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10 THE NATURE OF FACILITIES LOCATION PROBLEMS

Endre Vaszonyi Weiszfeld used his second name after immigrating to the United
States during the early part of World War II. He is well known to management
scientists as Andrew Vaszonyi.* He started his work while studying geometry in
secondary school. An earlier paper Weiszfeld (1936) was a geometrical treatment
of a four-point location problem in three-dimensional space.

*This information was given verbally to one of the authors by Professor Vaszonyi.

&

Chapter )

Introduction to
Single-Facility
Location

This chapter treats the more common versions of the single-
facility location problem. In addition to the usefulness of the models
themselves, the methods of their analysis introduce many concepts and
techniques that will be employed in treating the more complex models
of subsequent chapters.

We will first consider location problems where both the new facility
location and the existing facility locations are treated mathematically as
points, and where demands and costs are known. Distances are found
according to one of the distance metrics discussed in Chapter 1; for ad-
ditional discussion of distances, refer to Chapter 10. All transportation
costs are assumed to be proportional to distance. Finding the optimal
location of the new facility is equivalent to solving the following opti-
mization problem:

minimize W(X) = > wi(X.a), 2.1)
b

i=1

where
n 18 the number of existing facilities (or “demand points”),
w, converts the distance between the new facility and existing
facility j into cost and w; > 0,
X = (x,,x,) is the location of the new facility on the plane,
a, = (a,,a,) is the location of existing facility j,
C(X,a) 1is the distance between the new facility and existing facility J,
and
£(X,a) = (|x,

af + |x; — agk)n, p> 1,

11



12 INTRODUCTION TO SINGLE-FACILITY LOCATION

In the subsequent three sections, W{(X) is minimized for straight-line,
rectangular, and general (£,) distances. What follows is a hypothetical
example, created out of whole cloth, of a typical location problem.

Example 2.1 Bulk shipments of an industrial chemical arrive in 10-ton
modules at a railway depot. The users of the chemical are clustered some
distance from the depot and order the chemical in relatively small lots
to avoid storage and inventory expenses. The supplier of the chemical is
therefore considering the best location on which to construct a warehouse
that would receive modules from the depot and then distribute them to
the users.

Sacrificing realism for brevity, let us assume that there are only four
users. Their locations and demands per year are given in Figure 2.1. Let
us further assume that the cost per module per mile is $20.00 for trans-
portation from the depot and $8.00 per ton per mile for distribution from
the warehouse to the users.

Making the colossal assumption that all relevant cost structures in the
system have been specified, W(X) as given in problem (2.1), can now be
constructed. There are five existing facilities, including the depot. The
weights can be calculated as in Table 2.1. If we read the coordinates
(a,,a,,) of the existing facilities from Figure 2.1, and assume, for example,
that p = 1.7, we have:

W(X) = 400(x, — 17 + |x, — 9717
+ 800y — 2V + [y —~ S[ER)uT
+ 240(x, — 67 + [x, — Sy
+ 160(x, — 77 + |x, — 10]7)17
+ 2200, — 157 + |, — 27y,

The problem is to find the location (x,,x,) that minimizes W(X).

2.1 THE STRAIGHT-LINE DISTANCE PROBLEM

We now turn to a mathematical description of the straight-line (Euclid-
ean) distance problem and to two of its very basic properties. To solve
problem (2.1), a single new facility must be located among » existing
facilities on the plane in accordance with the criterion that the sum of
weighted distances be minimized. Because the straight-line distance (p = 2)
between the new facility at (x,,x,) and an existing facility at (a,,a,,) is:

P‘(‘\"ar) ((-\ll ”,|)" + (.\'. Hl‘.)")l""‘

&
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Figure 2.1 Schematic of a Facility Location Problem.

problem (2.1) becomes:

minimize W(X) = > w{(x, — @)* + (x, — @)% (2.2)
X

It is useful at this point in the discussion to introduce the concept of
a convex function. A function f(X) is said to be convex if the line segment
between any two points, [X',/(X")] and [X2,f(X?)], on the graph of the
function never lies below the graph. Formally, this means f(.X) is convex
if

SINXT+ (1 — NX] < MX)Y + (1 — NAXD)

for all X' and X? and any A¢[0,1]. The notation X' and X? is used to
denote two distinct points in the domain of f. A function f(X) is said to
be strictly convex if the above inequality holds as a strict inequality for
all distinct X' and X2 and any Ae(0,1). Strict convexity of f means that
the line segment lies strictly above the graph except at the two endpoints
of the segment.

Table 2.1 Calculation of Weights.

j v

1 50 X 8 = 400
2 10X 8 = 80
3 30 X 8 = 240
4 20 X8 =160
5

11 X 20 = 220
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Property 2.1 [Convexity of wiy(X,a))]. wl(X,a;) is a convex function of
X.

The proof of convexity is given in the Appendix, mathematical note
2.1. Note that this property would not hold if the weight were negative.
It can be shown (see Exercise 2.1) that the sum of convex functions is
convex, and hence W(X) itself is convex. This means local optima are
global optima for problem (2.2), and W(X) has no inflection points. With
this information, we are assured that the extremal equations for W(X)
can produce only global optima for problem (2.2). These equations are:

6W(X) — . M’D(x:‘\ — aj"") -_— o=
. "2 aXa) SRS RS =

One difficulty immediately presents itself. The derivatives in equation
(2.3) are undefined if £,(X,a) = 0. Therefore, if an optimal location for
the new facility coincides with that of an existing facility, equation (2.3)
cannot be used to check optimality. Fortunately, we can easily check each
existing facility location for optimality.

