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Abstract

In this paper, I develop a goal programming approach to the representation and resolution of the more for less and

more for nothing paradoxes in the distribution problem. In doing so I establish new ways of deriving more for less and

more for nothing results in relation variously to competitive and non-competitive market structures. Within these

contexts I also introduce new and generally applicable de®nitions of economies of scale and scope and illustrate them by

means of extended numerical examples. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In Ryan (1980) and Charnes et al. (1980), we showed that if an optimal solution to the distribution
problem exhibits the more for less or more for nothing paradox, any subsequent solution which fully ex-
ploits those conditions is necessarily degenerate and decomposable. It is the main purpose of this paper to
use both the theorems and examples to show how those more for less and more for nothing results and
associated economic interpretations can be extended to include economies of scale and of scope.

The paper is organised as follows. The next section presents generalized more for less (nothing) theorems
and specializations of them to the distribution problem. Then, in Sections 3 and 4, distribution structures
are related to degeneracy and decomposability with contexts variously of spatially competitive and non-
competitive markets. Next, in Section 5, I introduce new goal programme related de®nitions of economies
of scope and scale. These will stem respectively from opportunities to reduce costs by connecting previously
unconnected production plants, and from opportunities to reduce costs in response to increasing supply
and demand at a single production plant within a set of already connected plants. Finally, in Sections 6 and
7, I turn to examples using these de®nitions, the ®rst with reference to a homogeneous commodity and
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interregional exchange, and the second with reference to a bank reorganization with associated implications
for redundancy and retraining costs in a heterogeneous labour market.

2. General more for less (nothing) results

Theorem 1. If M is arbitrarily large and if a feasible solution exists for programme �I� then:

max
X

f �xj� ÿM
X

x�i ÿM
X

xÿi � z6 z0 � max
X

f �xj� ÿ
X

c�i x�i ÿ
X

cÿi xÿi

s:t:
X

aijxj � x�i ÿ xÿi � bi; �I� s:t:
X

aijxj � x�i ÿ xÿi � bi; �Ia�
xj; x�i ; x

ÿ
i P 0: xj; x�i ; x

ÿ
i P 0:

Proof. Any feasible solution to (I) is a feasible solution to (Ia) and conversely. But an optimal solution to (I)
is a feasible but not necessarily an optimal solution to (Ia). It follows that there may exist optimal solutions
to (Ia) such that z0 > z or z0 � z with x�i ; x

ÿ
i > 0 some x�i ; xÿi : �

For example it is not always optimal for a pro®t maximizing farmer to choose crop production plans so
that they exactly exhaust all of his/her resources of land, machinery and time. More generally there may be
more for less (MFL) or more for nothing (MFN) cases for which optimally xÿi > 0 some i with x�i � 0 all i
implies z < z0 (resp. z � z0).

One class of special cases are those in which both f �xj� are linear.

Theorem 1*. If a feasible solution exists for programme �I�* then:

max
X

fjxj ÿM
X

x�i ÿM
X

xÿi � z6 z0 � max
X

fjxj ÿ
X

c�i x�i ÿ
X

cÿi xÿi

s:t:
X

aijxj � x�i ÿ xÿi � bi; �I�� s:t:
X

aijxj � x�i ÿ xÿi � bi; �Ia��
xj; x�i ; x

ÿ
i P 0: xj; x�i ; x

ÿ
i P 0:

Proof. As for Theorem 1. �

Analogous to Theorem 1 are a class of minimization cases as follows.

Theorem 2. If a feasible solution exists for programme (II) then:

min
X

c�xj� �M
X

x�i �M
X

xÿi � z P z0 � min
X

c�xj� �
X

c�i x�i �
X

cÿi xÿi

s:t:
X

aijxj � x�i ÿ xÿi � bi; �II� s:t:
X

aijxj � x�i ÿ xÿi � bi; �IIa�
xj; x�i ; x

ÿ
i P 0: xj; x�i ; x

ÿ
i P 0:

Proof. Similar to Theorem 1 (if c�xj� �def ÿf �xj�, Theorems 1 and 2 are equivalent). h

Theorem 2 is the main result in Charnes et al. (1987) (though the proof here is more succinct). With the
context of the well-known diet problem, with foods xj, minimum dietary requirements bi and unit costs cj, it
states the apparently paradoxical fact that in certain circumstances a diet exceeding minimum dietary
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requirements may be cheaper than one exactly meeting those requirements. (For more on this example see
Charnes et al. (1987)).

