
Tree Search and Quantum Computation

Lúıs Tarrataca1! and Andreas Wichert1

GAIPS/INESC-ID
Department of Informatics

IST - Technical University of Lisbon - Portugal
{luis.tarrataca,andreas.wichert}@ist.utl.pt

Abstract. Traditional tree search algorithms supply a blueprint for modeling prob-
lem solving behaviour. A diverse spectrum of problems can be formulated in terms
of tree search. Quantum computation, in particular Grover’s algorithm, has aroused a
great deal of interest since it allows for a quadratic speedup to be obtained in search
procedures. In this work we consider the impact of incorporating classical search con-
cepts alongside Grover’s algorithm into a hybrid quantum search system. Some of the
crucial points examined include: (1) the reverberations of contemplating the use of
non-constant branching factors; (2) determining the consequences of incorporating an
heuristic perspective into a quantum tree search model.

Keywords: quantum computation, tree search, heuristic

1 Introduction

The concepts of knowledge representation and the reasoning processes that support knowledge
application have long been a key interest area in the field of artificial intelligence. Knowledge
enables problem-solving agents to determine an appropriate action in order to better deal
with complex environments. Reasoning allows an agent to perform complex decisions by em-
ploying a finite amount of knowledge [Luger and Stubblefield, 1993]. One such form of rea-
soning consists of classical tree searching. Tree search is employed whenever decisions must
be made that are based on complex knowledge. Tree search algorithms play a crucial role
in many applications, e.g. production systems [Post, 1943] [Newell et al., 1959] [Newell, 1963]
[Ernst and Newell, 1969] [Anderson, 1983] [Laird et al., 1986] [Laird et al., 1987], game play-
ing programs [Feldmann, 1993] [Hsu, 1999] [Hsu, 2002] [Campbell et al., 2002] and robot con-
trol systems [Santos et al., 2009b] [Santos et al., 2009a].

The next few section are organized as follows: Section 1.1 reviews some of the major tree search
algorithms; Section 1.2 present an alternative search method based on quantum computation;
Section 1.3 proposed an hybrid search system combining classical tree search algorithms along-
side quantum search. Section 1.4 presents the objectives and associated problems.

1.1 Classical tree search

The simplest tree search algorithms rely on a “brute-force” approach. These methods perform
an exhaustive examination of all possible sequences of moves until goal states are reached. The
! Lúıs Tarrataca was supported by FCT (INESC-ID multiannual funding) through the PIDDAC
Program funds and FCT grant DFRH - SFRH/BD/61846/2009.

2 L. Tarrataca, A. Wichert

search through the state space systematically checks if the current state is a goal state. If a non-
goal state is discovered then the current state is expanded by applying a successor function,
generating a new set of states. The choice of which state to expand is determined by a search
strategy. In a great deal of occasions, an artificial intelligence application does not possess an
adequate level of knowledge enabling the choice of the most promising state. Strategies that
can only distinguish between between goal states and non-goal states, without being able to
determine if one state is more promising than another, are referred to as uninformed search
strategies. Examples of uninformed search strategies include the well known breadth first
search [Moore, 1959], depth-first search [Hopcroft and Tarjan, 1973], and also the iterative
deepening search [Slate and Atkin, 1977]. Uninformed strategies are only successful for small
problem instances. Typically, most problems search space is characterized by an exponential
growth [Garey and Johnson, 1979]. Due to the mammoth dimensions of the search space it
becomes impractical, both time- and space-wise, to perform an exhaustive examination.

Alternatively, it is possible to employ additional insights, that arise beyond the definition of
the problem. The use of this information, thus the term informed search strategies, allows
for solutions to be found more efficiently. Typically, informed search strategies employ an
evaluation function f(n) which considers a cost function g(n) alongside a heuristic function
h(n). Function g(n) can be interpreted as representing the cost to reach node n whilst h(n)
represents an estimate on the cost to reach a leaf node from node n. Traditionally, the node
with the lowest evaluation value is selected for expansion. Examples of some of the best
known informed search strategies include greedy search [Newell and G, 1965] and A∗ search
[Hart et al., 1968]. More recent advances on informed strategies include IDA∗ [Korf, 1985]
and RBFS [Korf, 1991], [Korf, 1993]. A time complexity comparative assessment between the
various algorithms is presented in Table 1.

Search Reference Strategy Time
Breadth-first [Moore, 1959] Uninformed O(bd+1)
Depth-first [Hopcroft and Tarjan, 1973] Uninformed O(bm)
Iterative-deepening [Slate and Atkin, 1977] Uninformed O(bd)
Greedy [Newell and G, 1965] Informed O(bm)
A∗ [Hart et al., 1968] Informed O(bd)
IDA∗ [Korf, 1985] Informed O(bd)
RBFS [Korf, 1991] Informed O(bd)

Table 1: Tree Search Algorithm Comparison (b - branching factor, d - depth of a solution, m
- maximum depth).

1.2 Quantum Search

Grover’s algorithm performs a generic search for a solution using the principles of quan-
tum computation and mechanics [Grover, 1996] [Grover, 1998a]. Suppose we wish to search
through a problem’s search space of dimension N . Also, consider that we are also capable of
efficiently perceiving a solution to our problem. This is similar to the NP class of problems
whose solutions are verifiable in polynomial time O(nk) for some constant k, where n is the
size of the input to the problem [Edmonds, 1965]. Grover’s search algorithm employs quan-
tum superposition and reversible computation in order to query many elements of the search
space simultaneously.

Tree Search and Quantum Computation 3

Grover’s algorithm was later experimentally demonstrated in [Chuang et al., 1998]. The al-
gorithm provides a polynomial speed-up when compared with the best-performing classical
search algorithms. As previously mentioned, any such classical algorithm requires O(N) time
in order to searchN elements. Grover’s algorithm requiresO(

√
N) time, providing a quadratic

speedup, which is considerable when N is large.