Property 2.2 [Minimum of W(X) at an existing facility location]. W(X)
is minimized at the r existing facility location (a,,a,,) if. and only if

o, ¢ Wf]-(a,.] - a;l) : . W,-(arl _ a,l?_) § &
CRF B [(Z 'EQ(ana;) ) - (z EE(ar&aj) ) J = WF ' (2'4)

J=1 /=1
Fr #r

i=1

A ready explanation for Property 2.2 is provided by the analog model
in Exercise 2.2. A derivation is in the Appendix, mathematical note 2.2.
There now exist many different iterative methods for finding a solution
to problem (2.1). One of the oldest, as well as perhaps the simplest,
follows.

In addressing the problem of minimizing W{(X), let us temporarily
ignore the possibility that the new facility location will coincide with an
existing facility location. A procedure for iterating to the optimum location
can be obtained by rewriting equation (2.3) so that we have one equation
for x, and one for x;:

i Wi,
= = A(Xa)

for k = 1,2. (2.5)

D et
= B(Xa)

Note that x, is not really isolated on the left-hand side in equation
(2.5) because each @(X,a) is a function of x,. However, equation (2.5)
can be used iteratively to approach (x¥,x%), the optimum new facility

-
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location. We refer to this procedure as the Weiszfeld procedure (see Chapter
1). Let us imagine that we have just completed iteration £ and have
obtained the location (x,'9,x,). We can then use equation (2.5) to find
the estimate of iteration (¢4 1):

i w aﬂ‘

= A(X0,q
XD = &2 A ) for k = 1,2. (2.6)
Z w;
=1 B(X0,a)

Before beginning the iterations, an initial location (x,©,x,) is required.
An expedient choice is the solution to the squared Euclidean distance
problem, which is the same as problem (2.2) except that each distance
£(X,a))is squared. As shown in Exercise 1.2, the center-of-gravity location
solves the squared Euclidean distance problem; hence, our starting point
for procedure (2.6) is:

n
Z w_ s
j=1

xf‘([J) =

for k = 1,2 2.7)

W;,

i=1

The iterations will converge to an optimal location, provided that neither
an iterate nor an optimal new facility location is at an existing facility
location. References for convergence properties are given at the end of
this chapter. Though we would expect convergence difficulties with the
iterations when (x¥,x%) coincides with an existing facility location, these
difficulties do not generally materialize. When CR, in condition (2.4) is
much smaller than w,, convergence is fairly rapid; as £(.X,a,) in equation
(2.5) approaches zero, computational difficulties could eventually arise.
Experience shows that when condition (2.4) is near equality (whether or
not it is met), convergence may be slow. It is therefore helpful to check
all existing facility locations using condition (2.4) first. If condition (2.4)
is not met, but CR, is nearly equal to w, at some existing facility r,
iterations could be started near that point. Convergence may also be slow
for certain weight structures. We are compensated by the fact that in such
cases the cost “bowl” is usually shallow in the vicinity of the optimum
solution.

The practical question of when to terminate the procedure can be
answered by the use of a stopping criterion that employs a lower bound
on the optimum value of W(X). This lower bound is continually updated
during the iterations. To derive this bound we need the following property.

Property 2.3 [Dominance of the convex hull]. X* an optimal solution
to problem (2.1), must lie within Q, the convex hull of the existing
Jacility locations.
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The convex hull is defined as the smallest convex polygon that contains
all the existing facility locations. A proof of Property 2.3 is the subject
of Exercise 2.5b. It can be shown that the starting point defined by equation
(2.7) is in the convex hull. Further, regardless of the starting point used
for procedure (2.6), the next point will be in the convex hull (see Exercise
2.5a). We will now give a geometrical rationale for a stopping criterion
for the Weiszfeld procedure.

To begin the discussion, recall that W(X) is a convex function. This
means that a plane tangent to the convex bowl-shaped graph of W{(X) at
a given point X'* underestimates W(X) for any X. In particular, if the
partial derivatives given in equation (2.3) exist, this means

WX) = WD) + S [OWX)ax 0o, — xP)
=1
for any X. The gradient VI (X'?) is a vector with components given by
the respective partial derivatives. Choosing X = X* we can write:

W(X*) = (X9 + VIV(X®). (0 — XW)
(- denotes scalar product)

> W(X9) — [WW(XO). (X* — Xw)

> WO — [P X - xo

(since [u-Y| < |u| ¥

. Schwartz inequality)

where |- | denotes the magnitude of a vector. But X* and X' are both in
the convex hull @ for £ = 1. Hence |[X* — X9 cannot be greater than
the straight-line distance o(X'?), say, between X and the point in Q
furthest away from X®. Therefore, an upper bound on the improvement
in W(X) must be |V (X'?)|a(X'9). It is now possible to state the following
property.

Property 2.4 [Lower bound on W{X%)].

W(X*) = LB = W(X®) — [V W(XO)o(X®) (2.8)
where ¢(X'?) = max {£,(X9, ).
Vel

[t is, therefore, possible to know an upper bound on further improvement

in the objective function value at every iteration in the Weiszfeld

procedure. A stopping criterion based on proportional suboptimality can

be set using:

)
LB E

S0 = (2.9)
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Table 2.2 Evaluation of CR,.

Existing Facility Location g CR, w,
(1,0 1 7.635 1
(1.4) 2 4.931 2
(2.2) 3 4.453 2
(4,5) 4 4.754 4

From inequality (2.8), whenever LB® > 0 we have:
SO = (WXD) — (W(X*)/ W(X*).

