Topics on "Operational Research" Mar. 2007, IST

LP: algebraic vs. tableaux

MIGUEL A. S. CASQUILHO IST, Universidade Técnica de Lisboa, Ave. Rovisco Pais, IST; 1049-001 Lisboa, Portugal

A parallel is presented for the resolution of the LP in the algebraic form versus the tabular form. The revised (matrix) form is also shown.

Key words: linear programming; simplex method; algebraic form; tableaux; revised

0 The model

Original form of the model ("s.t.", subject to):

$$[\max] z = 3x_1 + 5x_2 \\ \text{s.t.} \\ \{1\} \qquad \qquad x_1 \leq 4 \\ 2x_2 \leq 12 \\ 3x_1 + 2x_2 \leq 18 \end{cases}$$

and $\mathbf{x} \ge 0$.

Augmented form of the model:

$$[\max] z = 3x_1 + 5x_2 + 0x_3 + 0x_4 + 0x_5$$

s.to
$$\{2\} \qquad x_1 + x_3 = 4$$
$$2x_2 + x_4 = 12$$
$$3x_1 + 2x_2 + x_5 = 18$$

and $\mathbf{x} \ge 0$ ($x_i \ge 0$, i = 1..5). Variables x_i , i = 3..5, are the "slack variables". Better,

Maximize Z

subject to

$$\{3\}$$

$$(0) \quad Z = 3x_1 + 5x_2 + 0x_3 + 0x_4 + 0x_5 \\
(1) \quad x_1 + x_3 = 4 \\
(2) \quad 2x_2 + x_4 = 12 \\
(3) \quad 3x_1 + 2x_2 + x_5 = 18 \\$$

1 Algebraic form of the Simplex Method

Initialization

Basic variables: $\{x_3 \ x_4 \ x_5\} = \{4 \ 12 \ 18\}$ Z = 0Non-basic variables: $\{x_1 \ x_2\} = \mathbf{0}$

Optimality test

The rates of improvement are *positive*. Therefore, this solution is not optimal.

Iteration 1

STEP 1) Determining the direction of movement

The choice of which nonbasic variable is increased is as follows:

{4}

 $Z = 3x_1 + 5x_2$

Entering: *x*₂

Consequences?

STEP 2) Determining where to stop

(Keep nonbasic variables null.) All the variables must be *nonnegative*. **How far** can the **entering** variable be increased ?

Minimum ratio test.

$$x_{3} = 4 - 0x_{2} \ge 0 \qquad x_{2} \le 4/0 = \infty$$

$$x_{4} = 12 - 2x_{2} \ge 0 \qquad \Rightarrow \qquad x_{2} \le 12/2 = 6 \leftarrow \min$$

$$x_{5} = 18 - 2x_{2} \ge 0 \qquad x_{2} \le 18/2 = 9$$

From Eq. (2), x_2 has pushed x_4 to 0, so

Leaving: x_4

x_2 replaces x_4

Normalize (to *one*) the coefficient of the entering variable (x_2) in its equation [(2)],

$$\{6\} (2') x_2 + \frac{1}{2}x_4 = 6$$

and replace x_2 (the "new" basic variable) in all the other Equations.

STEP 3) Solving for the new BF solution

	(0)	Z = 30	$+3x_{1}$	$+0x_{2}$	$+0x_{3}$	$-\frac{5}{2}x_4$	$+0x_{5}$	\triangleright (0)-5(2	2′)
<i>1</i> 71	(1)		x_1		$+\underline{x_3}$	2		$=4 \triangleright (1) - 0(2)$	2')
(')	(2)			<i>x</i> ₂		$+\frac{1}{2}x_4$		$=6 \triangleright (2')$	
	(3)		$3x_1$	_		$-x_4$	$+\underline{x_5}$	$= 6 \triangleright (3) - 2(2)$	2′)
			Basic v	ariables	: $\{x_3\}$	$x_2 x_2$	$\{5, 5\} = \{4, 5\}$	6 6}	

$$Z = 30$$

Non-basic variables: $\{x_1 \ x_4\} = \mathbf{0}$

Optimality test

Some rates of improvement are *positive*; therefore, the solution is not optimal.

