Prof. Miguel Casquilho

Department of Chemical Engineering

Operational Research

Contents:

		Pages	
1	The best of the 20th Century: editors name top 10 algorithms	2	1
2	Formulation of linear programs (LP) ([5])	9	3
3	Branch and bound procedure ([5])	5	12
4	An intuitive algebraic approach for solving LP problems ([8])	4	17
5	Linear Programming, an introduction ([4])	12	21
6	Artificial variables in LP ([4][6])	2	33
7	Tableaux in LP	6	35
10	Redundant, impossible	2	41
11	Some scientific (!) application of LP ([3])	8	43
12	Multiple solutions (from [2])	2	51
13	LP: duality and sensitivity analysis ([2], not [1])	2	53
14	Transportation problem (production scheduling); transshipment	8	61
15	Branch and bound: an example ([7])	4	69

(72 pages)

References

1. BRONSON \& NAADIMUTHU, 1997
2. Bronson, 1982
3. ECKER \& KUPFERSCHMID, 1988 (2004)
4. Hillier \& Lieberman, 2005
5. Sultan, Alan, 1993
6. ТАНА, 1992
7. WOLSEY, Laurence, 1998
8. ZIONTS, Stanley, 1974

The Best of the 20th Century: Editors Name Top 10 Algorithms

By Barry A. Cipra

Algos is the Greek word for pain. Algor is Latin, to be cold. Neither is the root for algorithm, which stems instead from alKhwarizmi, the name of the ninth-century Arab scholar whose book al-jabr wa'l muqabalah devolved into today's high school algebra textbooks. Al-Khwarizmi stressed the importance of methodical procedures for solving problems. Were he around today, he'd no doubt be impressed by the advances in his eponymous approach.

Some of the very best algorithms of the computer age are highlighted in the January/February 2000 issue of Computing in Science \& Engineering, a joint publication of the American Institute of Physics and the IEEE Computer Society. Guest editors Jack Don-garra of the University of Tennessee and Oak Ridge National Laboratory and Fran-cis Sullivan of the Center for Comput-ing Sciences at the Institute for Defense Analyses put togeth-er a list they call the "Top Ten Algorithms of the Century."
"We tried to assemble the 10 al-gorithms with the greatest influence on the development and practice of science and engineering in the 20th century," Dongarra and Sullivan write. As with any top-10 list, their selections-and non-selections-are bound to be controversial, they acknowledge. When it comes to picking the algorithmic best, there seems to be no best algorithm.

Withoutfurther ado, here's the CiSEtop-10 list, in chronological order. (Dates and names associated with the algorithms should be read as first-order approximations. Most algorithms take shape over time, with many contributors.)

1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.

The Metropolis algorithmaims to obtain approximate solutions to numerical problems with unmanageably many degrees of freedom and to combinatorial problems of factorial size, by mimicking a random process. Given the digital computer's reputation for

In terms of widespread use, George Dantzig's simplex method is among the most successful algorithms of all time. deterministic calculation, it's fitting that one of its earliest applications was the generation of random numbers.

1947: George Dantzig, at the RAND Corporation, creates the simplex method for linear programming.
In terms of widespread application, Dantzig's algorithm is one of the most successful of all time: Linear programming dominates the world of industry, where economic survival depends on the ability to optimize within budgetary and other constraints. (Of course, the "real" problems of industry are often nonlinear; the use of linear programming is sometimes dictated by the computational budget.) The simplex method is an elegant way of arriving at optimal answers. Although theoretically susceptible to exponential delays, the algorithm in practice is highly efficient-which in itself says something interesting about the nature of computation.

1950: Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the Institute for Numerical Analysis at the National Bureau of Standards, initiate the development of Krylov subspace iteration methods.
These algorithms address the seemingly simple task of solving equations of the form $A x=b$. The catch, of course, is that A is a huge $n \times n$ matrix, so that the algebraic answer $x=b / A$ is not so easy to compute. (Indeed, matrix "division" is not a particularly useful concept.) Iterative methods-such as solving equations of the form $K x_{i+1}=K x_{i}+b-A x_{i}$ with a simpler matrix K that's ideally "close" to A lead to the study of Krylov subspaces. Named for the Russian mathematician Nikolai Krylov, Krylov subspaces are spanned by powers of a matrix applied to an initial "remainder" vector $r_{0}=b-A x_{0}$. Lanczos found a nifty way to generate an orthogonal basis for such a subspace when the matrix is symmetric. Hestenes and Stiefel proposed an even niftier method, known as the conjugate gradient method, for systems that are both symmetric and positive definite. Over the last 50 years, numerous researchers have improved and extended these algorithms. The current suite includes techniques for non-symmetric systems, with acronyms like GMRES and Bi-CGSTAB. (GMRES and Bi-CGSTAB premiered in SIAM Journal on Scientific and Statistical Computing, in 1986 and 1992, respectively.)

1951: Alston Householder of Oak Ridge National Laboratory formalizes the decompositional approach to matrix computations.

The ability to factor matrices into triangular, diagonal, orthogonal, and other special forms has turned out to be extremely useful. The decompositional approach has enabled software developers to produce flexible and efficient matrix packages. It also facilitates the analysis of rounding errors, one of the big bugbears of numerical linear algebra. (In 1961, James Wilkinson of the National Physical Laboratory in London published a seminal paper in the Journal of the ACM, titled "Error Analysis of Direct Methods of Matrix Inversion," based on the LU decomposition of a matrix as a product of lower and upper triangular factors.)

Alston Householder

1957: John Backus leads a team at IBM in developing the Fortran optimizing compiler.
The creation of Fortran may rank as the single most important event in the history of computer programming: Finally, scientists
(and others) could tell the computer what they wanted it to do, without having to descend into the netherworld of machine code. Although modest by modern compiler standards-Fortran I consisted of a mere 23,500 assembly-language instructions-the early compiler was nonetheless capable of surprisingly sophisticated computations. As Backus himself recalls in a recent history of Fortran I, II, and III, published in 1998 in the IEEE Annals of the History of Computing, the compiler "produced code of such efficiency that its output would startle the programmers who studied it."

1959-61: J.G.F. Francis of Ferranti Ltd., London, finds a stable method for computing eigenvalues, known as the QR algorithm. Eigenvalues are arguably the most important numbers associated with matrices-and they can be the trickiest to compute. It's relatively easy to transform a square matrix into a matrix that's "almost" upper triangular, meaning one with a single extra set of nonzero entries just below the main diagonal. But chipping away those final nonzeros, without launching an avalanche of error, is nontrivial. The QR algorithm is just the ticket. Based on the QR decomposition, which writes A as the product of an orthogonal matrix Q and an upper triangular matrix R, this approach iteratively changes $A_{i}=Q R$ into $A_{i+1}=R Q$, with a few bells and whistles for accelerating convergence to upper triangular form. By the mid-1960s, the QR algorithm had turned once-formidable eigenvalue problems into routine calculations.

1962: Tony Hoare of Elliott Brothers, Ltd., London, presents Quicksort.

Putting N things in numerical or alphabetical order is mind-numbingly mundane. The intellectual challenge lies in devising ways of doing so quickly. Hoare's algorithm uses the age-old recursive strategy of divide and conquer to solve the problem: Pick one element as a "pivot," separate the rest into piles of "big" and "small" elements (as compared with the pivot), and then repeat this procedure on each pile. Although it's possible to get stuck doing all $N(N-1) / 2$ comparisons (especially if you use as your pivot the first item on a list that's already sorted!), Quicksort runs on average with $O(N \log N)$ efficiency. Its elegant simplicity has made Quicksort the pos-terchild of computational complexity.

James Cooley

1965: James Cooley of the IBM T.J. Watson Research Center and John Tukey of Princeton University and AT\&T Bell Laboratories unveil the fast Fourier transform.

Easily the most far-reaching algo-rithm in applied mathematics, the FFT revolutionized signal processing. The underlying idea goes back to Gauss (who needed to calculate orbits of asteroids), but it was the Cooley-Tukey paper that made it clear how easily Fourier transforms can be computed. Like Quicksort, the FFT relies on a divide-and-conquer strategy to reduce an ostensibly $O\left(N^{2}\right)$ chore to an $O(N \log N)$ frolic. But unlike Quick- sort, the implementation is (at first sight) nonintuitive and less than straightforward. This in itself gave computer science an impetus to investigate the inherent complexity of computational problems and algorithms.

John Tukey

1977: Helaman Ferguson and Rodney Forcade of Brigham Young University advance an integer relation detection algorithm.
The problem is an old one: Given a bunch of real numbers, say $x_{1}, x_{2}, \ldots, x_{n}$, are there integers $a_{1}, a_{2}, \ldots, a_{n}$ (not all 0) for which $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=0$? For $n=2$, the venerable Euclidean algorithm does the job, computing terms in the continued-fraction expansion of x_{1} / x_{2}. If x_{1} / x_{2} is rational, the expansion terminates and, with proper unraveling, gives the "smallest" integers a_{1} and a_{2}. If the Euclidean algorithm doesn't terminate-or if you simply get tired of computing it-then the unraveling procedure at least provides lower bounds on the size of the smallest integer relation. Ferguson and Forcade's generalization, although much more difficult to implement (and to understand), is also more powerful. Their detection algorithm, for example, has been used to find the precise coefficients of the polynomials satisfied by the third and fourth bifurcation points, $B_{3}=3.544090$ and $B_{4}=3.564407$, of the logistic map. (The latter polynomial is of degree 120; its largest coefficient is 257^{30}.) It has also proved useful in simplifying calculations with Feynman diagrams in quantum field theory.

1987: Leslie Greengard and Vladimir Rokhlin of Yale University invent the fast multipole algorithm.

This algorithm overcomes one of the biggest headaches of N-body simulations: the fact that accurate calculations of the motions of N particles interacting via gravitational or electrostatic forces (think stars in a galaxy, or atoms in a protein) would seem to require $O\left(N^{2}\right)$ computations-one for each pair of particles. The fast multipole algorithm gets by with $O(N)$ computations. It does so by using multipole expansions (net charge or mass, dipole moment, quadrupole, and so forth) to approximate the effects of a distant group of particles on a local group. A hierarchical decomposition of space is used to define ever-larger groups as distances increase. One of the distinct advantages of the fast multipole algorithm is that it comes equipped with rigorous error estimates, a feature that many methods lack.

What new insights and algorithms will the 21st century bring? The complete answer obviously won't be known for another hundred years. One thing seems certain, however. As Sullivan writes in the introduction to the top-10 list, "The new century is not going to be very restful for us, but it is not going to be dull either!"

Barry A. Cipra is a mathematician and writer based in Northfield, Minnesota.
EXAMPLE 1．1 A dietician is preparing a diet consisting of two foods， A and B ．Each unit of food A contains 20 grams of protein， 12 grams of fat，

 should be used in the diet so that all of the minimal requirements are satisfied，and we have a diet whose cost is minimal？
Discussion To make the problem a little bit easier to focus on，we put all the information in the problem in a tableau，which makes the

> Cost $\$ 0.60$ $\$ 0.40$

	융
菬	$\simeq 0$
惑	앙

융

 example，the 12 at the intersection of the row labelled＂Food A＂and the column labelled＂Fat＂means that each unit of food A contains 12 grams of fat．
 alone for our diet，and all the minimum requirements will be met．This

 requirements，but now our cost will be $\$ 1.20+0.27=\$ 1.47$（rounded off to the nearest cent in each case）．There are in fact an infinite number of ways of combining foods A and B in order to meet our minimum requirements．
 of problem is not easy，especially when given a choice of 60 or 70 foods instead of just 2.

иI＇y． addition，the contract specifies that an individual in a constraints，how more than three flights per day．Given these and ore should the assignments be made？

It is these types of problems，where the goals may be to maximize profits or minimize costs，or maximize output or minimize waste，all subject to certain constraints，that one often finds in linear programming．

The subject of linear programming was developed in the 1940s in response to the war effort，and originally was used to invent new flight patterns and to solve complex of the war．Since that time，the subject helped win some mously and has found numerous commercial as well as has grown enorchal applications．To illustrate，it has recently been used in such applications as audit staffing，police patrolling，sales force deployment， blending problems，waste management problems，pollution control，
 school busing，military defense，facility location，media planning，computer design，production of heart valves，and testing for vision loss in glaucoma． An exciting new medical application was headlined in the September 1990 ェеәи！！‘шо！̣еэ！

diagnose cases，which would have required additional testing．\quad is Although we have listed about a dozen and a half applications，this the only a small number of the applications tha number and types of appleative（numbering well into the thousands）that ming is so largly fill a book just describing these applications－and the list is growing．

In this chapter，we will give an introduction to what linear programming is about．We will concentrate on the extremely important subject of the formulation of linear programs．The problems will be kept simple to allow
 give us an appreciation for the different kinds of applications available to us，and in fact are scaled down versions of actual applications．Some more difficult formulations will be given later on in Chapter 7 ．

1.2

Set up Since we are interested in the number of units of foods A and B used in this diet，we let $x_{1}=$ the number of units of food A used in a diet and let $x_{2}=$ the number of units of food B used in this diet．Since each unit of food A costs $\$ 0.60$ ，the x_{1} units of food A that we are using will cost $\$ 0.60 x_{1}$ ．Since each unit of food B costs $\$ 0.40$ ，the x_{2} units of food B cost $\$ 0.40 x_{2}$ ．Thus，our total cost（in dollars）is

$C=0.60 x_{1}+0.40 x_{2}$,

which is what we want to minimize．

We consider next our minimum requirements．According to the tableau， each unit of food A contains 20 grams of protein，so the x_{1} units of food A that we are using will contain $20 x_{1}$ grams of protein．Similarly，each unit of food B contains 30 grams of protein，so the x_{2} units of food B will contain
 a diet containing x_{1} units of food A and x_{2} units of food B is

$20 x_{1}+30 x_{2}$.

This，according to our minimum requirements，must be at least 60 grams． This leads to the inequality
（2）
Consider now the fat requirement．The x_{1} units of food A and the x_{2} units of food B will contain，according to the problem， $12 x_{1}$ and $6 x_{1}$ grams of fat， respectively．Thus，the total amount of fat used in a diet containing x_{1}
 be at least 24．So，we have
（3）
Considering the carbohydrate requirement，you should now be able to show that

$$
30 x_{1}+15 x_{2} \geq 30
$$

（4）
Have we finished formulating the problem？Not quite．There are certain obvious but not explicitly stated restrictions on the variables，namely，that the number of units of food A and the number of units of food B used must both be nonnegative．That is，

$$
x_{1}, x_{2} \geq 0
$$

we see that our problem is Minimize $C=0.60 x_{1}+$

 same time maximizes his profit？
G SWVAפOZd \＆VINIT IO NOILVINW\＆OA でし
 different markets vary, and they are given in the following table:

 pue

 respectively $20,30,30$, and 20 truckloads of drugs,

The formulation of this problem is not too difficult except that

 number of truckloads of drugs bes 1,2 , and 3 , and j takes on the values 1 ,

 -nq!ustp of I әsnoчəлем
 W_{1} to D_{1} will cost $22 x_{11}$ to ship.

$C=22 x_{11}+36 x_{12}+24 x_{13}+23 x_{14}+31 x_{21}+19 x_{22}$
1.2 FORMULATION OF LINEAR PROGRAMS
 the 10,000 dollars should he invest in these stocks?

Solution If we let x_{1}, x_{2}, and x_{3} be the amounts invested in stocks 1,2 , and 3 , respectively, then our goal is to
(17)
 (8I) $\quad \cdot 000^{\prime} 0 \mathrm{I}>{ }^{\varepsilon_{X}}+{ }^{z} X+{ }^{\mathrm{I}} \boldsymbol{x}$

Since goal 1 requires that the amount invested in stock 1 be no more than $x_{1} \leq 0.10\left(x_{1}+x_{2}+x_{3}\right)$.
(19)
 invested in stock 1 will grow by $0.035 x_{1}$. His x_{2} units in stock 2 will grow by $0.042 x_{2}$, and his x_{3} units invested in stock 3 will grow by $0.069 x_{3}$. Since by goal 2 this next year's growth is required to be at least $\$ 400$, we have

 the x_{3} dollars invested in stock 3 will appreciate by $0.96 x_{3}$. Since by goal 3 we want the total 10 year appreciation to be at least 8,000 dollars, we have, as our next constraint,

$$
0.85 x_{1}+1.03 x_{2}+0.96 x_{3} \geq 8,000
$$

se pane[suen zq ues t [eon
(21)
$0.06 x_{1}+0.04 x_{2}+0.07 x_{3} \geq 150$ $\begin{aligned} 0.06 x_{1}+0.04 x_{2}+0.07 x_{3} & \geq 150 .\end{aligned}$ nonnegativity constraints constitute our linear program.

