LP: algebraic vs. tableaux
MIGUEL A. S. CASQUILHO
IST, Universidade Técnica de Lisboa, Ave. Rovisco Pais, IST; 1049-001 Lisboa, Portugal

A parallel is presented for the resolution of the LP in the algebraic form versus the tabular form. The revised (matrix) form is also shown.
Key words: linear programming; simplex method; algebraic form; tableaux; revised

0 The model

Original form of the model ("s.t.", subject to):

$$
\begin{aligned}
& {[\max] z=3 x_{1}+5 x_{2}} \\
& \text { s.t. }
\end{aligned}
$$

$$
\begin{array}{ccc}
x_{1} & & \leq 4 \\
& 2 x_{2} & \leq 12 \\
3 x_{1} & +2 x_{2} & \leq 18
\end{array}
$$

and $\mathbf{x} \geq 0$.
Augmented form of the model:

$$
\begin{aligned}
& {[\max] z=3 x_{1}+5 x_{2}+0 x_{3}+0 x_{4}+0 x_{5}} \\
& \text { s.to }
\end{aligned}
$$

$$
\begin{array}{rlrlll}
x_{1} & & +x_{3} & & & =4 \\
& 2 x_{2} & & +x_{4} & & =12 \\
3 x_{1}+2 x_{2} & & & +x_{5} & =18
\end{array}
$$

and $\mathbf{x} \geq 0\left(x_{i} \geq 0, i=1 . .5\right)$. Variables $x_{i}, i=3 . .5$, are the "slack variables". Better, Maximize Z
subject to

$$
\begin{array}{rcccccl}
(0) & Z= & 3 x_{1} & +5 x_{2} & +0 x_{3} & +0 x_{4} & +0 x_{5} \\
(1) & x_{1} & & +x_{3} & & & \\
\text { (1) } & & 2 x_{2} & & +x_{4} & & =12 \\
(2) & & & & =12 \\
(3) & & 3 x_{1} & +2 x_{2} & & & +x_{5}
\end{array}=18
$$

1 Algebraic form of the Simplex Method

Initialization

$$
\begin{aligned}
\text { Basic variables: } & \left\{\begin{array}{lll}
x_{3} & x_{4} & x_{5}
\end{array}\right\}=\left\{\begin{array}{lll}
4 & 12 & 18
\end{array}\right\} \\
Z= & 0 \\
\text { Non-basic variables: } & \left\{\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right\}=\mathbf{0}
\end{aligned}
$$

Optimality test

The rates of improvement are positive. Therefore, this solution is not optimal.

Iteration 1

STEP 1) Determining the direction of movement

The choice of which nonbasic variable is increased is as follows:

$$
Z=3 x_{1}+5 x_{2}
$$

Entering: x_{2}
Consequences?
STEP 2) Determining where to stop
(Keep nonbasic variables null.) All the variables must be nonnegative.
How far can the entering variable be increased ?
Minimum ratio test.

$$
\begin{align*}
& x_{3}=4-0 x_{2} \geq 0 \\
& x_{4}=12-2 x_{2} \geq 0 \\
& x_{5}=18-2 x_{2} \geq 0
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& x_{2} \leq 4 / 0=\infty \\
& x_{2} \leq 12 / 2=6 \leftarrow \min \\
& x_{2} \leq 18 / 2=9
\end{align*}
$$

From Eq. (2), x_{2} has pushed x_{4} to 0 , so
Leaving: x_{4}
x_{2} replaces x_{4}
Normalize (to one) the coefficient of the entering variable (x_{2}) in its equation [(2)],

$$
x_{2}+\frac{1}{2} x_{4}=6
$$

and replace x_{2} (the "new" basic variable) in all the other Equations.
STEP 3) Solving for the new BF solution

$$
\text { (0) } Z=30+3 x_{1}+0 x_{2}+0 x_{3}-\frac{5}{2} x_{4}+0 x_{5} \quad \triangleright(0)-5\left(2^{\prime}\right)
$$

