Artificial variables in Linear Programming

Adapted from H\&L [2005] and Taha [1992]

Equality constraints [H\&L, p 125]

Suppose a modification to the original Wyndor problem, as follows ($\{1\}$).

$$
\begin{array}{rccl}
{[\max] z=} & 3 x_{1} & +5 x_{2} & \\
\text { s.to } & x_{1} & & \leq 4 \\
& & 2 \mathrm{x}_{2} & \leq 12 \\
& 3 x_{1}+2 x_{2} & =18
\end{array}
$$

with $\boldsymbol{x} \geq 0$. Thus, the third constraint is now an equality. This can become

(0)	z	$-3 x_{1}$	$-5 x_{2}$		
(1)	x_{1}		$+x_{3}$		$=4$
(2)		$2 x_{2}$		$+x_{4}$	$=12$
(3)		$3 x_{1}$	$+2 x_{2}$		
(3)	$=18$				

However, these equations do not have an obvious initial (basic feasible) solution. So, the artificial variable technique is applied. With M a very high number $(+\infty)$-this is the Big M method ${ }^{*}$-, we can augment the system $\{2\}$ to obtain ${ }^{\dagger}$

$$
\begin{array}{rccccccr}
(0) & z & -3 x_{1} & -5 x_{2} & & & -M \bar{x}_{5} & =0 \\
(1) & & x_{1} & & +x_{3} & & & =4 \\
(2) & & 2 x_{2} & & +x_{4} & & =12 \\
(3) & & 3 x_{1} & +2 x_{2} & & & +\bar{x}_{5} & =18
\end{array}
$$

Converting equation 0 to proper form

In $\{3\}$, the (obvious) initial basic variables are x_{3}, x_{4} and \bar{x}_{5} (non-basic $x_{1}=0$ and $x_{2}=0$). However, this system is not yet in proper form for Gaussian elimination because a basic variable (\bar{x}_{5}) has a non-zero coefficient in Eq. 0. Indeed, all the basic variables must be (algebraically) eliminated from Eq. 0 before the simplex method can find the entering basic variable. (This elimination is necessary so that the negative of the coefficient of each non-basic variable will give the rate at which z would increase if that non-basic variable were to be increased from 0 while adjusting the values of the basic variables accordingly.)

To eliminate \bar{x}_{5} from Eq. 0, we need to subtract from Eq. 0 the product M times Eq. 3:

$$
\begin{array}{ccccc}
z & -3 x_{1} & -5 x_{2} & +M \bar{x}_{5} & =0 \\
& -M\left(3 x_{1}\right. & +2 x_{2} & +\bar{x}_{5} & =18) \\
\hline z & -(3 M+3) x_{1} & -(2 M+5) x_{2} & & =-18 M
\end{array}
$$

[^0]In this example, there is only one equation with an artificial variable. If there were several equations with artificial variables, we would have to subtract accordingly.

Application of the simplex method

The new Eq. 0 gives z in terms of just the non-basic variables $\left(x_{1}, x_{2}\right)$:

$$
z=-18 M+(3 M+3) x_{1}+(2 M+5) x_{2}
$$

Since the coefficient of x_{1} is the best (greatest), this variable is chosen as the entering variable.

The leaving variable, as always, will correspond to the smallest "positive" (nonnegative) ratio (from the so-called "minimum ratio test").

Another (more general) example (Taha [1992], p 72)

$$
\begin{array}{cll}
{[\mathrm{min}] z=} & 4 x_{1}+x_{2} & \\
\text { s.to } & 3 x_{1}+x_{2}=3 \\
& 4 x_{1}+3 x_{2} \geq 6 \\
& x_{1}+2 x_{2} \leq 4
\end{array}
$$

with $\boldsymbol{x} \geq 0$. The augmented standard form is

$$
\begin{array}{cccccccl}
{[\min] z=} & 4 x_{1} & +x_{2} & +0 x_{3} & +0 x_{4} & +M a_{1} & +M a_{2} & \\
\text { s.to } & 3 x_{1} & +x_{2} & & & +a_{1} & & =3 \\
& 4 x_{1} & +3 x_{2} & -x_{3} & & & +a_{2} & =6 \\
& x_{1} & +2 x_{2} & & +x_{4} & & & =4
\end{array}
$$

References

- Hillier, Frederick S., and Gerald J. Lieberman, 2005, "Introduction to Operations Research", 8. ${ }^{\text {th }}$ ed., McGraw-Hill
- TAHA, Hamdy, 1992, "Operations Research: an introduction", 5. th ed., MacMillan Publishing Company

[^0]: * Another method to solve this matter is the "two-phase method".
 ${ }^{\dagger}$ To obtain a different problem!