Another class of special cases of Theorem 2 are those which conditionally correspond to the distribution
problem (Theorem 2*).

Theorem 2*. If a feasible solution exists for programme �II�* then:

min
X

i

X
j

cijxij �
X

i

Mx�i �
X

j

Mxÿi �
X

j

My�j �
X

j

Myÿj

s:t:
X

j

xij � x�i ÿ xÿi � ai; �II��X
i

xij � y�j ÿ yÿj � bj;X
i

ai �
X

j

bj; xij; x�i ; x
ÿ
i ; y

�
j ; y

ÿ
j P 0;

� z P z0 �
min

X
i

X
j

cijxij �
X

i

c�i x�i �
X

i

cÿi xÿi �
X

j

d�j y�j �
X

j

dÿj yÿj

s:t: constraints of �II��: �IIa��

Proof. As for Theorem 2. (To exclude trivial cases cij > 0 all i,j will be assumed throughout the rest of the
paper.) h

Clearly feasible solutions exist for (II), (IIa)* with x�i ; x
ÿ
i ; y

�
j ; y

ÿ
j � 0 all i,j. In those cases programmes

(II), (IIa)* are each equivalent to the distribution problem in its standard form (see Charnes and Cooper,
1961; Shogan, 1988). As another class of special cases, Theorem 2* admits the MFL and MFN cases as
considered by Charnes and Klingman (1971), Szwarc (1971), Ryan (1980) and Charnes et al. (1980) with
x�i ; y

�
j � 0 all i,j and xÿi ; y

ÿ
j > 0 some i,j at an optimum. But Theorem 2* also admits cases in which x�i ; y

�
j >

0 some i,j at an optimum in (IIa). In that way it not only includes the distribution model and MFL and
MFN cases as two classes of specializations, but also potentially generalizes both of these classes of dis-
tribution model related cases within a more comprehensive goal programming framework.

In Section 3, I show how the degeneracy±decomposability result for MFL and MFN cases as applied to
the distribution model in Ryan (1980) and Charnes et al. (1980) can be correspondingly generalized using
the goal programming approach implicit in Theorem 2*. (Incidentally, while more work on the MFL or
MFN paradoxes has subsequently been done by others, including Arshan (1992) and Gupta and Puri
(1995), that work focuses on partial post optimality analyses and provides no market related economic
interpretations. Nor does it use a goal programming approach.)

3. Duality, degeneracy decomposability and MFL/MFN

Associating dual variables Ri and Kj, respectively with the origin and destination constraints of pro-
gramme (IIa)* in Theorem 2* its dual is
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max
X

i

Riai �
X

j

Kjbj

Ri � Kj6 cij; �IIa��0

ÿ cÿi 6Ri6 � c�i ;

ÿ dÿj 6Kj6 � d�j :

If cÿi ; c
�
i ; d

ÿ
j ; d

�
j are su�ciently large and positive, optimal solutions to the potentially MFL or MFN

formulation (IIa)*0 are equivalent to optimal solutions to the standard not more for less (nothing) for-
mulation of the distribution problem. But in other cases cÿi ; c

�
i ; d

ÿ
j ; d

�
j may be such that, while (II)* is a

feasible solution to (IIa)*, it is not optimal. In particular, if cÿi ; d
ÿ
j are of appropriate magnitudes, and if

xÿi � yÿj � d > 0 for some nonbasic route i,j in (IIa)*, an optimising MFL or MFN solution may be at-
tained to (IIa)*0 with Ri � ÿcÿi ;Kj � dÿj by complementary slackness.

For a solution maximising a potential for MFL or MFN in (IIa)*, d will be set at its maximal level
consistent with maintenance of the initial set of basic routes. Degeneracy* follows immediately. A basic
solution to (IIa)* would then have at most m� nÿ 2 positive shipments, there being m� n constraints with
xÿi � yÿj > 0. Decomposability of such a solution follows from the fact that a basis nondegenerate* in
shipments xij for (IIa)* (minimally) spans that system so that, conversely, a degenerate* basis does not.

