Lecture 26: Mar 9, Sum of a random number of random variables

26.1 The expectation (Ross P.369)

Let $X_{i} i=1,2, \ldots$ all have mean μ.
Let N be a random integer, with N independent of the X_{i};
we are interested in $T=\sum i=1^{N} X_{i}$.
Example: X_{i} is weight of person; N is number of people entering elevator; T is total weight.
Or; X_{i} is money spent by person $i ; N$ is number of people in store; T is total intake.

$$
\begin{aligned}
\mathrm{E}\left(\sum_{i=1}^{N} X_{i} \mid N=n\right) & =\mathrm{E}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \mathrm{E}\left(X_{i}\right)=n \mu \\
\mathrm{E}\left(\sum_{i=1}^{N} X_{i}\right) & =\mathrm{E}\left(\mathrm{E}\left(\sum_{i=1}^{N} X_{i} \mid N\right)\right)=\mathrm{E}(N \mu)=\mathrm{E}(N) \mathrm{E}(X)
\end{aligned}
$$

Note we do use the independence of N and $X_{i} ; \mathrm{E}\left(X_{i}\right)$ is unchanged by fixing $N=n$.
26.2 The variance (Ross P.382)

Let $X_{i} i=1,2, \ldots$. be (pairwise) independent, all with mean μ and variance σ^{2}.
Let N be a random integer, with N independent of the X_{i}.
We are interested in $T=\sum i=1^{N} X_{i}$; examples as above.

$$
\begin{aligned}
\operatorname{var}\left(\sum_{i=1}^{N} X_{i} \mid N=n\right) & =\operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)=n \sigma^{2} \\
\operatorname{var}\left(\sum_{i=1}^{N} X_{i} \mid N\right) & =N \sigma^{2} \text { and } \mathrm{E}\left(\sum_{i=1}^{N} X_{i} \mid N\right)=N \mu \\
\operatorname{var}\left(\sum_{i=1}^{N} X_{i}\right) & =\mathrm{E}\left(\operatorname{var}\left(\sum_{i=1}^{N} X_{i} \mid N\right)\right)+\operatorname{var}\left(\mathrm{E}\left(\sum_{i=1}^{N} X_{i} \mid N\right)\right) \\
& =\mathrm{E}\left(\sigma^{2} N\right)+\operatorname{var}(\mu N) \sigma^{2} \mathrm{E}(N)+\mu^{2} \operatorname{var}(N)
\end{aligned}
$$

26.3 Examples

(i) People entering an elevator have mean weight 160 lb , with variance $400 \mathrm{lb}^{2}$. The number of people, N entering is Poisson with mean 4 . What are the mean and variance of the total weight, T.
$\mathrm{E}(T)=\mathrm{E}(N) \times 160=640 \mathrm{lb} . \quad \operatorname{var}(T)=400 \times \mathrm{E}(N)+160^{2} \times \operatorname{var}(N)=104000 \mathrm{lb}^{2}$ (st.dev 322 lb).
(ii) A coin with probability of heads p, is tossed N times, where N is Poisson with mean (and variance) μ. What are the mean and variance of the number of heads, T.
Given $n=N, X_{i} \sim \operatorname{Bin}(1, p), T=\sum_{i} X_{i} \sim \operatorname{Bin}(n, p) . \mathrm{E}\left(X_{i}\right)=p, \operatorname{var}\left(X_{i}\right)=p(1-p)$. $T=\sum_{1}^{N} X_{i}, \mathrm{E}(T)=\mu p, \operatorname{var}(T)=\operatorname{var}(N) p^{2}+\mathrm{E}(N) p(1-p)=\mu p^{2}+\mu p(1-p)=\mu p$.

Lecture 27: Mar 11, More Conditional Expectations; using mgf's

27.1 Ch 7; Exx 56

A number X of people enter an elevator at the ground floor; $X \sim \mathcal{P} o(10)$.
There are n upper floors and each person (independently) gets off at floor k with probability $1 / n$. Find the expected number of stops.
Probability no-one gets off at a particular floor is $(1-1 / n)^{X}$. So expected number of floors the elevator does not stop is $\mathrm{E}\left(((n-1) / n)^{X}\right)=\exp (10((n-1) / n)-1)=\exp (-10 / n)$.
So expected number of stops is $n(1-\exp (-10 / n))$.

