
  1 

 

Miguel Casquilho is Assistant Professor (ret.) in the Departament of Chemical Engineering, Instituto 

Superior Técnico, Universidade de Lisboa (University of Lisbon), Lisbon, Portugal.  E-mail 

address:  mcasquilho@tecnico.ulisboa.pt. 

MC IST Op. Res.  —  File={QueueSys.docx}  Size={11720}chars, {2392} words, {10} pages 

Notes on Operational Research 
March, 2008; rev. May, 2015.  IST 

 

Queueing systems 

MIGUEL A. S. CASQUILHO 

IST, Universidade de Lisboa, 

Ave. Rovisco Pais, IST; 1049-001 Lisboa, Portugal 
Telephone:  (+351) 21.841 7310;  fax:  (+351) 21.849 9242 

Queueing systems are presented, with a brief introduction and formulas for usual practical 
cases.  Some examples are solved and computer resolution is mentioned. 

Keywords:  queueing systems, queueing theory, queue, waiting line. 

1. Fundamental and scope 

The waiting phenomena, which originate the queues, are related to random 

processes, i.e., the models of which include random components.  These are associated 

to probability. 

The queue is almost inevitable in many situations, unless means are made 

available at costs possibly disproportionate to the benefits of a quick service.  When 

circumstances impose a quick service, capable of limiting the waiting time to a 

reasonable level, the working conditions can be evaluated through the queueing 

systems theory1. 

The queues are frequent phenomena found in everyday life, and also in 

situations in economics, society, and the military.  Examples:  customers in a bank or 

post office;  people waiting for a taxi or telephoning to a taxi service;  cars at a (road) 

junction2;  planes waiting to land or take off;  broken machines waiting for repair.  

Several examples are given in Fig. 1.  Erlang in the 1920’s was one of the first to study 

the queueing subject applying it to the telephone system. 

 
Arrivals Nature of service Servers 

Customers Sale of an article Vendors 

Ships Unloading Docks 

Planes Landing Tracks 

Telephone calls Conversations Telephone circuits 

Arrival of cars Customs control Customs workers 

Messages Decoding Decoders 

Repair machines  Repair Mechanics 

Fires Fire fighting Fire brigade 

Requests Confection, repair Repair-shop 

Fig. 1  Examples of waiting phenomena. 

A queue is characterized by several components:  customers’ population, arrival 

pattern, number of servers, service pattern, system capacity (size) to hold customers, 

and the queue discipline.  Consideration of the costs of maintaining a queueing system 

                                                 
1 US “waiting line”;  Pt «filas de espera», «bichas»;  Es «colas»;  Fr «phénomènes, files d’attente»;  It « 

fenomeni (o file) d’attesa, code»;  De »Schlange(n)«. 
2 US “intersection”;  Pt «cruzamento»;  Fr, «carrefour». 
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from the supplier side and the customers’ side makes it an economic optimization 

problem.  The objective of this text is to present formulas that permit that optimization. 

2. Queues structure 

The structure of a queueing system is addressed based on the above mentioned 

parameters and characteristics.  A systematization of the queueing systems by the 

Kendall’s notation is given, as well as a nomenclature. 

Customers’ population 

The customers’ population may be infinite or finite.  It is finite if the number of 

possible customers is limited and known, such as the number of machines subject to 

failure in a factory;  infinite, otherwise. 

Arrival pattern 

The arrival pattern of customers is usually specified by the interarrival time, 

the time between successive customer arrivals to the service.  It may be deterministic 

or a random variable with a probability distribution presumed known.  [Other aspects 

will not be considered here, such as:  arriving singly or in batches;  or balking (refusal 

to enter) or reneging (leaving the queue because the wait is too long).] 

Number of servers 

The number of servers is the number of persons, machines, tellers, gates, etc., 

to attend customers.  These will be considered equivalent and in parallel (other cases 

being series or more or less complex combinations of servers in series and in parallel). 

