Integer Programming

Wolfram Wiesemann

December 6, 2007

Branch & Bound Algorithms: The Big Picture Solving MIP's: Complete Enumeration Divide and Conquer Principle Branch & Bound Algorithm for MIP's Example

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mixed Integer Programming (MIP) Problem:

min
$$x_0 = c^{\mathrm{T}}x$$

subject to

Note: $x_j \in N \setminus Z$ are continuous, $x_j \in Z$ are integral.

Additional assumption this lecture: Finite bounds \underline{x}_j , \overline{x}_j for $j \in Z$: $x_j \in \{\underline{x}_j, \underline{x}_j + 1, \dots, \overline{x}_j\}$.

Branch & Bound Algorithms: The Big Picture Solving MIP's: Complete Enumeration

Divide and Conquer Principle Branch & Bound Algorithm for MIP's Example

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solving MIP's: Complete Enumeration

Idea: Loop through all possible values of the integer variables (without loss of generality, $\{x_1, \ldots, x_z\}$ with $z \le n$) and solve LP problems in the remaining (continuous) variables:

for
$$x_1 \in \{\underline{x}_1, \underline{x}_1 + 1, \dots, \overline{x}_1\}$$
 do
for $x_2 \in \{\underline{x}_2, \underline{x}_2 + 1, \dots, \overline{x}_2\}$ do
...
for $x_z \in \{\underline{x}_z, \underline{x}_z + 1, \dots, \overline{x}_z\}$ do
Solve LP in x_{k+1}, \dots, x_n with x_1, \dots, x_k fixed.
Update tentative optimal solution if necessary.
end for
...
end for
Print (final) optimal solution or report infeasibility.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Complexity?

Branch & Bound Algorithms: The Big Picture Solving MIP's: Complete Enumeration Divide and Conquer Principle Branch & Bound Algorithm for MIP's Example

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Divide and Conquer Principle

Need to structure search so that we touch only few solutions.

One Approach: Divide and Conquer

- *Divide* a large problem into several smaller ones.
- Conquer by working on the smaller problems.

Branch & Bound:

- ▶ Solve continuous relaxation of original problem $P_0 \Rightarrow x^*(P_0)$.
- Divide (Branch): Choose p ∈ Z with x_p^{*} ∉ Z. Create two subproblems, P₁ and P₂, with added constraints x_p ≤ ⌊x_p^{*}⌋ and x_p ≥ ⌈x_p^{*}⌉, respectively.
- Conquer (Bound/Fathom): If optimal solution of continuus relaxation of P_i is worse than any known feasible solution for P₀, disregard P_i.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note: Any solution to P_0 is also feasible for *either* P_1 *or* P_2 . Hence, by solving P_1 and P_2 , we solve P_0 .

Divide and Conquer Principle

Recursive application of divide and conquer principle leads to binary tree:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Terminal nodes = problems that remain to be solved.

Branch & Bound Algorithms: The Big Picture Solving MIP's: Complete Enumeration Divide and Conquer Principle Branch & Bound Algorithm for MIP's Example

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Branch & Bound Algorithm for MIP's

Preliminaries:

► *P*⁰ denotes original problem:

min
$$x_0 = c^{\mathrm{T}}x$$

subject to

$$\begin{array}{ll} Ax = b \\ x_j \geq 0 & \text{for } j \in N = \{1, \dots, n\} \\ x_j \in \mathbb{Z} & \text{for } j \in Z \subseteq N. \end{array}$$

- For any problem P, x*(P) denotes optimal solution for continuous relaxation of P.
- ► OPT denotes objective function value of best *feasible* solution (for P₀) found so far. At beginning, OPT = ∞ or based on a priori knowledge (heuristic).

