
hydrogen bonds. On the other hand, the other organic solvent
mixtures that lead to high delignification extents are mainly
formed by alcohols with high capacity for hydrogen bonds
associated with intermediate values for polar interactions.23

The mixture with 10% water affects the final properties of the
organic solvent:water (9:1) solutions with particular increase
of δP and δH for dioxane:water solutions and minor alterations
for alcohol:water solutions.
The optimized HSP values for sugar cane bagasse lignin

obtained in this work differs from that one published by
Hansen and Björkman.15 Although both determinations
present similar results for dispersive interactions (δD) and
the sphere radius of solubility (R0), the polar and hydrogen
bond interactions are different in each determination. Even
though not completely understood, these differences could be
attributed to intrinsic characteristics of sugar cane bagasse
lignin. Lignins from sugar cane (as well as lignins from grasses)
are classified as HGS lignin and contain higher amount of p-
hydroxy phenyl moieties, including p-coumarates and
ferulates.43 Thus, it is important to assume specific values for
HSP in function of the source of lignins.

4. CONCLUSIONS
By adjusting the delignification data to the Hildebrand
solubility parameter of the different solvents, it was concluded
that this parameter is not the ideal parameter to relate
solubility with delignification extents. The Hildebrand
parameter does not differentiate the type of interactions that
each solvent can perform with lignin. Thus, the Hansen
parameters were found as a better way to describe the
relationship between the organosolv delignification under the
conditions used and the relative energy difference of the center
of the lignin solubility sphere to the solvent solubility
parameter.
It was also concluded that the Hansen solubility parameters

verified in the literature for lignin do not allow a linear fit of the
delignification data. Therefore, a new lignin solubility sphere
was calculated from delignification yields. With an unoptimized
sphere, four solvent mixtures of green and renewable industrial
solvents were applied, indicating the possibility of the use of
HSP for predicting/choosing solvents for the organossolv
delignification of lignocellulosic raw materials. Moreover, these
mixtures could also be used to optimize the solubility sphere

for the sugar cane bagasse lignin extracted under the specific
conditions. The optimized solubility sphere allowed a better
data fit with a linear regression determination coefficient of
0.93856, excluding the data from 1,4-dioxane. A specific set of
values of HSP for sugar cane bagasse lignin was determined as
δD = 21.42 MPa1/2, δP = 8.57 MPa1/2, δH = 21.80 MPa1/2, and
Ro = 13.56.
Finally, it was found that because of the difficulties in

checking the lignin solubility parameter (it does not exist in
native form as an isolated structure), the solubility parameter
for the actual lignin cannot be stated with certainty, despite the
good fit of the data. However, under the conditions studied,
this sphere of solubility allows a better prediction of a
delignification extent and the selection of a solvent, considering
the desired delignification.
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