Service pattern 

The service pattern is usually specified by the service time, which may be 

deterministic or a random variable with probability distribution assumed known.  (The 

service time may depend on the number of customers.  The customer may be attended 

completely by one server or any combination of servers.) 

System capacity 

The system capacity is the maximum number of customers, both those in service 

and those in the queue(s).  Whenever a customer arrives at a facility that is full, the 

customer is denied entrance to the facility and not allowed to wait outside the facility, 

which would increase the limited capacity, and is forced to leave.  Capacity is, thus, 

either infinite or finite. 

Queue discipline 

The queue discipline is the order in which customers are served.  This can be 

on a first-in, first-out (FIFO) basis (i.e., service in order of arrival, the usual one), a 

last-in, first-out (LIFO) basis, a random basis or a priority basis (as in hospital 

emergency services). 

To make queue classification simpler, the so-called Kendall’s notation is 

usually employed. 

Kendall’s notation 

The Kendall’s notation indicates ({1}):  v, the arrival pattern;  w, the service 
 

 v / w / x / y / z {1} 

pattern;  x, the number of servers;  y, the system’s capacity;  and z, the queue discipline, 

as in Table 1.  If y or z is not specified, it is taken to be  or FIFO, respectively. 
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Table 1  Kendall’s notation 

 Queue characteristic Symbol Meaning 

v, w 

Interarrival time 

or 

service time 

D 

M 

Ek 

 

G 

Deterministic 

Exponential 

Erlang-type 

          (k = 1, 2 …) 

Any other 

x Number of servers Number  if not specified 

y System’s capacity Number  if not specified 

z Queue discipline 

FIFO 

LIFO 

SIRO 

PRI 

GD 

First in, first out 

Last in, first out 

Service in random order 

Priority ordering 

Any other ordering 

The initials are related to:  D, deterministic or “degenerate” (a deterministic 

variable being a constant, a degenerate random variable);  M, Markovian (Markovian 

“birth and death” process, typically with Poissonian arrivals);  G, general. 

 

Fig. 2  Simplified queue taxonomy. 

Let it be noted that in the frequent M/M/s case of more than one server, s > 1, 

the customers (and the selling entity) benefit from a single queue (which is rarely the 

case in large stores) [Ravindran et al., 1987, 329].  This can be easily accomplished by 

making available numbered tickets (as in post offices and usually pharmacies, in 

Portugal). 

For a simplified taxonomy of queues, see Nemetz-Mills [2008], from whom 

Fig. 2 was taken.  This author mentions “single or multiple channel”, i.e., single or 
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multiple servers —here, M/M/1 and M/M/s— and “single or multiple-phase”.  A 

multiple-phase queueing system (2.nd and 4.th rows in the figure) is a (“pure”) mixture 

of parallel and series servers, a complex case having a better resolution by Monte Carlo 

simulation. 

Only M/M/1//FIFO and M/M/s//FIFO systems, i.e., for short, 

  M/M/1 M/M/s {2} 

will be addressed in the following sections. 

3. Single and multiple server queues 

The set of a queue (or queues) and the servers constitutes the waiting system or 

simply the system.  In the cases where it is supposed to have several queues, the 

customers place themselves either automatically in the shortest queue or according to 

a priority.  (The term “customer” will be used instead of the more general “unit”, 

whether it is a person or any other entity.)  These priorities make the queue discipline 

(hospitals, restaurants). 

With the given structure of a waiting phenomenon, the notation in Table will 

be used: 

Table 2  Notation 

  Meaning 

m  Number of existing customers (population size) 

n  Number of customers in the system (waiting or 

being served) 

  Arrival rate (T–1, customers / time unit) 

  Service rate (T–1, services / time unit) 

  Utilization factor, or traffic intensity,  /(s) 

  Number of customers in queue 

j  N. of customers being served 

s  N. of servers 

So, it is 

 
snnj

snnj







if
 {3} 

The values n,  and j are random.  If it is 

 np  Pr(n customers in the system) {4} 

then, pn, a probability, represents the fraction of the time the system is in state n. 

