
World Journal of Information Systems 2(1) 57-69

DOI: https://doi.org/10.17013/wjis.v2i1.33

57

© 2025 ITMA. All rights reserved.

Article

From data to ODEs on the Web: how can it

be done and shown for execution ?
Miguel Casquilho 1,*, Pedro Pacheco 2 , Rui Galhano 1, Ivo Paulo 3, João L. de Miranda 4 and

João Bordado 1

1 Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, and

CERENA, Lisboa, Portugal

2 Department of Computer Science and Engineering, Instituto Superior Técnico, University of

Lisbon, Lisboa, Portugal

3 Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Lisboa,

Portugal

4 Department of Technologies, Polytechnic Institute of Portalegre, Portalegre, Portugal

 * Correspondence: mcasquilho@tecnico.ulisboa.pt

(Article history: Received December 20, 2024; Received in revised form January 18, 2025;

Accepted February 19, 2025; Available online March 15, 2025)

Abstract: Fitting systems of ordinary differential equations (ODEs) to experimental data is

a common task in Engineering. In the case of Chemical Engineering, this underlies chemical

kinetics, addressed in this work. The ODEs studied are systems of (two or more) explicit

equations of a single variable, time. The problem is a regression to determine the values of

the parameters in the system. Here, we select the ‘function’ in the assumed Python module,

solve the problem, and provide a freely accessible web page where data can be inserted.

Thus: we offer the computation, based on Python tools, in a web page; we select the

‘function’, circumventing ‘curve_fit’ in favor of ‘minimize’; we use PHP on the web page

to call Python, with the ‘gnuplot’ graphing utility; and we stress the Internet as a computing

medium. The computation runs on the server side, avoiding, from the user, any software

installation, special power or operating system match. This Web operation, which runs on

a Linux platform, is also an illustration for many other problems. Generally, about web

computing, we advocate (i) it use in web pages, where it employs programs similar to

classical ones, the programs being the inevitable difficulty, and (ii) it uses in scientific

publications. In our technological era, this seemingly little explored field also promotes the

academia industry link and invites knowledge interchange.

Keywords: Ordinary differential equations; regression; Web based computing; Python;

scientific computing; Engineering education

Casquilho et al. World Journal of Information Systems 2(1) 57-69

58

© 2025 ITMA. All rights reserved.

1. Introduction

In many branches of Engineering, fitting mathematical models to experimental data is a

common operation. It is also frequent in Chemical Engineering and a typical need in the

chemical kinetics domain. The term “kinetics” means “the rate of change in a physical or

chemical system” (“rate” as velocity). In chemical kinetics, “change” leads to ordinary

differential equations, with a single independent variable, time.

In any program built to solve a problem, data are naturally susceptible to vary and

meant to be supplied by the user. On a web page , the underlying program, on the contrary,

is typically fixed. Changing it is neither easy nor our objective. Here, the program is

related to the chemical reactions adopted [1], shown in Eq. (1), the “Base Problem” (a

“Complementary Problem” will also be briefly solved) and leads to a system of ODEs

detailed in the next Section.

(1)

This problem in ODEs will be solved in Python, a language (far from perfect) that is

popular, free, platform-neutral, and provisioned with numerous “modules” to solve a wide

variety of problems. One of the objectives of this work is, precisely, to select a convenient

‘function’ in a pertinent ‘module’, ‘scipy.optimize’, wherein we find two plausible

candidates, ‘curve_fit’ and ‘minimize’. (We are writing ‘function’, in quotes, in the

technical meaning of being a part of a Python ‘module’.)

Web-based computing, in our view, characterizes itself by providing resources made

accessible simply through a web page, just using a browser, to solve a certain type of

problem, where the user supplies data and obtains results. We describe a web based program

to obtain the optimum values of the parameters in a system of ODEs, these values being its

only unknowns.

Our topic is an instance of ‘Computer Science Engineering’ or ‘Informatics’, a term we

adopted some years ago and has since become common. As a web-based solver, we mean

a program needing no installations by the user, a difference from the innumerable

applications that (free or paid) depend on an installation, compatible operating system,

power, maintenance. The adherence to the Internet makes the user action easiest, and invites

cooperation, as claimed by us for two decades (e.g., [2]–[7]), often in earlier occurrences of

CISTI.