Iteration 2

STEP 1) Determining the direction of movement

The choice of which nonbasic variable is increased is as follows:

$$\{8\} \qquad \qquad Z = 30 + 3x_1 - \frac{5}{2}x_4$$

Entering: *x*₁

Consequences?

STEP 2) Determining where to stop

(Keep nonbasic variables null.) All the variables must be *nonnegative*. **How far** can the **entering** variable be increased ?

Minimum ratio test.

From Eq. (3), x_1 has pushed x_5 to 0, so

Leaving: x_5

x_1 replaces x_5

Normalize (to *one*) the coefficient of the entering variable (x_1) in its equation [(3)],

$$\{10\} \qquad (3') \qquad x_1 + \frac{1}{3}x_5 = 2$$

and replace x_1 (the "new" basic variable) in all the other Equations.

STEP 3) Solving for the new BF solution

	(0) Z	= 36 +	$0x_1$	$+0x_{2}$	$+0x_{3}$	$-\frac{3}{2}x_4$	$-x_{5}$	
{11}	(1)				+ <i>x</i> ₃	$+\frac{1}{3}x_4$	$-\frac{1}{3}x_{5}$	= 2
	(2)			<i>x</i> ₂		$+\frac{1}{2}x_4$		= 6
	(3)		<i>x</i> ₁			$-\frac{1}{3}x_4$	$+\frac{1}{3}x_{5}$	= 2

Basic variables: $\{x_3 \ x_2 \ x_1\} = \{2 \ 6 \ 2\}$

Non-basic variables:
$$\{x_5 \ x_4\} = \mathbf{0}$$

Optimality test

The rates of improvement are all *negative*; therefore, this solution is **optimal**.

The optimal solution is thus (the values of the *structural* variables are emphasized)

$$\{12\} \qquad \{x_1 \ x_2 \ x_3 \ x_4 \ x_5\} = \{2 \ 6 \ 2 \ 0 \ 0\}$$

2 Tabular form of the Simplex Method

The tabular form of the simplex method records only the essential information: (1) the coefficients of the variables, (2) the constants on the right-hand sides of the equations, and (3) the basic variable appearing in each equation.

Notice that Eq. (0), for Z, in the tableau is written as $Z - \mathbf{c}^{T} \mathbf{x} = z_{RHS}$, so the coefficients of *x* have their signs reversed.

Compare the following with Eq. {3}.

Basic variable	Eq.	Ζ	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 5	Right side	Ratio
Z	(0)	1	-3	-5	0	0	0	0	
<i>x</i> ₃	(1)	0	1	0	1	0	0	4	8
<i>x</i> ₄	(2)	0	0	2	0	1	0	12	6
<i>x</i> ₅	(3)	0	3	2	0	0	1	18	9

Table 1 Simplex tableaux for the Wyndor Glass Co. problem

Compare the following with Eq. {7}.

Tuble 2 Shiplex tublettik for the Wyhter Gluss Co. problem									
Basic variable	Eq.	Ζ	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 5	Right side	Ratio
Z	(0)	1	-3	0	0	5/2	0	30	
<i>x</i> ₃	(1)	0	1	0	1	0	0	4	4
<i>x</i> ₂	(2)	0	0	1	0	1/2	0	6	8
<i>x</i> ₅	(3)	0	3	0	0	-1	1	6	2

Table 2 Simplex tableaux for the Wyndor Glass Co. problem

Compare the following with Eq. {11}.