Hence,if we wish to find an iterate X with relative suboptimality bounded
as (W(X\9) — W(X*))/W(X*) < ¢, iterations need only be continued until
8§ <e. For example, if iterations are terminated when S9 < 0.001, then
W(X9)is within 0.1% of the minimal value W(X*). It should be mentioned
that tighter lower bounds can be obtained (see the Appendix, mathematical
note 2.5). This one is presented due to its geometrical simplicity.

Example 2.2 Four existing facilities are located at the points (1,1), (1,4),
(2,2), and (4,5). The corresponding weights are 1, 2, 2, and 4, respectively.
Values of CR, are given in Table 2.2. Because CR, is always greater than
w,, the optimum location of the new facility does not coincide with any
of the existing facility locations. Table 2.3 shows iterations from the
center-of-gravity starting point, which in this example was quite close to
the optimum location. As Exercise 2.4 shows, this is not always so.
When iterations were started at (0,1000), X was (2.557,3.669), thus
demonstrating the insensitivity of the procedure to the starting point.

Table 2.3 Iterations for Example 2.2.

Tteration
Number New Facility
¢ Location Cost LB S
0 (2.556,3.667) 17.646 16.407 7.55 X 10~
1 (2.523,3.74%5) 17.624 17.210 241 X 10—
2 (2.527,3.772) 17.621 17.382 1.376 X 10-2
3 (2.536,3.785) 17.620 17.441 1.024 X 102
4 (2.544,3.794) 17.619 17.481 7.934 X 103
S (2.551,3.799 17.619 17.511 6.192 X 10
6 (2.557,3.804) 17.619 17.534 4.847 X 103
7 (2.560,3.807) 17.619 17.552 3.802 X 10~
8 (2.564,3.810) 17.619 17.566 2.987 X 10
9 (2.567,3.812) 17.619 17.577 2.350 X 10
10 (2.569,3.814) 17.619 17.586 1.851 X 10~
18 (2.576,3.818) 17.618 17.608 5.660 X 10—
20 (2.577,3.820) 17.618 17.615 1.742 X 10—+
40 (2.577,3.820) 17.618 17.618 1.580 > 10-¢
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Actually, as can easily be verified from a comparison of procedure (2.6)
and equation (2.7), if the starting point is very far outside the convex
hull, X*" will be approximately the center-of-gravity solution.

2.2 THE RECTANGULAR DISTANCE PROBLEM

Rectangular distances were described in Chapter 1. In addition to bqing
applicable in a wide variety of location problems, their use gregtly sim-
plifies many problems that are quite difficult with straight-line distances.
For p = 1, problem (2.1) becomes:
minimize W(X) = > willx, — ay + P — ay). (2.10)
X =1
There are two properties that are useful in finding (x*,x%). The first
will be called separability. Problem (2.10) can be rewritten:

minimize W(X) = W,(x,) + Wi(x) (2.11)
s

where:

n

Wix) = 2 whkx — a,

i=1

n

Wix) = > wj

=1

.xE - Clﬁ.

Minimizing W(X) is equivalent to separately finding an x, that minimizes
W,(x,) and an x, that minimizes W,(x,). The problem now becomes:
minimize W,(x,) = Z wix, — ay| fork = 1,2, (2.12)
X; J=1

k

This problem is rather easy to solve. An analog approach is given near
the end of this section (in Example 2.5) that makes the use of formulas
unnecessary. However, the method of analysis that immediately follows
gives mathematical conditions and relationships that will be needed in
later chapters; in addition, it validates the analog approach.

We must first verify that wlx, — a,/ is a convex function of x,. This
can be done by simply plotting the term against x, for any w; > 0 and
ay. A more formal proof is the subject of Exercise 2.7. Because the sum
of convex functions is convex, it follows that W,(x,) is convex.

To facilitate analysis, a change in notation is made in problem (2.12).
Let the values of 4, for j = 1,....n be reordered to produce < doy
< Ay < oo <@y andletwi,...,w; be the corresponding positive weights.
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Note that there will now be n, coordinates, where n, =< n. The reason
for this may be seen in the following example. Suppose a,, = a;, = 4
and w, = 3, w; = 2. We can combine the sum of terms 3|xI == 4l e
— 4|into the single term 5|x, — 4. We can thus create a sequence of ape’s
that are strictly increasing in value. As a result, however, we may have
fewer a,,’s than there are a,’s.

The superscript k in wé denotes ordering and consolidation in the cor-
responding weights. The reason is that there can now be an ordering of
weights in the x, dimension different from that in the x, dimension, and
we use the superscript & to distinguish these orderings.

Problem (2.12) becomes:

”i.'
minimize Wi(x,) = > wix, — a, fork = 1,2.  (2.13)
X =t
The function W,(x,) is now in a form convenient for calculating its
derivative (see Exercise 2.8). We can write:

W) = —> wh for % digy (2.14a)
i=1

4 ",

Wex) = 2 wh— 3w for auy < X, < dgsry (2.14b)

J=1 j=t+1

A,y
A

W/ (x) = > wh

Jj=1

for X, > ag . (2.14c)

It is easy to see that the slope of W(x,) is made up of linear segments
and changes only at points a;- To sum up, W(x,) is a continuous,
convex, piecewise-linear function with points of discontinuity in the first
derivatives occurring at the a;’s.

Before formally stating optimality conditions for minimizing Wy(x,),
let us consider a numerical example to illustrate the notation and the
characteristics of W,(x,) and W,(x,).

