Newton-Raphson

- When the derivative of $f(x)$ is known, and when $f(x)$ is well behaved, the celebrated (and ancient) NewtonRaphson method gives the fastest convergence of all ("quadratic", i.e. $\mathrm{m}=2$, such that $\varepsilon_{\mathrm{n}}=\varepsilon_{\mathrm{n}-1}{ }^{2}$)
- Relies on the Taylor expansion

$$
f(x+\delta)=f(x)+\delta f^{\prime}(x)+1 / 2 \delta^{2} f^{\prime \prime}(x)+\ldots \ldots
$$

If ith iteration, x_{i}, is close to the root, then for the next iteration, try $\mathrm{x}_{\mathrm{i}+1}=\mathrm{x}_{\mathrm{i}}+\delta$ with $\delta=-\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) / \mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)$

Geonnetric renresentation

- Newton-Raphson method: picture from Recipes
- Convergence is quadratic, with $\mathrm{m}=2$

Extrapolate the local derivative to find the next estimate of the root

Newton-Raphson

- Convergence is rapid, and the method is very useful for "polishing" a root (i.e. refining an estimate that is nearly correct)

Clearly, a few iterations usually yields an accurate result in the limit of small δ, because terms of order $1 / 2 \delta^{2} f^{\prime \prime}(\mathrm{x})$ or higher are much smaller than $\delta \mathrm{f}(\mathrm{x})$
$f(x+\delta)=f(x)+\delta f^{\prime}(x)+1 / 2 \delta^{2} f^{\prime \prime}(x)+\ldots .$.
Exception: when $\mathrm{f}^{\prime}(\mathrm{x})$ is very small (or zero)

Newton-Raphson

- Cases where $f^{\prime}(x)$ is small (i.e. where there is a local extremum) can send the solution shooting off into outer space
.... unless the method is modified to keep the solution within a known bracket
(as in routine "RTSAFE")

Summary of 1-D root finding

- Preferred methods:
- If f^{\prime} is known analytically, "safe Newton-Raphson" is the preferred method
- If f^{\prime} is not known analytically, Brent's method is the method of choice
- Could use "safe Newton-Raphson" with the derivative computed numerically, but the latter takes up as much time as is saved by the use of $\mathrm{N}-\mathrm{R}$
- Newton-Raphson is also useful for rapid "polishing" (very close to the solution) and for multidimensional root finding.

Roots of polynomial functions

- General polynomial equation

$$
0=P(x) \equiv \sum \mathrm{a}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}}
$$

has an analytic solution for cases up to and including the quartic

No general analytic solution for quintics and higher ("the equation that couldn't be solved")

Roots of polynomial functions

- General features:

Polynomial of order N will have N roots, which can be real or complex and may or may not be distinct

If the a_{k} are all real, the roots may be real or complex, but any complex roots will occur in pairs of complex conjugates, $\mathrm{a} \pm \mathrm{bi}$

Polynomials can be ill-conditioned: a small change in the coefficients can cause a large change in the roots

Roots of polynomial functions

- General features:

Degenerate roots, or nearly equal roots, present the biggest numerical problems

Example: $P(x) \equiv(x-c)^{2}=0$

- Brackets don't exist since $P(x)$ is never negative
- Derivative $f^{\prime}(x)=0$ at the solution $x=c$
\rightarrow Newton-Raphson is potentially unstable

Deflation

- Every time a root, x_{k}, is found, the order of the polynomial can be decreased by one, and the equation becomes
$0=P(x)=\left(x-x_{k}\right) Q(x)$
where $Q(x)$ can be obtained by "synthetic division" (see §5.3 in Recipes)
- This procedure, known as "deflation", allows the roots to be obtained one-by-one

Laguerre's method for obtaining a single root

- Mathematical background

$$
\begin{aligned}
& P(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right) \\
& \ln |P(x)|=\ln \left|x-x_{1}\right|+\ln \left|x-x_{2}\right|+\ldots .+\ln \left|x-x_{n}\right| \\
& G \equiv d \ln |P(x)| / d x=\left(x-x_{1}\right)^{-1}+\left(x-x_{2}\right)^{-1}+\ldots+\left(x-x_{n}\right)^{-1} \\
& H \equiv-d \ln |P(x)| / d x^{2}=\left(x-x_{1}\right)^{-2}+\left(x-x_{2}\right)^{-2}+\ldots+\left(x-x_{n}\right)^{-2}
\end{aligned}
$$