Oracle unitary operator In quantum computation mathematical objects known as uni-
tary operators are responsible for the time-evolution of the state of a close quantum sys-
tem. This is one of the foundational principles behind quantum computation, and is also
known as the evolution postulate [Kaye et al., 2007]. A black box, also referred to as an or-
acle [Nielsen and Chuang, 2000], representing a unitary operator U , is employed in order to
indicate, through a reverse of the associated amplitude, which of the values present in an am-
plitude register corresponds to the searched ones. This process can be performed by adding
an additional input bit c to the original n-bit input register x and performing a XOR opera-
tion. This behaviour is illustrated in Expression 1 which employs the ket notation introduced
by Paul Dirac [Dirac, 1939] [Dirac, 1981]. Classical reversible circuitry can also be described
through such a formulation, albeit without employing the ket notation.

U : |x〉|c〉 #→ |x〉|c⊕ g(x)〉 (1)

Grover’s algorithm employs a process of amplitude amplification, known as Grover’s iterate,
in order to amplify the amplitudes of the solutions and in the process diminish those of
the non-solutions. This process is performed by setting the control register c to a specified
eigenvector, which, when combined with Grover’s iterate can be mathematically proven to
perform an inversion about the mean of the amplitudes [Kaye et al., 2007]. As a direct result of
Grover’s iterate, the probability of an answer bearing state increases. However, the amplitude
of the solution value is amplified only in a linear way. If the function f is provided as a black
box, then O(

√
N) applications of the black box are necessary in order to solve the search

problem with high probability for any input [Nielsen and Chuang, 2000]. !

Traditionally, classical computation is seen as an irreversible process, a direct consequence
from the use of many-to-one binary gates. A logical gate is a function f : {0, 1}k → {0, 1}l from
some fixed number k of input bits to some fixed number l of outputs bits [Mano and Kime, 2002].
A computation is said to be reversible if given the outputs we can recover the inputs [Toffoli, 1980a]
[Toffoli, 1980b]. Mathematically, a reversible computation corresponds to the concept of a bi-
jective function. It turns out that there is a general mechanism for converting irreversible
computations into reversible ones. Each irreversible gate can be made reversible by adding
some additional input and output wires [Kaye et al., 2007]. This conversion introduces a cer-
tain number of inputs and outputs to each irreversible gate. It is this additional information
that provides for reversible computation.

Intuitively, it should come as no surprise that an irreversible circuit can be made reversible
by substituting each irreversible gate by an equivalent reversible gate [Toffoli, 1980a]. By

! A number of improvements have been purposed since Grover’s original work [Grover, 2002]
[Grover, 2005]. These improvements essentially targeted reduced time complexity bounds for non-
query operations and overall robustness. For a number of several novel search related applications
please refer to [Grover, 1998a] [Grover, 1998b] [Grover, 1999].

4 L. Tarrataca, A. Wichert

substituting each element of the circuit with its respective inverse we are able to perform the
inverse operation of the original circuit. In practice, this means that if we run the reversed
circuit with an output, we will obtain the originating input bit register.

Emil Post’s research into the principals of mathematical logic and description of the complete
sets of truth functions [Post, 1941] implied that all functions f : {0, 1}k → {0, 1}l could be
computed by binary circuits employing logical gates ¬,∨ and ∧. Since it is always possible to
build a reversible version of an irreversible circuit, reversible computation can also compute
all functions f : {0, 1}k → {0, 1}l.

Quantum superpositions In order to gain a “quantum advantage”, Grover assembles
a quantum superposition containing all possible values that should be presented as input
to the unitary operator. At its core, the superposition principle simply conveys the notion
that multiple quantum states exist at the same time. Let |ψ〉 denote the n-bit input register
presented to unitary operator U , then |ψ〉 takes the form illustrated in Expression 2.

|ψ〉 = 1√
2n

2n−1∑

x=0

|x〉 (2)

Since unitary operators obey linearity principles we are now in a position to apply unitary
operator U to the superposition register. In practice this process means that all values present
in the superposition register are processed simultaneously. This operation is illustrated in
Expression 3. Additionally, unitary operators as well as input registers can be described by
matrices. Accordingly, in light of Expression 3, applying unitary operator U to input register
|ψ〉, can be understood as performing matrix multiplication U |ψ〉.

U |ψ〉 = 1√
2n

2n−1∑

x=0

U |x〉 (3)

1.3 Hybrid system

As previously mentioned, Grover’s algorithm performs a generic search by employing a unitary
operator U . It was designed with the purpose of searching an unstructured collection of
registers. I.e. the algorithm’s purpose can be understood as looking for binary strings within
a collection. Albeit, since binary strings can be used to encode mathematical abstractions,
can we build upon this behaviour in order to develop a hybrid system performing classical
hierarchical search using Grover’s algorithm? This hybrid approach would combine traditional
tree search mechanisms with the efficiency gains promised by Grover’s algorithm.

Assume that the unitary operator U employed during Grover’s iterate is developed in such a
way as to recognize potential solutions. Intuitively, it is fairly easy to see that U will need to
contemplate the sequence of steps taken in each path of a tree in order to determine if it leads
to a solution. However, it needs to do so by restricting itself to a binary representation. This
coding strategy serves two direct purposes, namely (i) provide a numerical basis on which the
development of U can be built-upon; (ii) being able to translate Grover’s output into a set

Tree Search and Quantum Computation 5

of actions leading to a solution. These actions are to be interpreted as the set of decisions
executed at each step of the tree search, leading from the root node to a goal state.

In order to formally introduce the coding mechanism lets start by considering the binary tree
presented in Figure 1. The illustrated binary tree has a root node A. Also, has it is possible to
see each layer of depth d provides an additional 2d nodes to the tree. At each node it is always
possible to apply two actions, i.e. we have a branching factor b = 2. Each possible path leading
to a leaf node can thus be perceived as a concatenation of the binary strings encoding the
associated set of performed actions. Using this approach we are able to build a superposition
|ψ〉 containing all the possible paths. Superposition |ψ〉 and a unitary operator U can then be
employed by Grover’s algorithm to determine the paths leading to solutions.

A

B

D E

H I J K

C

F G

L M N O

Fig. 1: A search tree with a constant branching factor b = 2, depth d = 3 for a total of bd = 8
leaf nodes.