We provide a web page to solve concretely the problem of a system of ODEs (in kinetics,

anyway general) since we encountered no similar. We did find a hint at [8] (with no

computational web page) and it induced us to consider, without a thorough search for others,

the choice between the two Python ‘functions’ mentioned.

Nowadays, people erroneously say “technological” as a snobbish, if parochial,

alternative to “informatic” or “related to computer science”. More consequential, most

scientific articles, lauding their numeric achievements, give the reader no way out to verify

Casquilho et al. World Journal of Information Systems 2(1) 57-69

59

© 2025 ITMA. All rights reserved.

them. Sometimes their programs are indeed offered, namely, in ‘github’ [9], but perhaps in

languages not matching our own or in different operating system. In the ‘FAIR’ proposal,

Wilkinson et al. [10] say: “There is an urgent need to improve the infrastructure supporting

the reuse of scholarly data.” [our emphasis] In the literature, the case is more worrisome with

the programs than with data. In a small step forward, the editor of a statistics journal [11]

encourages “data and code sharing associated with newly submitted papers”, a timid advice,

because it is code and data together that resolve problems. In a complementary view, Park

et al. [12] mention the flood of publications with little or no added value, obeying the “publish

or perish” rule, of which one further side effect seems to be a deficit of computing.

In the next Sections: “The kinetics problem” explains the problem chosen; “Web

applications” are briefly mentioned, given their paucity; and “Results and discussion” show

the architecture utilized and the results. . Some final “Conclusions” are added.

2. The kinetics problem

The Base Problem ([1]) is shortly described. Substances (chemical components) A and

B are put in contact and react, producing C, which in turn produces D in the same reaction

medium (the so-called “reactor”), in both cases reversibly (hence, the double arrows

in Eq. (1)). (There will be an additional comment on a Complementary Problem at the end

of the paper.) Theory and practice propose the ODEs in Eq. (2), where C is the concentration

(such as g/L, grams per liter) of component C, D of component D, as describing the evolution

of the concentrations versus time, t, and a0 and b0 are given initial concentrations of A

and B.

(2)

In the reactions, the “rate” (i.e., velocity) constants are the parameters the values of

which are to be found: ki, i = 1..n, n = 4 in this case. (There are 2 reactions and 4

parameters.) The word “constant” is often applied loosely in science, and certainly the rate

constants can vary (out of our scope), namely, with temperature.

In some cases, equations as those in Eq. (2) of course have analytical solution (as will

happen in the Complementary Problem in the Section on results), but we consider the more

adverse situation where numerical methods are indispensable.

Generally, to solve a “curve fitting” in Python, preference goes, we presume, to the

‘curve_fit’ ([13]) ‘function’. This choice entails a formal restriction: the objective function

to be adjusted must be a single dependent (or univariate) function of a single independent

variable. This Python ‘function’ is surely practical and advantageous, as seen in a mere

example of ours in our website, on adjusting a “hat” parabola to the central part of a Gaussian

curve [14] or to other user-given data.

Casquilho et al. World Journal of Information Systems 2(1) 57-69

60

© 2025 ITMA. All rights reserved.

In fact, ‘curve_fit’ was the frontal choice to solve the problem at hand. The multiple

dependent variables, however, would have to be converted into a structure in a single

dependent variable. This conversion from the structure in Table 1 to the one in Table 2

appears simple but has some programming drawbacks.

Table 1. Multivariate dependent variables

 Time C D

1 0 0 0

2 7 1.065 0.0058

3 14 1.383 0.2203

… … … ---

10 63 0.6149 0.7219

11 70 0.3369 0.7294

Table 2. Univariate dependent variable

 Time C & D

1 0 0

2 7 1.065

3 14 1.383

… … …

10 63 0.6149

11 70 0.3369

12 0 0

13 7 0.0058

14 14 0.2203

… … ---

21 63 0.7219

22 70 0.7294

We have seen a couple of scripts implementing this strategy to permit the use of

‘curve_fit’. However, we found its complexity not rewarding in this case of multiple

dependent variables, since there is a simpler alternative.

The approach adopted, otherwise conventional, is to minimize the error (discrepancy)

between experimental and calculated values. Inside the same Python ‘scipy.optimize’

module, an alternative is the simple ‘minimize’ ‘function’. To apply it, a matrix of ycalc

(Eq. (3)) homologous to Table 1, is computed with “reasonable” values of k, the vector of

the unknown parameters. Thus, an objective function, which will be textually designated

“cost”, say, z(k), in Eq. (3), is defined to be minimized.

