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Solution of nonlinear algebraic equations

Consider the following problem.

Findx such that
f(x) = 0

for a given functionf. (Nonlinear means thatf is not simply of the formax+ b).

We will examine various methods for finding the solution.

Method 1. The bisection method
This method is based on the intermediate value theorem (seetheorems.pdf):

Suppose that a continuous functionf defined on an interval[a, b] is such thatf(a) andf(b) have opposite signs,
i.e. f(a)f(b) < 0. Then there exists a numberp with a < p < b for whichf(p) = 0.

For simplicity we assume there is only one root in[a, b].
The algorithm is as follows:

Bisection method algorithm
Seta1 = a; b1 = b; p1 = (a1 + b1)/2.
If f(p1) = 0 thenp = p1 and we are finished.
If f(a1)f(p1) > 0 thenp ∈ (p1, b1) and we seta2 = p1, b2 = b1.
If f(a1)f(p1) < 0 thenp ∈ (a1, p1) and we seta2 = a1, b2 = p1.
We now repeat the algorithm witha1 replaced bya2 andb1 replaced byb2.
We carry on until sufficient accuracy is obtained.

The last statement can be interpreted in different ways:
Suppose we have generated a sequence of iteratesp1, p2, p3,....

Do we stop when:
(i) |pn − pn−1| < ε (absolute error)
or (ii) |f(pn)| < ε
or (iii) |pn − pn−1| / |pn| < ε (relative error)?

The choice of stopping criterion can often be very important.

Let’s see how this algorithm can be programmed in Matlab (bisection.m) and see how we can compute the root
to a polynomial using this method.

Clearly the bisection method is slow to converge (although it will always get there eventually!). Also, a good
intermediate approximation may be discarded. To see this consider the solution of

cos [π(x− 0.01)] = 0 over the range0 < x < 1.

We will illustrate this example in Matlab (bisection.m).

Can we find a faster method?

Fixed point iteration
We writef(x) = x− g(x) and solve

x = g(x).

A solution of this equation is said to be afixed point of g.
Before proceeding we state two theorems in connection with this method.

Theorem 1
Let g be continuous on[a, b] and letg(x) ∈ [a, b] for all x ∈ [a, b]. Theng has a fixed point in[a, b]. Suppose
further that|g′(x)| ≤ k < 1 for all x ∈ (a, b). Theng has a unique fixed pointp in [a, b].
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Proof
(i) Existence
If g(a) = a or g(b) = b the existence of a fixed point is clear. Suppose not.
Sinceg(x) ∈ [a, b] for all x ∈ [a, b] theng(a) > a andg(b) < b.
Defineh(x) = g(x)− x. Thenh is continuous on[a, b], h(a) > 0, h(b) < 0.
Thus by the intermediate value theorem there exists ap ∈ (a, b) such thath(p) = 0.
p is therefore a fixed point ofg.

(ii) Uniqueness
Suppose we have two fixed pointsp andq in [a, b] with p 6= q.
Then|p− q| = |g(p)− g(q)| = |p− q| |g′(τ)| by the mean value theorem withτ ∈ (p, q).
Since|g′(τ)| < 1 we have|p− q| < |p− q| , which is a contradiction. Hence we have uniqueness.

To find the fixed point ofg(x) we choose an initial approximationp0 and define a sequencepn by

pn = g(pn−1), n = 1, 2, 3, . . .

This procedure is known asfixed point or functional iteration . Let’s see fixed point iteration in action
(fixedpoint.m).

Theorem 2
Let g be continuous in[a, b] and supposeg(x) ∈ [a, b] for all x ∈ [a, b]. Suppose further that|g′(x)| ≤ k < 1 for
all x ∈ (a, b).
Then ifp0 is any number in[a, b] the sequence defined by

pn = g(pn−1), n ≥ 1

converges to the unique fixed pointp in [a, b].

Proof
Suppose thata ≤ pn−1 ≤ b. Then we havea ≤ g(pn−1) ≤ b and hencea ≤ pn ≤ b. Sincea ≤ p0 ≤ b it follows
by induction that all successive iteratespn remain in[a, b].
Now suppose the exact solution isp = α, i.e. g(α) = α. Then

α− pn+1 = g(α)− g(pn) = (α− pn)g′(cn),

for somecn ∈ (α, pn) using the Mean-Value theorem (seetheorems.pdf). Since|g′(cn)| ≤ k it follows that

|α− pn+1| ≤ k |α− pn|
and hence

|α− pn| ≤ kn |α− p0| .
The right hand side tends to zero asn→∞ (sincek < 1) and so we havepn → α asn→∞, as required.

How do we chooseg(x)? For some choices ofg the scheme may not converge! One way of choosingg is via
Newton’s (or Newton-Raphson) method.
Newton’s method is derived as follows:

Newton’s Method
Suppose that the functionf is twice continuously differentiable on[a, b]. We wish to findp such thatf(p) = 0.
Let x0 be an approximation top such that

f(x0) 6= 0 and |x0 − p| is ‘small’.