1.4 Objectives and Problems

As previously mentioned, unitary operators can be derived by transforming irreversible circuits
into reversible ones. Accordingly, it is always possible to build a unitary operator U which
checks if a set of actions produces a solution. In this work we will not be concerned with the
actual implementation details of U but rather on how such a problem could potentially be
approached. Additionally, we will also be interested in determining how such an hybrid system
would be affected by traditional search concepts. For instance, what are the ramifications
of a variable such as the branching factor? Would the system require the use of a constant
branching factor? Clearly, this is not always the case for the complete set of problems that can
potentially be addressed by search algorithms. When considering a non-constant branching
factor, what would be the associated impacts in overall system performance? Additionally,
traditional search strategies typically employ some kind of information to determine which
states are more promising than others when trying to reach a goal state. Can an heuristic
bounded procedure be incorporated into such an approach? If so, do we stand to gain any
significant advantage?

These and other questions will be addressed in the remaining sections of this work. In Section
2 we will focus on assessing how such an hybrid system would perform from a branching factor
perspective. In Section 3 we devote our efforts to researching on the impacts of incorporating

6 L. Tarrataca, A. Wichert

heuristic concepts into the hybrid proposal. Section 4 presents and discusses the parallels,
alongside the differences, between our proposal and another well-known kind of graph inspec-
tion tool, respectively the quantum random walk. We present the conclusions of this work
in Section 5. With these sections we hope to lend some intuition into the advantages, and
disadvantages, of quantum computation and a possible model for hybrid hierarchical quantum
search. We will strive for presenting a accessible mathematical analysis of our hybrid approach
which takes into account the referred objectives.

2 Branching factor ramifications

In theoretical computer science one possible way to measure a problem’s complexity consists
in assessing how long a given algorithm takes to find a solution. However, time performance is
dependent on a multitude of hardware related factors. Accordingly, it is often more suitable to
take appropriate steps to determine the total number of items that are to be evaluated. In the
case of a classical tree search this equates to the number of nodes to take into account. From
a classical tree search perspective complexity is expressed in terms of b, the branching factor
or maximum number of successors of any node; d, the depth of the shallowest goal node; m,
the maximum length of any path in the state space [Russell et al., 2003]. Section 2.1 focuses
on the aspects surrounding a constant branching factor. The requirements for a non-constant
branching factor are presented in Section 2.2. The impact of using a non-constant branching
factor is presented in Section 2.3.

2.1 Constant branching factor

As previously stated, our proposal for a hybrid quantum tree search system only relied on
a constant branching factor b. This was mostly due to simplification reasons. However, a
constant branching factor requirement is not feasible when considering potential applications
of search algorithms. Since, at its essence, our system can be perceived as evaluating a su-
perposition of all possible paths up to a depth level d, it is pivotal to determine the impact
of a non-constant branching factor in our approach. Lets proceed by examining a couple of
examples in order to have a clear understanding of the search process.

Figure 1 illustrates a search tree where at any given node it is always possible to apply two
actions (respectively labeled as a0 and a1), i.e. the branching factor for this search tree is 2.
Recall from Section 1.3 that we need to encode these actions in a binary fashion. In order to
do so we need to determine how many bits n do we require. For an even number of actions
we can simply calculate the base-2 logarithm. However, we need to take into account that
an odd number of actions might be required. In this case we need to map the value into the
next largest integer, which can be done through the ceiling function, i.e. n = (log2|a|) bits,
where |a| denotes the cardinality of the action set. Notice that the complete range of values
allowed with n bits might not be used, i.e. |a| < 2n. From our point of view, it is the unitary
operator’s responsibility to validate whether a binary string is an admissible action.

In the case of the search tree illustrated in Figure 1 which possesses a branching factor b = 2
actions we need (log22) = 1 bit. Accordingly, let value 0 denote a0 and value 1 represent a1.
The binary strings encoding the paths leading to each leaf nodes of the search tree illustrated
in Figure 1 are presented in Table 2.

Tree Search and Quantum Computation 7

Path to node Action at level 1 Action at level 2 Action at level 3

H 0 0 0
I 0 0 1
J 0 1 0
K 0 1 1
L 1 0 0
M 1 0 1
N 1 1 0
O 1 1 1

Table 2: Binary encoding for each possible path of the search tree illustrated in Figure 1

Suppose we wish to perform a search up to depth level d. We can easily build a string of d
elements, one for each possible depth, with each element requiring a binary representation
using n bits. In total, our binary string will employ n× d bits. We are also able to construct
a quantum superposition |ψ〉 encompassing all the actions to be applied up to depth level d
as illustrated by Expression 4. This superposition |ψ〉 can then be employed alongside our
unitary operator U and Grover’s algorithm.

|ψ〉 = 1√
2n×d

2n×d−1∑

x=0

|x〉 (4)

2.2 Non-constant branching factor

Now consider the tree presented in Figure 2 with an action set a = {a0, a1, a2, a3, a4}. The
first thing one notices is that we no longer have a constant branching factor at each node.
In fact for this particular case it is convenient to distinguish between two types of branching
factor, namely, the theoretical maximum branching factor bmax = |a| = 5, and the average
branching factor of each node bavg = 2, not including the leafs. In order to encode each of the
possible actions we require n = (log2 |a|) = 3 bits. Let the encodings of each action be those
presented in Table 3. Accordingly, the binary strings leading to each leaf node are illustrated
in Table 4.

action b0 b1 b2
a0 0 0 0
a1 0 0 1
a2 0 1 0
a3 0 1 1
a4 1 0 0

undefined 1 0 1
undefined 1 1 0
undefined 1 1 1

Table 3: Binary encoding for each possible path of the search tree illustrated in Figure 2

8 L. Tarrataca, A. Wichert

A

B

D E

G H I J

C

F

K L M

Fig. 2: A search tree with a maximum branching factor bmax = 5 and an average branching
factor bavg = 2+1+2+2+1+4

6 = 2.