In the degenerate* case, it is possible to set (at least) two distinct dual variables Ri, Kj arbitrarily e.g.,
such that a pair of dual variables are equated to relatively external values via Ri � ÿcÿi ;Kj � dÿi . While such
cases are possible and useful in some applications, it is not necessary to set a pair of values Ri, Kj equal to
relatively external magnitudes to obtain a MFL (MFN) result. All that is necessary are conditions con-
sistent with Ri � Kj6 0 for some nonbasic route at an optimum. In Section 4, I consider various classes of
special cases, including spatially competitive cases, together with a numerical example.

4. A more for less (nothing) example

Consider an example in which supplies ai at two factories, demands at two markets bj, planned ship-
ments xij and unit shipping costs cij are as indicated in Scheme 1.

Using the North West Corner Rule the initial basis is as in Scheme 1. Due to the degeneracy of (II)*, at
an optimum one dual variable can be selected arbitrarily. Setting R1 � 0 the values of the other dual
variables follow directly since, by complementary slackness, Ri � Kj � cij for all basic routes i,j. In this case
this initial dual pair of solutions is feasible and thence optimal with a total shipping cost of 230.

Parenthetically, as I noted in Ryan (1980), for data organized routinely from top to bottom (North to
South) and from left to right (West to East), a North West Corner Rule may be more e�cient than other
starting rules since it naturally corresponds to the adjacencies inherent in a pre-existing pattern of ship-

Scheme 1.
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ments. (Try it with origins and destinations being Seattle and New York. A North West Rule starts with a
shipment Seattle±Seattle, whereas a South West Rule would start with a cross country shipment New
York±Seattle.)

The solution in Scheme 1 being nondegenerate* with R2 � K1 � ÿ3 < 0 for the nonbasic route {2,1}
exhibits the preconditions for MFL. (With c22 � 6 and thence R2 � ÿ4;R2 � K1 � 0; they would be pre-
conditions for MFN.)

Fig. 1 will help to clarify how and why the more for less case arises in Scheme 1 by showing how a
nondegenerate* basis with three positive shipments requires a ``cross country'' shipment, in this case
x12� 10. Further, shipment costs in Scheme 1 are such that the sum of the unit costs of the two ``local''
shipments x11,x22 are less than the unit cost of the cross country shipment x12. That is

c11 ÿ c12 ÿ c22 � R2 � K1 � ÿ3 < 0: �1�
It follows that

d�c11 � c22� < dc12: �2�
That is, if supply at origin 1 and demand at market 2 are both increased by d, overall shipping cost can

be reduced by correspondingly decreasing ``cross country'' shipments x12 by d. Evidently, the maximal
feasible value of d consistent with nondegeneracy is 10 ÿ �12 in this case (with �12 arbitrarily small). Overall
transport costs are then reduced by 3(10 ÿ �12). If �12� 0 then cross country shipments are reduced to zero
and the initially connected pairs of factories and markets become disconnected. That is, an initially con-
nected basis in xij becomes degenerate* and decomposable.

Clearly, more general MFL and MFN examples are also available via Theorem 2. However, from the
perspective of this paper, the signi®cant points are: ®rst, that costs may be reduced both by increasing the
connectedness of markets i.e., by increasing opportunities to generate economies of scope and by increasing
the scale of operations of particular factories within a given structure of already connected factories and
markets; second, the optimizing approach in this paper yields optimizing trade-o�s between these two
means of reducing overall costs.

The numerical example in Scheme 1 was chosen in part because the initial connectedness and subsequent
disconnectedness of the pairs fO1;D1g and fO2;D2g, suggests further interpretations in relation to potential
competition and monopoly since in this case an actual entry condition x12 > 0 into market 2 from factory 1
in the initial solution becomes a potential entry condition �12 > 0 in the MFL solution. These ideas are
pursued in the next Section.

5. The MFL (MFN) paradox and spatial competition

One condition of spatial competition is that, with unit transport costs cij for any connected pair of
markets i,j, origin prices pi, and destination prices pj are such that

Fig. 1.
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xij > 0) pj ÿ pi � cij: �3�
(Another and stronger condition would be that all markets are connected).

