
Integer Programming

Wolfram Wiesemann

December 6, 2007



Contents of this Lecture

Revision: Mixed Integer Programming Problems

Branch & Bound Algorithms: The Big Picture
Solving MIP’s: Complete Enumeration
Divide and Conquer Principle
Branch & Bound Algorithm for MIP’s
Example



Revision: Mixed Integer Programming Problems

Mixed Integer Programming (MIP) Problem:

min x0 = cTx

subject to

Ax = b

xj ≥ 0 for j ∈ N = {1, . . . , n}

xj ∈ Z for j ∈ Z ⊆ N.

Note: xj ∈ N \ Z are continuous, xj ∈ Z are integral.

Additional assumption this lecture: Finite bounds x j , x j for
j ∈ Z : xj ∈

{
x j , x j + 1, . . . , x j

}
.



Contents of this Lecture

Revision: Mixed Integer Programming Problems

Branch & Bound Algorithms: The Big Picture
Solving MIP’s: Complete Enumeration
Divide and Conquer Principle
Branch & Bound Algorithm for MIP’s
Example



Solving MIP’s: Complete Enumeration

Idea: Loop through all possible values of the integer variables
(without loss of generality, {x1, . . . , xz} with z ≤ n) and solve LP
problems in the remaining (continuous) variables:

for x1 ∈ {x1, x1 + 1, . . . , x1} do

for x2 ∈ {x2, x2 + 1, . . . , x2} do

...

for xz ∈ {xz , xz + 1, . . . , xz} do

Solve LP in xk+1, . . . , xn with x1, . . . , xk fixed.
Update tentative optimal solution if necessary.

end for

...

end for

end for

Print (final) optimal solution or report infeasibility.

Complexity?



Contents of this Lecture

Revision: Mixed Integer Programming Problems

Branch & Bound Algorithms: The Big Picture
Solving MIP’s: Complete Enumeration
Divide and Conquer Principle
Branch & Bound Algorithm for MIP’s
Example



Divide and Conquer Principle

Need to structure search so that we touch only few solutions.

One Approach: Divide and Conquer

◮ Divide a large problem into several smaller ones.

◮ Conquer by working on the smaller problems.

Branch & Bound:

◮ Solve continuous relaxation of original problem P0 ⇒ x∗(P0).

◮ Divide (Branch): Choose p ∈ Z with x∗p /∈ Z. Create two
subproblems, P1 and P2, with added constraints xp ≤

⌊
x∗p

⌋

and xp ≥
⌈
x∗p

⌉
, respectively.

◮ Conquer (Bound/Fathom): If optimal solution of continous
relaxation of Pi is worse than any known feasible solution for
P0, disregard Pi .

Note: Any solution to P0 is also feasible for either P1 or P2.
Hence, by solving P1 and P2, we solve P0.



Divide and Conquer Principle

Recursive application of divide and conquer principle leads to
binary tree:

Terminal nodes = problems that remain to be solved.



Contents of this Lecture

Revision: Mixed Integer Programming Problems

Branch & Bound Algorithms: The Big Picture
Solving MIP’s: Complete Enumeration
Divide and Conquer Principle
Branch & Bound Algorithm for MIP’s
Example



Branch & Bound Algorithm for MIP’s

Preliminaries:

◮ P0 denotes original problem:

min x0 = cTx

subject to

Ax = b

xj ≥ 0 for j ∈ N = {1, . . . , n}

xj ∈ Z for j ∈ Z ⊆ N.

◮ For any problem P , x∗(P) denotes optimal solution for
continuous relaxation of P .

◮ OPT denotes objective function value of best feasible solution
(for P0) found so far. At beginning, OPT = ∞ or based on a
priori knowledge (heuristic).



Branch & Bound Algorithm for MIP’s

Algorithm:

1. Initialization.
◮ Set list of problems to {P0}. Initialize OPT .
◮ Solve LP relaxation of P0 ⇒ x∗(P0).
◮ If x∗(P0) feasible for P0, OPT = cTx∗(P0) and stop.

2. Problem Selection. Choose a problem P from list whose
x∗(P) has cTx∗(P) < OPT . If no such P exists, stop.

3. Variable Selection. Choose xp ∈ Z with x∗p (P) /∈ Z.

4. Branching.
◮ Create two new problems P ′ and P ′′ with xp ≤

⌊
x∗

p (P)
⌋

and

xp ≥
⌈
x∗

p (P)
⌉
, respectively.

◮ Solve continuous relaxations of P ′ and P ′′ ⇒ x∗(P ′), x∗(P ′′).
◮ Update OPT : If P ′ feasible, x∗(P ′) feasible for P0 and

cTx∗(P ′) < OPT ⇒ OPT = cTx∗(P ′). Same for P ′′.
◮ Further Inspection: If P ′ feasible and cTx∗(P ′) < OPT ⇒

add P ′ to list of problems. Same for P ′′.

Afterwards, go back to (2).



Branch & Bound Algorithm for MIP’s

Output:

◮ OPT = ∞ : P0 is infeasible.

◮ OPT < ∞ : P0 is feasible. OPT = optimal objective value.

Optimal Solution: Obtained via slight modification

◮ Store vector x̂ for best feasible solution (for P0) found so far.

◮ Whenever OPT is updated (Steps 1+4), also update x̂ .

Termination: Under assumption of finite bounds x j , x j for j ∈ Z ,
algorithm terminates in finitely many steps.



Contents of this Lecture

Revision: Mixed Integer Programming Problems

Branch & Bound Algorithms: The Big Picture
Solving MIP’s: Complete Enumeration
Divide and Conquer Principle
Branch & Bound Algorithm for MIP’s
Example



Example

Assume the following problem is given:

max 2x1 + 3x2 + x3 + 2x4

subject to

5x1 + 2x2 + x3 + x4 ≤ 15

2x1 + 6x2 + 10x3 + 8x4 ≤ 60

x1 + x2 + x3 + x4 ≤ 8

2x1 + 2x2 + 3x3 + 3x4 ≤ 16.

