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Solution of nonlinear algebraic equations

Consider the following problem.
Find 2 such that
f(x)=0
for a given functionf. (Nonlinear means that is not simply of the fornux + b).
We will examine various methods for finding the solution.

Method 1. The bisection method
This method is based on the intermediate value theoremntliseeems.pd):

Suppose that a continuous functigrdefined on an intervak, b] is such thatf (a) and f (b) have opposite signs,
i.e. f(a)f(b) < 0. Then there exists a numbewith a < p < b for which f(p) = 0.

For simplicity we assume there is only one roofdnb).
The algorithm is as follows:

Bisection method algorithm

Seta; = a; by = b; pP1 = ((ll -+ bl)/2

If f(p1) = 0thenp = p; and we are finished.

If f(al)f(pl) > 0thenp € (pl, bl) and we seti; = p1, by = by.

If f(al)f(pl) <0 thenp S (al,pl) and we seti;, = ai, by = p1.-

We now repeat the algorithm withy replaced byi, andb; replaced bybs.
We carry on until sufficient accuracy is obtained.

The last statement can be interpreted in different ways:
Suppose we have generated a sequence of iterates, ps.....

Do we stop when:
(i) [pn — pn_1| < € (absolute error)

or (ii) | f(pn)| <€
or (iii) |pn, — pn-1|/ |pn| < € (relative error)?

The choice of stopping criterion can often be very important.

Let’'s see how this algorithm can be programmed in Matlabgction.m) and see how we can compute the root
to a polynomial using this method.

Clearly the bisection method is slow to converge (although it will always get there eventually!). Also, a good
intermediate approximation may be discarded. To see this consider the solution of

cos [m(x —0.01)] =0 overtherang® < z < 1.
We will illustrate this example in Matlatb{section.m).

Can we find a faster method?

Fixed point iteration

We write f(z) =  — g(x) and solve

z = g(z).
A solution of this equation is said to bdiged point of g.
Before proceeding we state two theorems in connection with this method.

Theorem 1

Let g be continuous ofa, b] and letg(z) € [a,b] for all z € [a,b]. Theng has a fixed point ifa, b]. Suppose
further that|g’(z)| < k < 1 for all x € (a,b). Theng has a unique fixed pointin [a, b].
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Proof

(i) Existence

If g(a) = a or g(b) = b the existence of a fixed point is clear. Suppose not.

Sinceg(z) € [a, b] for all z € [a, b] theng(a) > a andg(b) < b.

Defineh(z) = g(x) — z. Thenh is continuous orja, b}, h(a) > 0, h(b) < 0.

Thus by the intermediate value theorem there exigt€da, b) such thati(p) = 0.

p is therefore a fixed point gf.

(ii) Uniqueness

Suppose we have two fixed pointsindg in [a, b] with p # q.

Then|p — q| = |g(p) — 9(¢)| = |p — q| |¢’(7)| by the mean value theorem withe (p, q).
Sincel¢’(7)| < 1 we havelp — q| < |p — ¢, which is a contradiction. Hence we have uniqueness.

To find the fixed point ofy(z) we choose an initial approximatig and define a sequengg by

pn=9g(Pn-1), n=1,23,...
This procedure is known afixed point or functional iteration. Let's see fixed point iteration in action
(fixedpoint.m).

Theorem 2
Let g be continuous ira, b] and suppose(z) € [a, b] for all z € [a, b]. Suppose further thay'(x)| < k < 1 for
allz € (a,b).
Then ifpy is any number ifa, b] the sequence defined by
Pn=9(Pn-1), n=>1
converges to the unique fixed pojnin [a, b].
Proof
Suppose that < p,,_; < b. Then we have. < g(p,—1) < band hence < p,, < b. Sincea < pg < b it follows

by induction that all successive iteraggsremain infa, b|.
Now suppose the exact solutionzis= «, i.e. g(a) = a. Then

a = pnt1 = g(@) — g(pn) = (@ = pa)g'(cn),
for somec,, € (a, p,) using the Mean-Value theorem (stseorems.pdj. Since|g'(c,,)| < k it follows that
| = prta| <k | — py
and hence
| — pp| < E™|a — pol -
The right hand side tends to zeroras~ oo (sincek < 1) and so we have,, — a asn — oo, as required.