3.1 Single server queues 

The basic variables for a single server queue system, s = 1, will now be 

determined for the simpler and usual case of an infinite population, i.e., m = . 

The Poisson process is often used to model the situation in which a count is 

made on the number of events occurring in a given time, here the arrival of customers 

to a service facility:        !expPoi jttjp
j

  ,  j = 0..  ([] = T–1).  The time 
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between events in a Poisson process follows an Exponential3 distribution with the same 

parameter ,   










t
exp

1
tf , with mean  = 1/  ([] = T).  The parameter  is the 

expected time between events. 

To find pn, consider its evolution during an instant, from time t to t + dt, with dt 

small enough so that no two (or more) events can occur. 

          ttpttpttp dd1d
departure

1
change  no

00    {5a} 

               
change  nodeparture

1
arrival

1 d1ddd ttpttpttpttp nnnn     {5b} 

This becomes 

 
   

   tptp
t

tpttp
10

00

d

d
 


 {6a} 

 
   

       tptptp
t

tpttp
nnn

nn  


 11
d

d
 {6b} 

Introducing the utilization factor [H&L, 2005, 770] or traffic intensity [Ravindran 

et al., 1987, 320] 

 





S
  {7} 

which is here simply 



  , and in the limit as dt goes to zero, it is 

      tptptp 100

1
 


 {8a} 

          tptptptp nnnn 



 1

1
11  {8b} 

The system will be studied only in the steady state (null derivatives), so it is 

 010  pp  {9a} 

   0111   nnn ppp   {9b} 

or [from   012 1 ppp   ,   123 1 ppp   , etc.] 

 01 pp   {10a} 

                                                 
3 Also called “negative exponential” [Ravindran et al., 1987, 293]. 
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     0

2

0

2

002 1 ppppp    

     0

3

0

223

123 1 ppppp    

etc. 

{10b} 

So, in general, it is 

 
n

n pp 0  {11} 

The population size is m = .  As the probabilities must, of course, add to one, and 

recognizing the sum of a geometric series (it is  < 1), it is 

 





 






 1
1 0

0

0

0

p
pp

n

n

n

n  {12} 

Thus, it is 

 10p  {13} 

and generally 

   n

np  1  {14} 

[The geometric distribution can be recognized in Eq. {14}:     nrrnp  1 , 

n = 0.., with parameter r = 1 – , mean   rr 1 , i.e.,   1 .] 

The probability p0 is the fraction of time the system is idle (empty), and the 

parameter  can be taken as the fraction of time the server is busy [Ravindran et al., 

1987, 320]. 

The mean or expected value of the number of customers in the system is, by 

the definition of mean, 

 

     

          21

1

1

1

100

111
d

d
1

d

d
1

111









































n

n

n

n

n

n

n

n

n

n nnnnpn

 {15} 

or 

 







1
nL  {16} 

The mean number of customers in the queue, or mean queue length (with a 

queue of zero if there are 0 or 1 customers in the system), is 

 

     

     






































1d

d
111

111

2

2

12

2

22

22

n

n

n

n

n

n

n

nq

n

npnL

 {17} 
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The difference between L (customers in the system) and Lq (customers in the 

queue) should be, and is, the mean number of busy servers, : 

 
 


























1

1

11

2

qLL  {18} 

An equation known as Little’s formula (cited in most queueing literature) 

relates L to W, the mean waiting time in system: 

   WpL N  1  {19} 

When it is m = , as in the cases presented, the formula reduces to L =  W (as the 

probability pm  obviously tends to zero).  This permits easily finding the mean time in 

the queue, W, and mean time in the system, Wq.  The formulas for the M/M/1 case 

are shown in Table 3.  As  and  are rates (times per unit time), the expressions with 

1/ or 1/ represent, indeed, time. 

