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So.. we need faster Model Checkers! 
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all possible inputs

 
e.g., there are no buffer overflows, assert() always 
holds, etc..
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CEGAR (CounterExample Guided Abstraction 
Refinement) loop:
1. check if valid with current abstraction
2. if not:

if counterexample path is feasible, exit
otherwise, refine the abstraction

3. goto 1



Example

if (x > 0) {
    y = x;
} else if (x == 0) {
    y = 2;
} else {
    y = 1;
    y = y + 1;
}

assert( y >= 1 );
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Example: 2nd iteration

P = {x >= 1, y >= 1}

The error state is not reachable 
from any path anymore because:
y >= 1 ^ y < 1  <->  false
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New abstraction:
P = { y >= 2 }



Predictability: 2nd iteration

Using interpolation we derive:
P' = {x >= 1, y >= 1}

error state is still reachable:
true ^ y < 1  is SAT

P = { y >= 2 }



Predictability: 3rd iteration

The error state is not 
reachable anymore because:
y >= 1 ^ y < 1  <->  false

P = {y >= 2, x >= 1, y >= 1}
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3 refinements (middle first, right second, left third)
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Running time varies accordingly:

Best and worst executions can have 30x of 
difference
Can be up to 2 times as slow as the sequential 
version



Solutions



Solutions

Need to resolve the non-deterministic choice of 
counterexamples



Solutions

Need to resolve the non-deterministic choice of 
counterexamples
Synchronization is an option, but it's not desirable



Solutions

Need to resolve the non-deterministic choice of 
counterexamples
Synchronization is an option, but it's not desirable
Need a way to reduce synchronization
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Our solution

Compute the full tree until a certain depth
Refine a shortest counterexample (picked 
deterministically)
The overhead for computing the full tree is 
acceptable
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Architecture

Master-Slave
Full tree in master
Partial trees in 
slaves (cache)
no communication 
between slaves
work piece = state 
expansion 
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Example Distributed - #7

Error state reached!
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Algorithm

Distributed CEGAR:
1. Ask slaves to find all shortest paths leading to an 

error state
2. if there exists such a path:

1. return if some counterexample is feasible
2. otherwise refine one of those (chosen 

deterministically)
3. broadcast the new set of predicates to all slaves
4. goto 1. 



Algorithm: Summary

Runs a BFS-style search over the graph
Computes the full tree until a certain depth
Always refines a shortest counterexample 
Speculative execution; some work may be 
discarded
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Evaluation

Extension of ARMC
Benchmarks from the transportation domain 
(AVACS)
Sequential execution ranging from hours to days 



Evaluation



Conclusions

Presented first distributed software model 
checking algorithm using message passing
Linear scalability