Condition (5.1) in turn suggest that, rather than starting with an arbitrary valuation, say R1� 0, one
dual variable would be chosen as a base price, say R1 � ÿcÿ1 �def p1. In this way prices for all markets would
be generated consistent with conditions of spatial competition and such that, for all basic routes

xij > 0) pj ÿ pi � Ri � Kj � cij �4�
and for all nonbasic routes

xij > 0) pj ÿ pi6Ri � Kj6 cij: �5�
From Eqs. (3)±(5) it follows that competitive price regimes are potentially consistent both with condi-

tions exhibiting the MFL or MFN paradox in the distribution model and with exploitations of those
conditions. Nevertheless, as I showed using an example in Ryan (1980), conditions of the MFL or MFN
paradox are not inevitably consistent with conditions of spatial competition. This can be demonstrated
formally using a variant of (IIa)* with explicit incremental supply and demand goals xÿ�i ; yÿ�j as follows.

min
X

j

ÿ pjyÿj �
X

i

X
j

cijxij �
X

i

pixÿi �M
X

i

X
j

�x�i � y�j �

�
X

i

X
�

j

cÿ�i xÿ�i � c±
i x±

i � dÿ�j yÿ�j � d±
j y±

j �;X
j

xij � x�i ÿ xÿi � ai;X
i

xij � y�j ÿ yÿj � bj; �III�

xÿi � xÿ�i ÿ x±
i � xÿ�i ;

yÿj � yÿ�j ÿ y±
j � yÿ�j ;X

i

ai �
X

j

bj xij; x�i ; x
ÿ
i ; y

�
j ; y

ÿ
j ; x

�
i ; x

±
i ; y
ÿ�
j ; y±

j P 0:

Associating variables Ri;Kj; hi;uj with its constraints (III) generates the dual:

max
X

i

Riai �
X

j

Kji bj �
X

i

hix�i �
X

j

ujy
j�;

Ri � Kj6 cij;

ÿ c±
i 6 hi6 � cÿ�i ; �III�0

ÿ d±
j 6uj6 � dÿ�j ;

ÿ Ri � hi6 pi;

ÿ Kj � uj6 ÿ pj;

Ri;Kj6M :

If in e�ect Ri � ÿpi;Kj � pj with hi � 0 and uj � 0 at an optimum, then (III),(III)0 are potentially
consistent with conditions of spatial competition as de®ned in Eqs. (3)±(5). But, by considering cases for
which optimally x�i ; x

ÿ
i ; y

�
j ; y

ÿ
j > 0, so that by complementary slackness hi 6� 0 and/or uj 6� 0 some i,j in

(III), (III)0, those systems may also yield noncompetitive interpretations of hi and/or uj as relative taxes and/
or subsidies since
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xi > 0) ÿRi � hi � pi; �6�

yi > 0) ÿKj � uj � ÿpj; �7�

so

xi and yj > 0) Ri � Kj � pj ÿ pi � uj � hi: �8�

Speci®cally if hi � uj � 0, all i,j conditions (8) are consistent with spatial competition. But with hi 6� 0
and/or uj 6� 0 they are also consistent with relative demand and supply taxes, if yj (resp. xi) is above target,
and relative subsidies if yj (resp. xi) is below target. (These interpretations are particular applications of
general goal related tax/subsidy interpretations in Ryan (1992). Note that a relative tax and a relative
subsidy may optimally apply to the same shipment.)

In either case if MFL or MFN conditions are fully exploited the resulting more for less optimum is
degenerate* and decomposable since it is then consistent with two base prices. Such an optimum will be
correspondingly consistent with potential spatial competition (if optimally uj � hi � 0) or with essentially
noncompetitive conditions involving tari�s and/or subsidies (e.g., import tari�s/ subsidies) otherwise. But
with hi 6� 0 and/or uj 6� 0, Eqs. (6)±(8) could also be consistent with tax and subsidy related non-com-
petitive systems, including second best related regulatory systems. Second best interpretations are especially
germane here since they suggest the potential, which is in fact inherent in this approach, for interpretations
in relation to economies of scale and scope.