Table 3 Simplex tableaux for the Wyndor Glass Co. problem

Basic variable	Eq.	Ζ	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 5	Right side	Ratio
Z	(0)	1	0	0	0	3/2	1	36	
<i>x</i> ₃	(1)	0	0	0	1	1/3	-1/3	2	
<i>x</i> ₂	(2)	0	0	1	0	1/2	0	6	
<i>x</i> ₁	(3)	0	1	0	0	-1/3	1/3	2	

The coefficients [line (0)] of the basic variables —which have their signs reversed— are all *negative*; therefore, this solution is **optimal**.

3 Revised (matrix form) Simplex Method

The "revised simplex method" —a matrix form of the simplex method that is totally equivalent to the previous two- records only the necessary information: (1) the coefficients of the variables, (2) the constants on the right-hand sides of the equations, and (3) the basic variable appearing in each equation. (Notation is partly altered for coherence of some available software: z for Z, p for c, etc..) Vectors are systematically considered here column matrices. For minimization, the changes are obvious.

LP: algebraic vs. tableaux

$$[\max]_{z} = \mathbf{p}^{\mathrm{T}} \mathbf{x}$$

$$s. \text{ to } \mathbf{A} \mathbf{x} \leq \mathbf{b}$$

$$with \quad \mathbf{x} \geq \mathbf{0}$$

The augmented form (to be used, as always), keeping the nonnegativity, is

{14}

$$[\max]_{Z} = [\mathbf{p}_{D} + \mathbf{p}_{I}]^{\mathrm{T}} \begin{bmatrix} \mathbf{x}_{D} \\ -\mathbf{x}_{I} \end{bmatrix}$$
s. to $[\mathbf{A}_{D} + \mathbf{A}_{I}] \begin{bmatrix} \mathbf{x}_{D} \\ -\mathbf{x}_{I} \end{bmatrix} = \mathbf{b}$

The *basic* variables will be here called *dependent variables* (which they are), hence subscript "D"; and the *non-basic* variables will be called *independent variables* ("independently" made zero), hence subscript "I". As the non-basic variables, x_I , are set equal to 0, it is, successively:

$$\{15\} \qquad \mathbf{A}_{D}\mathbf{x}_{D} = \mathbf{b}$$

Therefore, it is

To express the objective function in terms of the non-basic variables [Tavares, 1996, p 53]¹ and, thus, to annul the coefficients of the basic variables, we have to premultiply the constraint (following 2.nd equation) by $-\mathbf{p}_D^T \mathbf{A}_D^{-1}$ and add it to the objective function, that is, successively:

{17}
$$z = \mathbf{p}_D^{\mathrm{T}} \mathbf{x}_D + \mathbf{p}_I^{\mathrm{T}} \mathbf{x}_I$$
$$\mathbf{b} = \mathbf{A}_D \mathbf{x}_D + \mathbf{A}_I \mathbf{x}_I \times \left(-\mathbf{p}_D^{\mathrm{T}} \mathbf{A}_D^{-1}\right)$$

$$z - \mathbf{p}_{D}^{\mathrm{T}} \mathbf{A}_{D}^{-1} \mathbf{b} = \left\{ \mathbf{p}_{D}^{\mathrm{T}} \mathbf{x}_{D} - \mathbf{p}_{D}^{\mathrm{T}} \mathbf{A}_{D}^{-1} \mathbf{A}_{D} \mathbf{x}_{D} \right\} + \left\{ \mathbf{p}_{I}^{\mathrm{T}} \mathbf{x}_{I} - \mathbf{p}_{D}^{\mathrm{T}} \mathbf{A}_{D}^{-1} \mathbf{A}_{I} \mathbf{x}_{I} \right\} = 0 + \mathbf{p}_{I}^{\mathrm{T}} \mathbf{x}_{I} - \mathbf{p}_{D}^{\mathrm{T}} \mathbf{A}_{D}^{-1} \mathbf{A}_{I} \mathbf{x}_{I} = \left(\mathbf{p}_{I}^{\mathrm{T}} - \mathbf{p}_{D}^{\mathrm{T}} \mathbf{A}_{D}^{-1} \mathbf{A}_{I} \right) \mathbf{x}_{I} = \left[\mathbf{p}_{I} - \left(\mathbf{A}_{D}^{-1} \mathbf{A}_{I} \right)^{\mathrm{T}} \mathbf{p}_{D} \right]^{\mathrm{T}} \mathbf{x}_{I}$$