One can go on and on with different types of formulations, but we are
 in the next chapter. Other, more difficult types of formulations will be presented in Chapter 7.

EXERCISES Chapter

Formulate the following programs as linear programs. Ignore, until you reach the chapter on integer programming, the fact that some of the problems may. need integral solutions to be meaningful.
problem the shipments from every warehouse will be precisely what is in the
 This unrealistic scenario, where supply is exactly equal to demand, is no
 transportation problems (Chapter 9) for solving realistic problems in which

 out, the solution to this modified unrealistic problem yields the solution to our original real problem! This vague but intriguing statement will have to wait until later in the book for an explanation.

Before solving at least some of these problems, we would like to present one last example.

EXAMPLE 1.4 A person with 10,000 dollars to invest has picked out three stocks that he feels are promising, and would like to invest in. Although none of them are expected to perform greatly in the next year, over a period of 10 years one expects them to perform admirably. In

 the amount originally invested:

$$
\begin{array}{lrrr}
\hline & \text { Stock 1 } & \text { Stock 2 } & \text { Stock 3 } \\
\hline \text { Expected growth rate next year } & 3.5 \% & 4.2 \% & 6.9 \% \\
\text { Expected growth rate over 10 years } & 85 \% & 103 \% & 96 \% \\
\text { Expected yearly dividend rate } & 6 \% & 4 \% & 7 \% \\
\hline
\end{array}
$$

He could, if he wishes, invest the full amount, but since there are no guarantees on the performance of these stocks, he has decided to invest the minimum amount consistent with the following goals:

1. To account for the risk involved with stock 1 , he wants no more than 10% of his investment to be in stock 1.

He wants his investment to appreciate by at least 400 dollars over the next year, since he could get at least that much if he invested the full amount in a savings account.

Over 10 years he wants to earn at least 8,000 dollars.
4. He wants his annual dividends from these investments to be at least
which we call K, and an activator A. Without the activator, the cancer compound

 (in milligrams) in each pill, as well as the cost for each pill, are given in the following $\stackrel{\ddot{0}}{\stackrel{\ddot{O}}{\Xi}}$

	Compound K	Activator	Cost per pill
Pill 1	4	0.5	$\$ 4$
Pill 2	2	0.3	$\$ 3$

su!p
 pills have no side effects with these doses.
4. A bank has 50 million dollars available for the next year to distribute to people and businesses seeking loans. With every type of loan, there is always a small percentage of loans that end up in default. For these, neither the principal nor the interest can be recovered at all. These are called bad debts. The percentage of bad

 during the next year, are given in the following table:

Type of loan	Interest rate	$\%$ Bad debts.
Personal	0.14	10
Car	0.11	6
Home	0.12	2
Farm	0.115	5
Commercial	0.095	2

 and homes. Assuming that the ratio of bad debts to all loans made must be ≤ 0.03,
 amounts of loans they decide to loan out.)
 to invest fully. The company is considering four different investments. The
 that can be used for each investment are given in the following table:

$$
\begin{array}{lcc}
\hline \text { Investment } & \text { Annual return } & \text { Maximum dollar amount } \\
\hline \text { Treasury bonds } & 7 \% & \$ 5 \text { million } \\
\text { Common stock } & 9 \% & \$ 7 \text { million } \\
\text { Money market } & 6 \% & \$ 12 \text { million } \\
\text { Municipal bonds } & 8 \% & \$ 9 \text { million } \\
\hline
\end{array}
$$

Because of the state of the economy, they feel that there is a likelihood that stocks

 market and municpal bonds to no more than 40% of their investment. How should they invest their money to guarantee the maximum possible return consistent with their goals?
2. A computer company sells three types of disks for their line of computer. They are of different qualities and are packaged with different types of accessories.
 and ultimately packaged, each of these taking dielent information for each lot of on which type of disk we are consid

	Time (in hours)							
Disk type	Manufacturing	Checking	Packaging	Profit				
1	3	1	0.1	$\$ 10$				
2	6	2	0.2	$\$ 15$				
3	12	3					0.2	$\$ 25$

Each day, the company has available 120 manufacturing hours (12 workers do the manufacturing, and each works 10 hours per day), 30 checking hours, and 20 packaging hours. How many lots of each should be made to maximize the profits, assuming that there must be at least 10 lots of the first disk type made, and assuming that the number of lots of type 2 disks be at least twice as many as the number of lots of type 3 disks. (Assume that all lots made can be sold.)
3. Testicular cancer is treated by chemotherapy in combination with cancer killing drugs, which are very expensive. Consider the case where there are two types of pills, each of which contain in addition to other ingredients a primary cancer killer;

Time | (man hours) |
| :--- | Max demand Profit/pair

BB
Here t is unspecified. The first column in the table simply says that fancy boots take
three times as long to produce than basic boots. It is known that if only basic boots
are made, one can make 150 per day and use up all the time available for making
boots. How many of each type of boot should be made each day so as to maximize
the profit?
8. Two grades of VCR tape are made on an assembly line by the Columbia tape
company: regular and high grade. Each tape must pass through three stations,
taking differing amounts of time to pass through these stations because of the
different chemical treatments and construction. The number of minutes spent at
each work station for the production of one of each type of tape and the profits per
units are given in the following table:

Station	Regular	High grade
1	4	7
2	2	4
3	6	7
Profit/unit	$\$ 2$	$\$ 3$

 production can take place. How do the constraints have to be modified?
(c) Suppose that we are in situation (b), and our goal is not to maximize the profit but to minimize the total amount of idle time at the various stations. What is our new objective function?

 constraint would have to be added to achieve this? of M_{3} in iffering am processing of 2 pounds of $M_{1}, 1$ pound of M_{2}, and 2 pounds of M_{3}. Each pound of Super Turf requires the processing of 3 pounds of $M_{1}, 2$ pounds of M_{2}, and

 however, we review some notions from elementary algebra.
2.1

$$
\begin{aligned}
& \text { REVIEW OF GRAPHING AND SOLVING SYSTEMS } \\
& \text { OF LINEAR EQUATIONS } \\
& \text { You probably recall that the graph of any equation of the form } \\
& a x_{1}+b x_{2}=c \text {, where not both } a, b \text { are zero, is a straight line. For example, } \\
& \text { the graphs of } \\
& \qquad \begin{array}{l}
4 x_{1}+3 x_{2}=7, \\
4 x_{1}=5,
\end{array} \\
& \text { and }
\end{aligned}
$$

15. Bob is planning a party. He currently has 3 types of fruit juice mixes, A, B, and C, with differing amounts of water, apple juice, orange juice, cherry juice, and grape juice. The percentages of these ingredients in each quart, as well as the cost per quart, are given in the following table:

	A	B	C
Water	80	60	40
Apple juice	10	10	15
Orange juice	5	10	15
Cherry juice	5	10	10
Grape juice	0	10	20
Cost per quart	$\$ 0.89$	$\$ 1.19$	$\$ 1.59$

He wants to make a mixture of these that costs the least and has the following minimum percentages:
However, he doesn't want to use more than 10 quarts of any one juice. Assuming he needs at least 8 quarts of this mixture, can he do this?
of units of radio advertising bought, and M the number of units of magazine advertising bought;
 000 , $400,000 T+$ $50,000 T$ $2 \leq R \leq 10$,
 $20,000 \mathrm{R}$, and on magazine advertising $10,000 \mathrm{M}$.
7. Let x be the number of basic boots produced, and let y be the number of fancy boots produced. Since 150 basic boots can be made and uses up all the time, the time available is $150 t$. Thus, we want to

11. Let $x_{i j}$ be the amount (in tons) shipped from mine i to plant $j, i=1,2,3$ and

Minimize $u=400 x_{11}+700 x_{12}+850 x_{13}+600 x_{14}+300 x_{21}+600 x_{22}$ $+700 x_{23}+900 x_{24}+500 x_{31}+300 x_{32}+600 x_{33}+500 x_{34}$,
$x_{11}+x_{12}+x_{13}+x_{14} \leq 1200$,

$x_{11}+x_{21}+x_{31} \geq 900$,
$x_{12}+x_{22}+x_{32} \geq 1100$,

all variables are ≥ 0.
ANSWERS TO SELECTED EXERCISES 507
13. Let AM_{i} be the number of pounds of almonds used in mixture $i, i=1,2,3$. Let RM_{i} be the number of pounds of raisins used in mixture $i, i=1,2,3$. Let SM_{i} be the number of pounds of seeds used in mixture $i, i=1,2,3$. Let UA, UR, US represent respectively the number of pounds of almonds, raisins and seeds not used in the mixtures (which we know can be sold for $\$ 0.60$ above cost). Maximize $P=1.80\left(\mathrm{AM}_{1}+\mathrm{RM}_{1}+\mathrm{SM}_{1}\right)+1.40\left(\mathrm{AM}_{2}+\mathrm{RM}_{2}+\mathrm{SM}_{2}\right)$ $1.50\left(\mathrm{AM}_{3}+\mathrm{RM}_{3}+\mathrm{SM}_{3}\right)+1.50 \mathrm{UA}+1.20 \mathrm{UR}+1$ $-100(0.80)-50(0.60)-30(0.90)$,
s.t. $\mathrm{AM}_{1}+\mathrm{AM}_{2}+\mathrm{AM}_{3}+\mathrm{UA}=30$,
$\mathrm{SM}_{1}+\mathrm{SM}_{2}+\mathrm{SM}_{3}+\mathrm{US}=100$, $\mathrm{AM}_{1} \geq 0.80\left(\mathrm{AM}_{1}+\mathrm{RM}_{1}+\mathrm{SM}_{1}\right)$, $\mathrm{SM}_{2} \geq 0.30\left(\mathrm{AM}_{2}+\mathrm{RM}_{2}+\mathrm{SM}_{2}\right)$, $\mathrm{RM}_{2} \leq 0.10\left(\mathrm{AM}_{2}+\mathrm{RM}_{2}+\mathrm{SM}_{2}\right)$,
$0.40\left(\mathrm{AM}_{3}+\mathrm{RM}_{3}+\mathrm{SM}_{3}\right) \leq \mathrm{RM}_{3} \leq 0.60\left(\mathrm{AM}_{3}+\mathrm{RM}_{3}+\mathrm{SM}_{3}\right)$, all variables are ≥ 0.
15. Let x be the number of quarts of A to be used, let y be the number of quarts of B to be used, and let z be the number of quarts of C to be used. We want to Minimize $u=0.89 x+1.19 y+1.59 z$,
s.t. $0.10 x+0.10 y+0.15 z \geq 0.12(x+y+z)$, $0.05 x+0.10 y+0.10 z \geq 0.10(x+y+z)$, $0.10 y+0.20 z \geq 0.12(x+y+z)$, OI >6
' $\mathrm{OI}>x$ '01 >2 all variables are ≥ 0.
5. (a) False. In 1(a) add the constraint $x-y \leq 4$. (b) False. See 5(a).
(d) $\operatorname{Min} u=1$ and occurs at all points between $(0,1)$ and $(1,0)$.
(f) $\operatorname{Min} u=7$ and occurs at $(1,2)$.
(h) $\operatorname{Min} u=8$ and occurs at $(0,4)$, the only point in the constraint set.

Figure 10.4.

the left, while the constraint in Fig. 10.4. The constraint set of LP1 is on

 the value of the objective function, u, at integral solution aside. Suppose value of u must be at least as big as a. The point is a; then, the optimal the optimal solution.

We now work on the other program, splitting it up into subprograms by adding cuts parallel to the y axis if the optimal solution of this prean as x nonintegral, or by adding cuts parallel to the x axis if solution has y nonintegral. We keep splitting the subprograms by adding cuts, and we try to ate better and better integer olution is our optimal solution

At first glance, this seems pretty unwieldy because the subprograms, we have more and more linear However, there are shortcuts that make it unnecessagrams to deal with. subprograms. We need only take a suitable sample of the analyze all our
行 and obtain a variable, say v, that is fractional we grams from this one. The first is obtained by we form two new linear pro-
where b is the largest whole number less the constraint $v \leq b$,
largest whole number less than or equal to v. The

394

INTEGER PROGRAMMING

10

4.

10.4
 BRANCH AND BOUND PROCEDURE

A method used in practice very often is the branch and bound method. This appears to be the most effective method currently known for general integer programming problems, but even this becomes unwieldy as the number of variables becomes large (say, more than a few hundred). Thus, the quest for an efficient method for solving integer programs remains. Although we only discuss the method for pure integer programs, the method carries over with simple modification to mixed integer programs.

Here is the idea: Suppose we have a pure integer program and solve the LP relaxation of the program, and suppose that the solution of the LP relaxation is $x=3.6, y=2$. This clearly cannot be the solution of the pure integer program, since the optimal value of x is not integral. Since we require that x be integral and there are no integers between 3 and 4 , the optimal value of x must either be less than or equal to 3 or greater than or equal to 4 . So we set up two different linear programs and solve them. One of them is the LP relaxation together with the constraint $x \leq 3$, which we call LP1 for the present, and the other will be the LP relaxation of the original program together with the constraint $x \geq 4$, which we call LP2 for the present. The formation of LP1 and LP2 is called branching. We are assured that our optimal solution must be in one of the constraint sets determined by these two modified linear programs by the previous discussion. Furthermore, all feasible solutions are in one or the other of these constraint sets. Thus, nothing is lost by forming these two linear subprograms and solving them.
second is obtained by adding the constraint $v \geq b+1$. We need not do this for all the variables that have fractional values, just for one each time. We

 IEวu!̣ program. Let us illustrate.

EXAMPLE 1 Suppose we want to

$$
\text { Maximize } \quad u=3 x+4 y
$$

$$
\begin{array}{ll}
\text { s.t. } & 4 x+3 y \leq 13 \\
& 3 x+2 y \leq 7
\end{array}
$$

$x, y \geq 0$ and integral.
If we solve the LP relaxation,
(LZ)

$3 x+2 y \leq 7$,

$x, y \geq 0$.

$$
4 x+3 y \leq 13
$$

we obtain $x=0$ and $y=3.5$. The objective at this point is 14 . In view of the fact that y must be integral, it follows that either $y \leq 3$ or $y \geq 4$. We form two subprograms: the first subprogram, LP1, consists of (27) together with the constraint $y \leq 3$; the second linear program, LP2, consists of the (27) together with the constraint $y \geq 4$. We indicate this as in Fig. 10.5. The circles are called nodes, and lines joining nodes to other nodes are called

10.4 BRANCH AND BOUND PROCEDURE 399

One advantage of the branch and bound procedure is that as we proceed with it we often generate integral solutions along the way that are pretty good. If the solutions are acceptable to us, even though they are not optimal, we may stop at that point. This is especially useful when the branch and bound tree becomes very large. Also, sometimes we can obtain an integral solution of the program by inspection. This helps because then many nodes that we might have had to fathom otherwise will not need to be fathomed, because we know that they will not benefit us. For example, if in some problem we obtained $u=45$ when $x=y=z=3$, and we did this by inspection, then any node where u is less than or equal to 45 need not be studied. It is considered fathomed.
again on these nodes to perhaps get better solutions. The answer is no, for
 program, the value of the objective function can only stay the same or decrease. Thus, to branch on node 4 makes no sense since our new program can only have an objective ≤ 11, and we already have a better value of the
 information from it. Since adding a constraint can only decrease the objective in LP3, we have also fathomed that node. Thus, it no longer pays to branch further on any nodes, and the current best integral solution, $x=0, y=3$, is the optimal solution.

Let us give another example.