6. MFL and MFN cases and economies of scale and scope

So far emphasis has been on how conditions may arise under which it might become optimal to connect
markets and/or to decompose a set of connected markets into sub-markets. Now focus on two reasons why
it might be optimal to seek to optimise within a multiple market structure as distinct from a single market
structure. One reason is that, to the extent that opportunities to gain are increased by increases in the
numbers of potential suppliers (factories) and demanders involved, as distinct from increases in the
quantities of product which might be o�ered by suppliers, or required by existing demanders, there may be
opportunities for gains due to increases in scope (numbers of suppliers and/or demanders). Secondly, op-
portunities to gain may be increased by increases in scale. That is, by increases in quantities supplied and
demanded in one or more markets within a given collection of markets. Now consider these two ideas more
formally.

Theorem 3 (Economies of Scope). Assume two alternative cost regimes fcij;Mg and fcij; c0ijg for potential
shipments between sub-markets i; j 2 �I1; J1�; i; j 2 �I2; J2�, total availabilities ai and requirements bj being the
same in each case. Then if a feasible solution exists for �IV �:

min ÿ
X

j

f �yÿj � �
X

I1

X
J1

cijxij �M
X
I2J2

xij �
X

i

pixi �M
X

i

X
j

�x�i � y�j �

�
X

i

X
j

�cÿ�i xÿ�i � c±
i x±

i � dÿ�j yÿ�j � d±
j y±

j �

subject to the constraints of �III� �IV�

� z P z0 �
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min ÿ
X

j

f �yÿj � �
X

I1

X
J1

cijxij �
X
I2J2

c0ijxij �
X

i

pixi �M
X

i

X
j

�x�i � y�j �

�
X

i

X
j

�cÿ�i xÿ�i � c±
i x±

i � dÿ�j yÿ�j � d±
j y±

j �

subject to the constraints of �III�: �IVa�

Proof. Any feasible solution to (IV) is a feasible solution to (IVa) and conversely. But an optimal solution
to (IV) is a feasible but not necessarily an optimal solution to (IVa). It follows that there may exist optimal
solutions to (IVa) such that z0 < z or z0 � z with xij > 0 some i; j 2 �I2; J2�. h

Theorem 4 (Economies of Scale). Consider two distinct regulatory regimes, one associating prohibitive
penalties M and the other non prohibitive penalties �ÿpj; pi� with potentially marginal increases in sub-market
demand and supply levels yÿj ; x

ÿ
i in (III). Then, if a feasible solution exists for (V):

min
X

j

Myÿj �
X

I1

X
J1

cijxij �M
X
I2J2

xij �
X

i

Mxÿi �M
X

i

X
j

�x�i � y�j �

�
X

i

X
j

�cÿ�i xÿ�i � c±
i x±

i � dÿ�j yÿ�j � d±
j y±

j �

subject to the constraints of �III� �V�
� z P z0 �
min

X
j

ÿ f jyÿj �
X

I1

X
J1

cijxij �M
X
I2J2

xij �
X

i

pixÿi �M
X

i

X
j

�x�i � y�j �

�
X

i

X
j

�cÿ�i xÿ�i � c±
i x±

i � dÿ�j yÿ�j � d±
j y±

j �

subject to the constraints of �III�: �Va�

Proof. Any feasible solution to (V) is a feasible solution to (Va), and conversely. But an optimal solution to
(V) is a feasible but not necessarily an optimal solution to (Va) with f j �def pj. It follows that there may
exist optimal solutions to (Va) such that z0 < z or z0 � z with xÿi ; y

ÿ
j > 0 some xÿi ; y

ÿ
j . h

Clearly, in general, a potentially connected set of markets may exhibit economies of scale and then of
scope or, conversely, of scope and then of scale. In each case the resulting con®guration will conform to an
optimal solution to an overall model of the form of (III) with the appropriate parameters. In that sense (III)
potentially includes all of (IV), (IVa), (V) and (Va) as special cases.