 () ()
2

calc exp

, ,

1 1

T K

i j i j

i j

z y y
= =

 = − k k (1)

Casquilho et al. World Journal of Information Systems 2(1) 57-69

61

© 2025 ITMA. All rights reserved.

with K the number of components with experimental data (K = 2), T the number of instants

(T = 11), and yexp and ycalc the experimental and calculated values, respectively, for each

instant, ti. (The mention to reasonable k, initial guess, reminds that numerical optimizations

are typically subject to not converging.) This was the objective function adopted;

nevertheless (out of our scope), a number of other criteria might be used, with the same

Python solver. For example, let Eq. (4) define a “distance”, , of each calculated value to

the corresponding experimental value. Then, among others, the so called minimax criterion

would be the minimization of w, in Eq. (5). The diverse criteria obviously give different,

but certainly approximated, results.

 () ()calc exp

, , ,i j i j i jy y = −k k (2)

 .
,

max i j
i j

w = (3)

We detail in Section “Results and discussion” the computation, mainly in its setting on

the Internet. This is readily accessible and, as the web page contains default data,

immediately computable there, as detailed further.

3. Web applications

For this work, a web-based program does the determination of parameters in a system of

ODEs. This points to the use by anyone, namely, students in STEM (Science, Technology,

Engineering, Mathematics). A rare case of the Web as a computing medium we use to cite

is V. M. Ponce’s (below, [15]) in Hydraulics. Since 2000, his site is a “virtual laboratory”,

with a style similar to ours (since 1998). For a casual example of his, see Figure 1 ([15]).

Figure 1 Ponce’s Problem No. 151.

Casquilho et al. World Journal of Information Systems 2(1) 57-69

62

© 2025 ITMA. All rights reserved.

His web pages have no default data (his students have to know what to input…), whereas

we always give default data for instant resolution, but our web pages and his do not

discourage studying. From our experience, many Engineering students have quit

programming, falling to poorly used Excel. Web pages to solve problems may persuade

students to do their work and compare results. Other cases of ours appeared in previous

communications, as said, and literature ([16]).

Here, we use Python with the ‘gnuplot’ graphing utility, under PHP. The preference for

‘gnuplot’ against the usual ‘matplotlib’ is an intention to generality: if the basic language

has no graphical capabilities, for example, C, ‘gnuplot’ can be called with equal ease.

For Python, our version is 3.9.2, ‘gnuplot’ is 5.4. This runs on the public Linux system

in our University, Debian 5.10.179-1 (2023-05-12) x86_64 GNU/Linux, 8 CPU’s, Intel(R)

Xeon(R) CPU E5-2630 v4 @ 2.20GHz. Python ([17]) might easily call C or Fortran for

speed, if needed, because these are “compiled” (fast) languages, while Python is

“interpreted”, although several of its elements are precisely built in compiled languages.

4. Results and discussion

On the Web, the computing is executable at

Ref. [18]

There, the user has the set of default data, and just clicks the “Execute” button or, previously,

inserts other data (input) and gets the corresponding results (output). The results are built

dynamically in HTML through the scripting language PHP, “native” for the Web [19].

The architecture is composed of: (i) a web based front-end, to show the user interface;

and (ii) a computing back-end to execute the tasks. The front-end accepts the task’s

arguments (data), processes them, schedules the task, and sends these data to the back-end

computing system. The back-end finishes the task and replies to the front-end with the

output in a dynamic new page. (The results might appear in the same page, through a PHP

empty ‘action’, but that option seems less clear.) In the present type of problems, the output

is simply alphanumeric with graphics, frequent in Engineering and usual in our problems,

which are meant to solve them and make them available.

The problem is solved in Python, which has native graphical features, but we called the

free graphical utility ‘gnuplot’ [20], which we prefer to Python modules like

‘matplotlib.pyplot’ as the ‘gnuplot’ general tool can be called with equal ease from non-

graphical languages, such as C or Fortran.

The results of the problem are cast in HTML (essentially with the tag ‘pre’, i.e., pre-

formatted text, intermixed with images), and shown to the user. The problem is run on the

public system of CIIST, the university’s Computing Centre ([21]), on Linux (version already

mentioned).