EXAMPLE 2 We wish to

$$
\text { Maximize } \quad u=4 x+5 y+6 z
$$

$$
\text { s.t. } \quad 3 x+2 y+z \leq 9
$$

$x, y, z \geq 0$ and integral

The solution process is summarized in Fig. 10.7. Let us go through the process. When we solve the LP relaxation, we obtain $u=25, x=0$, $y \approx 4.14, z \approx 0.71$. Since y is not integral, we may branch on y. The two branches are obtained by adding the constraint $y \leq 4$ to the LP relaxation to get node 1 , and adding the constraint $y \geq 5$ to the LP relaxation to get node 2 . Solving the program at node 1 , we get $u=24.6, x=0.1, y=4$, $z=0.7$. The program corresponding to node 2 is infeasible. Now, node 1 is dangling, and we may branch on x to get nodes 3 and 4. Solving the program corresponding to node 3 , we get $u=24.5, x=0, y=4, z=0.7$. Solving the program corresponding to node 4, we obtain $u=21, x=1$,
 the program at node 5 is integral. There $u=20, x=z=0$, and $y=4$. The solution at node 6 is also integral: $u=21, x=0, y=3, z=1$. At this point, our best integral solution occurs at node 6 . Nodes 5 and 6 are fathomed. Branching further on either of them will only serve to decrease the objective. Node 4 is still dangling; but there is no sense in branching on that node, since branching can only lead to an objective ≤ 21, and we have already obtained an integral solution where $u=21$. Thus, we may consider node 4 fathomed. Since all nodes are fathomed, we have reached our optimal solution. It occurs at node 6 , and it is $u=21$ when $x=0, y=3$,

CHAPTER 11
 \section*{NETWORK ANALYSIS}

An area of mathematics that has grown tremendously in the last 100 years is the subject of graph theory. The number of varied applications of this subject is enormous and continues to grow. In this chapter, we will study a special subdivision of graph theory that is closely connected to linear programming-network analysis. We will be brief, since our goal is only to

 analysis texts.
Loosely speaking, a graph is a collection of objects, called nodes or vertices (represented by dots or circles), together with a set of edges.
 vertices need be joined by an edge.) Several examples are given in Fig. 11.1.

 Fig. 11.1c, the graph has three vertices and one edge.
close the rounded solution is to the true optimal solution. Thus, if $d=0.01$, our true solution is within 1% of the rounded solution, and so we are close to the optimal solution. For that reason, it probably pays to round when d is sufficiently small. In a similar manner, if u_{I} represents the current best integral value of u when using the branch and bound procedure, then when

$$
u^{*}-u_{I}
$$

$$
u_{\mathrm{I}}
$$

is small, say β, we can be assured that the optimal integral solution is within $100 \beta \%$ of u_{I}. That is, $u_{\mathrm{I}} \leq u_{\mathrm{I}}^{*} \leq(1+\beta) u_{\mathrm{I}}$.

EXERCISES 10.4

1. Use the branch and bound method to solve each of the following. Draw the branch and bound tree for each problem.
(a) Minimize $u=5 x+y$, s.t.
$3 x+2 y \geq 4$,
$x \geq 2$,

$$
' 0<\kappa
$$

$$
x \text { and } y \text { are integral. }
$$

(c) Maximize $u=2 x-y$, s.t.

$$
\begin{array}{r}
x+2 y \leq 5 \\
3 x-y \leq 7
\end{array}
$$

$$
x, y \geq 0 \text { and integral. }
$$

(e) Maximize $u=2 x+3 y$, s.t.

$$
\begin{aligned}
x & \geq y \\
x+2 y & \leq 6 \\
2 x+y & \leq 8 \\
x, y & \geq 0 \text { and integral. }
\end{aligned}
$$

$$
\begin{aligned}
\text { Maximize } u & =3 x+4 y+5 z, \text { s.t. } \\
2 x+3 y & +z \leq 6 \\
x+3 y+4 z & \leq 5
\end{aligned}
$$

$x, y, z \geq 0$ and integral.

"An intuitive algebraic approach for solving Linear Programming problems"

Source: Zionts [1974] (or many others).

$$
\left.\begin{array}{cccc}
{[\mathrm{max}] z=} & 0,56 x_{1}+0,42 x_{2} \\
\text { s.to } & x_{1} & +2 x_{2} & \leq 240 \\
1,5 x_{1} & +x_{2} & \leq 180 \\
x_{1} & & \leq 110
\end{array}\right]
$$

A^{1}

This has (always) an obvious, sure solution. Let

$$
x_{1}, x_{2}=0
$$

Then

$$
\begin{align*}
& {\left[\begin{array}{l}
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
240 \\
180 \\
110
\end{array}\right]} \\
& z=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
240 \\
180 \\
110
\end{array}\right]=0
\end{align*}
$$

Is this optimal? How to improve?
There does not appear (Dantzig) to be a systematic way of setting all the nonbasic variables simultaneously to optimal values -hence, an iterative ${ }^{2}$ method.

Choose the variable that increases the objective function most per unit (this choice is arbitrary), in the example, x_{1}, because its coefficient $(0,56)$ is the largest.

According to the constraints, x_{1} can be increased till:

B

$$
\begin{align*}
x_{1} & =240 \\
1,5 x_{1} & =180 \\
x_{1} & =110
\end{aligned} \rightarrow \quad \begin{aligned}
& x_{1}=240 \\
& x_{1}=120 \\
& x_{1}
\end{align*}=110
$$

The third equation (why ?) in $\{2\}$ leads to $x_{1}=110$ and $x_{5}=0$. The variable x_{1} will be the entering variable and x_{5} the leaving variable:

[^0]C

$$
x_{1}=110-x_{5}
$$

Substituting for x_{1} everywhere (except in its own constraint), we have

$$
\begin{array}{rllll}
{[\max] z=0,56\left(110-x_{5}\right)} & +0,42 x_{2} & & & \\
\left(110-x_{5}\right) & +2 x_{2}+x_{3} & & =240 \\
1,5\left(110-x_{5}\right) & +x_{2} & +x_{4} & =180 \\
x_{1} & & & +x_{5} & =110
\end{array}
$$

A

$$
[\max] z=\quad 0,42 x_{2} \quad-0,56 x_{5} \quad+61,6
$$

$$
\left\{x_{1}\right\}
$$

which is of course equivalent to Eq. $\{2\}$.
We now have a new (equivalent) LP problem, to be treated as the original was. The process can continue iteratively.

$$
\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
110 \\
130 \\
15
\end{array}\right]
$$

From Eq. $\{2\}$ or Eq. $\{9\}$, respectively,

$$
\begin{align*}
& z=\left[\begin{array}{lll}
0,56 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
110 \\
130 \\
15
\end{array}\right]=61,6 \\
& z=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
110 \\
130 \\
15
\end{array}\right]+61,6=61,6
\end{align*}
$$

Now, x_{2} is the new entering variable. According to the constraints, it can be increased till:

B

$$
\begin{align*}
2 x_{2} & =130 \\
x_{2} & =15 \\
0 x_{2} & =110
\end{aligned} \rightarrow \begin{aligned}
& x_{2}=65 \\
& x_{2}
\end{aligned}=150+\begin{aligned}
& x_{2}
\end{align*}=\infty
$$

$$
\begin{align*}
& +2 x_{2}+\left\{x_{3}\right\} \quad-x_{5}=130 \\
& x_{2}+\left\{x_{4}\right\}-1,5 x_{5}=15 \\
& +x_{5}=110
\end{align*}
$$

Substituting for x_{2} everywhere (except its own constraint), we have

$$
\begin{align*}
& {[\max] z=}
\end{align*}
$$

$$
\begin{align*}
& {[\max] z=\begin{array}{ccc}
& -0,42 x_{4} & +0,07 x_{5} \\
\left\{x_{3}\right\} & -2 x_{4} & +2 x_{5}= \\
& =67,9 \\
\left\{x_{2}\right\}
\end{array}} \\
& \text { A } \\
& \left\{x_{2}\right\} \quad+x_{4}-1,5 x_{5}=15 \\
& \left\{x_{1}\right\}+x_{5}=110 \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
110 \\
15 \\
100
\end{array}\right]}
\end{align*}
$$

Now, x_{5} is the new entering variable. According to the constraints, it can be increased till:

B

$$
\begin{array}{cc}
2 x_{5}=100 \\
-1,5 x_{5} & =15 \\
x_{5} & =110
\end{array} \rightarrow \begin{aligned}
& x_{5}=50 \\
& x_{5}=\ldots \\
& x_{5}=110
\end{aligned}
$$

Substituting for x_{5} everywhere (except its own constraint), we have

$$
\begin{array}{cccc}
{[\max] z=} & & -0,42 x_{4} & +0,07\left(50-\frac{1}{2} x_{3}+x_{4}\right) \\
& x_{3} & -x_{4} & +67,9 \\
x_{2} & +x_{4} & -1,5\left(50-\frac{1}{2} x_{3}+x_{4}\right) & = \\
& =150 \\
x_{1} & & +\left(50-\frac{1}{2} x_{3}+x_{4}\right) & =110 \\
{[\max] z=} & & -0,035 x_{3}-0,35 x_{4} & +71,4
\end{array}
$$

$$
\mathbf{C} \quad x_{5}=50-\frac{1}{2} x_{3}+x_{4}
$$

A

$$
\begin{gather*}
\left\{\begin{array}{ccc}
\left\{x_{2}\right\}+0,75 x_{3} & -0,5 x_{4} & = \\
-0,5 x_{3} & +x_{4}
\end{array}\right. \\
\left\{\begin{array}{l}
x_{1} \\
x_{1} \\
x_{2} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
60 \\
50 \\
50
\end{array}\right]
\end{gather*}
$$

Now, no variable produces an increase. So, this is a maximum.

In sum:
A In the system of equations, find the identity matrix (immediate solution).
B search for an entering variable (or finish)
C consequently, find a leaving variable (if wrongly chosen, negative values will appear).

References:

- ZIONTS, Stanley, 1974, "Linear and integer programming", Prentice-Hall, Englewood Cliffs, NJ (USA), p 5. (IST Library.) ISBN 0-13-536763-8.
- See others on the course webpage (http://web.ist.utl.pt/mcasquilho).

Linear Programming, an introduction

MIGUEL A. S. CASQUILHO
IST, Universidade Técnica de Lisboa, Ave. Rovisco Pais, IST; 1049-001 Lisboa, Portugal

[^1]Key words: linear programming; simplex method.

I. Fundamentals and scope

Based on a prototype example, Linear Programming is presented, as well as the simplex method of resolution. This method was first presented by G. B. Dantzig in 1947 [MacTutor, 2007]. The text is based on the book by Hillier and Lieberman [2005], and begins with segments of the third chapter of the book.

II. Explanation of the simplex method

3 Introduction to Linear Programming

(H\&L 25)
The development of linear programming has been ranked among the most important scientific advances in the mid-20.th century, and we must agree with this assessment. Its impact since just 1950 has been extraordinary. Today it is a standard tool that has saved many thousands or millions of dollars for most companies or businesses of even moderate size in the various industrialized countries of the world; and its use in other sectors of society has been spreading rapidly.

3.1 Prototype example

(H\&L 26)
Table 1 Data for the Wyndor Glass Co. problem

	Production time per batch (h)		Production time available
Plant	1	Product	2

$x_{1}=$ number of batches of product 1 produced per week
$x_{2}=$ number of batches of product 2 produced per week
$Z=$ total profit per week (in $\$ 1000$) from producing these two products

[^2]
4 Solving Linear Programming problems: the simplex method

(H\&L 103)

4.2 Setting up the Simplex Method

(H\&L 108)
Original form of the model ("s.t.", subject to):

$$
[\max] z=3 x_{1}+5 x_{2}
$$

s.t.

$$
\begin{array}{ccc}
x_{1} & & \leq 4 \\
& 2 x_{2} & \leq 12 \\
3 x_{1} & +2 x_{2} & \leq 18
\end{array}
$$

and $x_{1} \geq 0, x_{2} \geq 0$.
Augmented form of the model:

$$
\begin{array}{rccccc}
{[\max] z=} & 3 x_{1} & +5 x_{2} & +0 x_{3} & +0 x_{4} & +0 x_{5} \\
\text { s.to } & & & & & \\
& x_{1} & & +x_{3} & & \\
& & 2 x_{2} & & +x_{4} & \\
& 3 x_{1} & +2 x_{2} & & & +x_{5}
\end{array}=128
$$

and $x_{i} \geq 0, i=1 . .5$. The new variables $x_{i}, i=3 . .5$, are the "slack variables".
A basic solution has the following properties:

1. Each variable is designated as either a nonbasic variable or a basic variable.
2. The number of basic variables equals the number of functional constraints (now equations). Therefore, the number of nonbasic variables equals the total number of variables minus the number of functional constraints.
3. The nonbasic variables are set equal to zero.
4. The values of the basic variables are obtained as the simultaneous solution of the system of equations (functional constraints in augmented form). The set of basic variables is often referred to as the basis.
5. If the basic variables satisfy the nonnegativity constraints, the basic solution is a basic feasible (BF) solution.
Adjacent solutions:
Two BF solutions are adjacent if all but one of their nonbasic variables are the same (so all but one of their basic variables also are the same, although perhaps with different numerical values).
Consequently, moving from the current BF solution to an adjacent one involves switching one variable from nonbasic to basic and vice versa for one other variable (and then adjusting the values of the basic variables to continue satisfying the system of equations).

It is convenient for the simplex method to rewrite the problem in the following equivalent way:

Maximize Z

subject to
(0) $Z=3 x_{1}+5 x_{2}+0 x_{3}+0 x_{4}+0 x_{5}$
(1) $x_{1}+x_{3}=4$
(2) $2 x_{2}+x_{4} \quad=12$
(3) $3 x_{1}+2 x_{2}+x_{5}=18$

The model for the Wyndor Glass Co. problem fits our standard form, and all its functional constraints have nonnegative right-hand sides b_{i}. If this had not been the case, then additional adjustments would have been needed (see later).

4.3 The algebra of the Simplex Method

(H\&L 111)

Initialization

The choice of x_{1} and x_{2} to be the nonbasic variables (the variables set equal to zero) for the initial BF solution is obvious (and it will always be so). This choice eliminates the work required to solve for the basic variables (x_{3}, x_{4}, x_{5}).

$$
\begin{align*}
& \text { (1) } \begin{array}{ll}
x_{1} & +x_{3}
\end{array}=4 \\
& \text { (2) } 2 x_{2}+x_{4} \quad=12 \\
& \text { (3) } 3 x_{1}+2 x_{2}+x_{5}=18 \\
& x_{1}=0 \quad x_{2}=0 \quad x_{3}=4 \quad x_{4}=12 \quad x_{5}=18
\end{align*}
$$

Optimality test

The objective function is

$$
Z=3 x_{1}+5 x_{2}+0 x_{3}+0 x_{4}+0 x_{5}=\left[\begin{array}{lllll}
3 & 5 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
4 \\
12 \\
18
\end{array}\right]=0
$$

As none of the basic variables $\left(x_{3}, x_{4}, x_{5}\right)$ have a nonzero coefficient in this objective function, the coefficients of each nonbasic variable (x_{1}, x_{2}) gives the rate of improvement -i.e., $\frac{\partial Z}{\partial x_{1}}$ and $\frac{\partial Z}{\partial x_{2}}$ - in Z if that variable were to be increased from zero (with adjustments in the basic variables). These rates of improvement are positive. Therefore, this solution is not optimal.

Determining the direction of movement (Step 1 of an iteration)
The choice of which nonbasic variable is increased is as follows:

$$
Z=3 x_{1}+5 x_{2}
$$

Increase $x_{1} ?$	Rate of improvement in $Z=\frac{\partial Z}{\partial x_{1}}=3$
Increase $x_{2} ?$	Rate of improvement in $Z=\frac{\partial Z}{\partial x_{2}}=5$

$$
5>3 \text {, so choose } x_{2} \text { to increase. }
$$

We call x_{2} the entering variable for iteration 1 (it is entering the basis). (For it to enter, another must leave... Mnemonic: the struggle in Darwin's book ${ }^{1}$.)

