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MATHEMATICS OF OPERATIONS RESEARCH 
Vol. 2, No. 2, May 1977 
Printed in U.S.A. 

NEW FINITE PIVOTING RULES FOR THE SIMPLEX 
METHOD*t 

ROBERT G. BLAND 

SUNY-Binghamton 

A simple proof of finiteness is given for the simplex method under an easily described 
pivoting rule. A second new finite version of the simplex method is also presented. 

1. A simple finite pivoting rule. Consider the canonical linear programming 
problem 

maximize x0, 

subject to Ax =b, (1.1) 

xj>O Vj E= {1,..., n}, 

where A has m + 1 rows and n + 1 columns and is of full row rank. We denote the 
canonical simplex tableau for (1.1) corresponding to some basic set of variables with 
index set B = {Bo = 0, Bl, .. ., B}, by (A, b). It is assumed that the rows of (A, b) 
are ordered so that_i, B 1; thus the ith row of the tableau represents the equation 
XB, + 4 j B aijxj = bi. If bi > 0 for i = 1, . .., m, then the tableau is (primal) feasible 
and the simplex pivoting rule permits the selection of any (nonbasic) variable xk 

having Ok < 0 to enter the basis. If o0j > 0 for allj E E, then the pivoting stops with 
the current tableau optimal. Having chosen a variable xk to enter the basis, the 
simplex rule permits the selection of any basic variable xB having ai > O and 

br = in bi - = min - : aik > O 
ark laik 

to leave the basis. If ik < 0 for i = 1, . . ., m, then the pivoting stops with the current 
tableau indicating primal unboundedness and dual infeasibility. 

A pivoting rule that is consistent with the simplex rule and further restricts the 
choice of either the pivot column or the pivot row is called a refinement of the simplex 
rule. We say that a refinement determines a simplex method, as opposed to the simplex 
method, which is used here as a generic term referring to the family of methods 
determined by all possible refinements. 

It is very well known that the simplex method can fail to be finite because of the 
possibility of cycling. Certain refinements of the simplex pivoting rule, such as the 
lexicographic rule described in [3], restrict the selection of the pivot row in such a way 
that cycling cannot occur. The following refinement, which restricts the choice of both 
the pivot column and the pivot row, determines a simplex method that is, among all 
finite simplex methods known to us, the easiest to state, the easiest to implement, and 
the easiest to prove finite. 

Let Rule I be the refinement of the simplex pivoting rule obtained by imposing the 
following restriction: 

among all candidates to enter the basis, select the variable xk having the lowest 
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index, i.e., pivot in the column k determined by 

k = minj j: a0 <0); (1.2(a)) 

among all candidates to leave the basis, select the variable XB having the lowest 
index, i.e., pivot in the row r determined by 

Br = min B, : ak > 0 and = min :ak > . (1.2(b)) 
alk aik 

THEOREM 1.1. The simplex method under Rule I cannot cycle, hence it is finite. 

PROOF. Suppose to the contrary that for some linear programming problem P of 
form (1.1) and some initial feasible tableau, cycling occurs. (Note that given any 
feasible tableau, either optimality is verified, primal unboundedness is detected or 
Rule I uniquely determines a pivot element. Hence if cycling occurs, the cycle is 
unique.) Let T C E be the index set of all variables that enter the basis during the 
cycle (so thatj T implies that either xj is never a basic variable during the cycle or xj 
is always a basic variable during the cycle). Let q = max{j : j T} and let (A', b') be 
a tableau in the cycle such that Rule I specifies column q of (A', b') as the pivot 
column. Let Y = (Yo .., , ) be defined by yj = a~j for j = 0,..., n. Then 

o=l, y <O, y>, O Vj<q, (1.3) 

and Y is in the subspace of R"+ generated by the rows of A. 
Since xq enters the basis during the cycle, Xq must also leave the basis during the 

cycle. Let (A", b") be a tableau in the cycle corresponding to a set of basic variables 
(XO = 

XBo, XB1, , - . = 
Xq 

.. , X 
. 

such that Rule I specifies a pivot in row r and, 
say, column t of (A", b"). Let Z = (z0,. .., Zn) with ZB = a't for i = 0, 1 ..., m, 

zt = - 1, and zj = 0 otherwise, so that zo = a'0, < 0 and zq= a"t > 0. Note that Z is in 
the orthogonal complement of the row space of A, which implies that Y. Z = 0. Since 
yozo < 0, it must be that yjz > 0 for_somej, 1 < j < n. But yj # 0 implies that xj is a 
nonbasic variable in tableau (A', b'), and zj # 0 implies that either xj is a basic 
variable in (A", b") or j = t. Hence j E T, which implies that j < q. But yq < 0 and 

zq > 0, so j < q. It then follows from (1.3) that y > 0, which implies that j > 0. 
But z, = - 1, so j t. Thus xj is a basic variable in (A", b"); let j = BP so a'", = zI 
>0. 