Casquilho et al. World Journal of Information Systems 2(1) 57-69

63

© 2025 ITMA. All rights reserved.

The architecture, with the names (bold, italics) for the particular case, is described:

a) The user addresses the problem’s web page, P fitKinet.php, and uses default or inserts

data in the fields of an HTML ‘form’ (data are sent to the next file through PHP POST

variables) (“P” recalling a Python executable script).

b) Upon clicking the ‘Execute’ button, the data are sent to an intermediate PHP file, from

‘action=FitKinet.php’.

c) This PHP file prepares the input received and sends it to the constructed executable script

(next) as command line arguments. The PHP file takes the results from the execution and

creates a (temporary, dynamic) PHP web page with the results.

d) The standalone executable, fitKinet.py, is run through PHP ‘shell_exec’. This runs the

calculations.

e) The output is sent to a temporary, dynamic, “Results” web page. This contains an

HTML ‘pre’ tag with the text and graphics (‘png’) just generated (with a unique name)

through a system call to Python ‘base64’ utility. Thus, no files are left on the server, needing

no removal. This also avoids clashes between several users addressing the web page, an

important aspect in public access.

f) Auxiliary files: PHP environment files through ‘include’, i.e., cascading style sheet, and

the images that characterize the website for consistency.

The Web environment adds little difficulty to the ordinary resolution of a scientific

problem. Our setting permits to run the application also out of the Internet, facilitating the

construction and debugging. In a technological problem, the definite hardship is to know

the subject and methods to solve it.

The data for the problem in the web page are:

• (Optional) File to upload, similar to Table 1.

• Data table with default data (again as Table 1).

• Initial guesses for the sought parameters.

• Complementary constants for the computation.

• Computation mode: “verify”, “optimize”, “optimize bounded”.

• Yes or No, “show values” of plot (also in an Excel file).

Casquilho et al. World Journal of Information Systems 2(1) 57-69

64

© 2025 ITMA. All rights reserved.

As default data exist, results appear with a click on the ‘Execute’ button. The input web

page is depicted in Figure 2.

Figure 2 Web page (input) for the “fitting kinetic ODE’s” with the default options.

The default results appear in Figure 3. The computation mode is “verify”, without

regression, i.e., the parameters are not calculated, their values being simply the initial

guesses. Remark that, for clarity, the data used (from [1]) are “rough”, which is useful

because in very friendly cases, the calculated values may visibly coincide with the

experimental ones, confusing the two curves.

Running in (unconstrained) “optimize” mode (i.e., with regression), the results (graph

only) are shown in Figure 4 with the calculated points adjusted to the (rough) experimental

ones, and a cost of 0.21.

These rough data ([1]), we remark, even yield some physic–ally inconsistent parameter

values: one of the rate constants is slightly negative. The accepted practice is to impose

some kind of bounds to the values. To this end, another computing mode is available, the

“optimization with bounds”, where the bounds are simply nonnegativity. The new results

lead, of course, to a slightly worse adjustment, reflected in cost going from 0.21 to 0.23. The

need for bounds prevents the use of the classical Nelder Mead ([22]) optimization method.

So, the alternative SLSQP method [23], having this feature, was adopted.

Now, as noted in Section II, we use the “well behaved” data of Li et al. [24] as the

Complementary Problem. The scheme is given in Eq. (6), where A is hemicellulose, B is

furfural , and C a mix of degradation products, with the ODEs in Eq. (7).

Casquilho et al. World Journal of Information Systems 2(1) 57-69

65

© 2025 ITMA. All rights reserved.

Figure 3 Results for the Base Problem, with the “verify” mode (i.e., without

regression), giving a cost of 1.8.

This case has K = 3 chemical components (A, B, C) and n = 2 rate constants (k1, k2)

that are to be determined. The problem is solved at another web page,

Ref. [25]

The results are shown in Figure 5 in “verify” mode (without regression), giving a cost of 4.5,

and in Figure 6 in “optimize” mode (with regression), giving a cost near zero, 2e-5. In this

case, by contrast with the Base Problem, the agreement is so complete that the experimental

and the calculated curves are practically indistinguishable. This fact can be further

evaluated in Figure 6 showing the residuals (calculated minus experimental).

Casquilho et al. World Journal of Information Systems 2(1) 57-69

66

© 2025 ITMA. All rights reserved.