Determining where to stop (Step 2 of an iteration)

Increasing the entering variable x_{2} increases Z, so we want to go as far as possible without leaving the feasibility region. The requirement to satisfy the functional constraints in augmented form means that increasing x_{2} (while keeping nonbasic $x_{1}=0$) changes the values of some of the basic variables as shown on the right.

$$
\begin{align*}
& x_{1}=0 \text {, so } \\
& \text { (1) } \begin{array}{lll}
x_{1} & +x_{3} & =4 \\
x_{3}=4-0 x_{2}
\end{array} \\
& \text { (2) } 2 x_{2}+x_{4} \quad=12 \quad x_{4}=12-2 x_{2} \\
& \text { (3) } 3 x_{1}+2 x_{2}+x_{5}=18 \quad x_{5}=18-2 x_{2}
\end{align*}
$$

The other requirement for feasibility is that all the variables be nonnegative. The nonbasic variables (including the entering variable) are nonnegative, but we need to check how far x_{2} can be increased without violating the nonnegativity constraints for the basic variables.

$$
\begin{align*}
& x_{3}=4-0 x_{2} \\
& x_{4}=12-2 x_{2} \\
& x_{5}=18-2 x_{2}
\end{aligned} \Rightarrow \begin{aligned}
& x_{2} \leq \infty \\
& x_{2} \leq 12 / 2=6 \leftarrow \min \\
& x_{2} \leq 18 / 2=9
\end{align*}
$$

Thus, x_{2} can be increased just to 6 , at which point x_{4} has dropped to 0 . Increasing x_{2} beyond 6 would cause x_{4} to become negative.

These calculations are referred to as the minimum ratio test.
At any iteration of the simplex method, Step 2 uses the minimum test ratio to determine which basic variable drops to zero first as the entering variable is increased. Decreasing this basic variable to zero will convert it to a nonbasic variable for the next BF solution. Therefore, this variable is called the leaving variable for the current iteration (because it is leaving the basis).

Thus, x_{4} is the leaving variable for iteration 1 of the example.

Solving for the new BF solution (Step 3 of an iteration)

Increasing $x_{2}=0$ to $x_{2}=6$ moves us from the initial BF solution on the left to the new BF solution on the right:

[^3]| | Initial BF solution | | New BF solution | | |
| :--- | :---: | :---: | :--- | :--- | :--- |
| Nonbasic variables | $x_{1}=0, \quad x_{2}{ }^{\mathrm{E}}=0$ | $x_{1}=0, \quad x_{4}=0$ | | | |
| Basic variables | $x_{3}=4, \quad x_{4}{ }^{\mathrm{L}}=12, \quad x_{5}=18$ | $x_{3}=?, \quad x_{2}=6, \quad x_{5}=?$ | | | |

The purpose of Step 3 is to convert the system of equations to a more convenient form (proper form from Gaussian elimination) for conducting the optimality test and (if needed) the next iteration with this new BF solution. In the process, this form also will identify the values of x_{3} and x_{5} for the new solution.

To solve the original system of equations for Z, x_{2}, x_{3}, and x_{5}, we need to perform some elementary algebraic operations (multiply or divide an equation by a nonzero constant; add or subtract a multiple of one equation to another equation) to reproduce the current pattern of coefficients of $x_{4}(0,0,1,0)$ as the new coefficients of x_{2}. So, divide Eq. (2) by 2 to obtain

$$
x_{2}+\frac{1}{2} x_{4}=6
$$

Next, add 5 times this new Eq. (2) to Eq. (0), and subtract 2 times this new Eq. (2) from Eq. (3). The resulting complete new system of equations is

$$
\begin{array}{lll}
\underline{x_{2}} & +\frac{1}{2} x_{4} & =6 \triangleright\left(2^{\prime}\right) \\
3 x_{1} & -x_{4} & +x_{5} \tag{2}
\end{array}=6 \triangleright(3)-2\left(2^{\prime}\right)
$$

Since $x_{1}=0$ and $x_{4}=0$, the equations in this form immediately yield the new BF solution, $X=(0,6,4,0,6)$, which yields $Z=30$.

If the columns are written in "another" order everywhere, the identity matrix is —as promised— again recognized:

$$
\begin{gather*}
z-30=\left[\begin{array}{lllll}
3 & -\frac{5}{2} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{4} \\
x_{3} \\
x_{2} \\
x_{5}
\end{array}\right]=0 \\
{\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 0 \\
0 & 1 / 2 & 0 & 1 & 0 \\
3 & -1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{4} \\
x_{3} \\
x_{2} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
4 \\
6 \\
6
\end{array}\right]}
\end{gather*}
$$

This procedure for obtaining the simultaneous solution of a system of linear equations is called the Gauss-Jordan method of elimination, or Gaussian elimination for short. The key concept for this method is the use of elementary algebraic operations to reduce the original system of equations to proper form from Gaussian elimination, where each basic variable has been eliminated from all but one equation (its equation) and has a coefficient of +1 in that equation.

Optimality test for the new BF solution

The current Eq. (0) gives the value of the objective function in terms of just the current nonbasic variables

$$
Z=30+\left[\begin{array}{ll}
3 & -\frac{5}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]
$$

Because x_{1} has a positive coefficient, increasing x_{1} would lead to an adjacent BF solution that is better than the current BF solution, so the current solution is not optimal.

Iteration 2

Since it is $Z=30+3 x_{1}-\frac{5}{2} x_{4}, Z$ can be increased by increasing x_{1}, but not x_{4}. Therefore, Step 1chooses x_{1} to be the entering variable.

For Step 2, the current system of equations yields the following conclusions about how far x_{1} can be increased (with $x_{4}=0$):

$$
\begin{array}{ll}
x_{3}=4-x_{1} \geq 0 \\
x_{2}=6-0 x_{1} \geq 0 \\
x_{5}=6-3 x_{1} \geq 0
\end{array} \quad \Rightarrow \quad \begin{aligned}
& x_{1} \leq 4 / 1=4 \\
& x_{1} \leq 6 / 0=\infty \\
& x_{1} \leq 6 / 3=2 \leftarrow \min
\end{aligned}
$$

Therefore, the minimum ratio test indicates that x_{5} is the leaving variable.
For Step 3, with x_{1} replacing x_{5} as a basic variable, we perform elementary algebraic operations on the current system of equations to reproduce the current pattern of coefficients of $x_{5}(0,0,0,1)$ as the new coefficients of x_{1}. This yields the following new system of equations:
(0) $Z+0 x_{1}+0 x_{2}+0 x_{3}+\frac{3}{2} x_{4}+x_{5}=36$

$$
\begin{equation*}
+x_{3}+\frac{1}{3} x_{4}-\frac{1}{3} x_{5}=2 \tag{1}
\end{equation*}
$$

$$
\begin{array}{ll}
x_{2} & =\frac{1}{2} x_{4} \\
-\frac{1}{3} x_{4}+\frac{1}{3} x_{5} & =2 \tag{2}
\end{array}
$$

(3) x_{1}

Therefore, the next BF solution is $X=(2,6,2,0,0)$, yielding $Z=36$. To apply the optimality test to this new BF solution, we use the current Eq. (0) to express Z in terms of just the current nonbasic variables,

$$
Z=36+\left[\begin{array}{ll}
-\frac{3}{2} & -1
\end{array}\right]\left[\begin{array}{l}
x_{4} \\
x_{5}
\end{array}\right]
$$

Increasing either x_{4} or x_{5} would decrease Z, so neither adjacent BF solution is as good as the current one. Therefore, the current BF solution must be optimal.

In terms of the original form of the problem (no slack variables), the optimal solution is $x_{1}=2, x_{2}=6$, which yields $Z=36$.

The next section shows a more convenient tabular form.

4.4 The Simplex Method in tabular form

(H\&L 117)

The tabular form of the simplex method records only the essential information, namely, (1) the coefficients of the variables, (2) the constants on the right-hand sides of the equations, and (3) the basic variable appearing in each equation.

Table 3 compares the initial, algebraic form with a new, tabular form.

Summary of the simplex method (and iteration 1 for the Example)

Initialization: Introduce slack variables. Select the decision variables to be the initial nonbasic variables (set equal to zero). And the slack variables to be the initial basic variables. (Adjust if the model is not in our standard form: maximization, only \leq functional constraints, all nonnegativity constraints, and if any b_{i} values are negative.)

For the Example: the initial BF solution is ($0,0,4,12,18$).
Table $3 \boldsymbol{a}$ Initial system of equations for the Wyndor Glass Co. problem in algebraic form

(0)	Z	$-3 x_{1}$	$-5 x_{2}$	$+0 x_{3}$	$+0 x_{4}$	$+0 x_{5}$	$=0$
(1)		x_{1}		$+x_{3}$			$=4$
(2)		$2 x_{2}$		$+x_{4}$		$=12$	
(3)		$3 x_{1}$	$+2 x_{2}$			$+x_{5}$	$=18$

Table 3b Initial system of equations for the Wyndor Glass Co. problem in tabular form

		Coefficient of						
Basic variable	Eq.	Z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	Right side
Z	(0)	1	-3	-5	0	0	0	0
x_{3}	(1)	0	1	0	1	0	0	4
x_{4}	(2)	0	0	2	0	1	0	12
x_{5}	(3)	0	3	2	0	0	1	18

Optimality test: The current BF solution is optimal if and only if every coefficient in row 0 is nonnegative (≥ 0). If it is, stop; otherwise, go to an iteration to obtain the next BF solution, which involves changing one nonbasic variable to a basic variable (Step 1) and vice versa (Step 2) and then solving for the new solution (Step 3).

For the Example: just as $Z=3 x_{1}+5 x_{2}$ indicates that increasing either x_{1} or x_{2} will increase Z, so the current BF solution is not optimal, the same conclusion being drawn from the equation $\mathrm{Z}-3 x_{1}-5 x_{2}=0$. These coefficients of -3 and -5 are shown in row 0 of Table 3 b .

ITERATION

Step 1:
Determine the entering variable by selecting the variable (automatically nonbasic variable) with the negative coefficient having the largest absolute value (i.e.,
the "most negative" coefficient) in Eq. (0). Mark the column below this coefficient, and call this the pivot column.

For the Example: the most negative coefficient is -5 for $x_{2}(5>3)$, so x_{2} is to be changed to a basic variable. (This change is indicated in Table 4 by marking the x_{2} column below -5 .)

Table 4 Applying the minimum ratio test to determine the first leaving basic variable for the Wyndor Glass Co. problem

Basic variable	Eq.	Z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	Right side	Ratio
Z	(0)	1	-3	-5	0	0	0	0	
x_{3}	(1)	0	1	0	1	0	0	4	∞
x_{4}	(2)	0	0	2	0	1	0	12	$\mathbf{6}$
x_{5}	(3)	0	3	2	0	0	1	18	9

Step 2:
Determine the leaving basic variable by applying the minimum ratio test. Mark its row and call it the pivot row. Also call the number that is in both cases the pivot number.

Table 5 Simplex tableaux for the Wyndor Glass Co. problem after the first pivot row is divided by the first pivot number

Basic variable	Eq.	Z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	Right side
Z	(0)	1	-3	-5	0	0	0	0
x_{3}	(1)	0	1	0	1	0	0	4
x_{4}	(2)	0	0	2	0	1	0	12
x_{5}	(3)	0	3	2	0	0	1	18
Z	(0)	1						
x_{3}	(1)	0						
x_{4}	(2)	0	0	1	0	$1 / 2$	0	6
x_{5}	(3)	0						

For the Example: the calculations for the minimum ratio test are shown at the right of Table 4. Thus, row 2 is the pivot row (shown in the first half of Table 5), and x_{4} is the leaving basic variable. In the next simplex tableau (in Table 5), x_{2} replaces x_{4} as the basic variable for row 2 .

Step 3:
Solve for the new BF solution by using elementary row operations to construct a new simplex tableau in proper form from Gaussian elimination below the current one, and then return to the optimality test.

For the Example: since x_{2} is replacing x_{4} as a basic variable, we need to reproduce the first tableau's pattern of coefficients in the column of $x_{4}(0,0,1,0)$ in the second tableau's column of x_{2}. To start, divide the pivot row (row 2) by the pivot number (2), which gives the new row 2 shown in Table 5. Next, we add to row 0 the product, 5 times the new row 2 . Then we substract from row 3 the product, 2 times the new row 2 (or equivalently, subtract from row 3 the old row 2). These calculations yield the new tableau shown in Table 6 for iteration 1. Thus, the new BF solution is $(0,6,4,0,6)$, with $Z=30$. We next return to the optimality test to check if
the new BF solution is optimal. Since the new row 0 still has a negative coefficient (-3 for x_{1}), the solution is not optimal, and so at least one more iteration is needed.

Table 6 Second simplex tableau for the Wyndor Glass Co. problem

Basic variable	Eq.	Z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	Right side
Z	(0)	1	-3	0	0	$5 / 2$	0	30
x_{3}	(1)	0	1	0	1	0	0	4
x_{2}	(2)	0	0	1	0	$1 / 2$	0	6
x_{5}	(3)	0	3	0	0	-1	1	6

Iteration 2 for the Example

The second iteration starts anew from the second tableau of Table 6 to find the next BF solution. Following the instructions for Steps 1 and 2, we find x_{1} as the entering basic variable and x_{5} as the leaving basic variable, as shown in Table 7.

Table 7 Steps 1 and 2 of Iteration 2 for the Wyndor Glass Co. problem

Basic variable	Eq.	Z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	Right side	Ratio
Z	(0)	1	-3	0	0	$5 / 2$	0	30	
x_{3}	(1)	0	1	0	1	0	0	4	4
x_{2}	(2)	0	0	1	0	$1 / 2$	0	6	∞
x_{5}	(3)	0	3	0	0	-1	1	6	2

(See Table 8 for the whole process.)
Table 8 Simplex tableaux for the Wyndor Glass Co. problem

Basic variable	Eq.	Z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	Right side	Ratio
Z	(0)	1	-3	$\mathbf{- 5}$	0	0	0	0	
x_{3}	(1)	0	1	0	1	0	0	4	∞
x_{4}	(2)	0	0	$\mathbf{2}$	0	1	0	12	6
x_{5}	(3)	0	3	2	0	0	1	18	9
Z	(0)	1	$\mathbf{- 3}$	0	0	$5 / 2$	0	30	
x_{3}	(1)	0	1	0	1	0	0	4	4
x_{2}	(2)	0	0	1	0	$1 / 2$	0	6	∞
x_{5}	(3)	0	$\mathbf{3}$	0	0	-1	1	4	$4 / 3$
Z	(0)	1	0	0	0	$3 / 2$	$\mathbf{1}$	36	
x_{3}	(1)	0	0	0	1	$1 / 3$	$-1 / 3$	2	
x_{2}	(2)	0	0	1	0	$1 / 2$	0	6	
x_{1}	(3)	0	1	0	0	$-1 / 3$	$1 / 3$	2	

4.5 Tie breaking in the Simplex Method

(H\&L 121)

Tie for the entering basic variable

The selection between two or more nonbasic variables having the largest coefficients is arbitrary. The optimum will be reached eventually, although the path
(and the number of iterations) will be different. There is no convenient method for predicting which choice will lead there sooner.

Tie for the leaving basic variable -degeneracy

If two or more basic variables tie for being the leaving basic variable in an iteration, does it matter which one is chosen? Theoretically it does. First, all the tied variables reach zero simultaneously as the entering basic variable is increased. Therefore, the one or ones not chosen to be the leaving basic variable also will have a value of zero in the new solution. Note that basic variables with a value of zero are called degenerate, and the same term is applied to the correspondent solution. Second, if one of these degenerate basic variables retains its value of zero until it is chosen as leaving at a subsequent iteration, the corresponding entering variable also must remain zero, so the value of Z will remain unchanged. Third, if Z may remain the same rather than increase at each iteration, the simplex method may then go around in a loop. In fact, examples have been artificially constructed so that they do become entrapped in just such a perpetual loop.

Fortunately, although a perpetual loop is theoretically possible, it has rarely been known to occur in practice. If a loop were to occur, one could always get out by changing the choice of the leaving basic variable. Furthermore, special rules have been constructed for breaking ties so that such loops are always avoided. However, these rules frequently are ignored in actual application.

No leaving basic variable -unbounded Z

If the smallest nonnegative ratio does not exist, the solution for the objective function is unbounded (infinite). Because even linear programming has not discovered a way of making infinite profit, the real message for practical problems is that a mistake has been made! The model probably has been misformulated either by omitting relevant constraints or by stating them incorrectly. Alternatively, a computational mistake may have occurred.

