statement/expression

• Arbitrary quantifier-free constraints over read/write sets

• In practice constraints are only over R/W and W/W 

intersection

– 𝑣 ∉ 𝑅 𝐵

– 𝑊 𝑆1 ∩ 𝑅 𝐵 = ∅

– 𝑊 𝑆1 ∩𝑊 𝑆2 = ∅

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Language of Preconditions
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• Books and developers already informally speak about 

read and write sets

• Similar to PEC’s

• Can be efficiently discharged using current compiler 

technology:

– Memory dependence analysis

– Alias/pointer analysis

– Loop analysis

– Range analysis

– …

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Language of Preconditions:

Suitability
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Synthesizing WP for Loop 

Unswitching

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→
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1) Find counterexample

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

I < N

B

S1
I := I + 1

I < N

¬B
S2
I := I + 1

I ≥ N

B

I < N

S1
I := I + 1

I < N

S1
I := I + 1

I ≥ N

Pre = true
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2) Synthesize WP for counterexample:

VC Gen

I < N

B

S1
I := I + 1

I < N

¬B
S2
I := I + 1

I ≥ N

I0 < N0 ˄
B0 ˄
I1 = ite(wS1I, S1I0, I0) ˄

N1 = ite(wS1N, S1N0, N0) ˄

I2 = I1 + 1 ˄

I2 < N1 ˄
¬B1 ˄
I3 = ite(wS2I, S2I0, I2) ˄

N2 = ite(wS2N, S2N0, N1) ˄

I4 = I3 + 1 ˄

I4 ≥ N2
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2) Synthesize WP for counterexample:

Conditional Ackermannization

I0 < N0 ˄
B0 ˄
I1 = ite(wS1I, S1I0, I0) ˄

N1 = ite(wS1N, S1N0, N0) ˄

I2 = I1 + 1 ˄

I2 < N1 ˄
¬B1 ˄
I3 = ite(wS2I, S2I0, I2) ˄

N2 = ite(wS2N, S2N0, N1) ˄

I4 = I3 + 1 ˄

I4 ≥ N2

B0 and B1 are equal if the values of the 

variables in R(B) are equal

𝐼 ∈ 𝑅 𝐵 → 𝐼0 = 𝐼2 ⋀

𝑁 ∈ 𝑅 𝐵 → 𝑁0 = 𝑁1
→ 𝐵0 = 𝐵1

20



technology
from seed

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

2) Synthesize WP for counterexample:

Final constraint

∃𝑆 ∀𝑉 𝑃𝑎𝑡ℎ ∧ 𝐴𝑐𝑘𝑒𝑟𝑚𝑎𝑛𝑛 ∧ 𝑀𝑢𝑠𝑡𝑊𝑟𝑖𝑡𝑒 ∧ … → 𝑃𝑎𝑡ℎ𝐼𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡

S = Read/Write sets

V = Vars from VCGen, Must-write vars

A possible model:

𝑊 𝑆1 = ∅
𝑅 𝑆1 = ∅
𝑅 𝐵 = ∅

I < N

B

S1
I := I + 1

I < N

¬B
S2
I := I + 1

I ≥ N

B

I < N

S1
I := I + 1

I < N

S1
I := I + 1

I ≥ N
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2) Synthesize WP for counterexample:

Disjunction of all models

Precondition:

𝐼 ∉ 𝑅 𝐵 ∧
𝑊 𝑆1 ∩ 𝑅 𝐵 = ∅

I < N

B

S1
I := I + 1

I < N

¬B
S2
I := I + 1

I ≥ N

B

I < N

S1
I := I + 1

I < N

S1
I := I + 1

I ≥ N
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3) Iterate until no more 

counterexamples can be found

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

Precondition:

𝐼 ∉ 𝑅 𝐵 ∧
𝑊 𝑆1 ∩ 𝑅 𝐵 = ∅ ∧
𝑊 𝑆2 ∩ 𝑅 𝐵 = ∅
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1) Find counterexample