The following vector, **d** is usually called the *reduced cost vector*

$$\mathbf{d} = \mathbf{p}_{I} - \left(\mathbf{A}_{D}^{-1}\mathbf{A}_{I}\right)^{\mathrm{T}}\mathbf{p}_{D}$$

or, introducing K and \overline{p} (as in some software),

{20}
$$\mathbf{K} = \mathbf{A}_D^{-1} \mathbf{A}_I \\ \mathbf{\overline{p}} = \mathbf{K}^{\mathrm{T}} \mathbf{p}_D \qquad \mathbf{d} = \mathbf{p}_I - \mathbf{\overline{p}}$$

¹ See Bibliography on the course website.

It represents the constrained derivatives $\partial z/\partial x_I$, the nonbasic (independent) variables being now the decision variables. The ratios, as a criterion for the leaving variable, will be called **q**, with the (nonnegative) minimum ratio giving the leaving variable:

$$\{21\}\qquad \qquad \mathbf{Q} = \frac{\mathbf{X}_D}{\mathbf{K}_{ie}}$$

Following are copies of the resolution of the prototype example: (a) with one of the course website resolutions; and (b) of an Excel resolution (just for this illustrative purpose).

- J an and an and a start and a		= BASIS :	0 =====	
XD 3 4.0000	0 AD inv =	1.000	0.000	0.000
4 12.000	0	0.000	1.000	0.000
5 18,000	0	0.000	0.000	1.000
	<u></u>			
z = 0.00000	0.0			
W - 1 000	0.000			
K = 1.000	0.000			
3,000	2.000			
5.000	2.000			
P bar = 0.000	0,000			
Delta = 3.000	5.000			
EntVa = 2	(rank) Del =	5.0000		
4.000	12.00	18.00		
Theta				
0.000	2,000	2.000		
12 12 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10	C 000	0.000		
1. 6.71.000	0.000	9.000		
LeaVa = 2	Thet [^] =	6.0000		Next $z = 30,0000$
		010000		
		= BASIS :	1417 <u>-1417-1417-1417-1417</u>	
		= BASIS :	1	
	0 AD inv =	= BASIS : 1.000	1	0.000
XD 3 4.0000 2 6.0000	0 AD inv =	= BASIS : 1.000 0.000	1 0.000 0.5000	0.000 0.000
XD 3 4.0000 2 6.0000 5 6.0000	0 AD inv = 0	= BASIS : 1.000 0.000 0.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
XD 3 4.0000 2 6.0000 5 6.0000	0 AD inv = 0	= BASIS : 1.000 0.000 0.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 AD inv = 0 0	= BASIS : 1.000 0.000 0.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 AD inv = 0 0	= BASIS : 1.000 0.000 0.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 AD inv = 0 0 0 0.000	= BASIS : 1.000 0.000 0.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 AD inv = 0 0 0 0.000 0.5000	= BASIS : 1.000 0.000 0.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 AD inv = 0 0 0 0 0.000 0.5000 -1.000	= BASIS : 1.000 0.000 0.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 AD inv = 0 0 0 0 0.000 0.5000 -1.000	= BASIS : 1.000 0.000 0.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 AD inv = 0 0 0 0.000 0.5000 -1.000 2.500	= BASIS : 1.000 0.000 0.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
XD = 3 + 0.0000 $2 = 6.00000$ $5 = 6.00000$ $z = 30.00000$ $K = 1.000$ 0.000 3.000 $P bar = 0.000$ $Delta = 3.000$	0 AD inv = 0 0 0 0.000 0.5000 -1.000 2.500 -2.500	= BASIS : 1.000 0.000 0.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