Branch & Bound Algorithm for MIP's

Algorithm:

- 1. Initialization.
 - Set list of problems to $\{P_0\}$. Initialize *OPT*.
 - Solve LP relaxation of $P_0 \Rightarrow x^*(P_0)$.
 - If $x^*(P_0)$ feasible for P_0 , $OPT = c^T x^*(P_0)$ and stop.
- 2. **Problem Selection.** Choose a problem *P* from list whose $x^*(P)$ has $c^Tx^*(P) < OPT$. If no such *P* exists, stop.
- 3. Variable Selection. Choose $x_p \in Z$ with $x_p^*(P) \notin \mathbb{Z}$.
- 4. Branching.
 - Create two new problems P' and P'' with $x_p \leq \lfloor x_p^*(P) \rfloor$ and $x_p \geq \lceil x_p^*(P) \rceil$, respectively.
 - ▶ Solve continuous relaxations of P' and $P'' \Rightarrow x^*(P')$, $x^*(P'')$.
 - ▶ **Update** *OPT*: If *P'* feasible, $x^*(P')$ feasible for *P*₀ and $c^Tx^*(P') < OPT \Rightarrow OPT = c^Tx^*(P')$. Same for *P''*.
 - Further Inspection: If P' feasible and c^Tx*(P') < OPT ⇒ add P' to list of problems. Same for P''.

Afterwards, go back to (2).

Branch & Bound Algorithm for MIP's

Output:

- $OPT = \infty : P_0$ is infeasible.
- $OPT < \infty$: P_0 is feasible. OPT = optimal objective value.

Optimal Solution: Obtained via slight modification

- Store vector \hat{x} for best feasible solution (for P_0) found so far.
- Whenever *OPT* is updated (Steps 1+4), also update \hat{x} .

Termination: Under assumption of finite bounds \underline{x}_j , \overline{x}_j for $j \in Z$, algorithm terminates in finitely many steps.

Branch & Bound Algorithms: The Big Picture

Solving MIP's: Complete Enumeration Divide and Conquer Principle Branch & Bound Algorithm for MIP's Example

Assume the following problem is given:

max $2x_1 + 3x_2 + x_3 + 2x_4$

subject to

$$5x_1 + 2x_2 + x_3 + x_4 \le 15$$

$$2x_1 + 6x_2 + 10x_3 + 8x_4 \le 60$$

$$x_1 + x_2 + x_3 + x_4 \le 8$$

$$2x_1 + 2x_2 + 3x_3 + 3x_4 \le 16.$$

The bounds are $x_1 \in [0,3]$, $x_2 \in [0,7]$, $x_3 \in [0,5]$ and $x_4 \in [0,5]$. Furthermore, $x_j \in \mathbb{Z}$ for all $j = 1, \dots, 4$.

Change to minimization objective (not necessary!):

min
$$-2x_1 - 3x_2 - x_3 - 2x_4$$

subject to

$$5x_1 + 2x_2 + x_3 + x_4 \le 15$$

$$2x_1 + 6x_2 + 10x_3 + 8x_4 \le 60$$

$$x_1 + x_2 + x_3 + x_4 \le 8$$

$$2x_1 + 2x_2 + 3x_3 + 3x_4 \le 16.$$

 $x_1 \in [0,3], x_2 \in [0,7], x_3 \in [0,5]$ and $x_4 \in [0,5]. x_j \in \mathbb{Z}$ for all $j = 1, \dots, 4$.

1. Initialization.

- Set list of problems to $\{P_0\}$. Initialize *OPT*.
- Solve LP relaxation of $P_0 \Rightarrow x^*(P_0)$.
- If $x^*(P_0)$ feasible for P_0 , $OPT = c^T x^*(P_0)$ and stop.

$$(P_0) \begin{array}{c} x^*(P_0) = (0.08, 7, 0, 0.62) \\ c^T x^*(P) = -22.4 \end{array}$$

Problem list: $\{P_0\}$, $OPT = \infty$.

- 1. **Problem Selection.** Choose a problem *P* from list whose $x^*(P)$ has $c^Tx^*(P) < OPT$. If no such *P* exists, stop.
- 2. Variable Selection. Choose $x_p \in Z$ with $x_p^*(P) \notin \mathbb{Z}$.
- 3. Branching.
 - Create two new problems P' and P'' with $x_p \leq \lfloor x_p^*(P) \rfloor$ and $x_p \geq \lceil x_p^*(P) \rceil$, respectively.

