IST, Technical University of Lisbon Department of Chemical and Biological Engineering

"Athens" 1.st semester course

20.th of March, 2009

OPERATIONAL RESEARCH

Exam (simulated)

Duration: 02 hours 30 minutes. *Type:* "open book" exam with computer. *Author:* Miguel Casquilho [mobile ph., (+351) 91 919 2021]

Instructions

(1) Give your answers in an Excel file and or other, as needed. In the end: if you have not used any paper, at least leave a **sheet with your name**; and **send your file(s)** to *mcasquilho@ist.utl.pt*, and, for security, to *yourself* and to the course e-mail account, *athenslisbon@yahoo.co.uk* (empty message with your *name* as subject). You may go to Yahoo to send the messages. (2) Below, references may be made to the *course webp*age (CWP), which is at <u>web.ist.utl.pt/mcasquilho/acad/or/</u>. (3) If other Internet pages or sources are used, cite them.

1) (*Short answers*)

- a) How can an LP program work with free sign variables?
- b) Who discovered the simplex method for LP?
- c) Is the following true or false? "In the Monte Carlo 'inversion' method, the only function (of the random variable to be simulated) that is needed is the density."
- 3) Company XYZ, with maximum profit as the objective, can manufacture certain products, with known *unit profits*, P_i, in *quantities*, X_i, to be determined, i=1..4. It is assumed that P = (5, 5, 5, 5). The technological or other conditions to be met are: 1) for safety, the total of 1 and 2 is *less than* or equal to the total of 3 and 4; 2) for fiscal reasons, the total of 3 and 4 is *greater than* or equal to 80% of the whole production; 3) the market absorbs *up to* 300 units of the total of products 3 and 4.
 - a) Formulate the problem (show the convenient mathematical formulas).
 - b) Solve the problem (by any means) "as is" (only with its structural variables).
 - *c)* Put the problem in the *standard form* and solve it again. Is the solution compatible with the previous one?
- 4) Cylindrical cans are filled with exactly 1 L (litre) of a liquid, i.e., V = 1000 cm³. The diameter of the cans, D, varies randomly with a *triangular* density in the interval 9.0±0.2 cm. Find the probability that the height of the liquid exceeds 15.9 cm (which might hinder closing the can) in the following steps.
 - *a*) Simulate the filling of 100 cans.
 - b) Classify the values of d in (say) 7 classes. Determine their accumulated values.With the classified values: make a histogram; and from the accumulated values, find the probability as mentioned.
- 5) A queue, when working with one server, shows an average length of $L_q = 8.4$ and causes an average wait of $W_q = 20$ min.

a) Calculate its parameters.

- **b**) For the same arrival rate, calculate the service rate that reduces W_q to half the previous value.
- c) Determine the minimum service rate for the same arrival rate.
- d) Compare the cost of the system with one and two servers for costs of $C_s = 66$ € / server / day, with 1 day = 12 h, and $C_w = 8$ € / hour.

e) Calculate L_q for a new number of two servers.

1)	1.5	$(3 \times 0, 5)$	30	%
2)	7	(1+2+2+2)	35	%
3)	5	(2+3)	25	%
4)	8	(4+4)	40	%
	Total 26		130	%
	2) 3)	2) 7 3) 5 4) 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

(2 pages)