Example 2.3 A new facility must be located among four existing ones

at (1,1), (2,4), (2,3), and (4,2). The corresponding weights are 2, 3, 1, and

2, respectively. We are about to solve the associated rectangular distance

location problem graphically. Table 2.4 summarizes the data and nota-

tion. For example, with k = 1 in problems (2.12) and (2.13), we obtain:
Wix) = 2x — 1] + 3 — 2] + I, — 2] + 2x, — 4

and

Wi(x) 2|.\'| ” - 4‘,\‘| 2] | 2|~“| 4‘_
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Table 2.4 Data for Example 2.3.

Original Coordinates Ordering in the Ordering in the

and Weights x, Dimension X, Dimension
j a.‘l ail .Wt' au) I w I au)l 'W?
1 1 | 2 1 2 1 2
2 2 4 3 2 4 2 2
3 2 3 1 4 2 3 1
4 4 2 2 4 3

W \(x,) and W(x,) are plotted in Figures 2.2(a) and 2.2(b), respectively.
It is evident that P ,(x,) has a minimum value of 6 at x¥ = 2, whereas
the minimum value of W.(x,) is 9 for x¥ in the interval [2,3]. Hence,
W(X) has a minimum of 15 at (2,[2,3]). We can use equation (2.14) to
check the slopes. For example, when 2 < x, < 4, then = 2 and we
compute:

Wiix)=02+4)—2=4,

as can be verified in Figure 2.2(a).

Because the slope Wi(x,) in equation (2.14) obviously increases with
increasing 7, the condition for a minimum to W(x,) to occur must be
that the slope either changes from negative to positive, or changes from
negative to zero at some point. In the latter case, the minimum occurs
over a range of values for x,, as in Figure 2.2(b). However, at least one
point a,, must be a minimizer of W(x,). The following makes these
claims precise.

Property 2.5 [Conditions for a minimum to Wi(x,) ]. Suppose:
—1 "
> owh— > wk <0 (2.15a)
=1 i=t

and

i

Swh— > wi=0 (2.15b)
=1

JTEN

are satisfied at some t*. If condition (2.15b) is met as a strict inequality,
then x¥ = a,... If condition (2.15b) is met as an equality, then x¥

[ar’:*)kj a(!*+ U,.’.‘]<

It is possible to express the conditions of Property 2.5 in a form more
convenient for finding /. We can write condition (2.15a) as:

!

-1 ",
koo ! — K <
whk + > wh > wk < 0,
J=1 J=1

g
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Wi(xq) Wa(x2)
L3 &
20+ 201
151 151
+
10 1 104
5 t 2 ¢ +—>X; 5 t + t t * X5
3 4 1 2 3 4
(a) (b)

Figure 2.2 Plots of W (x,) and W.(x.,).

and condition (2.15b) as:

7 ‘ ! "y
Zw’;—}-waﬁ—wa— 2 wh = 0.
i=1 =1 j=1 )

j=t+1
If we let:

"

C=>w fork=12,

then the conditions of Property 2.5 become:

i—1

—C+2Y w<0 (2.16a)
j=1

!
—C+ 2> wi=0. (2.16b)
Wt |

Inequalities (2.16) now suggest a computational procedure. To —C we
ndd twice the weight of each point a,,,, starting from ¢ = 1, until the sum
lirst equals or exceeds zero. Note that we are merely using another expres-
sion for the slope of W,(x,). We will then have found the optimal range

ur the optimal point, respectively, for x,.
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Example 2.4 We return to Example 2.3 and the data in Table 2.4 to
demonstrate the use of inequalities (2.16). We first calculate:

",

C=2w=2+4+2=3,

J=1

Now, to find x¥, we calculate:

1
Zw}=—8+4=—4

—C+ 2
J=1
—C+2>w=-8+12=4>0
J=1
and find that condition (2.16b) is satisfied as a strict inequality. So x* =
a(2)1 = 2.
To find x%, we calculate:

1
—C+2>w=—-8+4=—4
j=1

—C+2>w=-8+8=0
-

J

and find that condition (2.16b) is satisfied as an equality. So X¥e[@).a,2]
ol o)

But there is an easier way of solving our problem. Example 2.5 illus-
trates the method.

Example 2.5 Wae consider the same problem. Recall that there are four
existing facilities at points (1,1), (2,4), (2,3), and (4,2) with weights of 2,
3, 1, and 2, respectively.

Let us imagine that the weights are “dropped” on the x,-axis, and at
the same time (in defiance of gravity) the same weights are dropped on
the x,-axis (Figure 2.3). Let us then divide the x,-axis into two parts such
that the weights are bisected. Clearly this point is at x, = 2 if we assume
that weights acting on a mathematical point may be split as we wish.
Similarly the weights on the x,-axis are bisected when 2 < x, < 3. As
can be checked in the previous examples, these bisections produce x¥
and x*. As the reader should verify, what we have really done is to apply
inequalities (2.15) or (2.16) in slightly disguised form. We can now de-
scribe the minimum to W,(x,) as occurring at the point(s) of median
weight.
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P Xy

Figure 2.3 Median Weight Illustration.

2.3 THE £, DISTANCE PROBLEM

Suppose distances are modeled by the £, function. As discussed in Chap-
ters 1 and 10, €, distances can often provide a better measure of actual
travel distances than either the straight-line or rectangular distances, which,
are special cases given by p = 2 and p = 1, respectively. For convenience,
we repeat problem (2.1) here:

minimize W(X) = Z wilx, — apf + pr, — a ). (2.17)
X =

We first state two properties that characterize 2(X,a):

(i) £(X.a) decreases as p increases, ie, for X # a, (e = @y po =
aF)» > (P, — ayf + |x, — a ), for p < p,

and
(ii) as p — oo, £,(X,a) becomes the larger of |x, — a;| and [x, — a,.