XD 3 4.0000 2 6.0000 5 6.0000 z = 30.0000 K = 1.000 0.000 3.000 P bar = 0.000 Delta = 3.000	0 AD inv = 0 0 0 0.000 0.5000 -1.000 2.500 -2.500	= BASIS : 1.000 0.000 0.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
XD 3 4.0000 2 6.0000 5 6.0000 z = 30.0000 K = 1.000 0.000 3.000 P bar = 0.000 Delta = 3.000 EntVa = 1	0 AD inv = 0 0 0 0.000 0.5000 -1.000 2.500 -2.500 (rank) Del =	= BASIS : 1.000 0.000 0.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
XD 3 4.0000 2 6.0000 5 6.0000 z = 30.0000 K = 1.000 0.000 3.000 P bar = 0.000 Delta = 3.000 EntVa = 1	0 AD inv = 0 0 0 0.000 0.5000 -1.000 2.500 -2.500 (rank) Del =	= BASIS : 1.000 0.000 0.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
XD 3 4.0000 2 6.0000 5 6.0000 z = 30.0000 K = 1.000 0.000 3.000 P bar = 0.000 Delta = 3.000 EntVa = 1 4.000	0 AD inv = 0 0 0 0.000 0.5000 -1.000 2.500 -2.500 (rank) Del = 6.000	= BASIS : 1.000 0.000 0.000 3.0000 6.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	0 AD inv = 0 0 0 0.000 0.5000 -1.000 2.500 -2.500 (rank) Del = 6.000	= BASIS : 1.000 0.000 0.000 3.0000 6.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	0 AD inv = 0 0 0 0.000 0.5000 -1.000 2.500 -2.500 (rank) Del = 6.000 0.000	= BASIS : 1.000 0.000 0.000 3.0000 6.000 3.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 AD inv = 0 0 0 0.000 0.5000 -1.000 2.500 -2.500 (rank) Del = 6.000 0.000	= BASIS : 1.000 0.000 0.000 3.0000 6.000 3.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
XD 3 4.0000 2 6.0000 5 6.0000 2 = 30.0000 K = 1.000 0.000 3.000 P bar = 0.000 Delta = 3.000 EntVa = 1 4.000 Theta - 4.000 i. e., 4.000	0 AD inv = 0 0 0 0.000 0.5000 -1.000 2.500 (rank) Del = 6.000 0.000 -1.000	= BASIS : 1.000 0.000 0.000 3.0000 6.000 3.000 2.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000
XD 3 4.0000 2 6.0000 5 6.0000 z = 30.0000 K = 1.000 0.000 3.000 P bar = 0.000 Delta = 3.000 EntVa = 1 4.000 Theta -4.000 i. e., 4.000 i. e., 4.000	0 AD inv = 0 0 0 0.000 0.5000 -1.000 2.500 (rank) Del = 6.000 0.000 -1.000	= BASIS : 1.000 0.000 0.000 3.0000 3.000 3.000 2.000	1 0.000 0.5000 -1.000	0.000 0.000 1.000

LP: algebraic vs. tableaux

		== BASIS	: 2		i a construction de la construction
XD 3 2.00000	AD inv =	1.000	0.3333	-0.3333	
2 6.00000		0.000	0.5000	0.000	
1 2.00000		0.000	-0.3333	0.3333	
z = 36.00000					
K = 0.3333	-0.3333				
0.5000	0.000				
-0.3333	0.3333				
P bar = 1.500	1.000				
Delta = -1.500	-1.000				
alantin and					
EntVa = 2	(rank) Del =	= -1.0000			
Output data :::	************		••••••		***********
Ontimal obj	ective funct	36.00			there 2
opermar obj	GCCIVE LUNCE.	50.00	UD (PANI)	Hori) Las	C Dasis. 2
		Var. #	Value		
		1	2.00000		
		2	6.00000		
		3	2.00000		
		4	0.00000		
		5	0.00000		
End of LINEAR PR	OGRAM.				

*