A Taylor series expansion aboutp gives

0 = f(p) = f(x0) + (p− x0)f ′(x0) +
(p− x0)2

2
f ′′(τ),

whereτ ∈ (p, x0). Here we have used the Lagrange form of the remainder for Taylor series (seetheorems.pdf).
Newton’s method arises by assuming that if|p− x0| is small then(p− x0)2f ′′(τ)/2 can be neglected. So we are
then left with

0 = f(p) ' f(x0) + (p− x0)f ′(x0).
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Solving this equation forp we have

p ' x0 − f(x0)

f ′(x0)
.

Applying this result successively gives the Newton-Raphson method

xn+1 = xn − f(xn)

f ′(xn)
. NEWTON’S METHOD

Note that this is of the form

xn+1 = g(xn), with g(x) = x− f(x)

f ′(x)
.

Geometrical interpretation:

At the current valuexn find the tangent to the curve.
Extend this until it cuts the x-axis - this is the valuexn+1.
Continue procedure.

Advantages of Newton’s method
Can converge very rapidly.
Works also forf(z) = 0 with z complex.

Disadvantages
May not converge.
Evaluation off ′(x) may be expensive.
Can be slow iff(x) has a multiple root, i.ef(p) = f ′(p) = 0.
If roots are complex numbers then we need a complex initial guess.

Order of convergence of Newton’s method
It can be shown that if|p− xn| is sufficiently small then|p− xn+1| = λ |p− xn|2 , i.e. Newton’s method is
quadratically convergent.

Secant method
A method which does not require the evaluation of the derivativef ′(x) is thesecant method.
In this we make the approximation

f ′(xn) =
f(xn)− f(xn−1)

xn − xn−1
.

Substituting into Newton’s method we have

xn+1 = xn − f(xn)(xn − xn−1)

f(xn)− f(xn−1)
. SECANT METHOD

Note that this method needs two initial approximationsx0 andx1. It requires less work than Newton since we do
not need to computef ′(x).

Geometrical interpretation
Fit a straight line through the last two values(xn, f(xn)), (xn−1, f(xn−1)).
Thenxn+1 is where this line crosses the x-axis.

Rate of convergence of secant method
This is difficult to analyze but it can be shown that if|p− xn| is sufficiently small then

|p− xn+1| = λ |p− xn|α , whereα =
1

2
(1 +

√
5) ' 1.618,

whereasα = 2 for Newton. So once we are close to the root the secant method converges more slowly than
Newton, but faster than the bisection method.
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Generalization to systems of equations
Suppose we wish to solve the simultaneous equations

f(x, y) = 0, g(x, y) = 0

for the valuesx andy, wheref, g are known functions.
First we write this in vector form by introducing

q =

(
x
y

)
, F =

(
f
g

)
so that we have to solve

F (q) = 0.

It can be shown that the generalization of Newton’s method is then(
∂F

∂q

)
q=qn

(qn+1 − qn) = −F (qn).
MULTI-DIMENSION AL

NEWTON METHOD

Here∂F/∂q is a matrix (the Jacobian) consisting of partial derivatives.

∂F

∂q
=

(
∂f/∂x ∂f/∂y
∂g/∂x ∂g/∂y

)
.

Example of 2D Newton iteration
Consider the system

x2 − y2 − 2 cosx = 0,

xy + sinx− y3 = 0.

Applying this method we have(
2xn + 2 sinxn −2yn
yn + cosxn xn − 3y2

n

)(
xn+1 − xn
yn+1 − yn

)
=

( −x2
n + y2

n + 2 cosxn
−xnyn − sinxn + y3

n

)
,

at each step of the iteration. We need initial guesses forx andy to start this off.
Let’s see how we could program this in Matlab (newton2d.m).
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Finding the zeros of a polynomial
It is well-known that a polynomial of degreen has n roots (counted to multiplicity). However whenn > 4 there
is no exact formula for the roots. So we need to find them numerically. One method is known as deflation.

The method of deflation
Suppose we have a polynomialpn(x) of degreen. We find a zero of this polynomial using Newton’s method
(say). Suppose this root isα. We can then divide out the root:

pn−1(x) = pn(x)/(x− α),

so that we now have a polynomial of degreen−1.We now apply our root finding algorithm to the new polynomial.
By repeating this method we can find alln roots.

Disadvantage of deflation

Usually we will only be finding an approximation to each root so that the reduced polynomialpn−1 is only an
approximation to the actual polynomial. Suppose at the first stage we compute the approximaterootα, while the
true root isα. Then the perturbed polynomialis

pn−1(x) = pn(x)/(x− α).

The crucial question to ask is the following:

Given a polynomialpn(x) and a small perturbation ofthis,pn(x), can the zeros change by a large amount?
The answer isyes, as may be illustrated by the following example.
Consider the polynomial

p20(x) = (x− 1)(x− 2)(x− 3) · · · (x− 20)

= x20 − 210x19 + 20615x18 + · · ·
Suppose we change the coefficient210 to 210 − 10−7 and leave all other coefficients unchanged. Let’s see in
Matlab what happens to the roots (seepolynomial.m).

Matlab shows us that deflation is sometimes not an accurate process.
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