Problem list: $\{P_1, P_2\}$, $OPT = \infty$.

1. Branching.

- Solve continuous relaxations of P' and P'' ⇒ x*(P'), x*(P'').
- ▶ **Update** *OPT*: If *P'* feasible, $x^*(P')$ feasible for P_0 and $c^Tx^*(P') < OPT \Rightarrow OPT = c^Tx^*(P')$. Same for *P''*.
- Further Inspection: If P' feasible and c^Tx*(P') < OPT ⇒ add P' to list of problems. Same for P''.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Problem list: $\{P_1\}$, OPT = -18.

- 1. **Problem Selection.** Choose a problem *P* from list whose $x^*(P)$ has $c^Tx^*(P) < OPT$. If no such *P* exists, stop.
- 2. Variable Selection. Choose $x_p \in Z$ with $x_p^*(P) \notin \mathbb{Z}$.
- 3. Branching.
 - Create two new problems P' and P'' with $x_p \leq \lfloor x_p^*(P) \rfloor$ and $x_p \geq \lceil x_p^*(P) \rceil$, respectively.

Problem list: $\{P_3, P_4\}$, OPT = -18.

1. Branching.

- Solve continuous relaxations of P' and $P'' \Rightarrow x^*(P'), x^*(P'')$.
- ▶ **Update** *OPT*: If *P'* feasible, $x^*(P')$ feasible for P_0 and $c^Tx^*(P') < OPT \Rightarrow OPT = c^Tx^*(P')$. Same for *P''*.
- Further Inspection: If P' feasible and c^Tx*(P') < OPT ⇒ add P' to list of problems. Same for P''.

Problem list: $\{P_3, P_4\}$, OPT = -18.

- 1. **Problem Selection.** Choose a problem *P* from list whose $x^*(P)$ has $c^Tx^*(P) < OPT$. If no such *P* exists, stop.
- 2. Variable Selection. Choose $x_p \in Z$ with $x_p^*(P) \notin \mathbb{Z}$.
- 3. Branching.
 - Create two new problems P' and P'' with $x_p \leq \lfloor x_p^*(P) \rfloor$ and $x_p \geq \lceil x_p^*(P) \rceil$, respectively.

Problem list: $\{P_4, P_5, P_6\}$, OPT = -18.

・ロト・西ト・西ト・日 うらの

1. Branching.

- ▶ Solve continuous relaxations of P' and $P'' \Rightarrow x^*(P')$, $x^*(P'')$.
- ▶ **Update** *OPT*: If *P'* feasible, $x^*(P')$ feasible for P_0 and $c^Tx^*(P') < OPT \Rightarrow OPT = c^Tx^*(P')$. Same for *P''*.
- Further Inspection: If P' feasible and c^Tx*(P') < OPT ⇒ add P' to list of problems. Same for P''.

Problem list: $\{P_4\}$, OPT = -21.

- 1. **Problem Selection.** Choose a problem *P* from list whose $x^*(P)$ has $c^Tx^*(P) < OPT$. If no such *P* exists, stop.
- 2. Variable Selection. Choose $x_p \in Z$ with $x_p^*(P) \notin \mathbb{Z}$.
- 3. Branching.
 - Create two new problems P' and P'' with $x_p \leq \lfloor x_p^*(P) \rfloor$ and $x_p \geq \lceil x_p^*(P) \rceil$, respectively.

Problem list: $\{P_7, P_8\}$, OPT = -21.

1. Branching.

- ▶ Solve continuous relaxations of P' and $P'' \Rightarrow x^*(P'), x^*(P'')$.
- ▶ **Update** *OPT*: If *P'* feasible, $x^*(P')$ feasible for P_0 and $c^Tx^*(P') < OPT \Rightarrow OPT = c^Tx^*(P')$. Same for *P''*.
- Further Inspection: If P' feasible and c^Tx*(P') < OPT ⇒ add P' to list of problems. Same for P''.

Problem list: {}, OPT = -21. Done; $\hat{x} = (0, 7, 0, 0)$.