The following property bears upon the optimization specified by prob-
lem (2.17). A proof is given in the Appendix, mathematical note 2.3.

Property 2.6 [Convexity of wl,(X.a)]. wk(X.a) is a convex function
of X.

As each of the terms of W(X) in problem (2.17) is convex, we can again
use the fact that the sum of convex functions is convex to conclude that
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W(X) 1s a convex function of X. Hence, a local minimizer of W(X) is
also a global minimizer. As with p = 2, we can check to see aforehand
whether the new facility would be optimally located at the site of some
existing facility. The following criterion, which generalizes Property 2.2,
is derived in Juel and Love (1981b).

Property 2.7 [Minimum of W(X) at an existing facility location; £, dis-
tances]. W{(X) is minimum at (a,.a..) if and only if*

CRP! — (|Rt'| pre= + ‘Rl'l

po=Ye=hir <<y, for p > 1, (2.18a)

max (R,

R) < w, for p=1, (2.18b)

r2

where:

"

' w; sign(a, — ala, — a-!
kT
& (Lfa,,a))

#

for k = 1,2.

We observe that

R, = % > wLX,a), -, in (2.18a).

L
Ak J= L‘
Terms on the left-hand side of inequality (2.18a) are not defined at p = 1.
Using Property (ii) of £, distances and letting p decrease toward 1 so that
P = p/(p—1) — co, we can easily deduce inequality (2.18b).

Example 2.6 Table 2.5 gives the parameters of the problem with #n =
5 together with the point optimality calculations for p = 1, 1.3, 1.5, 2,
and 5. We see that (x¥,x%) = (7,3) for p = 1 and p = 1.3; actually this
point is optimal for p < 1.385.

It is convenient at this point to introduce a hyperbolic (see Exercise
2.11) approximation to W(X) in problem (2.17). This approximation will

Table 2.5 Evaluation of CRP..

Existing CRP,
Facility
¥ Location w, p=1 p=13 p=15 p=2 p=35

1 (1,1) 3 10.0 9.380 9.249 9.056 9.218
2 (2,6) 2 5.0 6.081 6.689 7.843 9.821
4 (4.1) I 9.0 7.804 7.356 6.766 5.999
4 (7.3) 4 3.0 3,791 4.288 5.401 TAD
5 (8.8) } 10,0 9.674 9.502 9.220 9.249
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be especially useful in the more complex multi-facility location problem
discussed in a later chapter. We replace each absolute term |y| in problem
(2.17) by (y* + €)"* where ¢ is a small positive number. The approximation
is always larger than the original term, but approaches the original term
as ¢ — 0. Problem (2.17) is then approximated by:

minimize WH(X) = > w(((x, — a,) + &y~
J=l

: (2.19)
= Al e a,P + eprRue,

We first note that WH(X) is strictly convex (as proved on a do-it-yourself
basis in Exercise 2.12), and that all orders of derivatives are continuous
at all points (as will become apparent shortly). Therefore, WH(X) is a
well-behaved candidate for general nonlinear descent and programming
algorithms that converge to the minimizer if the function is smooth and
strictly unimodal.

The question arises: If we find the location that minimizes WH(.X),
what progress have we made in minimizing W(X)? We will show that
we can come as close as we wish to minimizing #(X) by minimizing
WH(X) and simply choosing small values for e.

Property 2.8 [Maximum difference between WH(X) and W(X)).
max {WH(X) — W(X)] < A(e) = 2772(>. w) (2.20)
X =

PROOF: It is shown in the Appendix, mathematical note 2.4, that:

((xy — @) + 2 + ((x, — @) + pr2)w (2.21)
- (xl - a_ﬂlp T Jxl - alen)”p = 2]"’]6'/2:

from which the property follows.

As the difference between WH(.X) and W(X) never exceeds A(e), solving
problem (2.19) will give us a solution to problem (2.17) that is at most
A(¢) from the optimum value. To see this, let X* be a minimizer for W(X)
and X** be the minimizer for WH(X). Because WH(X*) — W(X*) <
Ale) and WH(X**) < WH(X*), we have WH(X**) — W(X*) < A(e).
Therefore, W(X**) — W(X*) < A(e).

The Weiszfeld procedure discussed in Section 2.2 can be generalized
1o the €, distance case. Differentiating WH(X) with respect to x, and x,,
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setting the partial derivatives to zero, and then “‘isolating” x, and x, on
the left-hand side (the details are requested in Exercise 2.13), we obtain:

n

z w_fafk
e = 1 @) (40,

W,
2 T

(2.22)

where
a’"(fY:a;) = (((-xl - aﬂ)z + E)MZ + ((XZ s aj_z)l -+ E)j},fz)lf]/p, and
d”(xksa;k) =, ((x;\ = (1’,;\)3 + )l

When p = 2 and € = 0, iterative procedure (2.22) is identical to pro-
cedure (2.6). Convergence is guaranteed for 1 < p < 2, provided ¢ > 0.
Actually, the procedure will work well with ¢ = 0. However, setting € to
a very small quantity (relative to the weights and computer resolution
of zero) does protect one against the embarrassing possibility of dividing
by zero on a computer. This occurs in procedure (2.6) when X™ coincides
with an existing facility location, or in procedure (2.22) when x{? coincides
with even one coordinate a, of an existing facility location. It is possible
to inadvertently choose a starting point that falls in that category, or it
is possible that X'® will move too close to an existing facility location
during iteration. In a slow convergence problem, a large initial value of
e may get us to the vicinity of an optimum solution relatively quickly.
Then a smaller value can be used. However, the use of ¢ > 0 is a practical
necessity for Weiszfeld iterations only in the multi-facility case that is
discussed in Chapter 4.