Laguerre's method for obtaining a single root

- Now make a "drastic set of assumptions"

We suppose x_{1} is located at distance a from our current guess, x, and that all the other roots lie at a distance b

$$
\begin{aligned}
& G=\left(x-x_{1}\right)^{-1}+\left(x-x_{2}\right)^{-1}+\ldots+\left(x-x_{n}\right)^{-1}=a^{-1}+(n-1) b^{-1} \\
& H=\left(x-x_{1}\right)^{-2}+\left(x-x_{2}\right)^{-2}+\ldots+\left(x-x_{n}\right)^{-2}=a^{-2}+(n-1) b^{-2}
\end{aligned}
$$

We can then eliminate b from the above equations to obtain a quadratic equation for $\mathrm{a}^{-1} \ldots .$.

Laguerre's method for obtaining a single root

We then obtain

$$
a=\frac{n}{G \pm \sqrt{(n-1)\left(n H-G^{2}\right)}}
$$

This, of course, is not the exact value of $\left(x-x_{1}\right)$, because of the approximation made in obtaining it, but it is useful for obtaining the next estimate of x_{1}, which we take as ($\mathrm{x}-\mathrm{a}$)

Overview

- Find roots one at a time, using Laguerre's method iteratively until a is sufficiently small
- After each root is found, reduce the order of the polynomial by deflation.

Multidimensional non-linear systems of equations

- In general, a horrible problem, for reasons shown schematically in Recipes, Fig 9.6.1

Multidimensional non-linear systems of equations

- The only general algorithm is Newton-Raphson

Generalization to multidimensional case $\mathrm{f}(\mathrm{x}+\delta)=\mathrm{f}(\mathrm{x})+\delta \mathrm{f}^{\prime}(\mathrm{x})+(1 / 2) \delta^{2} \mathrm{f}^{\prime \prime}(\mathrm{x})+\ldots .$.
becomes
$\mathbf{f}(\mathbf{x}+\boldsymbol{\delta})=\mathbf{f}(\mathbf{x})+\mathbf{J}(\mathbf{x}) \delta+O\left(\delta^{2}\right)$
where \mathbf{J} is the Jacobian matrix, with $J_{i k}=\partial f_{i} / \partial x_{k}$

Multidimensional non-linear systems of equations

The next iteration on x is therefore

$$
\mathbf{x}^{\prime}=\mathrm{x}+\delta=\mathrm{x}-\mathrm{J}^{-1} \mathrm{f}(\mathrm{x})
$$

where $\delta=-\mathbf{J}^{-1} \mathbf{f}(\mathbf{x})$ is obtained by the solution of the linear set of equations $\mathbf{J} \delta=-\mathbf{f}$
(which we know how to do! ©)

As in 1-D, this only works with a smooth function or a good first guess

Newton-Raphson with a modified step size

- Can improve the robustness of multidimensional $\mathrm{N}-\mathrm{R}$ by considering the quantity:
$Q \equiv 1 / 2|f|^{2}=1 / 2 \sum f_{i} f_{i}$
which tends to zero at the root

Any good step should make Q smaller

Newton-Raphson with a modified step size

- Consider now the gradient of Q

$$
\begin{aligned}
& \partial \mathrm{Q} / \partial \mathrm{x}_{\mathrm{j}}=\partial\left(1 / 2|\mathrm{f}|^{2}\right) / \partial \mathrm{x}_{\mathrm{j}}=\sum \mathrm{f}_{\mathrm{i}} \partial \mathrm{f}_{\mathrm{i}} / \partial \mathrm{x}_{\mathrm{j}} \\
\Rightarrow & \nabla \mathrm{Q}=\mathbf{f}^{\top} \mathbf{j}
\end{aligned}
$$

Our step $\delta=\mathbf{J}^{-1} \mathbf{f}$ is in the right direction to reduce Q, because

$$
\nabla Q . \delta=-\mathbf{f}^{\top}\left(J^{-1}\right) f=-2 Q<0
$$

Newton-Raphson with a modified step size

So if adding δ to \mathbf{x} doesn't decrease Q, a sufficiently small step in the same direction must

Strategy: if the solution starts to overshoot - as indicated by monitoring of $Q \equiv 1 / 2|f|^{2}$ - use a smaller step $\lambda \delta$ in the same direction (where λ is a positive scalar <1)

See Recipes $\S 9.7$ for the details of how to choose λ

This is implemented in the function NEWT, which will successfully find a root for almost any reasonable initial guess.