The bounds are x1 ∈ [0, 3], x2 ∈ [0, 7], x3 ∈ [0, 5] and x4 ∈ [0, 5].
Furthermore, xj ∈ Z for all j = 1, . . . , 4.



Example

Change to minimization objective (not necessary!):

min −2x1 − 3x2 − x3 − 2x4

subject to

5x1 + 2x2 + x3 + x4 ≤ 15

2x1 + 6x2 + 10x3 + 8x4 ≤ 60

x1 + x2 + x3 + x4 ≤ 8

2x1 + 2x2 + 3x3 + 3x4 ≤ 16.

x1 ∈ [0, 3], x2 ∈ [0, 7], x3 ∈ [0, 5] and x4 ∈ [0, 5]. xj ∈ Z for all
j = 1, . . . , 4.



Example

1. Initialization.
◮ Set list of problems to {P0}. Initialize OPT .
◮ Solve LP relaxation of P0 ⇒ x∗(P0).
◮ If x∗(P0) feasible for P0, OPT = cTx∗(P0) and stop.

Problem list: {P0}, OPT = ∞.



Example

1. Problem Selection. Choose a problem P from list whose
x∗(P) has cTx∗(P) < OPT . If no such P exists, stop.

2. Variable Selection. Choose xp ∈ Z with x∗p (P) /∈ Z.

3. Branching.
◮ Create two new problems P ′ and P ′′ with xp ≤

⌊
x∗

p (P)
⌋

and

xp ≥
⌈
x∗

p (P)
⌉
, respectively.

Problem list: {P1,P2}, OPT = ∞.



Example

1. Branching.
◮ Solve continuous relaxations of P ′ and P ′′ ⇒ x∗(P ′), x∗(P ′′).
◮ Update OPT : If P ′ feasible, x∗(P ′) feasible for P0 and

cTx∗(P ′) < OPT ⇒ OPT = cTx∗(P ′). Same for P ′′.
◮ Further Inspection: If P ′ feasible and cTx∗(P ′) < OPT ⇒

add P ′ to list of problems. Same for P ′′.

Problem list: {P1}, OPT = −18.



Example

1. Problem Selection. Choose a problem P from list whose
x∗(P) has cTx∗(P) < OPT . If no such P exists, stop.

2. Variable Selection. Choose xp ∈ Z with x∗p (P) /∈ Z.

3. Branching.
◮ Create two new problems P ′ and P ′′ with xp ≤

⌊
x∗

p (P)
⌋

and

xp ≥
⌈
x∗

p (P)
⌉
, respectively.

Problem list: {P3,P4}, OPT = −18.



Example

1. Branching.
◮ Solve continuous relaxations of P ′ and P ′′ ⇒ x∗(P ′), x∗(P ′′).
◮ Update OPT : If P ′ feasible, x∗(P ′) feasible for P0 and

cTx∗(P ′) < OPT ⇒ OPT = cTx∗(P ′). Same for P ′′.
◮ Further Inspection: If P ′ feasible and cTx∗(P ′) < OPT ⇒

add P ′ to list of problems. Same for P ′′.

Problem list: {P3,P4}, OPT = −18.



Example

1. Problem Selection. Choose a problem P from list whose
x∗(P) has cTx∗(P) < OPT . If no such P exists, stop.

2. Variable Selection. Choose xp ∈ Z with x∗p (P) /∈ Z.

3. Branching.
◮ Create two new problems P ′ and P ′′ with xp ≤

⌊
x∗

p (P)
⌋

and

xp ≥
⌈
x∗

p (P)
⌉
, respectively.

Problem list: {P4,P5,P6}, OPT = −18.



Example

1. Branching.
◮ Solve continuous relaxations of P ′ and P ′′ ⇒ x∗(P ′), x∗(P ′′).
◮ Update OPT : If P ′ feasible, x∗(P ′) feasible for P0 and

cTx∗(P ′) < OPT ⇒ OPT = cTx∗(P ′). Same for P ′′.
◮ Further Inspection: If P ′ feasible and cTx∗(P ′) < OPT ⇒

add P ′ to list of problems. Same for P ′′.

Problem list: {P4}, OPT = −21.



Example

1. Problem Selection. Choose a problem P from list whose
x∗(P) has cTx∗(P) < OPT . If no such P exists, stop.

2. Variable Selection. Choose xp ∈ Z with x∗p (P) /∈ Z.

3. Branching.
◮ Create two new problems P ′ and P ′′ with xp ≤

⌊
x∗

p (P)
⌋

and

xp ≥
⌈
x∗

p (P)
⌉
, respectively.

Problem list: {P7,P8}, OPT = −21.



Example

1. Branching.
◮ Solve continuous relaxations of P ′ and P ′′ ⇒ x∗(P ′), x∗(P ′′).
◮ Update OPT : If P ′ feasible, x∗(P ′) feasible for P0 and

cTx∗(P ′) < OPT ⇒ OPT = cTx∗(P ′). Same for P ′′.
◮ Further Inspection: If P ′ feasible and cTx∗(P ′) < OPT ⇒

add P ′ to list of problems. Same for P ′′.

Problem list: {}, OPT = −21. Done; x̂ = (0, 7, 0, 0).


	Revision: Mixed Integer Programming Problems
	Branch & Bound Algorithms: The Big Picture
	Solving MIP's: Complete Enumeration
	Divide and Conquer Principle
	Branch & Bound Algorithm for MIP's
	Example