Each pivot in the cycle must be degenerate, i.e., all variables remain fixed in value 
throughout the cycle. In particular, since j E T it must be that xj = 0 during the cycle, 
implying that b" = 0. However, we have now established that = BP < q, a" t > 0 and 
b- = 0. This yields a contradiction since (1.2(b)) then precludes the possibility of 
pivoting xq out of the basis in (A", b"). Hence cycling cannot occur, so monotonicity 
of the objective function value implies that the algorithm terminates after finitely 
many pivots. i 

There are other simple proofs of Theorem 1.1. One could argue, for example, that 
subject to Rule I there can be at most one simplex pivot in column n. It then follows 
that there can be at most 2J pivots in column n -j forj = 0, . . ., n - 1. 

It should be noted that if (1.2(a)) is dropped, so that only the selection of the pivot 
row is restricted, then cycling can occur (see the examples of Hoffman and Beale [3, 
pp. 229-230]). 

2. A second finite simplex method. The properties that render the simplex 
method finite under Rule I can be invoked to construct other finite versions of the 
simplex method. In this section we sketch a second finite simplex method. 
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Consider again the canonical linear programming problem P of form (1.1) with 
m + I rows and n + 1 columns. Suppose that (A, b) is a feasible tableau for P 

corresponding to some basis with index set B = (Bo = 0, B,, .. ., B}). If for some 
SC E and kE E\S we have S n B = , aOk< and o j> 0 for all j 
E\(S U {k)), then we say that (A, b) is reducible with respect to S. 

Observation 2.1. If (A,b) is reducible with respect to S, then for any x 

-(j0,... ,jX) satisfying Ax = b, j. =0 Vj E S, j > 0 Vj EE\(S U {k)), and co 
> b0, it follows that 3ck > 0. 

Suppose that (A, b) is reducible with respect to S, and we wish to solve the linear 
programming subproblem P' obtained from P by deleting S, i.e., by setting xj = 0 for 
all j E S. The_tableau (A, b) represents a feasible solution of P'. By pivoting in 
column k of (A, b) we either solve P', or we produce a new feasible tableau (A', b') in 
which xk is a basic variable and ao < 0 for some j E E\S. In the latter case, we see 
from Observation 2.1 that we can ignore xk as a candidate to leave the basis during all 
subsequent simplex pivots until P' is solved. Thus, the row of (A', b') corresponding 
to the basic variable xk is superfluous; we then say that the number of active 
constraints has been reduced to m. We can, in fact, delete xk and its associated row 
from (A', b'), solve the remaining m x n reduced problem, which is equivalent to P', 
and restore the xk-row when an optimal tableau for the reduced problem is at hand. 

We will now show how to use these ideas to construct another finite simplex 
method. First consider a linear programming problem Q of the form 

maximize x0, 

subject to Ax = b, (2.1) 

> 0 Vj E E\S, 

X.=0 Vj ES, 

where S c E. 
Suppose that (A?, b?) is a feasible tableau for Q corresponding to the basic feasible 

solution x? = (xO, .. ., x:) and having B? S = 0, where B? is the index set of the 
basic variables. Consider the following procedure for solving Q. 

Procedure A. (0) Initially let i = 0. 
(1) Let D' = {j E E\S : aj < 0). If D' = 0, then x' is an optimal solution of Q. 

Otherwise select some k E D' and let Si+1 = S U D'\{k}. 

(2) Solve the linear programming subproblem Q +' obtained from Q by replacing S 
by S+l in (2.1). Since Bi n S'+' = 0, x' is a basic feasible solution of Qi+ . If Qi+l 
is unbounded, then Q is unbounded. Otherwise let (A'i+ , b1+ ) be an optimal tableau 
for Qi+l corresponding to some basis Bi+l having B'i+ n S = 0 and let x'+ denote 
the solution represented by (A'+ , b/'+ ). Increase i by 1 and go to (1). 