7. A homogeneous product example

Consider an initial allocation from origins ai to destinations dj as in Scheme 2.
Since the solution in Scheme 2 is both primal and dual feasible for (II)*, this market structure is con-

sistent with optimal solutions to two disjoint distribution models of the standard type and thence potentially
consistent with optimal solutions to (III) and (IV) with preemptive weights M associated with shipments
between factories 1 and 2 and market 1, and between factory 3 and markets 2, 3 and 4. The overall shipping
cost associated with this speci®cation is 99 + 121� 220 units.
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If preemptive weights in Scheme 2 now become nonpreemptive the solution in Scheme 2 is no longer
potentially optimal in (III) and (IV): there are opportunities for economies of scope, as in the movement
from conditions of programme (IV) to those of programme (IVa) in Theorem 3. A potentially optimal
solution to the revised problem, with revised shipping costs asterisked is as shown in Scheme 3.

For this example a shipping cost reduction of 78 (from 220 to 142 units) due to economies of scope is
gained by linking sub-markets �O3;D1� and �O1;O2;D2;D3;D4�. One interpretation of this reduction is that,
while initially market 1 is supplied from factory 3, given relatively freer opportunities for exchange as in
Scheme 2, market 1 becomes wholly supplied from factory 1.

Now notice that cell {2,1} is a MFL cell with R2 � K1 � ÿ1 < 0 and consider the same numerical ex-
ample with reference to opportunities for gains to economies of scale. If the conditions of programme (V) in
Theorem 4 correspond to a potentially optimal solution to (III) (as in Scheme 3 above) and if supplies at O2

are increased and demands at D1 are also increased by a positive amount d6 9 in such a way that the initial
basis remains unchanged, then shipment costs are actually reduced. If this more for less opportunity is fully
exploited then d� 9 and the set of markets decomposes into disjoint sub-markets as in Scheme 4.

The reader can verify that the solution in Scheme 4 is potentially optimal for (Va) and so for (III) and
that in this case the economies of scale resulting from the increased operations at factory 2 amount to ÿ9
units.

Now reconsider the various stages in this numerical example with speci®c reference to potential inter-
pretations in relation to conditions of spatial monopoly and spatial competition.

In the initial Scheme 2, market 1 is wholly supplied by plant 3 and prohibitively large weights M attach
to potential entry from plants 1 and 2. That is, there is initially spatial monopoly in market 3 in the senses
both of a sole provider and of no potential entry. By contrast the allocation in Scheme 3 is potentially
consistent with spatial competition in both senses. This is because in Scheme 3 there is more than one

Scheme 3.

Scheme 2.
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provider in market 3 and with conditions pj ÿ pi � cij for all basic routes i,j, the allocation in Scheme 3 is
potentially consistent via (Va) with the easy entry condition of spatial competition. With reference to the
scale related MFL re®nement of Scheme 3 via Scheme 4, there is also an interpretation in relation to po-
tential spatial competition in the sense of potential for easy entry into the relatively isolated market �O1;D1�
via (increases in) the shipment �12 on route {1,2}. (Alternatively, noticing that the number of suppliers in
each region is small and the actions of each varying in a perceptibly interdependent fashion with the change
in market conditions from Scheme 3 to Scheme 4, these various conditions in Scheme 3 are consistent with
standard conditions of spatial oligopoly.

As another homogeneous product interpretation of the example in Schemes 2±4, consider two uncon-
nected markets for a given type of labour which are initially separated (as in Scheme 2) by prohibitive
transportation costs. If they then become optimally connected (as in Schemes 3 and 4) in consequence of
reductions in transportation costs, the optimizing solutions would be consistent with circumstances in
which workers in region 3 are initially dedicated wholly to factory 3, as in Scheme 1, but are induced to
choose to be redeployed to factory 1 and replaced at factory 3 by workers from regions 1 and 2, as in
Scheme 3.

In both of these products and labour market cases, transport costs have been reduced twice. First, there
is a reduction of 142 units of cost due to market connection related economies of scope and then a further
reduction of 9 units of cost stemming from more for less related economies of scale associated with si-
multaneous increases of 9 units in the supply at origin 2 and demand at destination 1.