Figure 4 Results of the Base Problem, with the “optimize” mode (i.e., with

regression), giving a cost of 0.21.

Figure 5 Results of the Complementary Problem, “verify” mode, with initial

guesses 0.01, 0.01, giving a cost of 4.5.

The ODEs in this type of A-B-C reaction in Eq. (6) (incidentally, frequent in many

contexts) are shown in Eq. (7), with the analytical solution in Eq.(8). In this situation,

it is never k1 = k2, which would make components B and C identical. Anyway, when

k2 k1, the mathematics is simple: remember L’Hôpital’s rule.

 A B C→ →
 (4)

(5)

Casquilho et al. World Journal of Information Systems 2(1) 57-69

67

© 2025 ITMA. All rights reserved.

() ()

() () ()

() () () 

1

1
2 1

2 1

1 2 2 1

2 1

exp

exp exp

1
exp 1 exp 1

A t k t

k
B t k t k t

k k

C t k t k k t k
k k

= −

= − − −  −

= − − − − −      −

(6)

Figure 6 Regression residuals (very small, ~ -1e-3 to ~ +1e-3) for the

Complementary Problem.

5. Conclusion

There is, we think, a little-explored road to use the Internet medium for scientific

computing and in education. Another author’s such computing is mentioned, and an adverse

reality is the generality of numerical publications offering no web-based verification. This

and other applications of ours just need a browser, and no software installation by the user.

The illustrative problem is in kinetics, to fit calculated curves to data in a system of ODEs.

It is set in PHP calling Python, with ‘gnuplot’, and is available for execution on the authors’

website. We sought: to show this type of computing based on the client server model; to

select a suitable but nonobvious Python ‘function’ to adjust the system to data; and to draw

attention of students and authors to computing on the Internet environment. We intend soon

to propose this tool to students. The limitations are the difficulty of certain kinetics, namely

for stiff ODEs.

The problem discussed stresses the usefulness of the Web as a medium for scientific

computing. The architecture proposed serves innumerable technical problems, for which

the inevitable difficulty is their intrinsic mathematical nature, and the language used can be

other, if effective on the Web, with adequate speed, security and licensing.

The programs and scripts in this approach are essentially the same as the ones used if

run in a local computer, lending themselves to previous building and debugging. As we

have verified in our academic and industrial practice, Web computing is recommendable for

Casquilho et al. World Journal of Information Systems 2(1) 57-69

68

© 2025 ITMA. All rights reserved.

both purposes, favoring the connection and technology transfer between academia and

industry.

Acknowledgments: MC does research at the Department of Chemical Engineering, IST, University

of Lisbon, Lisbon, Portugal, and CERENA, “Centro de Recursos Naturais e Ambiente” (Centre for

Natural Resources and the Environment), under Project UID/04028/2020, funded by FCT,

“Fundação para a Ciência e a Tecnologia” (Portuguese National Science Foundation); PP is MSc

student at the Dept. of Computer Science and Engineering, IST; RG teaches and does research at

the Dept. of Chemical Engineering, IST, and CERENA; IP is PhD student at the Dept. of Chemical

Engineering, IST, and CERENA; JLM teaches and does research at the Dept. of Technologies,

ESTG, Polytechnic Institute of Portalegre, Portalegre, Portugal, and CERENA; and JB does research

at the Dept. of Chemical Engineering, IST, and CERENA. CIIST, “Centro de Informática do IST”

(Informatics Centre of IST) supplies the computing system.

Conflicts of Interest: The authors declare no conflict of interest.

References

[1] Maplesoft (2023), “Parameter Estimation for a Chemical Reaction”,

https://de.maplesoft.com/support/help/maple/view.aspx?path=applications%2FChemicalKinetic

sParameterEstimation , accessed 05-Jan-2024.

[2] Franco, B., Casquilho, M. (2011), “A Web application for scientific computing: combining

several tools and languages to solve a statistical problem", CISTI'2011, 6.ª Conf. Ibérica de

Sistemas e Tecnologias de Informação (6.th Iberian Conference on Information Systems and

Technologies), Chaves (Vila Real), Portugal.

[3] Casquilho, M. (2013), "Computação científica, Internet, Indústria" (Scientific computing,

Internet, Industry), 1.st Portuguese Meeting on Mathematics for Industry, FCUP, University of

Porto, Porto (Portugal).