Observation 2.2. Since S'+l c S', for i > 1, Procedure A solves Q after solving 
only finitely many subproblems, say Q. . ., Q'. 

Observation 2.3. The tableau (A', bi) is reducible with respect to S'+l, i 
- 0,..., 1 - 1. Hence in one simplex pivot we can either solve Qi+l or reduce Qi+' 
to an equivalent linear programming problem with one fewer constraint. 

Given any linear programming problem P in form (1.1), we can apply Procedure A 
recursively to solve P starting from any feasible tableau for P. Initially we let Q = P 
in Procedure A with S = 0; and thus we create a sequence P ,..., p ' of subprob- 
lems, each of form (2.1). Let the subset S for subproblem P' be denoted by S'. When 
subproblem P' is created, we have a feasible tableau for P' that is reducible with 
respect to S'. A single pivot either solves 

pi 
or reduces it to an equivalent m x n 

subproblem P'. In the latter case, we let Q = P and continue the process. Observa- 
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tions 2.2 and 2.3 can be applied (recursively) to show that such a recursive application 
of Procedure A will solve any linear programming problem P after finitely many 
pivots. (The recursion may effect successive reductions so that the number of rows in 
the reduced tableaux varies between 1 and m.) 

Note that the recursive application of Procedure A as described above is a simplex 
method, in spite of the fact that some of the pivots are performed in reduced tableaux. 
Observation 2.1 implies that the same sequence of pivots in the full tableau conforms 
to the simplex rule. Let Rule II refer to the refinement of the general simplex pivoting 
rule that is implicit in the recursive application of Procedure A described above. The 
reader will note that in contrast with Rule I, Rule II does not uniquely determine the 
pivot element; there may be some freedom in the selection of both the pivot column 
and the pivot row. 

3. Concluding remarks. That the simplex method is finite under Rules I and II is 
of some conceptual or pedagogical interest, but finiteness, by itself, is not particularly 
interesting from a computational standpoint. However, Rules I and II do have some 
interesting computational properties. (For example, in any problem requiring a 
"large" number of pivots under Rule I, the pivots will "concentrate" in the lower- 
indexed columns. Similarly, in any problem requiring a "large" number of pivots 
under Rule II, the pivots will "concentrate" in reduced tableaux having a "small" 
number of rows relative to the original problem.) We will not pursue the computa- 
tional properties of Rules I and II here; we intend to explore that subject (and make 
precise the two roughly stated observations given above) separately. 

It is noticeable that Rules I and II ignore the magnitudes of the tableau entries a01 
in the selection of a pivot column. This is a reflection of the broader context in which 
these rules arose: a combinatorial abstraction of linear programming in which only 
the signs of the tableau entries retain significance. We will conclude by briefly relating 
how these refinements of the simplex pivoting rule arose in that context. 

Most interesting theorems concerning linear programming can be phrased as sign 
properties of the vectors in complementary orthogonal subspaces of R". Rockafellar 
suggested in [6] that such results ought to generalize in an appropriately axiomatized 
system of oriented matroids. Several equivalent axiomatizations of oriented matroids 
have since been given by Bland and Las Vergnas [1], [2], [4] and in the thesis of 
Lawrence [5], where previously unpublished work on another equivalent axiomatiza- 
tion by the late Jon Folkman is presented and extended. All of the results regarded by 
Rockafellar as susceptible to abstraction do indeed generalize in the context of 
oriented matroids. While we were able to find a nonconstructive proof of the 
generalization of the "complementarity" form of the linear programming duality 
theorem (primal and dual feasibility imply the existence of a complementary pair of 
feasible solutions), we had hoped to establish that result by a constructive, simplex- 
like approach. (We have recently learned that Lawrence [5] had already proved this 
theorem, but his proof is also nonconstructive.) This constructive approach would 
require a purely combinatorial proof, of finiteness of the simplex method. (Most proofs 
of finiteness, including those presented above, invoke monotonicity of the objective 
function value. This property cannot, as far as we know, be nicely translated into the 
matriod context.) We have now succeeded in constructively proving the "com- 
plementarity" form of the duality theorem for oriented matroids (and the stronger 
"schema" form) by a pivoting method that specializes (when the oriented matroid 
comes from a real vector space) to the simplex method under Rule II. The more 
general matroid results, including the purely combinatorial proof of finiteness of Rule 
II, will appear in a separate paper. 
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