(1) $x_{1}+\underline{x_{3}} \quad=4 \triangleright(1)-0\left(2^{\prime}\right)$
(2) $\quad \underline{x_{2}} \quad+\frac{1}{2} x_{4} \quad=6 \triangleright\left(2^{\prime}\right)$
(3) $3 x_{1} \quad-x_{4}+\underline{x_{5}}=6 \triangleright(3)-2\left(2^{\prime}\right)$

Basic variables: $\quad\left\{\begin{array}{lll}x_{3} & x_{2} & x_{5}\end{array}\right\}=\left\{\begin{array}{lll}4 & 6 & 6\end{array}\right\}$

$$
Z=30
$$

Non-basic variables: $\quad\left\{\begin{array}{ll}x_{1} & x_{4}\end{array}\right\}=\mathbf{0}$

Optimality test

Some rates of improvement are positive; therefore, the solution is not optimal.

Iteration 2

STEP 1) Determining the direction of movement

The choice of which nonbasic variable is increased is as follows:

$$
Z=30+3 x_{1}-\frac{5}{2} x_{4}
$$

Entering: x_{1}

Consequences?

STEP 2) Determining where to stop

(Keep nonbasic variables null.) All the variables must be nonnegative.
How far can the entering variable be increased ?

Minimum ratio test.

$$
\begin{array}{lll}
x_{3}=4-x_{1} \geq 0 \\
x_{2}=6-0 x_{1} \geq 0 \\
x_{5}=6-3 x_{1} \geq 0
\end{array} \quad \Rightarrow \quad x_{1} \leq 4 / 1=4 ~ 子 ~ x_{1} \leq 6 / 0=\infty ~ 子 ~ x_{1} \leq 6 / 3=2 \leftarrow \min
$$

From Eq. (3), x_{1} has pushed x_{5} to 0 , so
Leaving: x_{5}
x_{1} replaces x_{5}
Normalize (to one) the coefficient of the entering variable $\left(x_{1}\right)$ in its equation [(3)],

$$
x_{1}+\frac{1}{3} x_{5}=2
$$

and replace x_{1} (the "new" basic variable) in all the other Equations.

STEP 3) Solving for the new BF solution

(0) $Z=36+0 x_{1}+0 x_{2}+0 x_{3}-\frac{3}{2} x_{4}-x_{5}$

$$
+x_{3}+\frac{1}{3} x_{4}-\frac{1}{3} x_{5}=2
$$

$$
\begin{equation*}
+\frac{1}{2} x_{4} \quad=6 \tag{1}
\end{equation*}
$$

(3)

$$
x_{1}
$$

$$
\begin{equation*}
-\frac{1}{3} x_{4}+\frac{1}{3} x_{5}=2 \tag{2}
\end{equation*}
$$

Basic variables: $\quad\left\{\begin{array}{lll}x_{3} & x_{2} & x_{1}\end{array}\right\}=\left\{\begin{array}{lll}2 & 6 & 2\end{array}\right\}$

$$
Z=36
$$

Non-basic variables: $\quad\left\{\begin{array}{ll}x_{5} & x_{4}\end{array}\right\}=\mathbf{0}$

Optimality test

The rates of improvement are all negative; therefore, this solution is optimal.

The optimal solution is thus (the values of the structural variables are emphasized)

$$
\left\{\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5}
\end{array}\right\}=\left\{\begin{array}{lllll}
\mathbf{2} & \mathbf{6} & 2 & 0 & 0
\end{array}\right\}
$$

2 Tabular form of the Simplex Method

The tabular form of the simplex method records only the essential information: (1) the coefficients of the variables, (2) the constants on the right-hand sides of the equations, and (3) the basic variable appearing in each equation.

Notice that Eq. (0), for Z, in the tableau is written as $Z-\mathbf{c}^{T} \mathbf{x}=z_{\text {RHS }}$, so the coefficients of x have their signs reversed.