In the matrix method of resolution (to be seen later), let it be said that, even making some mistakes during the resolution of a linear programming problem, the optimum will be reached.

Multiple optimal solutions

If the last solution shows a zero in the final row 0 , at least one of the nonbasic variables has a coefficient of zero, and so increasing any such variable will not change the value of Z. Therefore, the other optimal solutions can be identified (if desired) by performing additional iterations, each time choosing a nonbasic variable with a zero coefficient as the entering variable. (An unbounded solution with the same Z can occur.)

If there are more than one solution, any weighted average of two or more solutions is called a linear convex combination and is also an optimal solution. (There are, thus, infinite such solutions.)

4.6 Adapting to other model forms

(H\&L 124)

Equality constraints

Instead of replacing an equality $(f(\mathbf{x})=b)$ by two complementary inequalities $(f(\mathbf{x}) \leq b, \quad f(\mathbf{x}) \geq b)$, which would increase the number of constraints, it is more
convenient to use the artificial-variable technique, attributing to this type of variable an "infinite" coefficient, usually called M-really, a very large number- whose sign will be opposite to the direction of the optimization: $-M$ for maximization and $+M$ for minimization.

When the artificial-variable technique is used, the presence of one or more artificial variables in the final solution means that the problem indeed has no solution. This situation implies no complication, so any problem "without" solution may be treated just like any other.

Negative right-hand sides

The usual solution is to multiply both sides by -1 and reverse the direction of the inequality. An artificial variable will normally be needed.

Variables allowed to be negative (free variables)

Any variable allowed to be negative, or "free" variable, say x_{j}, can be replaced by the difference of two nonnegative ones. A usual notation (not adopted later) is

$$
x_{j}=x_{j}^{+}-x_{j}^{-}
$$

Every occurrence of x_{j} will, then, be replaced by this expression, including, of course, the objective function.

III. Epilogue

The simplex method for solving Linear Programming problems was presented, attempting to show its basic idea and features, from an essentially practical standpoint. Special cases, easily reduced to the standard form, were also addressed.

IV. Acknowledgements

This text pertains to the teaching activities in DEQB (Departamento de Engenharia Química e Biológica), the Department of Chemical and Biological Engineering, at IST (Instituto Superior Técnico, UTL). Computing was made on the central system (Linux, Internet) of the Informatics Centre of IST (CIIST).

V. References

BuESCu, Jorge, 2001, «Dez algoritmos que abalaram o Mundo», Ingenium, Maio, Lisboa, p 40.
CASQUILHO, Miguel, 2007, "Cálculos, Calculations" [online], Instituto Superior Técnico (cited on 2007-03): http://alfa.ist.utl.pt/ ~mcasquil/Calcmenu.html
Desbazeille, Gérard, 1976, «Exercices et Problèmes de Recherche Opérationnelle», 2.e éd., Dunod, Paris.
Dilworth, James B., 1989, "Production and Operations Management (Manufacturing and Nonmanufacturing)", 4. ${ }^{\text {th }}$ ed., McGraw-Hill, New York.
Ecker, Joseph G., Michael Kupferschmid, 1988, "Introduction to Operations Research", John Wiley \& Sons, New York.
Guerreiro, Jorge, Alípio Magalhães, Manuel Ramalhete, 1985, «Progamação Linear», Vol. II, McGraw-Hill de Portugal, Lisboa.
Hillier, Frederick S., Gerald J. Lieberman, 2005, "Introduction to Operations Research", $8 .^{\text {th }}$ ed., McGraw-Hill, Inc., New York.

KARMARKAR, N. (Narendra), 1984, "A new polynomial-time algorithm for linear programming", Combinatorica, 4, pp 373-95.
Machol, Robert E., 1976, "Elementary Systems Mathematics. Linear programming for business and the social sciences", McGraw-Hill Kogakusha, Ltd. (Intl. Stud. Ed.), Tokyo (Japan).
MacTutor, 2007, "George Dantzig" [online], Univ. of St. Andrews (cited 2007-03), http://www-groups.dcs.st-and.ac.uk/~history/Biographies/ Dantzig_George.html
Ramalhete, Manuel, Jorge Guerreiro, Alípio Magalhães, 1984, «Programação Linear», Vol. I, McGraw-Hill de Portugal, Lisboa.
Wagner, Harvey M., 1972, "Principles of Operations Research (with applications to managerial decisions)", Prentice-Hall International, London.
William, H. P., 1978, "Model Building in Mathematical Programming", John Wiley \& Sons, UK.

Artificial variables in Linear Programming

Adapted from H\&L [2005] and Taha [1992]

Equality constraints [H\&L, p 125]

Suppose a modification to the original Wyndor problem, as follows ($\{1\}$).

$$
\begin{array}{cccl}
{[\max] z=} & 3 x_{1} & +5 x_{2} & \\
\text { s.to } & x_{1} & & \leq 4 \\
& & 2 \mathrm{x}_{2} & \leq 12 \\
& 3 x_{1}+2 x_{2} & =18
\end{array}
$$

with $\boldsymbol{x} \geq 0$. Thus, the third constraint is now an equality. This can become

(0)	z	$-3 x_{1}$	$-5 x_{2}$		
(1)	x_{1}		$+x_{3}$		$=4$
(2)		$2 x_{2}$		$+x_{4}$	$=12$
(3)		$3 x_{1}$	$+2 x_{2}$		$=18$

However, these equations do not have an obvious initial (basic feasible) solution. So, the artificial variable technique is applied. With M a very high number ($+\infty$) this is the Big M method ${ }^{*}$-, we can augment the system $\{2\}$ to obtain
(0) $\begin{array}{llll}z & -3 x_{1} & -5 x_{2} & -M \bar{x}_{5}=0\end{array}$
(1) $\begin{array}{lll}x_{1} & +x_{3} & =4\end{array}$
(2) $2 x_{2}+x_{4} \quad=12$
(3) $3 x_{1}+2 x_{2}+\bar{x}_{5}=18$

Converting equation 0 to proper form

In $\{3\}$, the (obvious) initial basic variables are x_{3}, x_{4} and \bar{x}_{5} (non-basic $x_{1}=0$ and $x_{2}=0$). However, this system is not yet in proper form for Gaussian elimination because a basic variable (\bar{x}_{5}) has a non-zero coefficient in Eq. 0. Indeed, all the basic variables must be (algebraically) eliminated from Eq. 0 before the simplex method can find the entering basic variable. (This elimination is necessary so that the negative of the coefficient of each non-basic variable will give the rate at which z would increase if that non-basic variable were to be increased from 0 while adjusting the values of the basic variables accordingly.)

To eliminate \bar{x}_{5} from Eq. 0, we need to subtract from Eq. 0 the product M times Eq. 3:

$$
\begin{array}{ccccc}
z & -3 x_{1} & -5 x_{2} & +M \bar{x}_{5} & =0 \\
& -M\left(3 x_{1}\right. & +2 x_{2} & +\bar{x}_{5} & =18) \\
\hline z & -(3 M+3) x_{1} & -(2 M+5) x_{2} & & =-18 M
\end{array}
$$

[^4]In this example, there is only one equation with an artificial variable. If there were several equations with artificial variables, we would have to subtract accordingly.

Application of the simplex method

The new Eq. 0 gives z in terms of just the non-basic variables $\left(x_{1}, x_{2}\right)$:

$$
z=-18 M+(3 M+3) x_{1}+(2 M+5) x_{2}
$$

Since the coefficient of x_{1} is the best (greatest), this variable is chosen as the entering variable.

The leaving variable, as always, will correspond to the smallest "positive" (non-negative) ratio (from the so-called "minimum ratio test").

Another (more general) example (Taha [1992], p 72)

$$
\begin{array}{cll}
{[\min] z=} & 4 x_{1}+x_{2} & \\
\text { s.to } & 3 x_{1}+x_{2}=3 \\
& 4 x_{1}+3 x_{2} \geq 6 \\
& x_{1}+2 x_{2} \leq 4
\end{array}
$$

with $\boldsymbol{x} \geq 0$. The augmented standard form is

$$
\begin{array}{rlllllll}
{[\min] z=} & 4 x_{1} & +x_{2} & +0 x_{3} & +0 x_{4} & +M a_{1} & +M a_{2} & \\
\text { s.to } & 3 x_{1} & +x_{2} & & & +a_{1} & & =3 \\
& 4 x_{1} & +3 x_{2} & -x_{3} & & & +a_{2} & =6 \\
& x_{1} & +2 x_{2} & & +x_{4} & & & =4
\end{array}
$$

References

- Hillier, Frederick S., and Gerald J. Lieberman, 2005, "Introduction to Operations Research", 8. ${ }^{\text {th }}$ ed., McGraw-Hill
- TAHA, Hamdy, 1992, "Operations Research: an introduction", 5. th ed., MacMillan Publishing Company

$$
18
$$

36
RHS
4
12
18

Solver model 36
2
TRUE
100
100

Let's solve it manually.

$z=36$ OPTIMUM
Now follow a different path !

$$
\begin{aligned}
& {[\max] z=3 x_{1}+5 x_{2} \quad[\max] z=3 x_{1}+5 x_{2}+0 x_{3}+0 x_{4}-M x_{5}}
\end{aligned}
$$

$[\max] z=0,56 x_{1}+0,42 x_{2}$

Let's solve it manually.

(Blank page)

Redundant?

Solve:
Go to http://web.ist.utl.pt/~mcasquilho/compute/or/Fx-lp-revised.php Supply:

Opt.	\max
Coefficients	-1100
$A \mid B$	111010
	110120
Artificials	0
Initial basis	34

Redundant ? No problem.

Impossible ?

Solve:
Go to http://web.ist.utl.pt/~mcasquilho/compute/or/Fx-lp-revised.php
Supply:

Opt.	\max
Coefficients	-11000
$A \mid B$	1110010
	$110-1120$
Artificials	5
Big M	$1+2$
Initial basis	35

Impossible ? No problem.

In: ECKER, Joseph G., Michael Kupferschmid, 1988, "Introduction to Operations Research", McGraw-Hill, ISBN 0-471-63362-3

24 LINEAR PROGRAMMING

TABLE 2.3 Nursing Staff Requirements

Period of the Day	Number of Nurses Required
$8: 00-12: 00$	140
$12: 00-16: 00$	120
$16: 00-20: 00$	160
$20: 00-24: 00$	90
$24: 00-4: 00$	30
$4: 00-8: 00$	60

2.3 SOME SCIENTIFIC APPLICATIONS OF LINEAR PROGRAMMING

The examples of Section 2.2 are simple versions of practical problems that arise in the work of business people, managers of industry, military planners, and other executives whose main concern is with routine operational matters. In addition to helping with the solution of problems from that sphere of activity, linear programming also finds numerous more abstraet applications in engineering design and scientific research. This section presents some examples from those areas of application.

Curve Fitting

Values R_{j} are obtained from laboratory measurements of a certain physical quantity $R(t)$ at times $t_{i}, i=1 \ldots \ldots, N$. Random experimental errors introduce noise in the measurements, but it is known theoretically that $R(t)$ depends on time t according to a quadratic relationship of the form

$$
R(t)=a t^{2}+b t+c
$$

The parameters a, b, and c are unknown and are to be estimated from the experimental measurements R_{i}. This kind of curve-fitting problem is often referred to as a polynomial regression. One approach to the problem is to find parameter values a, b, and c so as to minimize the absolute value of the largest discrepancy between the measured values R_{j} and corresponding theoretical values $R\left(t_{)}\right)$. For a given set of parameter values a, b, and c, the deviation of observation i from the value predicted by the model function $R(t)$ is defined as

$$
D_{j}=R_{i}-\left[a\left(t_{i}\right)^{2}+b\left(t_{i}\right)+c\right]
$$

Using this definition, one way to formally state the mathematical problem of finding the best parameter values by minimizing the largest deviation is

$$
\underset{a, b, z}{\operatorname{minimize}}\left[\text { maximum }\left|D_{i}\right|\right]
$$

The list of parameters beneath the word minimize means that the minimization is to be performed by varying the values of those parameters; similarly, the maximum is to be taken over the absolute deviations $\left|D_{i}\right|$, with a, b, and c held constant. Because we are minimizing the maximum absolute deviation, such a formulation is commonly called a minimax problem.

Finding values for the parameters a, b, and c to minimize the largest absolute deviation might not at first seem like a linear programming problem. Also,
deciding on what decision variables to use does not appear to be as important an issue as it always was in the problems of Section 2.2. After all, the only things we can control are the values of the parameters, so they are natural choices as decision variables. There is, however, a dependent variable in this problem, namely, the largest deviation, which depends on the values of the parameters. Suppose we let

$$
w=\underset{i}{\operatorname{maximum}}\left\{\mid D_{d}\right\}
$$

and try to write a linear programming formulation involving that quantity.
Because w is the largest absolute deviation, it must satisfy each of the inequalities

$$
w \geq\left|R_{i}-\left[a\left(t_{i}\right)^{2}+b\left(t_{i}\right)+c\right]\right| \quad i=1 \ldots, N
$$

Of course, for any given set of parameter values, one (or more) of the deviations $D_{\text {i }}$ will be larger than the others, and so the corresponding inequality will actually hold with equality. The problem, then, is to find values for a, b, c, and w so that each of the inequalities is satisfied and so that w is as small as possible. In other words, we need to

```
minimize w
subject to
\[
w \geq\left|R_{i}-\left[a\left(t_{t}\right)^{2}+b\left(t_{i}\right)+c\right]\right| \quad i=1, \ldots, N
\]
```

Unfortunately, this problem is not a linear program as it stands because the absolute value of a linear function is not a linear function. However, we can convert it into a linear program by making use of the following elementary fact:

```
For any w and y,
    w\geq|y| if and only if w}\geqy\mathrm{ and }w\geq-y
```

Using this fact, we can replace each of the nonlinear inequality constraints above with two linear inequality constraints. Then the preceding optimization problem is equivalent to the following linear program in the variables w, a, b, and c :

```
minimize w
subject to
\[
\begin{array}{ll}
w \geq\left(R_{i}-\left[a\left(t_{i}\right)^{2}+b\left(t_{i}\right)+c\right]\right) & i=1, \ldots, N \\
w \geq-\left(R_{i}-\left[a\left(t_{j}\right)^{2}+b\left(t_{i}\right)+c\right]\right) & i=1, \ldots, N
\end{array}
\]
```

Nothing in the statement of the problem requires the parameters to be nonnegative, so a, b, and c are free variables, that is, variables unconstrained in sign. It would be harmless to include a nonnegativity constraint on the variable w, but it would also be superfluous because the above constraints already require w to be nonnegative.

Solving this linear program yields values for the parameters a, b, and c that minimize the largest absolute deviation, and an optimal value of w that is equal to that largest absolute deviation.

A "scientific application" (!) of Linear Programming

In Ecker \& Kupferschmid [1988], Ch. 2, "LP models and applications", 2.3, "Some scientific applications of LP", pp 24-25; example problem from Guttman et al. [1982], Ch. 15, "Regression analysis", 15.5, An example, pp 361-365

A study was instituted to determine the percent of waste solids removed in a filtration system as a function of flow rate, x, of the effluentbeing fed into the system. It was decided to use flow rate of 2(2) $14 \mathrm{gal} / \mathrm{min}$ and to observe y^{e} ("experimental"), the percent of waste solid removed,when each of these flow rates was used. The study yielded the data displayed in Table 1.

The mathematical model $E(y \mid x)=a x+b$ was proposed.
Find the parameters, a and b, of the model [Guttman, et al., 1982, p 361].
Table 1

i	x	y^{e}
1	2	24,3
2	4	19,7
3	6	17,8
4	8	14,0
5	10	12,3
6	12	7,2
7	14	5,5

Resolution

a) Classical solution

(We will use only points 1,4 and 7 of Table 1 . With all the points, the source cited gives $\hat{y}=26,81-1,55 x$, "in the sense of least squares".)