2) Generate WP that rules out the counterexample

3) Iterate until no more counterexamples can be found

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Algorithm
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• Model generalization

• Exploit UNSAT cores

• Bias towards R/W and W/W intersections

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Optimizations
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PSyCO: Results
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Example of Synthesized WP:

Software Pipelining

Precondition:

(Weaker than 

PEC’s [PLDI’09])
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• Template statements/expressions become UFs over the 

read and write sets

– S1 -> 𝑆1(𝑥, 𝑦, 𝑧) w/  𝑅 𝑆1 = 𝑥, 𝑦, 𝑧

• Originates 2 UF+IA programs

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Verifying Optimizations with CORK
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1. UFs abstracted by polynomials

– 𝑆1(𝑥, 𝑦, 𝑧) -> 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 (w/ 𝑢 𝑆1 ≤ 2)

2. Loops summarized using recurrences

3. Sequential composition

– Reduces to safety checking of loop-free + integer arithmetic 

program

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

CORK: Partial Equivalence Checking 

of UF+IA Programs
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CORK: Polynomial Interpolation
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CORK: Results
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• Apply to production compilers

• Synthesize implementation of optimizations (pattern 

matching, VC Gen, code transformation)

• Explain reasons for optimization failure

• Preserve debug info automatically

• Preserve analysis data across optimizations

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Future Work
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• There is significant on-going effort to improve compilers, 

which compromises correctness

• Presented the first algorithm for the automatic synthesis of 

WPs for compiler optimizations

• Presented the first algorithm for automatic partial 

equivalence checking of UF+IA programs

– Applied to verification of compiler optimizations

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

Conclusion
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• 𝑓 𝑥1, … , 𝑥𝑛 =  𝛼∙1≤𝑑 𝐶𝛼𝑋
𝛼

• 𝑢 𝑓 ≤ 𝑛+𝑑
𝑛

Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

CORK: UFs -> Polynomials
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2) Synthesize WP for counterexample:

Must-write vs may-write

I0 < N0 ˄
B0 ˄
I1 = ite(wS1I, S1I0, I0) ˄

N1 = ite(wS1N, S1N0, N0) ˄

I2 = I1 + 1 ˄

I2 < N1 ˄
¬B1 ˄
I3 = ite(wS2I, S2I0, I2) ˄

N2 = ite(wS2N, S2N0, N1) ˄

I4 = I3 + 1 ˄

I4 ≥ N2

If a variable is in the write set of a 

statement, it may or may not be written.

𝑤𝑆1𝐼 → 𝐼 ∈ 𝑊 𝑆1
𝑤𝑆1𝑁 → 𝑁 ∈ 𝑊 𝑆1
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Optimizers by Dragon’s Lenses

Optimization nOptimization 1Analysis 1 Analysis n…
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An Optimizer from the Future

Pattern Matching VC Gen Code Transformer

Analysis 1 Analysis n…
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An Optimizer from the Future:

Pattern Matching

Pattern Matching VC Gen Code Transformer

Analysis 1 Analysis n…

…

while I < N do

if N > 5 then

A := A + N

else

A := A + 1

I := I + 1

…

if B then

S1

𝐵 ⟼ 𝑁 > 5
𝑆1 ⟼ 𝐴 ≔ 𝐴 +𝑁
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An Optimizer from the Future:

Verification

Pattern Matching VC Gen Code Transformer

Analysis 1 Analysis n…

𝐵 ⟼ 𝑁 > 5
𝑆1 ⟼ 𝐴 ≔ 𝐴 +𝑁

+   Precondition  =  φ

Duality

HSF

Terminator

…

Range Analysis

Alias Analysis

Scalar Evolution

…
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An Optimizer from the Future:

Code Transformation

Pattern Matching VC Gen Code Transformer

Analysis 1 Analysis n…

if B then

S1

𝐵 ⟼ 𝑁 > 5
𝑆1 ⟼ 𝐴 ≔ 𝐴 +𝑁

S1
if B then

skip

A := A + 1

if N > 5 then

skip
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