Example application: interstellar chemistry

- More than one hundred different molecules have been detected in the interstellar gas
- They are formed and destroyed by a complex network of reactions involving bimolecular reactions and unimolecular processes such as photodissociation

Example application: interstellar chemistry

- Consider the reaction $A+B \rightarrow C+D$:

This destroys A and B (and creates C and D) at a rate $k_{r} n(A) n(B)$ per unit volume, where $n(X)$ is the density of species X (number per unit volume) and k_{r} is the rate coefficient (units: $\mathrm{cm}^{3} \mathrm{~s}^{-1}$) for the reaction in question

- Molecule A might also be destroyed by photodissociation, $A+h \nu \rightarrow E+F$
This destroys A (and creates E and F) at a rate $\zeta_{p} n(A)$ per unit volume, where $n(X)$ is the density of species X (number per unit volume) and ζ_{p} is the photodissociation rate (units: s^{-1}) for this process

Rate equations for interstellar chemistry

- The density of the i th molecule therefore obeys the rate equation:

Processes that create ith molecule Reactions that destroy ith molecule $\partial n_{i} / \partial t=\sum_{j} \sum_{k} k_{i j k} n_{j} n_{k}+\sum_{k} \zeta_{i k} n_{k}-n_{i} \sum_{m} \sum_{k} k_{m i k} n_{k}-n_{i} \sum_{m} \zeta_{m i}$

Total rate at which k undergoes unimolecular processes to produce i

Equilibrium solution

- In equilibrium, the molecular densities will obey $\mathbf{f}(\mathbf{n})=\mathbf{0}$
where n_{i} is the density of molecule number i, and $\mathrm{f}_{\mathrm{i}} \equiv \partial \mathrm{n}_{\mathrm{i}} / \partial \mathrm{t}$ is a quadratic function of the n_{i}

A multidimensional root-finding problem!
... and one for which the Jacobian is easily computed (quadratic function)

$$
\begin{array}{ll}
\partial \mathrm{f}_{\mathrm{i}} / \partial \mathrm{n}_{\mathrm{k}}=\sum_{\mathrm{j}} \mathrm{k}_{\mathrm{ijk}} \mathrm{n}_{\mathrm{j}}+\zeta_{\mathrm{ik}}-\mathrm{n}_{\mathrm{i}} \sum_{\mathrm{m}} \mathrm{k}_{\mathrm{mik}} & (\mathrm{i} \neq \mathrm{k}) \\
\partial \mathrm{f}_{\mathrm{i}} / \partial \mathrm{n}_{\mathrm{i}}=-\sum_{\mathrm{m}} \mathrm{k}_{\mathrm{mik}} \mathrm{n}_{\mathrm{k}}-\sum_{\mathrm{m}} \zeta_{\mathrm{mi}} & \text { (diagonal elements) }
\end{array}
$$

Newton's method generally works well

Complication

- The equilbrium equations, as written, are singular, since they don't uniquely specify the total density of molecules We need to apply some constraints of the form

$$
\sum \mathrm{n}_{\mathrm{i}} \mathrm{~N}_{\mathrm{ic}}=\mathrm{n}\left(\mathrm{E}_{\mathrm{c}}\right)
$$

$\mathrm{N}_{\mathrm{ic}}=$ number of atoms of element C contained in molecule i
$\mathrm{n}\left(\mathrm{E}_{\mathrm{c}}\right)=($ fixed $)$ density of C nuclei

Non-equilibrium solution

- In astrochemistry, the timescale for reaching equilibrium can sometimes be long compared to the ages of molecular clouds
Therefore, it is also interesting to integrate the equations

$$
\partial \mathrm{n}_{\mathrm{i}} / \partial \mathrm{t}=\sum_{\mathrm{j}} \sum_{\mathrm{k}} \mathrm{k}_{\mathrm{ijk}} \mathrm{n}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}+\sum_{\mathrm{k}} \zeta_{\mathrm{ik}} \mathrm{n}_{\mathrm{k}}-\mathrm{n}_{\mathrm{i}} \sum_{\mathrm{m}} \sum_{\mathrm{k}} \mathrm{k}_{\mathrm{mik}} \mathrm{n}_{\mathrm{k}}-\mathrm{n}_{\mathrm{i}} \sum_{\mathrm{m}} \zeta_{\mathrm{mi}}
$$

(a coupled set of ODE's, to be considered later)

In the limit of large t, this tends to the equilibrium solution
\rightarrow an alternative method even if we are uninterested in the time evolution

