
technology
from seed

Automatic Equivalence Checking of

UF+IA Programs

Nuno Lopes and José Monteiro

technology
from seed

• Algorithm recognition

• Regression checking

• Manual optimization checking

• Compiler optimization verification

• Information flow (non-interference) proofs

Automatic Equivalence Checking of UF+IA Programs

Why Equivalence Checking?

technology
from seed

i := 0

while i < n do

k := f(k, i)

i := i + 1

Automatic Equivalence Checking of UF+IA Programs

Example:

Are these programs equivalent?

i := n

while i ≥ 1 do

k := f(k, n - i)

i := i - 1

if n ≤ 0 then

i := 0

else

i := n

technology
from seed

assume v = v

i := 0

while i < n do

k := f(k, i)

i := i + 1

i := n

while i ≥ 1 do

k := f(k, n - i)

i := i - 1

if n ≤ 0 then

i := 0

else

i := n

assert v = v

Automatic Equivalence Checking of UF+IA Programs

Example:

Sequential composition is no solution

technology
from seed

• Program equivalence

• Example

• Algorithm

• Application to compiler optimizations

• Evaluation: CORK

Automatic Equivalence Checking of UF+IA Programs

Outline

technology
from seed

• Functional equivalence: non-deterministic behavior is not

supported

• Partial equivalence: check only terminating paths

Automatic Equivalence Checking of UF+IA Programs

Program equivalence

technology
from seed

i := 0

while i < n do

k := f(k, i)

i := i + 1

Automatic Equivalence Checking of UF+IA Programs

Running example

i := n

while i ≥ 1 do

k := f(k, n - i)

i := i - 1

if n ≤ 0 then

i := 0

else

i := n

technology
from seed

assume v = v

i := 0

while i < n do

k := f(k, i)

i := i + 1

i := n

while i ≥ 1 do

k := f(k, n - i)

i := i - 1

if n ≤ 0 then

i := 0

else

i := n

assert v = v

Automatic Equivalence Checking of UF+IA Programs

Running example:

1) Sequential composition

technology
from seed

assume v = v

i := 0

while i < n do

k := a·k + b·i + c

i := i + 1

(…)

assert v = v

Automatic Equivalence Checking of UF+IA Programs

Running example:

2) Eliminate UFs

f(k, i)

technology
from seed

assume v = v

i := 0

if i < n then

assume Ri(j-1) < n ∧ Ri(j) ≥ n

k := Rk(j)

i := Ri(j)

(…)

assert v = v

Automatic Equivalence Checking of UF+IA Programs

Running example:

3) Eliminate Loops

𝑅𝑘 𝑗 =
𝑏 𝑎𝑗 − 𝑎𝑗 + 𝑗 − 1 + 𝑎 − 1 𝑎𝑗 𝑎 − 1 𝑘0 + 𝑐 − 𝑐

𝑎 − 1 2

𝑅𝑖 𝑗 = 𝑗

assume v = v

i := 0

while i < n do

k := a·k + b·i + c

i := i + 1

(…)

assert v = v

Ri(j) = Ri(j-1) + 1

Ri(0) = 0

Rk(j) = a × Rk(j-1) + b × Ri(j-1) + c

Rk(0) = k0

technology
from seed

assume v = v

i := 0

if i < n then

assume Ri(j-1) < n ∧ Ri(j) ≥ n

k := Rk(j)

i := Ri(j)

i := n

if i ≥ 1 then

assume Vi(j-1) ≥ 1 ∧ Vi(j) < 1

k := Vk(j)

i := Vi(j)

if n ≤ 0 then

i := 0

else

i := n

assert v = v

Automatic Equivalence Checking of UF+IA Programs

Running example:

3) Eliminate Loops

technology
from seed

• Program equivalence

• Example

• Algorithm

• Application to compiler optimizations

• Evaluation: CORK

Automatic Equivalence Checking of UF+IA Programs

Outline

technology
from seed

1. Sequential composition

2. Replace UFs with polynomials

3. Replace loops with recurrences

4. Prove safety of resulting program

Automatic Equivalence Checking of UF+IA Programs

Algorithm

technology
from seed

Automatic Equivalence Checking of UF+IA Programs

Algorithm:

1) Sequential Composition

assume v = v

P1(v)