Table 3  Synopsis for M/M/1 

Variable and formula  

Probability of 0 customers in the system  

10p       with   1



  (a) 

Probability of n customers in the system  

  n

np  1  

1

0
1 


 nn

j jn pP   
(b) 

Mean of no. of customers in the queue (waiting)  








1

2

qL  (c) 

Mean of no. of customers in the system  








 qLL

1
 (d) 

Mean of time in the queue (a customer waiting)  









 





1

1 2

qW  (e) 

Mean of time in the system (a customer spending)  







11

1

1






 qW

L
W  (f) 

The probabilities of waiting at least t  (with t  0) are given [H&L, 1995, 681] by 

 
    tt   1expwaitPr  

   ttq  waitPrwaitPr   
{20} 

[the first expression an exponential distribution with parameter (1 – )]  which lead 

to (and confirm) W = 1 / ( – ) and Wq =  / ( – ). 
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3.2 Multiple server queues 

For this case, similar but more laborious derivations can be made.  The results 

only are presented in Table 4.  A single queue for customers waiting and steady state 

are also supposed. 

In the particular case of s = , it is 

 
 

    
























expexpexp

!
lim

1

11

0 ss
s

s
p

s

s
 {21} 

Eq. {21} comes from the fact that  (i) the sum (from 0 to s – 1) can be recognized as the 

Taylor series development of the exponential function  and  (ii) the other term goes to 

zero.  So, p0 becomes a constant: 

   exp0p  {22} 

The remaining variables will have the following values: 

 
!

0
n

pp
n

n


  

0qL      



  qLL ;          0qW      



11
 qWW  

{23} 

Indeed, p0 is not 1 (a value that might be intuitive), as there are customers 

arriving;  Lq is zero (zero customers waiting), but L is not zero, as they are being served 

(spending useful time);  and Wq is zero (no wait in queue), but W is the inevitable 

service time, 1 /  (not zero).  This may be the case of a self-service situation if there 

are “many” servers, enough for all the arriving customers. 

Table 4  Synopsis for M/M/s 

Variable and formula  

Probability of 0 customers in the system  

 
 

 





 



1

0

1

0
!1!

s

n

ns

n

s

s

s
p






      with   1






s
 

Remark:  
1

0

p , not 0p  

(a) 

Probability of n customers in the system  

 















snp
s

s

snp
n

s

p
n

s

n

n

0

0

!

0
!





 

 
sn

s

s
pPp

s

s
PP n

s

snj

j
s

sn 


 



  



1!!

0101  

(b) 

Mean of no. of customers in the queue (waiting)  

 2

1

0
1! 








s

s
pL

ss

q  (c) 
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Mean of no. of customers in the system  













1

qq WsLWL  (d) 

Mean of time in the queue (a customer waiting)  



q

q

L
W   (e) 

Mean of time in the system (a customer spending)  



1
 qWW  (f) 

The probabilities of waiting at least t  (with t  0) are given [H&L, 1995, 684] by 

 
 

 
 

  














 









1

1exp1

1!
1ewaitPr 0

s

st

s

s
pt

s

t
 

      tsPt sq    1exp1waitPr 1  

{24} 

which leads to (and confirms) W = 1 / ( – ). 

4. Illustrative examples 

Suppose  = 10 hr–1  and   = 15 hr–1 (data from Baker’s [2006, 2] 

pharmacy example).  For s = 1, s = 2 (in the reference), and s = 100, the results are 

given in Table 5.  (In the reference,  is used for .)  In this case, with  /  = 0.667, 

they show, namely, little difference from 2 to 100 servers. 

Table 5  Results for growing s (other data constant) 

 s = 1 s = 2 s = 100 

 (or ) 0.667 0.333 0.007 

p0 0.333 0.500 0.513 

Lq 1.333 0.083 0.000 

L 2.000 0.750 0.667 

Wq 0.133 0.008 0.000 

Service time, 1 /  0.067 0.067 0.067 

W 0.200 0.075 0.067 

Various examples can be run on the author’s Internet page [Casquilho, 2008].  

Also, an economic optimization of s can be made there. 

5. Conclusions 

The theory applicable to queueing systems —provided that the underlying 

conditions are met, namely, steady state— can lead to useful results, permitting 

significant control on the behaviour of such systems.  The calculations are 

cumbersome, adequate to computer treatment. 
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