Path to node Action at level 1 Action at level 2 Action at level 3

G 000 000 000
H 000 000 001
I 001 010 011
J 001 100 000
K 001 100 001
L 001 100 010
M 001 100 100

Table 4: Binary encoding for each possible path of the search tree illustrated in Figure 1

In order to employ Grover’s algorithm we would need to build a quantum superposition state
|ψ′〉 similar to that presented in Expression 4. Again, our superposition would consist of those
states with d elements, each of which with n bits. However, there is a crucial difference between
both tree searches. Consider the case illustrated in Figure 2 where a search to depth level
d = 3 alongside bmax = 5 is performed. Superposition |ψ′〉 would contain all the quantum
states belonging to the range [0, 2d×n−1] = [0, 29−1] = [0, 511]. I.e. we would be able encode
512 possible paths when in reality we would only need to encode the states presented in Table
4 !!. In reality, the vast majority of the states present in the superposition would contain
inadmissible configurations of actions.

It is important to draw attention to the fact that Grover’s algorithm provides a quadratic
speedup O(

√
N) where N is the number of elements present in the superposition. By em-

ploying n = (log2 bmax) bits, when in practice n = (log2 bavg) bits might have sufficed, we
are extending the search space and in the process loosing some of the speedup provided by
Grover’s algorithm.

Naturally, the question arises: Considering the above encoding mechanism, and a bavg < bmax

when does Grover stop providing a speedup over classical approaches?

!! An alternative approach would consist in encoding each possible state, instead of encoding in an
binary fashion the sequence of actions. However, this would have a meaningful impact on the
complexity and design of unitary operator U since each admissible input string would have to be
mapped onto a predefined sequence of actions.

Tree Search and Quantum Computation 9

2.3 Analysis

So, how can we proceed in order to analyze the problem depicted in the previous section? As
with so many other fields it is usually easier to start out with an example and extrapolate
from that. Accordingly, lets consider the following scenario: we want to perform a tree search
using our hybrid quantum search system up to depth level 10; the maximum branching factor,
bmax is 5, however on average we are only able to perform three actions, i.e. bavg = 3. Does
our approach still provides an advantage over classical search strategies?

In order to answer this question we need to consider the complexities of classical search
algorithms. Traditionally, these methods experience some type of exponential growth in the
number of leaf nodes that need to be assessed. Since the number of elements to be evaluated is
a function of the branching factor b and the depth of the search d the associated complexity is
typically of the formO(bd). Clearly, in the case of our scenario we need to differentiate between
the two branching factors, respectively bmax and bavg. Accordingly, if we consider bmax then
a total of O(bdmax) = O(510) = 9765625 nodes might potentially need to be evaluated. On the
other hand, by employing bavg a total of O(bdavg) = O(310) = 59049 nodes may be considered.
These values differ by a factor of ≈ 165 which is considerable when in practice it is acceptable
to consider bavg as the de facto branching factor.

Now lets reflect on the number of times one would need to apply Grover’s iterate. In this
case there is no distinction to be made between bmax and bavg since we would still need to
build a quantum superposition state encoding all of the bmax actions up to a depth level d. As
previously stated this would result in a total of n×d = 3×10 = 30 bits being required, where
n = (log2 bmax) = (log2 5) = 3. Accordingly, for the above scenario we would need to apply
Grover’s iterate a total of O(

√
N) = O(

√
230) = 32768 times in order to obtain a solution. By

comparing the number of states classically evaluated by using bavg against the total number
of iterations required by Grover’s algorithm we see that both values differ by a factor of ≈ 1.8.
Not surprisingly, although we still obtain a speedup over the classical approach it is severely
lessened. Intuitively, it should be clear that this behaviour can be perceived in the following
manner:

– As bavg grows closer to bmax the number of times to apply Grover’s iterate will be optimal
relatively to the classical approaches;

– As bavg grows more distant to bmax the number of Grover iterations to apply will be closer
to bdavg.

From the above reasoning we are now able to successfully determine the number of times that
Grover’s iterate should be applied, respectively |G|, as illustrated by Expression 5.

|G| =
√
N

=
√
2n×d

=
√
2%log2bmax&×d

= 2
#log2bmax$×d

2 (5)

Keep in mind that we wish to determine where the threshold lies between the number of
elements of a classical search, respectively bdavg and the total number of times to apply Grover’s

10 L. Tarrataca, A. Wichert

iterate |G|. This process can be formulated as presented in Expression 6 which when solved
results in Expression 7.

bdavg = |G| (6)

⇔ bdavg = 2
#log2bmax$

2

d

⇔ bavg = 2
#log2bmax$

2 (7)

Accordingly, when bavg < 2
#log2bmax$

2 then the total number of nodes evaluated in classical
search will be less than the number of times to apply Grover’s iterate, i.e. bdavg < |G|. Appro-
priately, when bavg > 2

#log2bmax$
2 then our hybrid system will yield a speedup over classical

search algorithms. The plot of Expression 7, for bmax ∈ [2, 128], is presented in Figure 3.
The shaded area indicates those values of bavg that will produce better performance results
classically over the proposed hybrid search.

20 40 60 80 100 120
bmax

4

6

8

10

bavg

Fig. 3: The area plot of bavg ≤ 2
#log2bmax$

2 for bmax ∈ [2, 128]. The shaded area indicates
those values of bavg that will produce better performance results over our hybrid quantum
production system.

Figure 3 also showcases the characteristic ladder effect of functions employing the ceiling
function required by the branching factor binary coding mechanism. Notice that in practice
this means that there will always be ranges of values for bmax where the number of iterations,
|G|, will remain the same. Consequently, the average branching factor, bavg, for the boundary
condition presented in Expression 6 will also remain constant in those intervals. This happens
despite the fact that bmax is growing in the associated range.

