
Distributed and Predictable
Software Model Checking

Nuno Lopes Andrey Rybalchenko
INESC-ID / IST - TU Lisbon TU Munich

Motivation

Motivation

Software model checking can take weeks to
execute

Motivation

Software model checking can take weeks to
execute
Software changes every day

Motivation

Software model checking can take weeks to
execute
Software changes every day

So.. we need faster Model Checkers!

Outline

Overview of Software Model Checking
Example of Sequential Algorithm
Why Predictable Model Checking?
Algorithm
Evaluation
Conclusions

Overview of Software Model Checking

Given a program and a property, we want to verify
that the property always holds in the program for
all possible inputs

Overview of Software Model Checking

Given a program and a property, we want to verify
that the property always holds in the program for
all possible inputs

e.g., there are no buffer overflows, assert() always
holds, etc..

Overview of CEGAR w/ Predicate Abst.

Compute over-approximation of reachable states
(w/ e.g. a BFS)
Stop when the error state is found

Overview of CEGAR w/ Predicate Abst.

Compute over-approximation of reachable states
(w/ e.g. a BFS)
Stop when the error state is found

CEGAR (CounterExample Guided Abstraction
Refinement) loop:
1. check if valid with current abstraction
2. if not:

if counterexample path is feasible, exit
otherwise, refine the abstraction

3. goto 1

Example

if (x > 0) {
 y = x;
} else if (x == 0) {
 y = 2;
} else {
 y = 1;
 y = y + 1;
}

assert(y >= 1);

Example

if (x > 0) {
 y = x;
} else if (x == 0) {
 y = 2;
} else {
 y = 1;
 y = y + 1;
}

assert(y >= 1);

Example: 1st iteration

Example: 1st iteration

Predicate Abstraction:
P = {}

Example: 1st iteration

error is reachable because:
true ^ y < 1 is SAT

Example: 1st iteration

Using interpolation we derive:
P = {x >= 1, y >= 1}

error is reachable because:
true ^ y < 1 is SAT

Example: 2nd iteration

The error state is not reachable
from this path anymore because:
x >= 1 ^ y >= 1 ^ y < 1 <-> false

P = {x >= 1, y >= 1}

Example: 2nd iteration

P = {x >= 1, y >= 1}

The error state is not reachable
from any path anymore because:
y >= 1 ^ y < 1 <-> false

Why Predictable Model Checking?

Why Predictable Model Checking?

New abstraction:
P = { y >= 2 }

Predictability: 2nd iteration

Using interpolation we derive:
P' = {x >= 1, y >= 1}

error state is still reachable:
true ^ y < 1 is SAT

P = { y >= 2 }

Predictability: 3rd iteration

The error state is not
reachable anymore because:
y >= 1 ^ y < 1 <-> false

P = {y >= 2, x >= 1, y >= 1}

Why Predictable Model Checking?

In this simple example it is possible to do:
1 refinement (left first)
2 refinements (middle first, left second)
3 refinements (middle first, right second, left third)

Why Predictable Model Checking?

In this simple example it is possible to do:
1 refinement (left first)
2 refinements (middle first, left second)
3 refinements (middle first, right second, left third)

Running time varies accordingly:

Best and worst executions can have 30x of
difference
Can be up to 2 times as slow as the sequential
version

Solutions

Solutions

Need to resolve the non-deterministic choice of
counterexamples

Solutions

Need to resolve the non-deterministic choice of
counterexamples
Synchronization is an option, but it's not desirable

Solutions

Need to resolve the non-deterministic choice of
counterexamples
Synchronization is an option, but it's not desirable
Need a way to reduce synchronization

Our solution

Our solution

Compute the full tree until a certain depth

Our solution

Compute the full tree until a certain depth
Refine a shortest counterexample (picked
deterministically)

Our solution

Compute the full tree until a certain depth
Refine a shortest counterexample (picked
deterministically)
The overhead for computing the full tree is
acceptable

Architecture

Architecture

Master-Slave
Full tree in master
Partial trees in
slaves (cache)
no communication
between slaves
work piece = state
expansion

Example Distributed

Example Distributed

Example Distributed - #1

Example Distributed - #2

Example Distributed - #3

Example Distributed - #4

Example Distributed - #5

Example Distributed - #6

Example Distributed - #7

Error state reached!

Example Distributed - #8

Example Distributed - #9

Algorithm

Algorithm

Distributed CEGAR:
1. Ask slaves to find all shortest paths leading to an

error state

Algorithm

Distributed CEGAR:
1. Ask slaves to find all shortest paths leading to an

error state
2. if there exists such a path:

Algorithm

Distributed CEGAR:
1. Ask slaves to find all shortest paths leading to an

error state
2. if there exists such a path:

1. return if some counterexample is feasible

Algorithm

Distributed CEGAR:
1. Ask slaves to find all shortest paths leading to an

error state
2. if there exists such a path:

1. return if some counterexample is feasible
2. otherwise refine one of those (chosen

deterministically)

Algorithm

Distributed CEGAR:
1. Ask slaves to find all shortest paths leading to an

error state
2. if there exists such a path:

1. return if some counterexample is feasible
2. otherwise refine one of those (chosen

deterministically)
3. broadcast the new set of predicates to all slaves

Algorithm

Distributed CEGAR:
1. Ask slaves to find all shortest paths leading to an

error state
2. if there exists such a path:

1. return if some counterexample is feasible
2. otherwise refine one of those (chosen

deterministically)
3. broadcast the new set of predicates to all slaves
4. goto 1.

Algorithm: Summary

Runs a BFS-style search over the graph
Computes the full tree until a certain depth
Always refines a shortest counterexample
Speculative execution; some work may be
discarded

Evaluation

Evaluation

Extension of ARMC
Benchmarks from the transportation domain
(AVACS)
Sequential execution ranging from hours to days

Evaluation

Conclusions

Presented first distributed software model
checking algorithm using message passing
Linear scalability

