IST, Technical University of Lisbon
Department of Chemical and Biological Engineering
"Athens" 1. ${ }^{\text {st }}$ semester course
20. ${ }^{\text {th }}$ of March, 2009

Operational Research
 Exam (simulated)

Duration: 02 hours 30 minutes. Type: "open book" exam with computer. Author: Miguel Casquilho [mobile ph., (+351) 91919 2021]

Instructions

(1) Give your answers in an Excel file and or other, as needed. In the end: if you have not used any paper, at least leave a sheet with your name; and send your file(s) to mcasquilho@ist.utl.pt, and, for security, to yourself and to the course e-mail account, athenslisbon@yahoo.co.uk (empty message with your name as subject). You may go to Yahoo to send the messages. (2) Below, references may be made to the course webpage (CWP), which is at web.ist.utl.pt/mcasquilho/acad/or/. (3) If other Internet pages or sources are used, cite them.

1) (Short answers)

a) How can an LP program work with free sign variables?
b) Who discovered the simplex method for LP?
c) Is the following true or false? "In the Monte Carlo 'inversion' method, the only function (of the random variable to be simulated) that is needed is the density."
3) Company XYZ, with maximum profit as the objective, can manufacture certain products, with known unit profits, P_{i}, in quantities, X_{i}, to be determined, $i=1 . .4$. It is assumed that $P=(5,5,5,5)$. The technological or other conditions to be met are: 1) for safety, the total of 1 and 2 is less than or equal to the total of 3 and 4; 2) for fiscal reasons, the total of 3 and 4 is greater than or equal to 80% of the whole production; 3) the market absorbs up to 300 units of the total of products 3 and 4.
a) Formulate the problem (show the convenient mathematical formulas).
b) Solve the problem (by any means) "as is" (only with its structural variables).
c) Put the problem in the standard form and solve it again. Is the solution compatible with the previous one?
4) Cylindrical cans are filled with exactly 1 L (litre) of a liquid, i.e., $V=1000 \mathrm{~cm}^{3}$. The diameter of the cans, D, varies randomly with a triangular density in the interval $9.0 \pm 0.2 \mathrm{~cm}$. Find the probability that the height of the liquid exceeds 15.9 cm (which might hinder closing the can) in the following steps.
a) Simulate the filling of 100 cans.
b) Classify the values of d in (say) 7 classes. Determine their accumulated values. With the classified values: make a histogram; and from the accumulated values, find the probability as mentioned.
5) A queue, when working with one server, shows an average length of $L_{q}=8.4$ and causes an average wait of $W_{q}=20 \mathrm{~min}$.
a) Calculate its parameters.
b) For the same arrival rate, calculate the service rate that reduces W_{q} to half the previous value.
c) Determine the minimum service rate for the same arrival rate.
d) Compare the cost of the system with one and two servers for costs of $C_{s}=66$ $€ /$ server / day, with 1 day $=12 \mathrm{~h}$, and $C_{w}=8 € /$ hour.
$\boldsymbol{e})$ Calculate L_{q} for a new number of two servers.

Marks:	1)	1.5	$(3 \times 0,5)$	30%
	2)	7	$(1+2+2+2)$	35%
	3)	5	$(2+3)$	25%
	4)	8	$(4+4)$	40%
		Total 26		$\mathbf{1 3 0} \%$