Lets proceed by elaborating a bit more on each bmax and the associated range of bavg values.
In order to encode in a binary fashion any bmax value we require a total of n = (log2bmax)
bits. The use of the ceiling function effectively forces certain ranges of bmax values to require

Tree Search and Quantum Computation 11

the same number of n bits. As we have seen previously, the number of Grover iterations is a
function of the total number of bits required. We can see how this influences bavg by taking
Expression 7 into account. Clearly, for those bmax values requiring the same number of bits,
the associated bavg values will remain the same. It is only when the required number of bits
for bmax changes that an impact will be felt regarding bavg. Accordingly, we are interested
in studying what happens when a transition if performed from, for example, n to n+ 1 bits.
In this case the bavg value grows from 2

n
2 to 2

n+1
2 which differ by a factor of

√
2 . Let bnavg

denote the average branching factor bavg associated with an interval requiring n bits. Then,
it is possible to express bn+1

avg as a function of bnavg. This recurrence behaviour is illustrated in
Expression 8.

bn+1
avg =

√
2 bnavg (8)

Expression 8 can be improved if we allow ourselves to leave behind the use of the ceiling func-
tion employed in Expression 7. In doing so, we are deliberately abdicating of the ladder effect
presented in Figure 3 and giving the bavg function a quadratic form. This new formulation is
presented in Expression 9.

bavg = 2
log2bmax

2 =
√
bmax (9)

Since we no longer have a “range-bounded” function, a direct mapping of Expression 8 is
impossible. Instead, we can simply define a function, b′avg, depicting the new upper-range

values of bavg, as illustrated in Expression 10. This
√
2 -constant growth factor is depicted in

Figure 4.

b′avg =
√
2 bavg =

√
2bmax (10)

20 40 60 80 100 120
bmax

4

6

8

10

12

14

16

bavg

Fig. 4: The
√
2 -constant growth between b′avg and bavg superimposed on the original bavg =

2
#log2bmax$

2 function for bmax ∈ [2, 128].

12 L. Tarrataca, A. Wichert

3 Heuristic Perspective

Determining which production rule should be applied to the working memory is an important
part of the control strategy of production system theory. In a great deal of occasions an
artificial intelligence application does not possess the adequate level of knowledge allowing for
full differentiation amongst the production rules [Nilsson, 1982].

At any given point in time during the search process it would be useful to somehow know which
production might produce a state which is closer to a goal state. Intuitively, we may describe
this process as trying to determine the quality of a path of actions with an optimal solution
having the lowest path cost among all solutions [Russell et al., 2003]. A key component of
these systems, and many other algorithms in artificial intelligence, consists in an heuristic
function h(n) responsible for presenting an estimate of the distance that a given state n is
relatively to a goal state. Function h(n) is typically employed alongside a function g(n) which
reflects the search cost incurred to reach state n. Traditionally, the conjunction of both these
functions is incorporated within a single evaluation function f(n) as illustrated by Expression
11.

f(n) = g(n) + h(n) (11)

Not surprisingly, function h(n) can have a number of different definitions depending on the
specifics of the problem at hand. In a sense, heuristic functions are responsible for provid-
ing extra-information about how-well a search is performing. Production systems need not
depend on the use of heuristics. Systems which do not take into consideration any kind of
auxiliary information are referred to as uninformed strategies. In the case of “uninformed”
production systems the choice of which rule to apply is performed at random. On the other
hand, “informed” strategies enable a production system to select an appropriate rule.

Our quantum production system model can be perceived as systematically trying to apply
actions in an uninformed fashion. This operation is performed until a goal state is reached.
Such behaviour resembles that of a standard blind depth-limited search process. Intuitively,
the heuristic concepts incorporated into informed search strategies appear to be an adequate
extension idea to our quantum production system. However, it remains to be seen if these
concepts can be adequately mapped into our approach and if doing so provides an advantage.
The remainder of this section is organized as follows: Section 3.1) considers how to incorporate
the use of an heuristic the unitary operator; Section 3.2) provides an analysis of the quantum
computation procedure incorporating the use of an heuristic. Section 3.3) builds on these
results to present an extended quantum heuristic mechanism.

3.1 The Quantum Heuristic

As previously mentioned, at its core, our system can be perceived as evaluating a superposition
of all possible paths. Expression 4 illustrated this perspective, where a quantum superposition
state is composed by an amplitude value and a multitude of sub-states, i.e. the computational
basis. From a quantum mechanics perspective it is important to reinforce the idea that the
mechanisms allowing quantum states of a superposition to communicate with the other states
are complex and restricted in what they achieve. Those algorithms that are able to provide a

Tree Search and Quantum Computation 13

meaningful speedup do so by employing, and determining, some type of global property. E.g.
Grover’s algorithm is able to determine the mean amplitude A of a quantum superposition
and perform an inversion about the mean [Grover, 1996]. Also Shor’s algorithm for factoring
numbers is able to efficiently determine the period of periodic quantum states [Shor, 1994].
Accordingly, there is no clear method to communicate between states.

This fact immediately poses a problem: traditionally, the use of heuristics is employed to
choose among possible tree paths, ideally producing an optimal sequence of actions. However,
with our system, we are unable to quantum mechanically perform such a comparison. Ergo,
is there any way to incorporate any heuristic concepts into our hybrid approach?

From a simplified point of view, an heuristic function outputs a value estimating the distance
to a goal. We can therefore opt to consider only those states whose f value is below a certain
threshold T . Notice that in doing so we are deliberately ignoring the fact that these same states
may later on provide an optimal solution path. In order to for the search process to incorporate
the heuristic function we need to reflect it upon the unitary operator’s design. Recall that a
unitary operator U in order to be employed by Grover’s algorithm is only required to flip the
amplitudes of the solutions states. Expression 12 reflects both of the previous requirements,
where |n〉 represents the current node being processed and ai an action taken at depth i.

U |b〉|a1a2 · · ·ad〉 =
{
− |b〉|a1a2 · · · ad〉 iff(b, a1, a2, · · · , ad) ≤ T

|b〉|a1a2 · · · ad〉 otherwise
(12)

In a similar way as to deciding which of two possible heuristics to employ, the matter of
deciding the threshold value T could be left to statistical studies, or even informed intuition
based on hands-on experience [Nilsson, 1982]. Take notice that in no way did we circumvent
the problem of comparing multiple paths. In conclusion, we are able to incorporate some of
the concepts surrounding the use of heuristics, but not all of them.