8. A heterogeneous product example

By interpreting the costs in Schemes 2±4 as unit costs (including unit transport costs) of supplying
workers for work and the objective of the associated optimization problems as that of maximizing the net
overall gain to supplying factories with workers as in (III), those schemes were given interpretations in
relation to homogeneous labour markets. (Note that even in that case the labour market might be con-
sidered as spatially heterogeneous insofar as net returns to labour will di�er between individuals due to
di�erences in transport costs for journeys to and from work.)

Now consider an explicitly (skill-based) heterogeneous labour market interpretation with the context of
an proposed bank reorganization as follows: assume that, prior to the proposed reorganization, available
skilled workers ai, i� 1,2,3, correspond to 20 managers, 14 clerks and 11 tellers, as in Scheme 1, and that
after the reorganization workers will be redeployed, re-skilled and retrained as necessary to ®ll positions
bj, j� 1,2,3,4, corresponding to 11 telebusiness workers, 13 managers, 17 clerical workers and 4 tellers.

With these interpretations costs in Scheme 2 refer to potential transition speci®c adjustment costs. In
that context initially prohibitively large weights M might relate inter alia to existing union agreements

Scheme 4.
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which if not renegiotiated would prohibit telebusiness related work practices for managers and tellers and
would implicitly require retraining of tellers alone for the specialization of telebusiness worker (as in
Scheme 2).

Next assume that, as part of the proposed bank reorganization, and due to new technology and rene-
gotiation of job descriptions with workers, initially large transition costs M become reduced to the cor-
responding ®gures in Schemes 3 and 4. Then the prospective gain from economies of scope stemming from
retraining and redeploying workers as in the transition from the optimal solution in Scheme 3 to the po-
tentially optimal solution to (III) in Scheme 4 is 78 units.

Finally, there is potentially a third (telebusiness and MFL related) economies of scale stage in this
heterogeneous labour market related interpretation. Having already attained a prospective gain of 78 units
via economies of scope reorganization may be pursued further to consider a further expansion of tele-
business, from the output of 11 retrained managers as telebusiness workers, to the output of all the 20
managers as telebusiness workers. In more detail: the transition from Scheme 3 to Scheme 4 indicates that
the cheapest way of getting an additional 9 telebusiness related workers would be to acquire an additional 9
tellers and reorganise the retraining plan, with the remaining 9 managers being retrained for telebusiness, as
in Scheme 4, rather than being retained as managers as in Scheme 3.

Parenthetically, even though the numbers in this example are hypothetical, this example has features
which might apply to a real bank reorganization. These include the fact that with increasingly sophisticated
databases and communication software remote supervision of clerks and tellers has become possible and
exclusively old style managerial/white collar occupations have become some of the most easily replaced.
Secondly, the example is consistent with the fact that in retail banking telebusiness activities have become
an increasingly signi®cant means of dealing with valued customers. Thirdly, this example demonstrates
that, even if minimization of net retraining cost is the objective, it will not always be optimal to minimise
the number of individuals being retrained. In Schemes 2 and 3 and 4, respectively 18 of 45, 22 of 45 and 40
of 54 workers are retrained.

The latter point is a particular application of two more general properties of this optimizing approach.
First, it illustrates economies of scope related interpretations of Theorem 1 to the e�ect that other things
equal, labour market costs will not be increased and may be reduced as the costs of potential transitions of
workers between occupations are reduced. Second, together with the transition between Scheme 3 and
Scheme 4 this example also illustrates a labour market related economies of scale interpretation of Theorem
2 to the e�ect that, other things equal, labour market costs may be reduced if number of vacancies for
workers of a particular skill are increased in such a way that overall retraining/reorganization costs can be
reduced.