As is well known, the parameters of the problem are obtained minimizing a sum of errors (squared, for convenience), of the form

$$
z=\sum_{i=1}^{n}\left(y_{i}-y_{i}^{e}\right)^{2}
$$

with
z - measure (a sum) of the n errors. ($[z]=\psi^{2}$, see below)
n - number of experiments
y_{i} - theoretical (or "calculated") value, $y=a x+b$, of the measured variable, corresponding to $x_{i}(i$ integer, $i=1 . . n)$
a, b - process parameters. (With χ and ψ the dimensions of x and y, respectively, it is $[a]=\psi \chi^{-1}$ and $[b]=\psi$.)
y_{i}^{e} - experimental value (a constant, thus) of the measured variable, corresponding to x_{i}

So, z^{1} is a function of only a and b, whose minimum is easy to find by differentiation,

[^5]giving for these parameters, as is known,
\[

\left[$$
\begin{array}{c}
\hat{a} \\
\hat{b}
\end{array}
$$\right]=\left[$$
\begin{array}{c}
\frac{\sum\left(x_{i}-\bar{x}\right) y_{i}^{e}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
\bar{y}^{e}-\hat{a} \bar{x}
\end{array}
$$\right]
\]

while the optimum of z is not relevant.
Table 2

i	x_{i}	y_{i}^{e}	$x_{i}-\bar{x}$	$\left(x_{i}-\bar{x}\right) y_{i}^{e}$	$\left(x_{i}-\bar{x}\right)^{2}$
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2 4 , 3}$	-6	$-145,8$	36,00
2	4	19,7			
3	6	17,8			
$\mathbf{4}$	$\mathbf{8}$	$\mathbf{1 4 , 0}$	0	0,0	0,00
5	10	12,3			
6	12	7,2		33	36,00
7	$\mathbf{1 4}$	$\mathbf{5 , 5}$	6	$-112,8$	72,00
Sum	24	43,8	(0)		
Average	$\bar{x}=8$	$\bar{y}=14,6$			

From Table 2, for the points selected, it is

$$
\begin{aligned}
& \hat{a}=-1,5(6)(\% \text { removed }) /(\mathrm{gal} / \mathrm{min}) \\
& \hat{b}=27,1(3)(\% \text { removed })
\end{aligned}
$$

(These values are near the values reported for the 7 points, $\hat{a}=-1,55$ and $\hat{b}=26,81$.)
The calculated y 's ${ }^{2}$ give: $y_{1}=24$ ("low", vs. 24,3), $y_{4}=14,6$ ("high", vs. 14,0), $y_{7}=5,2$ ("low", vs. 5,5).

b) Solution by Linear Programming

(We use the same points, $1,4 \mathrm{e} 7$, from Table 1.)
We propose, now, to obtain the parameters a and b, of the same model, by another criterion: make the "errors" or deviations be small individually (not as a sum). To this end, we will try to minimize the "worst" (largest) deviation, i.e.,

$$
[\min] \quad z=\max _{i}\left(\left|d_{i}\right|\right)
$$

with

$$
d_{i}=y_{i}^{e}-y_{i}
$$

or, since (in this case) it is $y=a x+b$,

[^6]$$
d_{i}=y_{i}^{e}-a x_{i}-b
$$

Remember that any value of z depends only of a and b, as all other values are constants (experimental values). (This time, the physical dimensions of z are, of course, the same as those of the measured variable, y.)

As z must be the maximum deviation, it has, equivalently, to satisfy each of the following inequalities

$$
z \geq\left|y_{i}^{e}-a x_{i}-b\right| \quad i=1 . . n
$$

with n the number of points.
The problem becomes, thus, to find a, b and z such that all the inequalities should be satisfied and z be as small as possible. So, we need to find

$$
[\min] z
$$

subject to

$$
z \geq\left|y_{i}^{e}-a x_{i}-b\right| \quad i=1 . . n
$$

Now, this problem has the disadvantage of not being a linear programming, in this form, because, of course, the 'absolute value' ${ }^{3}$ of a linear function is not a linear function [Ecker et al., 1988]. We can, however, convert it into a linear program through the following elementary fact:

$$
\begin{aligned}
\hline \text { For any } z \text { and } w, \\
\quad z \geq|w| \text { iff } z \geq w \text { and } z \geq-w .
\end{aligned}
$$

So, let us replace each (non-linear) inequality by two linear inequalities, to get a linear program:

$$
[\min] z
$$

subject to

$$
\begin{array}{cl}
z \geq+\left(y_{i}^{e}-a x_{i}-b\right) & i=1 . . n \\
z \geq-\left(y_{i}^{e}-a x_{i}-b\right) & i=1 . . n \\
z \geq 0 ; a, b: \text { of free sign } &
\end{array}
$$

As is known, a and b can be replaced by differences of non-negative variables, say, $a^{\prime}-a^{\prime \prime}$ e $b^{\prime}-b^{\prime \prime}$. Incidentally, as we have (possibly good) approximations of the optimum values of a and b, from the previous section, we can simply just replace a by $-a^{\prime}\left(a^{\prime}\right.$ non-negative $)$-an artifice that must be verified in the end (and which would be under suspicion in case we obtained the boundary value $a^{\prime}=0$).

The problem then becomes:

$$
[\mathrm{min}] z
$$

subject to

[^7]\[

$$
\begin{array}{ll}
x_{i} a^{\prime}-b+z \geq-y_{i}^{e} & i=1 . . n \\
-x_{i} a^{\prime}+b+z \geq y_{i}^{e} & i=1 . . n
\end{array}
$$
\]

or, finally, introducing the numerical values,

$$
[\min] z
$$

subject to

$$
\begin{align*}
& 2 a^{\prime}-b+z \geq-24,3 \\
& 8 a^{\prime}-b+z \geq-14,0 \\
& 14 a^{\prime}-b+z \geq-5,5 \\
& -2 a^{\prime}+b+z \geq 24,3 \\
& -8 a^{\prime}+b+z \geq 14,0 \\
& -14 a^{\prime}+b+z \geq 5,5
\end{align*}
$$

In matrix form, it is

$$
\begin{array}{ccc}
{[\min] \quad w=\mathbf{c}^{\mathrm{T}} \mathbf{x}} & \\
\text { subject to: } & \mathbf{A x} \quad \geq \mathbf{b} \\
& \mathbf{x} \quad \geq \mathbf{0}
\end{array}
$$

with

$$
\begin{gather*}
\mathbf{x}=\left[\begin{array}{lll}
a^{\prime} & b & z
\end{array}\right]^{\mathrm{T}} \\
\mathbf{c}^{\mathrm{T}}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] \\
\mathbf{A}=\left[\begin{array}{ccc}
2 & -1 & 1 \\
8 & -1 & 1 \\
14 & -1 & 1 \\
-2 & 1 & 1 \\
-8 & 1 & 1 \\
-14 & 1 & 1
\end{array}\right] \mathbf{b}=\left[\begin{array}{c}
-24,3 \\
-14,0 \\
-5,5 \\
24,3 \\
14,0 \\
5,5
\end{array}\right]
\end{gather*}
$$

i) Direct resolution

The problem, as just formulated, has 3 structural variables and 6 constraints. Its manual resolution, thus, faces the practically unfeasible handling of square matrices of order 6, among others. The computer resolution took 5 iterations and gave (as structural variables and objective function):

$$
\left[\begin{array}{l}
a^{\prime} \\
b \\
z
\end{array}\right]=\left[\begin{array}{c}
1,56667 \\
26,9833 \\
0,45
\end{array}\right] \quad(z=0,45)
$$

So, we have $a=-a^{\prime}=-1,56667$ and $b=26,9833$. Notice that it is $a^{\prime} \neq 0$ (and, inevitably, $a^{\prime}>0$), as expected, which validates the hypothesis made to ease the calculations, so this result is not "suspect".

It is not evident whether this set (a, b) is better or worse than the former (otherwise, it happens that one of the values coincides), a fact that depends on the finalities.

ii) Resolution by the dual (brief note)

The LP problems can be grouped in pairs, where one of the problems is the primal and the other the dual -an assignment that is arbitrary, although usually the primal corresponds to the original problem. Duality -present in various areas of Mathematics- is important both theoretically and practically in LP, as both problems yield an identical optimum (if it exists) for the objective function. Moreover: indeed, in the complete solution of one of the problems, the complete solution of the other can be read, with the advantage that, frequently, one of them is computationally (much) less difficult.

The relationship between primal and dual, explored in the LP literature, may be shortly presented as follows, conveniently for theory and application:

Primal

[min]	$z=\mathbf{c}^{\mathrm{T}} \mathbf{x}$		$[\max]$	$z=\mathbf{b}^{\mathrm{T}} \mathbf{y}$	
subject to:	$\mathbf{A x}$	$\geq \mathbf{b}$	subject to:	$\mathbf{A}^{\mathrm{T}} \mathbf{y}$	$\leq \mathbf{c}$
		\mathbf{x}	$\geq \mathbf{0}$		$\mathbf{y} \quad \geq \mathbf{0}$

The case under study corresponds to the classification above; in other cases, the descriptions under the titles primal and dual would be exchanged.

Among other properties, it can be proved that:

- If one of the problems has an optimum vector (solution), then the other also has one, and the optimum objective function is identical.
- If one of the problems is possible but has no finite optimum, then the other is impossible.
- Both problems can be impossible.
- The optimum vector for the maximization has its elements equal to the coefficients of the slack variables of the optimum basis of the minimization, and reciprocally.

Therefore, starting from the original problem under study, which has 3 structural variables and 6 constraints (two per each experimental point), its dual can be constructed, having 6 structural variables and only 3 constraints. So, in this case, the dual (a) evolves by much easier iterations (matrices of order 3, not 6), and (b) will
be, expectedly, less cumbersome, as it will yield about half the iterations (about proportional to 3 , not 6). Using the dual would still allow to easily consider all the experimental points, even if more numerous, as the number of iterations till the optimum depends essentially on the number of constraints.

The dual would be:

$$
[\max](w=) 24,3 s_{1}+14,0 s_{2}+5,5 s_{3}-24,3 s_{4}-14,0 s_{5}-5,5 s_{6}
$$

subject to

$$
\left[\begin{array}{cccccc}
2 & 8 & 14 & -2 & -8 & -14 \\
-1 & -1 & -1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4} \\
s_{5} \\
s_{6}
\end{array}\right] \leq\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

The result, in 4 iterations (instead of 5), is (of course)

$$
z=0,45
$$

and contains -in its so-called dual variables- the values

$$
\Delta=\left[\begin{array}{lll}
-1,567 & -26,98 & -0,45
\end{array}\right]^{\mathrm{T}}
$$

Consequently, this vector (always negative -i.e., non-positive- in the optimum of a maximization, of course) has as elements the symmetrical of the results (a^{\prime}, b, z) of the primal, already known.

References

- Ecker, Joseph G., Michael Kupferschmid, 1988, "Introduction to Operations Research", John Wiley \& Sons, New York, NY (USA), ISBN 0-471-63362-3.
- Guttman, Irwin, Samuel S. Wilks, J. Stuart Hunter, 1982, "Introduction to Engineering Statistics", 3. ${ }^{\text {rd }}$ ed., John Wiley \& Sons, New York, NY (USA), ISBN 0-471-86956-2.

The objective function plane has not been drawn. It would touch the line $C D$.

Linear Programming: Duality and Sensitivity Analysis

Every linear program in the variables $x_{1}, x_{2}, \ldots, x_{n}$ has associated with it another linear program in the variables $w_{1}, w_{2}, \ldots, w_{m}$ (where m is the number of constraints in the original program), known as its dual. The original program, called the primal, completely determines the form of its dual.

SYMMETRIC DUALS

The dual of a (primal) linear program in the (nonstandard) matrix form

$$
\begin{align*}
\text { minimize: } & z=\mathbf{C}^{\boldsymbol{T}} \mathbf{X} \\
\text { subject to: } & \mathbf{A X} \geq \mathbf{B} \tag{4.1}\\
\text { with: } & \mathbf{X} \geq \mathbf{0}
\end{align*}
$$

is the linear program

$$
\begin{align*}
\operatorname{maximize} & z=\mathbf{B}^{T} \mathbf{W} \\
\text { subject to: } & \mathbf{A}^{T} \mathbf{W} \leq \mathbf{C} \tag{4.2}\\
\text { with: } & \mathbf{W} \geq \mathbf{0}
\end{align*}
$$

Conversely, the dual of program (4.2) is program (4.1). (See Problems 4.1 and 4.2.)
Programs (4.1) and (4.2) are symmetrical in that both involve nonnegative variables and inequality constraints; they are known as the symmetric duals of each other. The dual variables $w_{1}, w_{2}, \ldots, w_{m}$ are sometimes called shadow costs.

DUAL SOLUTIONS

Theorem 4.1 (Duality Theorem): If an optimal solution exists to either the primal or symmetric dual program, then the other program also has an optimal solution and the two objective functions have the same optimal value.

In such situations, the optimal solution to the primal (dual) is found in the last row of the final simplex tableau for the dual (primal), in those columns associated with the slack or surplus variables (see Problem 4.3). Since the solutions to both programs are obtained by solving either one, it may be computationally advantageous to solve a program's dual rather than the program itself. (See Problem 4.4.)

Theorem 4.2 (Complementary Slackness Principle): Given that the pair of symmetric duals have optimal solutions, then if the k th constraint of one system holds as an inequality-i.e., the associated slack or surplus variable is positive-the k th component of the optimal solution of its symmetric dual is zero.
(See Problems 4.11 and 4.12.)

UNSYMMETRIC DUALS

For primal programs in standard matrix form, duals may be defined as follows:

Primal
minimize: $z=\mathbf{C}^{T} \mathbf{X}$
subject to: $\quad \mathbf{A X}=\mathbf{B} \quad$ (4.3)
with: $\mathrm{X} \geq \mathbf{0}$
maximize: $z=\mathbf{C}^{T} \mathbf{X}$
subject to: $\quad \mathbf{A X}=\mathbf{B}$
with: $\mathrm{X} \geq 0$

Dual

maximize: $z=\mathbf{B}^{T} \mathbf{W}$
subject to: $\mathbf{A}^{T} \mathbf{W} \leq \mathbf{C}$
minimize: $z=\mathbf{B}^{T} \mathbf{W}$
subject to: $\mathbf{A}^{T} \mathbf{W} \geq \mathbf{C}$
(See Problems 4.5 and 4.6.) Conversely, the duals of programs (4.4) and (4.6) are defined as programs (4.3) and (4.5), respectively. Since the dual of a program in standard form is not itself in standard form, these duals are unsymmetric. Their forms are consistent with and a direct consequence of the definition of symmetric duals (see Problem 4.8).

Theorem 4.1 is valid for unsymmetric duals too. However, the solution to an unsymmetric dual is not, in general, immediately apparent from the solution to the primal; the relationships are

$$
\begin{array}{rlrl}
\mathbf{W}^{* T} & =\mathbf{C}_{o}^{T} \mathbf{A}_{0}^{-1} & & \text { or } \\
\mathbf{X}^{* T} & =\mathbf{B}_{0}^{T}\left(\mathbf{A}_{0}^{T}\right)^{-1} & & \text { or } \tag{4.8}\\
\left.\mathbf{A}_{0}^{T}\right)^{-1} \mathbf{C}_{0} \\
\mathbf{X}^{*} & =\mathbf{A}_{0}^{-1} \mathbf{B}_{0}
\end{array}
$$

In (4.7), \mathbf{C}_{0} and \mathbf{A}_{0} are made up of those elements of \mathbf{C} and \mathbf{A}, in either program (4.3) or (4.5), that correspond to the basic variables in \mathbf{X}^{*}; in (4.8), \mathbf{B}_{0} and \mathbf{A}_{0} are made up of those elements of \mathbf{B} and \mathbf{A}, in either program (4.4) or (4.6), that correspond to the basic variables in \mathbf{W}^{*}. (See Problem 4.7.)

O «modelo matemático» do problema do transporte é, pois,

$$
\begin{array}{rrr}
\text { [min] } z= & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} & \\
\text { sujeito a } & \sum_{j=1}^{n} x_{i j}=a_{i} & i=1 . . m \\
& \sum_{i=1}^{m} x_{i j}=b_{j} & j=1 . . n \\
& x_{i j} \geq 0 & i=1 . . m \\
& & j=1 . . n
\end{array}
$$

O último conjunto de constrangimentos, fisicamente necessário, relativo a não-negatividade, relembra o facto de que o problema do transporte é um caso particular da Programação Linear, na qual esta condição é imprescindível. (A notação «[min]» significa, não que o mínimo de z iguala o $2 .^{\circ}$ membro, mas sim que se pretendem minimizar os dois membros.)