Table 2.6a Iterations with p = 1.5 and ¢

Iteration e=10
Number
£ X X WH(X)=W(X) LB® SH®? =58
0 4.846 4.000 54,849 44,350 2.37X10-
1 5.114 3.649 54,075 46,141 1.72X 10!
2 5.334 3.448 53.662 47.670 1.26 X 10!
3 5.515 3.336 53,449 48,756 9,63 X102
4 5.665 3.273 53.319 49.486 7.74X10-2
5 5.790 3.236 53.232 49.975 6.52X 102
10 6.171 3.164 53.050 51.171 3.67X10-2
20 6.447 3.117 52,985 52.184 1.53 X102
30 6.542 3.008 52.975 52.585 7.42X10-3
40 6.583 3.090 52.973 52:770 3.8410-*
50 6,604 3.086 52,972 52.864 2.06X10-*

60 6,015 3,083 52,972 52,913 1,12X 102
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Table 2.6b Iterations with p = 1.5 and ¢« = 0.01.

Iteration e = 0.01
Number
£ x\0 x40 WH(X) LBH® SH® W(X) LB®
0 4.846 4.000 54.895 44,437 2.35X10 54.849 44.350
1 5.114 3.650 54,110 46.273 1.69X 10~ 54.059 46.136
2 5.333 3.451 53.722 47.849 1.23X10~ 53.665 47.652
3 5513 3.341 53.516 48.975 9.27X10-? 53.453 48.720
4 5.660 3.280 53.393 49.732 7.36 X102 53.324 49.431
3 5.782 3.246 53.313 50.238 6.12X10- 53.239 49.898
10 6.144 3.186 53.154 51.553 3.11X102 53.062 50.942
20 6.370 3,154 53:112 52.667 8.45X10- 53.000 51.485
30 6.422 3.145 53.109 52.992 2.22X10-? 52.992 51.556
40 6.435 3.143 53.109 53.079 5.71X10+ 52.990 51.567
50 6.438 3.143 53.109 53.101 1.47X10- 52.989 51.569
60 6.439 3.142 53.109 53,107 3,76 X10- 52.989 51.570

Example 2.7 Table 2.6 illustrates the iteration method [initiated using
equation (2.7)] on the single-facility location problem with data given in
Table 2.5. The bound LB and the $'© that were calculated are those
defined in equations (2.8) and (2.9); LBH® and SH" were calculated by
the same expressions, but using WH(X) instead of W(X). We observe
that using ¢ = 0.01 speeded up convergence as measured by SH or by
movement in (x{°,.x}"), although using ¢ = 0 gave a better value of W(X)
at each iteration.

EXERCISES

2.1 Consider the sum Z f(x,,x,), where each f(x,,x,) is convex. Using the def-
i=1

inition of convexity given in the Appendix, mathematical note 2.1, prove
that the sum is also convex.

2.2 The Varignon frame is a mechanical analog for the minimization of W/(X)
in problem (2.2). It consists of a board with holes drilled in it to correspond
to fixed facility locations. A string is passed through each hole j, and the
ends are tied together in a knot on top of the board. Under the board a
weight is attached to each string, and the weight on string j is proportional
to w, in problem (2.2). In the absence of friction and tangled strings, the
knot will come to rest at the optimum new facility location. This analog
has been used in actual location studies. The analog can be analyzed in
terms of forces acting to move the knot. Assume that the knot is in equi-
librium. In Figure 2E.1 the weight w,, for example, acts with a force w,,
which can be broken up into the orthogonal components w,, and w,,, where:

W w, cos 0, and w, = w, sin f,.
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X2

gt

Figure 2E.1 Varignon Frame.

Note that w3 =
a. Show that:

wl, + wul,.

dy T X
?J(XoaAl)

and sin @, =%,
AUy

cos #, =

where (x,,x,) is the equilibrium position.
b. Show that a balance of x-direction force components and a balance of
y-direction force components is, in general, equivalent to conditions (2.3).
c. Explain condition (2.4) in terms of forces. If condition (2.4) holds for
point (a,,a,), what would be observed on the Varignon frame?

"

Show that W(X) = Z w(£( X)) is strictly convex. (Hint: Since the second
el

partial derivatives of ¥ are continuous everywhere, showing strict convexity
is equivalent to showing that the Hessian matrix is positive definite every-
where; see Exercise 2.12.)

Write a computer program to perform the iterations described by procedure
(2.6). The program should calculate the lower bound LB® and stop when
S is below a predetermined value. Use the program to recalculate Table
2.3 for the cases where:

a. w, = 10.0, using equation (2.7) to define the starting point,

b. w, = 4.9, using equation (2.7) to define the starting point,

c. w, = 4.9, using the starting point X = (0.99,4.01).

a. Show that X'V in procedure (2.6) will always fall in £, the convex hull of
of the existing facility locations, (Hint: This is equivalent to showing that
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2,10

X can be written as a weighted sum of the a’s with positive weights
that sum to one.)

b. Show that X* in problem (2.2) is in Q. (Hint: If X* # a, for any j then
use conditions (2.3)).

Apply Property 2.7 to the problem in Example 2.1. Then calculate (X")
based on (X') = (0.0) using procedure (2.22) with ¢ = 0.