27.2 Binomial/Poisson hierarchy

We saw if X, Y are independent Poisson, then $X \mid(X+Y)$ is Binomial.
We saw if $(X \mid N)$ Binomial, and N Poisson, then overall X has mean equal to variance (like a Poisson), so
If $X \sim \operatorname{Bin}(n p), m_{X}(t)=\mathrm{E}\left(e^{t X}\right)=\left(q+p e^{t}\right)^{n}$ where $q=1-p$.
If $Y \sim \mathcal{P} o(\mu), m_{Y}(t)=\mathrm{E}\left(e^{t Y}\right) \equiv \mathrm{E}\left(z^{Y}\right)=\exp (\mu(z-1))$, where $z \equiv e^{t}$.
Now if $X \mid Y \sim \operatorname{Bin}(Y, p)$, and $Y \sim \mathcal{P} o(\mu)$,

$$
m_{X}(t)=\mathrm{E}\left(e^{X t}\right)=\mathrm{E}\left(\mathrm{E}\left(e^{X t}\right) \mid Y\right)==\mathrm{E}\left(\left(q+p e^{t}\right)^{Y}\right)=\exp \left(\mu\left(\left(q+p e^{t}\right)-1\right)=\exp \left(\mu p\left(e^{t}-1\right)\right)\right.
$$

So by uniqueness of mgf, X is Poisson with mean μp.

27.3 Poisson/Gamma hierarchy gives Negative Binomial

If $Y \sim \mathcal{P} o(\mu), m_{Y}(t)=\exp \left(\mu\left(e^{t}-1\right)\right)$. If $Z \sim G(r, \lambda), m_{Z}(t)=(\lambda /(\lambda-t))^{r}$.
If $Y \mid Z \sim \mathcal{P} o(Z)$, and $Z \sim G(r, \lambda)$.

$$
\begin{array}{r}
m_{Y}(t)=\mathrm{E}\left(e^{Y t}\right)=\mathrm{E}\left(\mathrm{E}\left(e^{Y t}\right) \mid Z\right)=\mathrm{E}\left(\exp \left(Z\left(e^{t}-1\right)\right)\right)= \\
\left.m_{Z}\left(e^{t}-1\right)\right)=\left(\lambda /\left(\lambda-\left(e^{t}-1\right)\right)\right)^{r}=\left(p /\left(1-q e^{t}\right)\right)^{r}
\end{array}
$$

where $p=\lambda /(\lambda+1), q=1-p=1 /(\lambda+1)$. But this is $e^{-t r}$ times the mgf of a $\operatorname{NegBin}(r, p)$.
i.e. it is the NegBin where we count the failures before the r th success, and not the r successes.

So, by uniqueness of mgf, this is the marginal pmf of Y.

27.4 Sum of a Geometric number of independent Exponentials

If $X_{i} \sim \mathcal{E}(\lambda) ; m_{X_{i}}(t)=\lambda /(\lambda-t)$.
If $Y \sim \operatorname{Geo}(p), m_{Y}(t)=\mathrm{E}\left(z^{Y}\right)=p z /(1-q z)$, where $z \equiv e^{t}$.
Let $W=\sum_{1}^{Y} X_{i}$. Given $Y=n, m_{W}(t)=\prod m_{X_{i}}(t)=\left(m_{X}(t)\right)^{n}$.
Then $m_{W}(t)=\mathrm{E}\left(e^{W t}\right)=\mathrm{E}\left(\mathrm{E}\left(e^{W t} \mid Y\right)\right)=\mathrm{E}\left(m_{X}(t)^{Y}\right)=p m_{X}(t) /\left(1-q m_{X}(t)\right)$

$$
=p \lambda /(\lambda-t-q \lambda)=p \lambda /(p \lambda-t) .
$$

But this is the mgf of an exponential $\mathcal{E}(p \lambda)$, so by uniqueness of mgf, $W \sim \mathcal{E}(p \lambda)$.
This makes sense; the exponential distribution has the forgetting property. The geometric distribution has the forgetting property. So summing a "forgetting property" number of "forgetting property" random variables, should give us the "forgetting property" pdf back again.
Note if we sum a fixed number n of independent exponentials, $\mathcal{E}(\lambda)$, we get a $G(n, \lambda)$, so this example is equivalent to $X \mid Y \sim G(Y, \lambda)$, and $Y \sim G e o(p)$.