Figura 1 - Representação dum «problema do transporte»
Qualquer outro problema que apresente esta mesma estrutura -isto é, seja representável por estas relações matemáticas- pertence também à classe dos problemas de Programação Linear designada por Problema do Transporte.

- Exemplo 1 (protótipo)

Uma firma (Figura 1) dispõe de 3 centros de produção -fábricas F, G e H situados em diferentes localidades, com capacidades de produção, respectivamente, de 100, 120 e 120 unidades ($\mathrm{t} / \mathrm{dia}$) de determinado produto, com que abastece 5 centros de distribuição seus -armazéns P, Q, R, S e T - também situados em diferentes locais, que movimentam, respectivamente, 40, 50, 70, 90 e 90 unidades ($\mathrm{t} / \mathrm{dia}$).

Quadro 3 - Custos unitários (conto / t) de transporte fábrica-armazém, produções e consumos (t)

F	P	Q	R	S	T	100
	4	1	2	6	9	
G	6	4	3	5	7	120
H	5	2	6	4	8	120
	40	50	70	90	90	

Os custos unitários (conto/t) de transporte entre fábricas e armazéns (consequência das suas localizações geográficas e preços disponíveis) são dados no Quadro 3 (problema de Kaufmann [1970]).

Pretende-se estabelecer o «plano»(ou «programa») mais económico de distribuição do produto, desde as fábricas até aos armazéns.

Propõem-se os seguintes passos:
a) Tome uma decisão prévia (ache uma solução) quanto à repartição das unidades fabricadas pelos vários armazéns.
b) Procure, por tentativas metódicas, uma nova solução, próxima da óptima. Verifique se a solução achada é óptima.
c) Proceda iterativamente à melhoria da solução, até atingir o óptimo.

Nota 1: Como achar uma «solução inicial»

Eis seis maneiras para tal.
Matriz do custo, \boldsymbol{C} (custo unitário de transporte, por exemplo, $\$ /$ peça) (custo de transporte desde cada uma das 3 origens para cada um dos 5 destinos)

4	1	2	6	9
100				
6	4	3	5	7
120				
5	2	6	4	8
40	50	70	90	90

(Está «orlada» com as quantidades disponíveis nas origens - produções, ofertas - e requeridas nos destinos - consumos, procuras.)

1) Uma solução inadmissível - matriz do transporte, X

20	25	35	40	-20
-25	30	40	45	30
45	-5	-5	5	80
40	50	70	90	90

2) Uma solução admissível («não-básica»)

10	20	30	20	20
5	20	0	50	45
25	10	40	20	25
40	50	70	90	90

$$
z=1760
$$

3) Uma solução admissível básica - uma solução básica resulta de preenchimentos máximos. (Os expoentes mostram a ordem de preenchimento.)

0	0	70^{-1}	$30^{\frac{3}{2}}$	0
40	0	0	60	20
0	50^{2}	0	0	70^{4}
40	50	70	90	90

100
120
120

$$
z=1660
$$

Não demonstraremos, mas só interessa manusear soluçães admissíveis e básicas.
4) Uma solução (¿ cara ?)

0	0	0	60	40		
100						
40	50	0	30	0		
120						
0	0	70	0	50		
120						
40	50	70	90	90	\quad	12130
:---:						

Esta solução é, com efeito, a mais cara, resultante de se ter resolvido o problema «ao contrário». Seguem-se soluções (admissíveis básicas) sistemáticas, as únicas que realmente interessam para iniciar a procura do óptimo.
5) Solução (a. b.) pela «regra ou método do canto noroeste» ("NW corner rule"), sendo os sentidos indicados inerentes à regra.

$40 \rightarrow$	$50 \rightarrow$	10】	0	0	100	
0	0	60 \rightarrow	60 \downarrow	0		
0	0	0	$30 \rightarrow$	90	120	
40	50	70	90	90	$z=1550$	

6) Solução pelo «método de Vogel» ou «das diferenças» (— modificado).

30	0	70	0	0
10	0	0	20	90
0	50	0	70	0
40	50	70	90	90

100
120
120

$$
z=1430
$$

Para obtenção de uma solução num problema do transporte, conforme se pede na alínea a) do Exemplo 1 (protótipo), poderá proceder-se por tentativas. Para responder à alínea \boldsymbol{b}), existem vários métodos, dos quais o mais simples é certamente o do canto noroeste. É possível obter uma solução de muitas maneiras (incluindo por tentativas), mas um método como o do canto NW tem a vantagem de fornecer uma solução com as duas propriedades fundamentais (como se verá) de ser «admissível» (ou «aceitável») e «básica» (ou «de base»):

- Solução admissível (ou aceitável, ou viável) é uma solução que respeita todos os constrangimentos do problema.
- Solução básica (ou de base) é uma solução com $m+n-1$ posições «preenchidas» (positivas ou, no limite, nulas) que não formam «ciclos».

\boldsymbol{X}				
30^{+} 0 70^{-} 0 0 10^{-} 0 0^{+} 20 90 0 50 0 70 0 $\theta=(10)$ $z=1430$				

C^{\prime}					u_{i}
4	1	2	3	5	-2
6	3	4	5	7	0
5	2	3	4	6	-1
6	3	4	5	7	

$\boldsymbol{C - C}$				
$\underline{0}$	0	$\underline{0}$	3	4
$\underline{0}$	1	-1	$\underline{0}$	$\underline{0}$
0	$\underline{0}$	3	$\underline{0}$	2
$\boldsymbol{\delta}=-1$				

40	0^{+}	60^{-}		
		10^{+}	20^{-}	90
	50^{-}		70^{+}	
(20)				$z=1420$

$\mathbf{4}$	2	$\mathbf{2}$	4	6
-1				
5	3	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$
$\mathbf{0}$				
4	$\mathbf{2}$	2	$\mathbf{4}$	6

$\underline{0}$	$\mathbf{- 1}$	$\underline{0}$	2	3
1	1	$\underline{0}$	$\underline{0}$	$\underline{0}$
1	$\underline{0}$	4	$\underline{0}$	2
-1				

40^{-}	20^{+}	40		
		30		90
0^{+}	30^{-}		90	
$\mathbf{c} 30)$				
Opt				
z				

$\underline{0}$	$\underline{0}$	$\underline{0}$	3	3					
1	2	$\underline{0}$	1	$\underline{0}$					
$\mathbf{0}$	$\underline{0}$	3	$\underline{0}$	1					
0									

10^{+}	50^{-}	40		
		30		90
30^{-}	0^{+}		90	
(30)				
Opt				
$z=1400$				

$\mathbf{4}$	$\mathbf{1}$	$\mathbf{2}$	3	6
$\mathbf{0}$				
5	2	$\mathbf{3}$	4	$\mathbf{7}$
$\mathbf{1}$	1			
$\mathbf{5}$	2	3	$\mathbf{4}$	7
1	1			
4	1	2	3	6

$\underline{0}$	$\underline{0}$	$\underline{0}$	3	3	
1	2	$\underline{0}$	1	$\underline{0}$	
$\underline{0}$	$\mathbf{0}$	3	$\underline{0}$	1	
0					

Outra heurística: método de Vogel

Convirá ainda referir mais um método heurístico para obter uma solução inicial próxima do óptimo, o de Vogel propriamente dito, aparentado ao anterior (talvez mais eficiente, mas mais trabalhoso). É o método tipicamente proposto na literatura.

Passo 1 - Calcule, na matriz C restante, a diferença entre os dois valores menores em cada fila (linha ou coluna) e seleccione a fila que tiver a diferença máxima.
Passo 2 - Atribua, na matriz X, a quantidade maior possível ao elemento mais barato da fila seleccionada.
Passo 3 - Se a atribuição feita saturou a oferta da linha, elimine a linha de C; se saturou a procura da coluna, elimine a coluna de C. (Se saturou ambas e esta não é a última atribuição, a solução é degenerada.) Volte ao Passo 1.

Nota 3: Tratamento da degenerescência (exemplo)

Técnica de resolução

(0) $\quad X$					C^{\prime}					u_{i}	$C-C$ '				
0	0	0	0	1717	30	34	24	31	32	-1	8	5	7	2	0
24	0	0	0	832	29	33	23	30	31	-2	0	3	15	5	0
0	14^{-}	0	1^{+}	015	31	35	25	32	33	0	6	0	9	0	5
0	0^{+}	22	14^{-}	$\theta \varepsilon 36$	37	41	31	38	39	6	1	-2	0	0	0
	$\begin{aligned} & 14 \\ & \theta= \end{aligned}$			25					33			$\delta=$			

Na «reacção em cadeia», só uma das casas que diminuem se anula (qualquer -v. g., a mais barata); todas as restantes ficam com uma arbitrariamente pequena quantidade, ε. Introduzindo-a, substituímos o problema original por outro -«pertur-bado»-, arbitrariamente próximo dele. Quando pudermos, fazendo $\varepsilon \rightarrow 0$, regressaremos ao problema original. (Rigorosamente, com vários ε, poderíamos fazer $\varepsilon^{\prime}, \varepsilon^{\prime \prime}$, etc..)
(1)

				17
24				8
	ε		15	
	14	22		ε

30	32	24	29	$\mathbf{3 2}$	24
$\mathbf{2 9}$	31	23	28	$\mathbf{3 1}$	23
33	$\mathbf{3 5}$	27	$\mathbf{3 2}$	35	27
37	$\mathbf{3 9}$	$\mathbf{3 1}$	36	$\mathbf{3 9}$	$\mathbf{3 1}$
	$\mathbf{6}$	8	0	5	8

8	7	7	4	0
0	5	15	7	0
4	0	7	0	3
(1)	0	0	2	0
1				

A solução (matemática) do problema é degenerada. A solução física tem, então ($\operatorname{com} \varepsilon=0$), apenas 6 posições preenchidas (em vez de $4+5-1=8$).

O critério de optimalidade do "stepping-stone" (tal como é característico da Programação Linear, de que é um caso particular) é condição suficiente, mas não necessária. Assim, podemos já ter uma solução que é óptima (fazendo $\varepsilon \rightarrow 0$) mas só nos apercebermos do facto após mais iterações. Naturalmente, esta situação só afecta casos degenerados, em que o progresso numa iteração seja «nulo» (infinitesimal), podendo mesmo o algoritmo (na forma simples apresentada) entrar em ciclo.

Nota 4: Grelha para o "stepping-stone" C

$z=$

$z=$

$z=$

$z=$

$z=$

For the data of Fig. 9-2, determine a shipping schedule that meets all demands at a minimum total cost.

Fig. 9-2

Locations 1 and 2 are sources, while locations 5 and 6 are destinations. Location 3 is both a source and a junction, whereas location 4 serves both as a destination and a junction. Because total supply is 180 units but total demand is only 105 units, location 7 is created as a dummy destination with a demand of $180-105=75$ units. Since every junction is made both a source and a destination, by adding 180 units to both its supply and its demand, the transportation tableau will involve sources $1,2,3,4$, and destinations 3, 4, 5, 6,7. Besides the costs given in Fig. 9-2, we have zero as the cost from a junction (as a source) to itself (as a destination), zero as the cost from any source to the dummy, and an excessive amount ($\$ 10000$) as the cost over any nonexistent link (e.g., $1 \rightarrow 6$).

Tableau 3 is the optimal transportation tableau. Location 3 receives 20 units from location 1 and 70 units from location 2, whereupon it redistributes these units along with its own initial supply of 15 units to locations 4,5 , and 6 . After all demands have been satisfied, location 1 will remain with 75 units, indicated

Destinations

	3	4	5	6	(dummy) 7	Supply	u_{i}
1	${ }^{3}$	$\begin{aligned} & 10000 \\ & (9994) \end{aligned}$	8 (1)	$\begin{gathered} 10000 \\ (9993) \end{gathered}$	0	95	3
2	${ }^{2} 70$	7 (2)	$\begin{gather*} 10000 \\ (9994) \tag{1} \end{gather*}$	$\begin{aligned} & 10000 \\ & (9994) \end{aligned}$	0	70	2
3	0 90	3 30	4 $\begin{equation*} 30 \tag{3} \end{equation*}$	4 45	0	195	0
4	$\begin{align*} & 10000 \tag{6}\\ & (10003) \end{align*}$	0 180	$\begin{gathered} 10000 \\ (9999) \end{gathered}$	2 (1)	0	180	-3
Demand	180	210	30	45	75		
v_{i}	0	3	4	4	-3		

Tableau 3
in Tableau 3 by the allocation from location 1 to the dummy. The allocations $x_{33}^{*}=90$ and $x_{44}^{*}=180$ are book entries signifying the numbers of units that do not pass through junctions 3 and 4 , respectively.
.4 Solve Problem 1.13 by the Hungarian method.
Table 1-1 of Problem 1.13 is expanded to make the number of events equal to the number of swimmers; the result is Tableau 4A. As usual, costs (times) associated with the dummies, events 5 and 6 , are taken to be zero. The rationale here is that events 5 and 6 do not exist, so they can be completed in zero time; swimmers assigned to these events will be the ones not entered in the four-swimmer relay.

The Hungarian method is initiated by subtracting 0 from every row of Tableau 4 A and then subtracting $65,69,63,55,0$, and 0 from columns 1 through 6 , respectively; this generates Tableau 4B. Since this matrix does not contain a zero-cost feasible solution, we cover the existing zeros by as few horizontal and vertical lines as possible. One such covering is that shown in Tableau 4 B ; another, equally good, is obtained by replacing the line through row 3 by a line through column 4 . The smallest uncovered element is 1 , appearing in the $(2,2)$ position. Subtracting 1 from every uncovered element in Tableau 4B and adding 1 to every element covered by two lines-the $(1,5),(1,6),(3,5),(3,6),(5,5)$, and $(5,6)$ elements-we arrive at Tableau 4 C .

Tableau 4C also does not contain a feasible zero-cost assignment. Repeating Step 3 of the Hungarian method, we determine that 1 is again the smallest uncovered element. Subtracting it from each uncovered
3) Verificar se há entrepostos.
a) Se não há entrepostos, o problema final é o problema base. Terminar.
b) Se há entrepostos, passar a 4).
4) Classificar os entrepostos como primitivos ou suplementares: um entreposto é primitivo se coincide com uma origem e ou um destino do problema base; é suplementar se não coincide com nenhum deles.
a) Cada entreposto suplementar constituirá uma nova origem e um novo destino. Na matriz dos custos assim aumentada, são acrescentadas: colunas de custos dos trajectos entre as origens e os entrepostos suplementares; e linhas de custos dos trajectos entre os entrepostos suplementares e os destinos.
b) Todos os entrepostos (tanto primitivos como suplementares) terão a sua capacidade aumentada de $K Q$.

O problema de «planeamento de produção»

Inclui-se o Exemplo 3 [Hillier \& Lieberman, 1995, p 310], acerca do chamado "production scheduling",", ou planeamento de produção. O «transporte» pode ser imaginado, porém é não no espaço mas no tempo; há limites de produção e não produções fixadas; e têm de se impedir todos os «caminhos» que levem dum período de produção a um período de consumo que lhe seja anterior.

[^8]
Exemplo 3

Uma empresa ${ }^{4}$ produz motores de avião e pretende planear a produção destes nos próximos 4 meses, segundo os dados do Quadro 6 [Hillier \& Lieberman, 1995, p 310]. Nos vários meses, há diferentes números de montagens de motores previstas, produções máximas e custos unitários (em $\$ 10^{6}$) de produção e de armazenagem.

Quadro 6

Mês	Montagens previstas	Produção máxima	Custo unit. de produção	Custo unit. de armazenagem
1	10	25	1,08	0,015
2	15	35	1,11	$»$
3	25	30	1,10	$»$
4	20	10	1,13	-

[^9]Pretende-se o planeamento de custo total (produção e armazenagem) mínimo.
Fazendo $x_{i j}$ o número de motores fabricados no mês i para montagem no mês j e $c_{i j}$ o custo associado, podemos criar o problema de transporte do Quadro 6 A, ainda incompleto.