Using the definition of convexity given in the Appendix, mathematical note
2.1, prove that #(x) = wix — a is a convex function for any real positive
w and any real a. (Hint: For any real numbers pand ¢, |p + g/ < |p| + |g].)

Derive equation (2.14).

A facility is to be located on a shop floor where travel is possible only along
aisles that are perpendicular to each other. Deliveries will have to be made
to two “demand points” located (using rectangular axes corresponding to
the directions of the aisles) at (1,1) and (3,2). The weights for the demand
points were estimated to be equal (thus taken to be 1 and I, respectively).
Problem (2.10) is to be used as the location model.

a. On a graph showing the locations of the demand points, draw the equal-
cost contour where W(.X), the total cost, is equal to 5. (Hint: Divide the
X,X, plane into regions such that W{.X) can be described in each without
using absolute values.)

b. Plot the contour W(X) = 3.

c. Plot the contour W{X) = 1.

Jack Smooth, an industrial sales and service representative, wants to find
a new office location. His business involves several trips a week to seven
factories in a large suburban area. From a travel expense diary, he has made
up some averages based on several months’ experience. He has marked the
location of each plant on a map and, using the left and bottom borders of
the map as coordinate axes, has given a location to each plant. This infor-
mation is compiled in Table 2E.1. Jack Smooth’s objective is to find an
office location that minimizes total travel distance. He considers rectangular

Table 2ZE.1 Average Trips and Locations of Customers.

Average Number
of Weekly Trips Location

5 (5,20)
(18.8)
(22,16)
(14,17)
(7.2)
(5,15)
(12,4)

Customer

Tmg 0w >
o= O W

~
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distances to be the best representations of the actual travel distances in-
volved.

a. Solve Jack Smooth’s office location problem.

b. Show that conditions (2.15) are satisfied at the optimal location.

¢. Plot W (x,) against x,.

3 a o
a. Graph the function y = P b — x| where a and & are positive. Then

overlay the graph of the hyperbola whose equation is:

» _x—x);_
a’ bh?

b. Relate a to the vertical distance between the graphs at x = x,.
c. Discard the lower branch of the hyperbola. Solve for y and comment on
the result in relation to its use in problem (2.19) in the text.

Prove that WH(X) in problem (2.19) is strictly convex. Hint: First prove
that g(x.x.) = (((x, — a,)* + e + ((x; — a,)* + €))7 is strictly convex
by showing that for all X = (x,,x,):

d°g(X)

dxi

>0

and

Q
g
L
=
D

8

a.¢ ax,dx,

o

> 0.
daglx) agx)

ax,dx, dx3

Derive iterative procedure (2.22) from the extremal conditions (partial de-
rivatives set equal to zero) for WH(X).

Consider the problem data Table 2E.1 in Exercise 2.10.

a. Check each plant location for candidacy as the optimal office location,
assuming £, distances first with p = 1, and then with p = 1.5,

b. Use any available computer package for nonlinear optimization to find
the optimum location for £, distances with p = 1.1, 1.5, 2, and 5.

¢. Write a computer program to perform the Weiszfeld iteration procedure
(2.22), and repeat Exercise 2.14b.

d. Write the additional coding for the program written in Exercise 2.14¢ to
begin by testing for optimality at the existing facility locations. Repeat
Exercise 2.14b.
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2.15 a. Prove that:
W (X)) = W (XT) = (W.(xTRy + (W),
where:

X¥ = (x¥,,x%,) is an optimum location for the rectangular distance problem
with W, (x,) as defined in problem (2.12); and X¥ = (x¥,,x%,) is an optimum
location for the £, distance problem with W ,(X) representing W{X) in prob-
lem (2.17). (Hint: Consider the Minkowski inequality stated in the Appen-
dix, mathematical note 2.3.)

b. Apply the above result to Example 2.6 with p = 1.3,

REFERENCE NOTES

SECTION 2.1 The Weiszfeld procedure appeared in a paper by “Weiszfeld”
(1937). It should be noted that it is one of the methods for iteratively solving
nonlinear equations that appear in numerical analysis texts (eg, Dahlquist and
Bjorck (1974), Chapter 6). Convergence properties have been discussed by, among
others, Katz (1969, 1974), Kuhn (1973), and Ostresh (1978). The stopping cri-
terion presented in this section is one of those given by Love and Yeong (1981).
A somewhat tighter lower bound was given by Elzinga and Hearn (1983) and
Juel (1984); Love and Dowling (1986) generalized Drezner’s rectangular bound
to the £, distance case.

SECTION 2.2 Some of the foundation work with rectangular distances includes
that by Bindschedler and Moore (1961) and Francis (1963). The single-facility
problem is closely related to the problem of finding a weighted median of a data
set, as was seen in Example 2.5. Algorithms that can solve such problems in O(n)
time are available.

SECTION 2.3 The hyperbolic approximation used here is from Wesolowsky and
Love (1972). Eyster, White, and Wierwille (1973) used a hyperboloid approxi-
mation procedure (HAP) to extend the original Weiszfeld procedure to both Eu-
clidean and rectangular distances. Convergence properties including the extension
to £, distances have been discussed by Morris and Verdini (1979) and Morris
(1981). An acceleration of the HAP procedure is discussed by Charalambous
(1985).
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Mathematical Notes

2.1 Prove Property 2.1
wl(x;, — ay)* + (x; — ay)?)'? is convex.
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PROOF: As w, is a positive constant we can, without loss of gener-
ality, let w, = 1. As a; and a, are constants, we can equivalently
prove that f(y,,.) = (7 + 13)"2 is convex. This merely changes the
coordinate system to one with an origin at (a,,a,). Recall that f(y,,,)
is said to be convex if, given any two points, (1},)5) and (3/],1%),
SAOLY) + (1 = MLy < M) + (1= Ny

where 0 << A < 1.
Therefore, the convexity requirement is:
O + (1 = 1y + (e + (1 — My2))'»2

= M) R 8 (1 =M O,

To show that this must be true, we turn to what is known as the
triangle inequality for vectors. For two real-valued vectors p = (p,.p,)

and ¢ = (q1.4>),

@ +aqr+ W@+t aP)?<@ + )2+ (¢ + &2
If we set pp = W, p, = A5, g0 = (1 — A, and g, = (1 — A%,
we see that this is equivalent to our requirement.