[4] Barros, M., Casquilho, M. (2019), “Linear Programming with CPLEX: an illustrative application

over the Internet", CISTI'2019, Coimbra (Portugal).

[5] Casquilho, M., Buescu, J. (2022), “From unequal size sample sums to estimating the standard

deviation”, ICMASC 2022, International Conference on Mathematical Analysis and Applications

in Science and Engineering, Porto (Portugal).

[6] Casquilho, M., Buescu, J. (2022), "Mean of Exponential distribution: estimation from sums of

unequal size samples", COMPSTAT 2022, 24.th International Conference on Computational

Statistics, Bologna (Italy), 23–26 Aug..

[7] Carolino, E., Casquilho, M. Ramos M. R., Barão, I. (2016), “Applied scientific computing over

the Web: robust methods in Acceptance Sampling for Weibull variables”, ISBIS 2016 Meeting

on Statistics in Business and Industry, 08–10 Jun., Barcelona (Spain).

[8] Github, A. Ford Versypt, L13 “Parameter estimation in Python”,

https://github.com/ashleefv/ApplNumComp/ , accessed 05-Jan-2024.

[9] Github, https://github.com/ , accessed 05-Jan-2024.

[10] M. D. Wilkinson (2016), “Comment: The FAIR Guiding Principles for scientific data

management and stewardship”, Scientific Data, 3:160018, 9 pp.

Casquilho et al. World Journal of Information Systems 2(1) 57-69

69

© 2025 ITMA. All rights reserved.

[11] Colosimo, B. M., ed. (2019), Message, J. of Quality Technology, 51 (1), 1–2 or

https://www.tandfonline.com/doi/full/10.1080/00224065.2019.1569896., accessed 05-Jan-2024.

[12] Park, M., Leahey, E., Funk, R. (2022), “Papers and patents are becoming less disruptive over

time”, Nature, 613, 5 Jan 2023, pp 138–144

(doi: https://www.nature.com/articles/s41586-022-05543-x).

[13] Python, ‘curve_fit’, “scipy.optimize.curve_fit”,

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html , accessed 05-

Jan-2024.

[14] Casquilho, M., “From Gaussian to a parabola”,

http://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/GaussToParab/P-

GaussToParab.php .

[15] Ponce, V. M., Problem 151,

https://ponce.sdsu.edu/onlinehazenwilliams.php , accessed 05-Jan-2024.

[16] Casquilho, M., Buescu, J. (2022), “Standard deviation estimation from sums of unequal size

samples”, Monte Carlo Methods and Applications (doi: 10.1515/mcma-2022-2118).

[17] The SciPy community, “Using Python as glue”,

https://numpy.org/doc/stable/user/c-info.python-as-glue.html , accessed 05-Jan-2024.

[18] Casquilho, M., “Fitting in kinetic ODEs”,

http://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/fitKinet/P-fitKinet.php .

[19] PHP, The PHP Group, https://www.php.net/ , accessed 05-Jan-2024.

[20] Gnuplot, http://www.gnuplot.info/ , accessed 05-Jan-2024.

[21] CIIST, “Centro de Informática do IST” (Informatics Centre of Instituto Superior Técnico),

https://ciist.ist.utl.pt/eng.php , accessed 05-Jan-2024.

[22] Nelder, J., Mead, R. (1965), “A simplex method for function minimization”. Computer Journal.

7(4), 308–313 (doi: https://doi.org/10.1093%2Fcomjnl%2F7.4.308)

[23] Kraft, D. (1988), “A software package for sequential quadratic programming”,

http://yetanothermathprogrammingconsultant.blogspot.com/2022/02/slsqp-original-paper.html ,

accessed 05-Jan-2024.

[24] Li, X., Yang, J., Xu, R., Lu, L., Kong, F., Liang, M., Jiang, L-. Nie, S., Si, C. (2019), “Kinetic

study of furfural production from Eucalyptus sawdust using H-SAPO-34 as solid Brønsted acid

and Lewis acid catalysts in biomass-derived solvents”, Industrial Crops & Products, 135, 196–

205 (doi: 10.1016/j.indcrop.2019.04.047).

[25] Casquilho, M., “Furfural: fitting in kinetic ODE's”,

http://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/Furfural/P-furfural.php.