Quadro 6 A

		Mês destino				
		1	2	3	4	Produção
Mês origem	1	1,080	1,095	1,110	1,125	тм 25
	2		1,110	1,125	1,140	тM 35
	3			1,100	1,115	тM 30
	4				1,130	тм 10
	Consumo	10	15	25	20	(${ }^{\text {TM }} 100$)

O artifício para conduzir este problema a um TP (Quadro 6) é, após «proibir» os percursos impossíveis (custo infinitamente grande, M), criar um destino fictício, F, que receberá, a custo zero, a produção não utilizada.

Quadro 6 B

	1	2	3	4	F	Produção
1	1,080	1,095	1,110	1,125	0	25
2	M	1,110	1,125	1,140	0	35
3	M	M	1,100	1,115	0	30
4	M	M	M	1,130	0	10
Consumo	10	15	25	20	30	(100)

O custo óptimo será $\$ 77,3 \times 10^{6}$ (com solução não única).

O problema da Afectação

[Hillier \& Lieberman]

- Exemplo 4

Um grupo de amigos 5, raparigas e rapazes em igual número, decide formar casais, atribuindo-se preferências (de 0 a 20), como segue. (Neste caso, para ter uma classificação única, conviria sortear o «lado» que atribui as preferências, v. g., as raparigas.)

[^10]| Preferências | Ana | Helena | Deolinda | Maria | Ofertas: |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Joel | 15 | 16 | 14 | 14 | 1 |
| Pedro | 14 | 14 | 13 | 15 | 1 |
| Fernando | 13 | 15 | 13 | 14 | 1 |
| Luís | 15 | 16 | 14 | 14 | 1 |
| Procuras: | 1 | 1 | 1 | 1 | |

Determine a «melhor» formação de casais, supondo um critério de preferência total máxima, recorrendo ao problema do transporte. (As classificações, todas «parecidas», entre 13 e 16, pretendem provocar multiplicidade de soluções.)

É um problema de afectação. Se se quiser prescindir do algoritmo próprio método húngaro- e torná-lo num TP típico, começar-se-á por transformar as preferências em custos. Se se substituir cada preferência pelo seu complemento para um máximo conveniente (v. g., 20), vem

Custos:	Ana	Helena	Deolinda	Maria	Ofertas:
Joel	5	4	6	6	1
Pedro	6	6	7	5	1
Fernando	7	5	7	6	1
Luís	5	4	6	6	1
Procuras:	1	1	1	1	

A solução é JH, PM, FD e LA, a custo de 21. (Este método de formar casais pode ter consequências nefastas.)

Verifique se se obteria a mesma afectação substituindo cada preferência pelo seu complemento para o máximo das preferências.

Transshipment problem [Bronson, 1982, Pr. 9.3, p 89]
Routine
Sources (they only send): 1, 2
Destinations (they only receive): 5, $6 \quad$ Give as negative quantities (demand)

A) Insert junctions - Transshipment points or depots or junctions (remaining):

3, 4. Each becomes source and destination. Transform to transportation problem.
Insert junctions appropriately with their capacities \boldsymbol{M} is infinity, to mean "no path".
Destin. ${ }^{\text {s. }}$
Sources 1

3	4	5	6	
3	M	8	M	95
2	7	M	M	70
0	3	4	4	15
M	0	M	2	0
0	30	30	45	$105 \backslash 180$

B) Balance - If the transportation problem is not balanced, insert one fictitious source or destination with the capacity difference (and 0 transportation costs).

Destin. ${ }^{\mathbf{s}}$
Sources 1

3	4	5	6	7	
3	M	8	M	0	95
2	7	M	M	0	70
0	3	4	4	0	15
M	0	M	2	0	0
0	30	30	45	75	$180 \backslash 180$

C) Convert - Let T be the total capacities. (Here, $T=180$.) To convert to aTP equivalent to the transshipment problem, add T to every junction's capacity.

Destin. ${ }^{\text {s }}$
Sources 1

3	4	5	6	7	
3	M	8	M	0	95
2	7	M	M	0	70
0	3	4	4	0	195
M	0	M	2	0	180
180	210	30	45	75	$540 \backslash 540$

Solve as an ordinary TP. Solution:
Destin. ${ }^{\mathrm{s}}$
Sources

| 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | | 20 | | | |
| :---: | :---: | :---: | :---: |
| 95 | | | |
| 70 | | | |
| 70 | | | |
| 90 | 30 | 30 | 45 |
| | | | |
| | 180 | | |
| 195 | | | |
| 180 | 210 | 30 | 45 |
| 180 | | | |

(This solution is non-degenerate: $\mathbf{4 + 5} \mathbf{- 1 = \mathbf { 8 }}$ full cells, as expected) At junctions -points (i, i - , interpret the quantity as complement to T. (So, here: 90 units pass by 3 ; and 4 is not used.)
(Blank page)

These and other questions will be discussed further once we have seen an example.

7.3 BRANCH AND BOUND: AN EXAMPLE

The most common way to solve integer programs is to use implicit enumeration, or branch and bound, in which linear programming relaxations provide the bounds. We first demonstrate the approach by an example:

$$
\begin{align*}
z=\max 4 x_{1}-x_{2} & \tag{7.1}\\
7 x_{1}-2 x_{2} & \leq 14 \tag{7.2}\\
x_{2} & \leq 3 \tag{7.3}\\
2 x_{1}-2 x_{2} & \leq 3 \tag{7.4}\\
x \in & Z_{+}^{2} \tag{7.5}
\end{align*}
$$

Bounding. To obtain a first upper bound, we add slack variables x_{3}, x_{4}, x_{5} and solve the linear programming relaxation in which the integrality constraints are dropped. The resulting optimal basis representation is:

$$
\begin{aligned}
& \bar{z}=\max \frac{59}{7} \quad-\frac{4}{7} x_{3} \quad-\frac{1}{7} x_{4} \\
& \begin{array}{cc}
x_{1} \quad+\frac{1}{7} x_{3}+\frac{2}{7} x_{4} & =\frac{20}{7} \\
x_{2} & +x_{4}
\end{array} \\
& -\frac{2}{7} x_{3}+\frac{10}{7} x_{4}+x_{5}=\frac{23}{7} \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5} \geq 0 .
\end{aligned}
$$

Thus we obtain an upper bound $\bar{z}=\frac{59}{7}$, and a nonintegral solution $\left(\bar{x}_{1}, \bar{x}_{2}\right)=$ $\left(\frac{20}{7}, 3\right)$. Is there any straightforward way to find a feasible solution? Apparently not. By convention, as no fcasible solution is yet available, we take as lower bound $\underline{z}=-\infty$.

Branching. Now because $\underline{z}<\bar{z}$, we need to divide or branch. How should we split up the feasible rogion? One simple idea is to choose an integer variable that is basic and fractional in the linear programming solution, and split the problem into two about this fractional value. If $x_{j}=\bar{x}_{j} \notin Z^{1}$, one can take:

$$
\begin{aligned}
& S_{1}=S \cap\left\{x: x_{j} \leq\left\lfloor\bar{x}_{j}\right\rfloor\right\} \\
& S_{2}=S \cap\left\{x: x_{j} \geq\left\lceil\bar{x}_{j}\right\rceil\right\} .
\end{aligned}
$$

It is clear that $S=S_{1} \cup S_{2}$ and $S_{1} \cap S_{2}=\phi$. Another reason for this choice is that the solution \bar{x} of $L P(S)$ is not feasible in either $L P\left(S_{1}\right)$ or $L P\left(S_{2}\right)$. This implies that if there is no degeneracy (i.e., multiple optimal LP solutions $)$, then $\max \left(\mathcal{Z}_{1}, Z_{2}\right)<Z_{1}$, no the upper bound will atrictly decrease.

Fig. 7.6 Partial branch-and-bound tree 1

Following this idea, as $\bar{x}_{1}-20 / 7 \notin Z^{1}$, we take $S_{1}=S \cap\left\{x ; x_{1} \leq 2\right\}$ and $S_{2}-S \cap\left\{x: x_{1} \geq 3\right\}$. We now have the tree shown in Figure 7.6. The subproblems (nodes) that must still be examined are called active.

Choosing a Node. The list of active problems (nodes) to be examined now contains S_{1}, S_{2}. We arbitrarily choose S_{1}.

Reoptimizing. How should we solve the new modified linear programs $L P\left(S_{i}\right)$ for $i-1,2$ without starting again from scratch?

As we have just added one single upper or lower bound constraint to the linear program, our previous optimal basis remains dual feasible, and it is thercfore natural to reoptimize from this basis using the dual simplex algorithm. Typically, only a few pivots will be needed to find the new optimal lincar programming solution.

Applying this to the linear program $L P\left(S_{1}\right)$, we can write the new constraint $x_{1} \leq 2$ as $x_{1}+s-2, s \geq 0$, which can be rewritten in terms of the nonbasic variables as

$$
-\frac{1}{7} x_{3}-\frac{2}{7} x_{4}+s=-\frac{6}{7} .
$$

Thus we have the dual feasible representation:

After two simplex pivots, the lincar program is reoptimized, giving:

$$
\begin{array}{cccccc}
z_{1}=\max \frac{15}{2} & & & & -\frac{1}{2} x_{5} & -3 s \\
& x_{1} & & & \\
& & x_{2} & & -\frac{1}{2} x_{5} & +s \\
& & x_{3} & -x_{5} & -5 s & =2 \\
& & & =1
\end{array}
$$

$$
\begin{array}{lll}
x_{4}+\frac{1}{2} x_{5} & +6 s & =1 \\
x_{4}-x_{5} & 8 & \geq 0
\end{array}
$$

$$
\begin{aligned}
& \bar{z}_{1}=\max \frac{59}{7} \quad-\frac{4}{7} x_{3} \quad-\frac{1}{7} x_{4} \\
& x_{1}+\frac{1}{7} x_{3}+\frac{2}{7} x_{4} \quad=\frac{20}{7} \\
& x_{2} \quad \mid x_{4} \quad=3 \\
& -\frac{2}{7} x_{3}+\frac{10}{7} x_{4}+x_{5}=\frac{23}{7} \\
& -\frac{1}{7} x_{3} \quad-\frac{2}{7} x_{4} \quad+s=-\frac{6}{7} \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5}, \quad s \quad \geq 0 .
\end{aligned}
$$

with $\bar{z}_{1}=\frac{15}{2}$, and $\left(\bar{x}_{1}^{1}, \bar{x}_{2}^{1}\right)=\left(2, \frac{1}{2}\right)$.
Branching. S_{1} cannot be pruned, so using the same branching rule as before, we create two new nodes $S_{11}=S_{1} \cap\left\{x: x_{2} \leq 0\right\}$ and $S_{12}=S_{1} \cap\left\{x ; x_{2} \geq 1\right\}$, and add them to the node list. The tree is now as shown in Figure 7.7.

Fig. 7.7 Partial branch-and-bound tree 2

Choosing a Node. The active node list now contains S_{2}, S_{11}, S_{12}. Arbitrarily choosing S_{2}, we remove it from the node list and examine it in more detail.

Reoptimizing. To solve $L P\left(S_{2}\right)$, we use the dual simplex algorithm in the same way as above. The constraint $x_{1} \geq 3$ is first written as $x_{1}-t=3, t \geq 0$, which expressed in terms of the nonbasic variables becomes:

$$
\frac{1}{7} x_{3}+\frac{2}{7} x_{1}+t=-\frac{1}{7} .
$$

From inspection of this constraint, we see that the resulting linear program

$$
\begin{aligned}
& \bar{z}_{2}=\max \frac{59}{7} \\
& -\frac{4}{7} x_{3} \quad-\frac{1}{7} x_{4} \\
& +\frac{1}{7} x_{3}+\frac{2}{7} x_{4} \quad=\frac{20}{7} \\
& x_{2} \quad+x_{4} \quad=3 \\
& -\frac{2}{7} x_{3}+\frac{10}{7} x_{4}+x_{5} \quad=\quad \frac{23}{7} \\
& \frac{1}{7} x_{3} \quad+\frac{2}{7} x_{4} \quad+t=-\frac{1}{7} \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5}, \quad t \quad \geq 0
\end{aligned}
$$

is infeasible, $\bar{z}_{2}=-\infty$, and hence node S_{2} is pruned by infeasibility.
Choosing a Node. The node list now contains S_{11}, S_{12}. Arbitrarily choosing S_{12}, we remove it from the list.

Reoptimizing. $S_{12}=S \cap\left\{x ; x_{1} \leq 2, x_{2} \geq 1\right\}$. The resulting linear program has optimal solution $\bar{x}^{12}=(2,1)$ with value 7 . As x^{12} is integer, $z^{12}=7$.

Fig. 7.8 Complete branch and bound tree

Updating the Incumbent. As the solution of $L P\left(S_{12}\right)$ is integer, we update the value of the best feasible solution found $\underline{z} \leftarrow \max \{\underline{z}, 7\}$, and store the corresponding solution $(2,1) . S_{12}$ is now pruned by optimality.

Choosing a Node. The node list now contains only S_{11}.
Reoptimizing. $S_{11}=S \cap\left\{x: x_{1} \leq 2, x_{2} \leq 0\right\}$. The resulting linear program has optimal solution $\bar{x}^{11}=\left(\frac{3}{2}, 0\right)$ with value 6 . As $\underline{z}=7>\bar{z}_{11}=6$, the node is pruned by bound.

Choosing a Node. As the node list is empty, the algorithm terminates. The incumbent solution $x=(2,1)$ with value $z=7$ is optimal.

The complete branch-and-bound tree is shown in Figure 7.8. In Figure 7.9 we show graphically the feasible node sets S_{i}, the branching, the relaxations $L P\left(S_{i}\right)$, and the solutions encountered in the example.

7.4 LP-BASED BRANCH AND BOUND

In Figure 7.10 we present a flowchart of a simple branch and bound algorithm, and then discuss in more detail some of the practical aspects of developing and using such an algorithm.

Storing the Tree. In practice one does not store a tree, but just the list of active nodes or subproblems that have not been pruned and that still need to be explored further. Here the question arises of how much information one should keep. Should one keep a minimum of information and be prepared to repeat certain calculations, or should one keop all the information available? At a minimum, the best known dual bound and the variable lower and upper

[^0]: ${ }^{1} \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ identify the iteration, as summarized below.
 ${ }^{2}$ Iterative: involving repetition; relating to iteration. Iterate (from Latin iterare), to say or do again (and again). Not to be confused with interactive.

[^1]: Linear Programming is presented at an introductory level, mainly from the book by Hillier and Lieberman [2005], abridged and adapted to suit the objectives of the "Operational Research" course. It begins with segments of its third chapter.

[^2]: M. Casquilho is Assistant Professor in the Department of Chemical and Biological Engineering, Instituto Superior Técnico, Universidade Técnica de Lisboa. E-mail address: mcasquilho@ist.utl.pt.

[^3]: ${ }^{1}$ Darwin, Charles, 1859, "On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life", ed. John Murray, London [or 2006, Dover, Mineola, NY (USA)].

[^4]: * Another method to solve this matter is the "two-phase method".

[^5]: ${ }^{1}$ The use of \sqrt{z}, as may be concluded, would be more logical, although indifferent from the viewpoint of optimization.

[^6]: ${ }^{2}$ The plural in the form " x 's" seems appropriate (better than " $x x$ ").

[^7]: ${ }^{3}$ Or "modulus".

[^8]: * [(BrE) ' edju:l; (AmE) 'skedju:1] De sedule (Ingl. méd.), tira de pergaminho ou de papel < cedule (Fr. antigo) < schedula (Lat. mod.), dim. de scheda, variante de (Lat.) scida, tira de papiro < skhida, skhede (Gr.), talvez afim de skhizein, separar. " κ " (Gr.) pode dar c : kinema (Gr.) > cinéma (Fr.) 1. Lista de tempos de partidas e chegadas; horário (a bus schedule). 2. Plano para executar trabalho ou atingir um objectivo, especificando a ordem e tempo atribuído a cada parte (we finished the project on schedule). 3. Lista escrita de itens em forma tabular (a schedule of postal rates). 4.a. Programa de acontecimentos ou encontros; b. Programa de aulas (horário) dum estudante.

[^9]: ${ }^{4}$ Ficheiro tp-prodsch.dat.

[^10]: ${ }^{5}$ Ficheiro tp-casais.dat.