How do we choosg(x)? For some choices gf the scheme may not converge! One way of choogirig) via
Newton’s (or Newton-Raphson method.
Newton’s method is derived as follows:

Newton’s Method
Suppose that the functiofiis twice continuously differentiable da, b]. We wish to findp such thatf(p) = 0.
Let x¢ be an approximation tp such that
f(zo) #0 and|zo —p| is ‘small’.
A Taylor series expansion abgugives

0= £(p) = £(z0) + (o — a0)f (z0) + L2L pra,

wherer € (p, zo). Here we have used the Lagrange form of the remainder for Taylor seriethésgems.pd).
Newton’s method arises by assuming thdpif- | is small thenp — x)? f”'(7) /2 can be neglected. So we are
then left with

0= f(p) ~ f(zo) + (p — x0) ' (x0).
2
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Solving this equation fop we have
f(xo)
f'(@o)

Applying this result successively gives the Newton-Raphson method

b=y —

T4t = Tn — % [ NEWTON'S METHOD |
In

Note that this is of the form

Tn+1 = g(wn)a with g(.’L’) =T -

Geometrical interpretation

At the current valuer,, find the tangent to the curve.
Extend this until it cuts the x-axis - this is the valug, ;.
Continue procedure.

Advantages of Newton’s method

Can converge very rapidly.
Works also forf(z) = 0 with z complex.

Disadvantages

May not converge.

Evaluation off’(z) may be expensive.

Can be slow iff (x) has a multiple root, i.¢(p) = f'(p) = 0.

If roots are complex humbers then we need a complex initial guess.

Order of convergence of Newton’s method

It can be shown that ifp — x| is sufficiently small therp — z,,+1| = A|lp — xn|2, i.e. Newton's method is
guadratically convergent

Secant method

A method which does not require the evaluation of the derivatiye) is thesecant method
In this we make the approximation
f(xn) - f(i'n—l)

f,(wn) = .

Tp — Tp—1

Substituting into Newton'’s method we have
f(xn)(wn — Tn-—1
Tpt1 = Ty —
o f(en) = f(@n-1)

Note that this method needs two initial approximatiagsandzx; . It requires less work than Newton since we do
not need to computg’(z).

). | SECANT METHOD

Geometrical interpretation

Fit a straight line through the last two values,, f(z.)), (zn—1, f(Tn-1)).
Thenz, 1, is where this line crosses the x-axis.

Rate of convergence of secant method
This is difficult to analyze but it can be shown thalif— z,,| is sufficiently small then

1
Ip— Tni1] = A|p — z,|", wherea = 5(1 +/5) ~ 1.618,

whereasae = 2 for Newton. So once we are close to the root the secant method converges more slowly than
Newton, but faster than the bisection method.
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Generalization to systems of equations

Suppose we wish to solve the simultaneous equations
f(z,y) =0, g(z,y) =0

for the valuesr andy, wheref, g are known functions.
First we write this in vector form by introducing

()0

It can be shown that the generalization of Newton’s method is then
OF | MULTI-DIMENSION AL |
8_ (Qn—i-l - Qn) = _F(Qn)'
4/ 4=, |NEWTON METHOD |
HeredF/dq is a matrix (the Jacobian) consisting of partial derivatives.

oF ( ofj0x oy )
dq \ 0g/0x 0g/oy |’

so that we have to solve

Example of 2D Newton iteration
Consider the system

z? —y? —2coszx

zy +sinz — y>

Applying this method we have

( 2, + 2sinx, —2y, > ( Tntl — Tp ) . < —xfl+yﬁ+2coswn )

Yn + COS Ty Tn — 3y72;, Yn+1 — Yn —TpYn — Sinx, + y?;,
at each step of the iteration. We need initial guesses fordy to start this off.
Let's see how we could program this in Matlategvton2d.m).

A. G. Walton
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Finding the zeros of a polynomial

It is well-known that a polynomial of degreehas n roots (counted to multiplicity). However when> 4 there
is no exact formula for the roots. So we need to find them numerically. One method is known as deflation.

The method of deflation

Suppose we have a polynomial (z) of degreen. We find a zero of this polynomial using Newton’s method
(say). Suppose this rootis We can then divide out the root:

Pn-1(z) = pn(z)/(z — a),
so that we now have a polynomial of degree 1. We now apply our root finding algorithm to the new polynomial.
By repeating this method we can find alfoots.

Disadvantage of deflation
Usually we will only be finding an approximation to each root so that the reduced polyngmialis only an
approximation to the actual polynomial. Suppose at the first stage we compute the approsotiatevhile the
true root isa. Then the perturbed polynomies

Pn1(z) = pn(z)/(x — Q).
The crucial question to ask is the following:
Given a polynomiap,, () and a small perturbation diis,,, (z), can the zeros change by a large amount?
The answer iyes as may be illustrated by the following example.
Consider the polynomial

po(z) = (x—1)(x—2)(x—3)---(x—20)
= 220 -2102" + 20615 2% + - -

Suppose we change the coefficiend to 210 — 10~7 and leave all other coefficients unchanged. Let’s see in
Matlab what happens to the roots (ge#ynomial.m).
Matlab shows us that deflation is sometimes not an accurate process.