3.2 Interpretation

What happens when we employ a unitary operator U with the form presented in Expression
12 alongside Grover’s algorithm? I.e. do we stand to gain anything by incorporating heuristic
concepts into our hybrid search system? Section 3.2 illustrates how superposition |ψ〉 can be
decomposed into two components. Section 3.2) provides a graphical illustration of the impacts
of performing search up to different depth levels.

Decomposing the superposition state Answering this question requires extending our
analysis of what happens when unitary operator U is applied to superposition |ψ〉, i.e. U |ψ〉.
Suppose superposition |ψ〉 takes the form illustrated in Expression 13, where n represents the
number of bits.

|ψ〉 =
√

1

2n

2n−1∑

x=0

|x〉 (13)

14 L. Tarrataca, A. Wichert

Before advancing any further, notice that in an uniform superposition, associated with each

state |x〉 there is an amplitude α ∈ C, which in this case is
√

1
2n for all states. Let αi

denote the amplitude associated with state |i〉. Quantum computation requires the norm of

amplitudes to be unit-length, i.e.
∑2n−1

x=0 |αx|2 = 1, at all times. Not surprisingly any unitary
operator must also preserve the norm.

Now note that we can decompose our initial quantum superposition |ψ〉 into two parts
[Kaye et al., 2007]. One part will contain all those states that are solutions, which we will
respectively label as set Xgood. Another part will include the non-solutions states, respec-
tively labeled as set Xbad. Also, assume that the problem we are interested in solving contains
k solutions. This implies that |Xgood| = k and |Xbad| = 2n−k. Accordingly, an uniform super-
position of the states belonging to Xgood would set an equal amplitude among its k elements,

i.e.
√

1
k . By the same reasoning, an uniform superposition of the states in Xbad would impose

an amplitude values of
√

1
2n−k . Accordingly, we can define the superposition states |ψgood〉

and |ψbad〉, respectively presented in Expression 14 and Expression 15.

|ψgood〉 =
√

1

k

∑

x∈Xgood

|x〉 (14)

|ψbad〉 =
√

1

2n − k

∑

x∈Xbad

|x〉 (15)

We are now able to express superposition |ψ〉 in terms of the subspaces |ψgood〉 and |ψbad〉. This
process is illustrated in Expression 16 which is indispensable to the rest of our analysis.

|ψ〉 =
√

k

2n
|ψgood〉+

√
2n − k

2n
|ψbad〉 (16)

The requirement that the norm must be preserved at all times induces a probabilistic be-

haviour. Consider state |ψ〉 whose norm is

∣∣∣∣
√

k
2n

∣∣∣∣
2

+

∣∣∣∣
√

2n−k
2n

∣∣∣∣
2

= 1. I.e. we have a sum of

values which sum up to 1 similarly to a probability distribution. Accordingly, the probability

of obtaining state |ψgood〉 =
∣∣∣∣
√

k
2n

∣∣∣∣
2

and state |ψbad〉 =
∣∣∣∣
√

2n−k
2n

∣∣∣∣
2

. Applying Grover’s iterate

effectively changes the amplitudes, maximizing the probability of obtaining a solution con-
tained in the subspace spawned by |ψgood〉. As a result, the amplitude associated with state
|ψgood〉 will increase. Since the norm of state |ψ〉 must be preserved, employing Grover also
implies that the amplitude of |ψbad〉 will be decreased.

Heuristic Impact In order to continue with our analysis lets assume we possess an admiss-
able heuristic which always eliminates candidate states with each additional level of depth.
Although this is a rather optimistic strategy the heuristic’s behaviour can be viewed as ideal.
We will use this best case scenario to demonstrate the system’s potential performance.

Tree Search and Quantum Computation 15

Given a sufficiently high depth level d the heuristic will have to eventually produce the exact
number of solutions k. Let kd denote the number of solutions at depth level d. Then, with
such an heuristic we would have k1 < k2 < · · · < kd ≤ k. However, we can never produce
fewer than k solutions, since that would violate basic assumptions about the search space of
the problem.

The above process can be visualized geometrically. Notice that our initial superposition |ψ〉
containing k solutions can be understood as vector with two components (|ψgood〉, |ψbad〉) =
(
√

k
2n ,

√
2n−k
2n). Therefore, we are able to map it into a two dimensional plane with axis

|ψgood〉 and |ψbad〉. This mapping process is illustrated in Figure 5. From a quantum compu-
tation perspective, we can envisage the use of different states |ψkd〉 reflecting a search up to
depth level d. State |ψkd〉 is a simple reformulation in terms of kd of state |ψ〉, as presented
in Expression 17.

|ψkd〉 =
√

kd
2n

|ψgood〉+
√

2n − kd
2n

|ψbad〉 (17)

Clearly, as the number of solutions kd grows, to the allowable maximum of k, the |ψgood〉 and
|ψbad〉 components will tend towards the values of the original state vector |ψ〉. This behaviour
is illustrated in Expression 18.

lim
kd→k

(√
kd
2n

,

√
2n − kd

2n

)
=

(√
k

2n
,

√
2n − k

2n

)
(18)

Not surprisingly, as the depth of the search increases the corresponding state vector |ψkd〉 gets
closer to the original |ψ〉, as can be perceived from Figure 5. Additionaly, each state |ψkd〉 can
be understood as forming an angle θ whose tangent is shown in Expression 19.

tan θkd =

√
kd
2n√

2n−kd
2n

=

√
kd

2n − kd
(19)

Using this approach we can perform a comparison between the angles of different search depth
levels. Lets say we wish to compare how the search advanced between depth levels d1 and d2.
We can define an operator ∆θkd1 ,kd2

with the behaviour defined in Expression 20.

∆θkd1 ,kd2
:= arctan

√
kd2

2n − kd2︸ ︷︷ ︸
θkd2

− arctan

√
kd1

2n − kd1︸ ︷︷ ︸
θkd1

(20)

Operator ∆θkd1 ,kd2
provides a mechanism for determining the operational success of adding

(d2 − d1) extra levels of depth relatively to d1. Accordingly, small ∆θkd1 ,kd2
values can be

understood as not contributing in a significant manner to changing the system’s overall state.
Conversely, high ∆θkd1 ,kd2

values reveal that the system’s state significantly shifted towards
|ψ〉.