Prove Property 2.2
The minimum of:

WO = Y wiCn — @ + (i — g

accurs at @, if, and only if, CR, < w,.

proOF: Consider a movement of the new facility from (x,,x,) a

distance ¢ to (x, + td,, x, + td,), where (di + d3)'/* = 1. Here d,

and d, are components of a unit direction vector 4. Let us find the

rate of change of W(X+1td) with respect to ¢ as ¢ approaches zero

when X = a,:

aw < wl(a, + td, — ay)d, + (a. + td, — ax)d;
4 = (a, + td, — a,)P + (a. + td, — ay)?)"?

wtd? + td3)
((td)) + (td))'”

"

& wia, + tdy — ay)
¢ L:_; ((”” | 'r“c'l “‘”)‘ | (”'. | !(i‘“r

d

a,))""?

»

&
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3 wia, + td, — ap)
i dzz (g =1 =~ a_n)z e (P I = a,z)z)”z )

j=1
#r

We can write this derivative as:

(%V = w(d? + d)"* + d\R\(t) + dR:(2),
where R,(f) and R,(f) are defined as implied above.
Therefore,
%V\M, = w(di + d3)* + dR, + d:R,
=w, + d\R, + d.R,,
“wla, — ay)
where R, = ; W

j=1 El(aﬂ 3a1)
#=r

We can use elementary calculus and the condition df + d3 = 1 to
find that the minimum of:

dw
@

occurs at:

R, R,

YT TmE R AT Twm T R

o dw
and so min —— ‘,_ o =W, — (R? + R~

dt

When this derivative is positive, W(X) will increase as (x,,x,) is moved
in any direction from (a,,a,,). Since W(X) is convex, X* = (a,,a,.
if, and only if, w, = (R} + R3)> = CR,, as required.

2.3 Prove Property 2.6

W,fp(Xaa/) = W:(|’Y| - a!1|'” +

x, — @)/’ is convex.

prOOF:  Following note 2.1 we can equivalently prove that f(y,,,)
(vl + )7 is convex. We will appeal to a well-known (to math-
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ematicians, at least) inequality called the Minkowski inequality, given
by:

K K

O e + By < (; lewrye + (2 1By
k=1 =1 =1

where p = 1 and «, and 3, are real numbers.
We have f(\1 + (1 — My, M5+ (1 — A)ys
< (] + 13 = 2y + (W
+ |(1 = ApApoyve (triangle inequality)
< (Wi + P 4 (1 = Mpip
+|(1 — Nysyr (Minkowski inequality)
= MpP + e+ (1 = DA+ e
= MWL) + (1 = Nf(1.)5), as required.

2.4 Prove L{X,a) — £(X,a) < 2 €2, where
L(X.a) = ({[x, — @) + 2 &+ (g — ag) “+ ),

Xy — 6212 = 0 and y3 = E”z

PROOF: Lety, =[x, — q)|=0,y, =
> 0. Then:

L(X.a) = [0F + 1372 + (3 + iy
< [(On + »PY7? + (0n + WPy

= {lyl T
<o +

o+ b+
I’]UF -+ [lyjj." —+ LVJIPJ I/p

(Minkowski inequality; see note 2.3)

V2

—_ [lxl - aﬂ|p -+ ‘xz i aﬂ‘p]],’p + [611/2 -+ e[),"Z]I,"p

= £(X,a) + 22, as required.

2.5 Prove [Rectangular bound on W(X*)]. W(X*) = R(XW)
= min > W |x, — a,| + min D> W’ |x; — ag,
X /=] Xs Il |

¥
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where W(X*) is defined in problem (2.2) in the text while
wi = wixi9 — a;|/8(X,a), and

Wi = wht? — a/6(X%a).

PROOF: We may write the following inequality:

XSP) - a,'2|

xi? — aJIF g |x§f) - a[}llz]l"2
(since u- v < |Juj

= 'QZ(Xsaf) PZ(X(P):CZ;‘):\

K =l bd® = il -+ by =

<[ —af+

o an,Z]],‘E[

v|; Schwartz inequality)

or equivalently,
L(Xa) = [|—Xﬁp) - aﬁ'l‘/gl(Xtmsaj)”xl = a_n|
+ [ — a/8(X9,a)]

Multiplying both sides by w, summing over j and then taking the
min on both sides with respect to X yields the required result.

(Note: The bound R(X) is due to Drezner (1984). The solution
X" at each iteration of the Weiszfeld procedure is used to compute
the weights wj and w’ that are used in calculating R(X). While it
may appear that adding another optimization problem and solving
it at each iteration has increased the work required to find a lower
bound, this approach has several advantages. Using techniques from
Section 2.2, each part of the optimization involved in calculating
R(X%) can be accomplished rapidly. Also, it is not necessary to find
the hull points that are used in Property 2.4.)

.x;y e al,z‘.



