Operational Research

Exam (simulated)
Duration: 02 hours 30 minutes. Type: "open book" exam with computer. Author: Miguel Casquilho [mobile ph., (+351) 91919 2021]

Abstract

Instructions (1) Present your answers in an Excel file or other, as needed. In the end: if you have not used any paper, at least leave a sheet with your name on it; and send your file(s) to mcasquilho@ist.utl.pt and to the course e-mail account at athenslisbon@yahoo.co.uk, for security (empty message with your name as subject). You may go to Yahoo to send the messages. (2) Below, references may be made to the course webpage (CWP), which is at http://web.ist.utl.pt/mcasquilho/acad/or/. (3) If other entities' Internet pages or sources are used, cite them.

1) (Short answers)
a) How can an LP program work with free sign variables?
b) Who discovered the simplex method for LP?
c) "In the Monte Carlo 'inversion' method, the only function (of the random variable to be simulated) that is needed is the density." True or false ?
2) A company, with maximum profit as its objective, can manufacture certain products, with known unit profits, in quantities to be determined, respectively, P and X, both with elements $i=1 . .4$. It is assumed that $P=(5,5,5,5)$. The technological or other conditions to be met are: 1) for safety, the total of 1 and 2 cannot exceed the total of 3 and $4 ; 2$) for fiscal reasons, the total of 3 and 4 has to be at least 80% of the whole production; 3) the market absorbs no more than 300 units of the total of products 3 and 4.
a) Formulate the problem.
b) Solve the problem with the Excel Solver.
c) Put the problem in the standard form and use a convenient program to solve it.
d) Consider now that the profit of product 3 decreases (becoming its negative). What happens?
3) Cylindrical cans are filled with exactly $1 \mathrm{~L}\left(1000 \mathrm{~cm}^{3}\right)$ of a liquid. Their diameter, d, varies randomly with a triangular density in the interval $9.0 \pm 0.3 \mathrm{~cm}$. Find the probability that the height of the liquid is below 15.2 cm in the following steps.
a) Simulate the filling of 100 cans.
b) Classify the values of d in 7 classes. Determine their accumulated values. With the classified values, make a histogram. From the accumulated values, find the probability as mentioned.
4) A queue, working with one server, shows an average length of $L_{q}=8.4$ and causes an average wait of $W_{q}=12 \mathrm{~min}$.
a) Calculate its parameters.
b) For the same arrival rate, calculate the service rate that reduces W_{q} to half the previous value.
c) Determine the minimum service rate for the same arrival rate.
d) Compare the cost of the system with one and two servers for costs of $C_{s}=66$ $€ /$ server / day, with 1 day $=12 \mathrm{~h}$, and $C_{w}=8 € /$ hour.
$\boldsymbol{e})$ Calculate L_{q} for a new number of two servers.

Marks:	1)	1,5	$(3 \times 0,5)$	7,5	$\%$
	2)	3	$(1+1+1)$	15	$\%$
	3)	5	$(1+2+1+1)$	25	$\%$
	4)	5,5	$(2,5+3)$	27,5	
	5)	5	$(1+1+1+1+1)$	25	$\%$
		Total	20		$\mathbf{1 0 0}$