16 L. Tarrataca, A. Wichert

Fig. 5: The geometric interpretation of the original state vector |ψ〉 alongside different state
vectors |ψi〉 reflecting the state attained by performing a search to depth-level i. Deeper
searches will be closer to the original |ψ〉 state. All states are unit-length vectors.

Ultimately, we can only expect to get as far as state |ψ〉. From this point on Grover’s usual
O(

√
N) iterations will still be required in order to perform a rotation of |ψ〉 towards |ψgood〉,

leaving the algorithms overall complexity unchanged.

3.3 Extending the quantum heuristic

Can the concepts of the quantum heuristic be extended in such a way as to perform some kind
of useful task? In order to answer this question we will assume that the heuristic function
employed has some kind of probabilistic distribution. Accordingly, we will start by reviewing
some principles surrounding heuristic distributions. We will then show how to incorporate
these concepts alongside our hybrid quantum search proposal.

Heuristic distributions Lets assume that the heuristic function employed has a probabilis-
tic distribution, i.e. the probability of each output value is between 0 and 1. This behaviour
can be written as 0 ≤ P (X = x) ≤ 1 where X is a random variable representing an output
event, and x is a possible value of X . Additionally, a random variable may be either discrete
or continuous depending on the values that it can assume. Random variables whose set of
possible values belong to Z are said to be discrete. On the other other hand, continuous vari-
ables map events to an uncountable set such as R. For a discrete random variable X , the sum
of the set containing all possible probability values is 1 as illustrated by Expression 21.

Tree Search and Quantum Computation 17

n∑

i=1

P (X = xi) = 1 (21)

As a concrete example of a discrete heuristic we can consider the sliding block puzzle, also
known as the n-puzzle, search problem. A sliding block puzzle challenges a player to shift
pieces around on a board without lifting them to establish a certain end-configuration, as
illustrated in Figure 6. This non-lifting property makes finding moves, and the paths opened
up by each move important parts of solving sliding block puzzles [Hordern, 1987]. Accordingly,
we can define a heuristic function h1 which simply calculates the number of misplaced tiles
between a board and a target board configuration. Function h1 outputs values belonging
to the range [0, 9] and consequently can be classified as discrete. The discrete probability
distribution for function h1 regarding the 8-puzzle is presented in Figure 7.

4

7

2

5 8

3

6

1

1 2 3

1

2

3

(a) Initial board configuration

4

7

2

5

8

3

6

1

1 2 3

1

2

3

(b) End board configuartion

Fig. 6: A sliding block puzzle example with a board of dimension 3 × 3, also known as the
8-puzzle.

If X is a continuous random variable then there exists a nonnegative function P (X), the prob-
ability density function of the random variable X . The density function P (X = c) is defined
as the ratio of the probability that X falls into an interval around c, divided by the width of
the interval, as the interval width goes to zero [DeGroot and Schervish, 2002]. This process is
illustrated in Expression 22. Additionally, the density function must be nonnegative for all ar-
guments and must obey the behaviour presented in Expression 23 [Russell et al., 2003].

P (X = c) = lim
dx→0

P (c ≤ X ≤ c+ dx)/dx (22)

∫ +∞

−∞
P (X)dx = 1 (23)

As an example of a continuous heuristic function we can again consider the n-puzzle search
problem. This time we need only to determine an heuristic function h2 mapping values into
a real codomain. This can be done by employing a metric such as the euclidean distance. For

18 L. Tarrataca, A. Wichert

0 1 2 3 4 5 6 7 8 9

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fig. 7: Discrete probability distribution for h1 when applied to the 8-puzzle

instance, we can define h2 in such a fashion as to calculate the euclidean distance for all the cor-
responding elements of a board and a target board configuration. I.e., h2 =

∑
∀ tiles d(ltile, l

′
tile),

where d is the euclidean distance, ltile the location of a tile in a board configuration and l′tile
the location of the corresponding tile in the target configuration. The probability density
function for h2 regarding the 8-puzzle is presented in Figure 8.

0 5 10 15 20
0.000

0.005

0.010

0.015

0.020

0.025

Fig. 8: Continuous probability density function for h2 when applied to the 8-puzzle

The probability that a random variable X takes on a value that is less than or equal to x is
referred to as the cumulative distributive function F which has the form shown in Expression
24.

Tree Search and Quantum Computation 19

F (x) = P (X ≤ x) (24)

The cumulative distribution function F (a) for a discrete random variable is a simple sum
of the values up to element a. This behaviour is illustrated in Expression 25. Similarly, a
cumulative probability density function F (a) can be defined for a continuous random variable
as shown in Expression 26.

F (a) =
∑

all x≤a

P (X = x) (25)

F (a) =

∫ a

−∞
P (x)dx (26)

Now suppose we wish to determine when, that is for which values, the cumulative distribution
function equals a certain probability p, i.e. F (x) = p. In probability theory, this mapping is
known as the quantile function of a cumulative distribution function F (x) and is expressed
as F−1(p) = x. Once more we need to be careful in order to differentiate between discrete
and continuous random variables. In the former, there may exist gaps between values in the
domain of the cumulative distribution function, accordingly F−1 is defined as presented in
Expression 27 where inf denotes the infimum operator [Gilchrist, 2000].

F−1(p) = inf{x ∈ R : p ≤ F (x)} (27)

In the case of a continuous random variable obtaining a clear expression for the quantile func-
tion is not so trivial since it requires determining the inverse of an integral. Notwithstanding,
it is still possible to determine such expressions, for instance, the quantile function of a normal
distribution with mean µ and standard deviation σ is illustrated in Expression 28, where erf
is the Gauss error function [Gilchrist, 2000].