More technically, economists commonly attribute the term economies of scale either to homogeneous
production cases or to heterogeneous product cases with a ®xed product mix. With such contexts they then
restrict the application of the term economies of scale to cases for which, when all inputs are increased by a
factor k, total costs increase by a factor less than k. While this de®nition is not inconsistent with the
theorems and examples which have been considered here the present analysis potentially includes other and
stronger kinds of economies of scale and scope in which total costs may actually decrease in absolute value,
even when quantities of inputs and outputs of just one type of product are increased by a factor k. In cases
where part (or all) of this overall cost reduction is attributable only to the product bringing it about, the two
types of de®nition can be reconciled since in that case an increase d in inputs and an equal increase d in
outputs of at least one type of product (e.g., telebusiness workers and telebusiness output) may not simply
lead to a proportionately lower increase in cost attributable to that product. Thus, for the heterogeneous
examples such as the spatially or professionally di�erentiated MFL labour market cases which have just
been considered such increases led to an absolute reduction in total cost so that the increment in overall cost
attributable to increased production of telebusiness the marginal output is negative and average costs will
be falling a fortiori due to the increased production of telesales.
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Still in the context of the heterogeneous labour market example, the dual variables in Schemes 2±4 are
consistent with potentially competitive interpretations analogous to the spatially competitive interpretat-
ions of Section 5 via particular interpretations of (III)0 and (IV)0. In such spatially competitive labour
market cases all post reorganization wages would be related in such a way that an initial wage (e.g., the
initial wage for managers w1) is taken as a base wage R1 �def w1 and all other wages set via net retraining
cost di�erentials Ri � Kj � cij for xij > 0 at an optimum. In that way these labour market examples are also
potentially consistent with spatially and intertemporally competitive labour market interpretations.

Recalling that specializations of (IV)0 are open to interpretations as relative taxes and subsidies, it
follows that variants of solutions in Schemes 2±4 may correspond to elements of payroll taxes and initial
hiring related subsidies at least in part, re¯ecting scope and scale related labour market advantages of
including an increased variety of potential transitions between types of workers and/or increased numbers of
a particular type of workers, respectively. (Corresponding interpretations in relation to regionally
monopolistic or oligopolistic labour markets would then follow in a manner analogous to the single
commodity case considered in Section 6.)

9. Conclusion

In this paper, I have introduced a new goal programming approach to the representation and resolution
of the MFL and MFN paradoxes in the distribution model and to de®nitions and associated theorems
relating to economies of scale and economies of scope in that context. Clearly, by relating scale and scope
phenomena to the conditions of programme (I) rather than the conditions of program (III) the de®nitions
of economies of scale and of scope in Theorems 3 and 4 could be correspondingly generalized to com-
prehend nonlinear and explicitly multiple input production processes too.

I close with two remarks. First, for simplicity the de®nitions of economies of scale and scope in Section 6
have been given as if these concepts would apply on an all or nothing basis. But clearly they could apply on
a partial basis. If any one (or more) of the quantities M in (IV) were reduced to a nonpreemptive magnitude
c0ij in (IVa) and/or if any one (or more) of the quantities M in (V) were reduced to a non preemptive
magnitudes ÿpj; pi in (Va) then relatively enhanced economies, respectively of scope and of scale may
become attainable.

Secondly, apart from potentially yielding interpretations in relation to economies of scale and scope,
distribution problems exhibiting the MFL and/or MFN paradox also have other properties, some of which
are yet to be fully explored. Among these is the fact that there may be a variety of potential MFL and MFN
solutions each with distinct potentials for economies of scope and scale and consequently distinct decom-
position patterns. To illustrate this reconsider Scheme 2. The potential for MFL evident in that Scheme, when
fully exploited, generated Scheme 4. But Scheme 4 itself exhibits an as yet unexploited potential (via cell
{4,2}) for attaining a MFN solution. If that potential is fully exploited an additional 7 units could be shipped
from origin 2 to destination 4 at no additional overall cost. In that case, among other things, 11 units would be
shipped wholly from origin 3 to market 4 and that origin±destination pair would become optimally isolated,
giving a three way partition of origins and destinations and a correspondingly still more concentrated spatial
market arrangement. (This example illustrates the more general point that, while nondegeneracy* of a dis-
tribution problem together with Ri � Kj � 0 for some nonbasic cell at an optimum may be a su�cient con-
dition for MFL/MFN, as in the Charnes±Klingman theorem cited in Section 2, it is not always necessary.)

Finally, a di�erent more for less solution and subsequent more for nothing solution with di�erent as-
sociated patterns of decomposition into disjoint subsets of origins and destinations would follow if the
economies of scale and scope related applications in Sections 7 and 8 had started with the alternative
optimum signalled by the A in cell {2,2} of Scheme 2.
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