Compare the following with Eq. $\{3\}$.
Table 1 Simplex tableaux for the Wyndor Glass Co. problem

Basic variable	Eq.	Z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	Right side	Ratio
Z	(0)	1	-3	$\mathbf{- 5}$	0	0	0	0	
x_{3}	(1)	0	1	0	1	0	0	4	∞
x_{4}	(2)	0	0	$\mathbf{2}$	0	1	0	12	6
x_{5}	(3)	0	3	2	0	0	1	18	9

Compare the following with Eq. $\{7\}$.
Table 2 Simplex tableaux for the Wyndor Glass Co. problem

Basic variable	Eq.	Z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	Right side	Ratio
Z	(0)	1	$\mathbf{- 3}$	0	0	$5 / 2$	0	30	
x_{3}	(1)	0	1	0	1	0	0	4	4
x_{2}	(2)	0	0	1	0	$1 / 2$	0	6	∞
x_{5}	(3)	0	$\mathbf{3}$	0	0	-1	1	6	2

Compare the following with Eq. $\{11\}$.
Table 3 Simplex tableaux for the Wyndor Glass Co. problem

Basic variable	Eq.	Z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	Right side	Ratio
Z	(0)	1	0	0	0	$3 / 2$	1	36	
x_{3}	(1)	0	0	0	1	$1 / 3$	$-1 / 3$	2	
x_{2}	(2)	0	0	1	0	$1 / 2$	0	6	
x_{1}	(3)	0	1	0	0	$-1 / 3$	$1 / 3$	2	

The coefficients [line (0)] of the basic variables -which have their signs reversed- are all negative; therefore, this solution is optimal.

3 Revised (matrix form) Simplex Method

The "revised simplex method" -a matrix form of the simplex method that is totally equivalent to the previous two- records only the necessary information: (1) the coefficients of the variables, (2) the constants on the right-hand sides of the equations, and (3) the basic variable appearing in each equation. (Notation is partly altered for coherence of some available software: z for Z, p for c, etc..) Vectors are systematically considered here column matrices. For minimization, the changes are obvious.

$$
\begin{array}{ccl}
{[\max] z} & =\mathbf{p}^{\mathrm{T}} \mathbf{x} & \\
\text { s. to } & \mathbf{A x} & \leq \mathbf{b} \\
\text { with } & \mathbf{x} & \geq \mathbf{0}
\end{array}
$$

The augmented form (to be used, as always), keeping the nonnegativity, is

$$
\begin{align*}
& {[\max] z=\left[\begin{array}{l:l}
\mathbf{p}_{D} & \mathbf{p}_{I}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{c}
\mathbf{x}_{D} \\
\hdashline \mathbf{x}_{I}
\end{array}\right]} \\
& \text { s. to } \quad\left[\begin{array}{ll:}
\mathbf{A}_{D} & \mathbf{A}_{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{D} \\
\hdashline \mathbf{x}_{I}
\end{array}\right]=\mathbf{b}
\end{align*}
$$

The basic variables will be here called dependent variables (which they are), hence subscript "D"; and the non-basic variables will be called independent variables ("independently" made zero), hence subscript " I ". As the non-basic variables, \mathbf{x}_{I}, are set equal to 0 , it is, successively:

$$
\mathbf{A}_{D} \mathbf{x}_{D}=\mathbf{b}
$$

Therefore, it is

$$
\begin{align*}
& \mathbf{x}_{D 0}=\mathbf{A}_{D}^{-1} \mathbf{b} \\
& \text { and } \\
& z_{0}=\mathbf{p}_{D}^{\mathrm{T}} \mathbf{x}_{D 0}
\end{align*}
$$

To express the objective function in terms of the non-basic variables [Tavares, 1996, p 53] ${ }^{1}$ and, thus, to annul the coefficients of the basic variables, we have to premultiply the constraint (following $2 .{ }^{\text {nd }}$ equation) by $-\mathbf{p}_{D}^{\mathrm{T}} \mathbf{A}_{D}^{-1}$ and add it to the objective function, that is, successively:

$$
\begin{align*}
z & =\mathbf{p}_{D}^{\mathrm{T}} \mathbf{x}_{D}+\mathbf{p}_{I}^{\mathrm{T}} \mathbf{x}_{I} \\
\mathbf{b} & =\mathbf{A}_{D} \mathbf{x}_{D}+\mathbf{A}_{I} \mathbf{x}_{I} \quad \times\left(-\mathbf{p}_{D}^{\mathrm{T}} \mathbf{A}_{D}^{-1}\right) \\
z-\mathbf{p}_{D}^{\mathrm{T}} \mathbf{A}_{D}^{-1} \mathbf{b} & =\left\{\mathbf{p}_{D}^{\mathrm{T}} \mathbf{x}_{D}-\mathbf{p}_{D}^{\mathrm{T}} \mathbf{A}_{D}^{-1} \mathbf{A}_{D} \mathbf{x}_{D}\right\}+\left\{\mathbf{p}_{I}^{\mathrm{T}} \mathbf{x}_{I}-\mathbf{p}_{D}^{\mathrm{T}} \mathbf{A}_{D}^{-1} \mathbf{A}_{I} \mathbf{x}_{I}\right\}= \\
& =0+\mathbf{p}_{I}^{\mathrm{T}} \mathbf{x}_{I}-\mathbf{p}_{D}^{\mathrm{T}} \mathbf{A}_{D}^{-1} \mathbf{A}_{I} \mathbf{x}_{I}=\left(\mathbf{p}_{I}^{\mathrm{T}}-\mathbf{p}_{D}^{\mathrm{T}} \mathbf{A}_{D}^{-1} \mathbf{A}_{I}\right) \mathbf{x}_{I}= \\
& =\left[\mathbf{p}_{I}-\left(\mathbf{A}_{D}^{-1} \mathbf{A}_{I}\right)^{\mathrm{T}} \mathbf{p}_{D}\right]^{\mathrm{T}} \mathbf{x}_{I}
\end{align*}
$$

The following vector, δ, is usually called the reduced cost vector

$$
\delta=\mathbf{p}_{I}-\left(\mathbf{A}_{D}^{-1} \mathbf{A}_{I}\right)^{\mathrm{T}} \mathbf{p}_{D}
$$

or, introducing \mathbf{K} and $\overline{\mathbf{p}}$ (as in some software),

$$
\begin{array}{ll}
\mathbf{K}=\mathbf{A}_{D}^{-1} \mathbf{A}_{I} & \delta=\mathbf{p}_{I}-\overline{\mathbf{p}} \\
\overline{\mathbf{p}}=\mathbf{K}^{\mathrm{T}} \mathbf{p}_{D} &
\end{array}
$$

[^0]It represents the constrained derivatives $\partial z / \partial x_{I}$, the nonbasic (independent) variables being now the decision variables. The ratios, as a criterion for the leaving variable, will be called θ, with the (nonnegative) minimum ratio giving the leaving variable:

$$
\Theta=\frac{\mathbf{x}_{D}}{\mathbf{K}_{i e}}
$$

Following are copies of the resolution of the prototype example: (a) with one of the course website resolutions; and (b) of an Excel resolution (just for this illustrative purpose).

Feb-2007 The revised simplex (matrix form)
Wyndor Glass Co.

2	x								
$x_{\text {D }}=$	3	$A_{\mathrm{D}}=$	1	0	0	$A_{\mathrm{D}}{ }^{4}=$	1	0	0
	2		0	2	0		0	0.5	0
	5		0	2	1		0	-1	1

$$
X_{\mathrm{DO}}=A_{\mathrm{D}}{ }^{-1} B=\begin{aligned}
& 4 \\
& 6 \\
& 6
\end{aligned} \quad P_{\mathrm{D}}=\begin{array}{llll}
0 & P_{\mathrm{D}}{ }^{\top}=\begin{array}{|l}
0 \\
5 \\
0
\end{array} & z=P_{\mathrm{D}}{ }^{\mathrm{T}} X_{\mathrm{D}}= & 30 \\
\hline
\end{array}
$$

$$
A_{1}=\begin{array}{ll}
1 & 0 \\
0 & 1 \\
3 & 0
\end{array}
$$

[^0]: ${ }^{1}$ See Bibliography on the course website.