P2(v)

assert v = v

technology
from seed

• u(f, i) is equal to the maximum number of applications of f

with distinct values in the ith parameter in all paths minus

one

Automatic Equivalence Checking of UF+IA Programs

Algorithm:

Function u

if i < n then

k := f(y, 3)

else

k := f(z, 3)

if f(x, 3) < 0 ∧ k < 0 then

…

u(f, 1) = 1

u(f, 2) = 0

technology
from seed

Automatic Equivalence Checking of UF+IA Programs

Algorithm:

Polynomial Interpolation

f(a)

f(b)

f(c) f(d)

-4

-2

0

2

4

6

8

10

12

-2 -1 0 1 2 3 4 5 6 7 8

technology
from seed

• UFs are rewritten to polynomials over its inputs

Automatic Equivalence Checking of UF+IA Programs

Algorithm:

2) UF -> Polynomial

𝑇 𝑒 =

𝑖=1

𝑛

𝑗=0

𝑢 UF,𝑖

UFij × T ei
j
, if 𝑒 = UF 𝑒1, … , 𝑒𝑛

technology
from seed

Automatic Equivalence Checking of UF+IA Programs

Algorithm:

3) Loops -> Recurrences

while b do

c

if b then

assume σn-1(b) ∧ σn(¬b)

vi := σn(vi)

else

assume n = 0

→

technology
from seed

• Resulting program is correct iff the 2 programs are partially

equivalent

• Standard model checkers or VC gen + constraint solving

can now prove correctness

Automatic Equivalence Checking of UF+IA Programs

Algorithm:

4) Prove safety of resulting program

technology
from seed

• Program equivalence

• Example

• Algorithm

• Application to compiler optimizations

• Evaluation: CORK

Automatic Equivalence Checking of UF+IA Programs

Outline

technology
from seed

• Compiler optimization

– Transformation function

– Precondition

– Profitability heuristic

Automatic Equivalence Checking of UF+IA Programs

Compiler Optimizations

technology
from seed

while I < N do

S

I := I + 1

Automatic Equivalence Checking of UF+IA Programs

Loop Unrolling

while (I + 1) < N do

S

I := I + 1

S

I := I + 1

if I < N then

S

I := I + 1

⇒

Precondition:

R(S) = {I, N, c1}

W(S) = {c1}

technology
from seed

while i < n do

x := i + 2

i := i + 1

Automatic Equivalence Checking of UF+IA Programs

Loop Unrolling:

Example instantiation

while (i + 1) < n do

x := i + 2

i := i + 1

x := i + 2

i := i + 1

if i < n then

x := i + 2

i := i + 1

while I < N do

S

I := I + 1 ⇒

S ≡ x := i + 2

I ≡ i

N ≡ n

while (I + 1) < N do

S

I := I + 1

S

I := I + 1

if I < N then

S

I := I + 1

technology
from seed

• Transformation function specified as 2 template programs

• Precondition specified as read/write sets for template

statements and expressions plus IA formulas

Automatic Equivalence Checking of UF+IA Programs

Compiler Optimizations:

Our abstraction

technology
from seed

• A transformation function can be written as two UF+IA

programs

– Template statements are converted to UFs, that read and write

from/to their read/write sets

Automatic Equivalence Checking of UF+IA Programs

Transformation function to UF+IA

Program

S x,y := Sx(y, z),

Sy(y, z)

Precondition:

R(S) = {y, z}

W(S) = {x, y}

→

technology
from seed

• Program equivalence

• Example

• Algorithm

• Application to compiler optimizations

• Evaluation: CORK

Automatic Equivalence Checking of UF+IA Programs

Outline

technology
from seed

• Implemented in OCaml (~1,100 LoC)

• Uses Wolfram Mathematica 8 for constraint and

recurrence solving

Automatic Equivalence Checking of UF+IA Programs

CORK: Compiler Optimization

Correctness Checker

technology
from seed

Automatic Equivalence Checking of UF+IA Programs

CORK: Results

Benchmarks available from http://web.ist.utl.pt/nuno.lopes/cork/

technology
from seed

• Presented a new algorithm to prove equivalence of UF+IA

programs

• Presented CORK, a compiler optimization verifier, that can

prove more optimizations correct than others

Automatic Equivalence Checking of UF+IA Programs

Conclusion

technology
from seed

Título da apresentação

technology
from seed