F−1(p, µ, σ2) = µ+
√
2 σerf−1(2p− 1), p ∈ [0, 1] (28)

Extended quantum heuristic Naturally, the question arises, how can this process be
combined with our hybrid quantum search approach? It turns out that when a fourth of all
possible states analyzed by Grover’s algorithm are marked as solutions, i.e. k = 1

4 .N then
a single iteration is required in order to obtain with certainty one of the solution states
[Hirvensalo, 2004]. Accordingly, we can try to fine tune the behaviour of our unitary operator
such that it outputs a solution for a fourth of all cases. This procedure can be performed with
the assistance of the quantile function concept introduced in the previous section.

Lets say we have an heuristic function f : X → Y and are interested in obtaining the states
which are closest to a solution. Accordingly, we are interested in marking as a solution those
states that produce the smallest values of codomain Y . Lets assume that the states which are
closer to a goal node are those who tend to happen less times (as exemplified by Figure 7 and
Figure 8). From a probabilistic point-of-view it is possible to check if the heuristic value is

20 L. Tarrataca, A. Wichert

less than or equal to the quantile function output for a probability of 25%. This behaviour is
illustrated in Expression 29.

U |b〉|a1a2 · · ·ad〉 =
{
− |b〉|a1a2 · · ·ad〉 iff(b, a1, a2, · · · , ad) ≤ F−1(0.25)

|b〉|a1a2 · · ·ad〉 otherwise
(29)

Ideally, by using this approach it is possible to obtain a superposition containing one fourth of
the “closest” states to a goal configuration by applying a single iteration of Grover’s algorithm.
Additionally, we can further expand on the results of Expression 29 in order to contemplate
different sections of a probability distribution. For instance, we can choose to obtain in a
single iteration of Grover’s algorithm the states which lie between heuristic values (F−1(0.5)−
F−1(0.25)). Similarly, we could also choose to obtain the states belonging to (F−1(0.75) −
F−1(0.5)) or (F−1(1)−F−1(0.75)). More generally, let a and b denote two probabilities values
such that b − a = 0.25, then it is possible to determine if a given heuristic value belongs to
the range [F−1(a), F−1(b)]. This strategy for selecting 25% of the search space is presented
in the unitary operator shown in Expression 30,

U |b〉|a1a2 · · ·ad〉 =
{
− |b〉|a1a2 · · · ad〉 iff(b, a1, a2, · · · , ad) ∈ [F−1(a), F−1(b)]

|b〉|a1a2 · · · ad〉 otherwise
(30)

In a certain sense, employing this type of procedure allows for a kind of partial selection of
the search space to be performed using a single Grover iteration. The selection is only partial
because upon measurement a random collapse amongst the marked states is obtained.

4 Final considerations

It is important to mention that some of the graph dynamics considered in this work re-
late directly to the well-studied quantum random walks on graphs (for an introduction
to this research area please refer to [Ambainis, 2003], [Kempe, 2003] and [Ambainis, 2004].
Quantum random walks are the quantum equivalents of their classical counterparts (we
refer the reader to [Hughes, 1995] [Woess, 2000] for basic facts regarding random walks).
Quantum random walks were initially approached in [Aharonov et al., 1993], [Meyer, 1996],
[Nayak and Vishwanath, 2000] and [Ambainis et al., 2001] in one-dimensional terms, i.e. walk
on a line. The system is described in terms of a position n on the line and a direction d, i.e.
|n〉|d〉 in the Hilbert space H = Hn ⊗ Hd where Hn is the Hilbert space spanned by the
basis vectors encoding the position and Hd the Hilbert space spanned by the vectors of the
direction. The direction register, sometimes referred to as the coin space, is initialized to a
superposition of the possible direction, in the case of a walk on a line, either left or right, and
the position n updated based on the direction of the walk. The choice of which superposition
to apply is also a matter investigated. Surprisingly, if the system is executed for t steps it
behaves rather differently than its classical random walks. Specifically, the authors found that
the system spreads quadratically faster over the line than its classical equivalent.

Some of the first approaches proposing quantum random walking on graphs can be found
in [Farhi and Gutmann, 1998], [Hogg, 1998], [Aharonov et al., 2001] and [Childs et al., 2002].
Let G(V,E) represent a d-regular graph, and letHV be the Hilbert space spanned by states |v〉

Tree Search and Quantum Computation 21

where v ∈ V , and HE be an Hilbert space of dimension d spanned by basis states |1〉, · · · , |d〉.
Overall, the system can be described through basis states |v〉|e〉 for all v ∈ V and e ∈ E. The
common approach is to randomly select one of the edges e adjacent to v and the update the
current position of the graph, i.e. U |v〉|e〉 → |v′〉|e〉, if e has edge points v and v′. The random
selection may also be performed using a d-dimensional coin space. Perhaps more interesting is
the hitting time, i.e. the time it takes to reach a certain vertex B starting from a vertex A. In
[Childs et al., 2002] and [Childs et al., 2003] a graph example is presented where a classical
random walk would take Ω(2d) steps to reach B, where d is the depth of the graph. However,
the quantum equivalent walk can reach B in O(d2) computational steps, providing for an
exponential speedup! Other examples of quantum random walks include how to adapt the
models to perform a search [Shenvi et al., 2003], [Ambainis, 2004], [Ambainis et al., 2005],
and [Ambainis, 2007]

Not surprisingly, due to the hard computational problems being asked, the vast majority of
these approaches put a strong emphasis on actually determining if a node can be reached, and
if so how fast. Consequently, questions about the path leading to a pre-specified node have not
been properly addressed. For instance, this fact is explicitly pointed out in [Childs et al., 2003],
namely: “Note that although our algorithm finds the name of the exit, it does not find a par-
ticular path from entrance to exit”. For many artificial intelligence applications the ability to
answer this question is a crucial one as it provides the basis for powerful inference mechanisms
capable of knowledge deduction. The ability to obtain the full path open measurement is a
key feature of the production system proposed in this work. Additionally, quantum random
walks incorporate previous knowledge of a graph in the form of the relationship G(V,E). This
kind of knowledge may not always be available from start, e.g. systems where new nodes are
generated based on the information accessible to a system at any given point in time.

The quantum random walk approach differs drastically from the model presented in the pre-
vious sections which focused on detailing some of the key notions supporting an hybrid quan-
tum search system. Such a system incorporated classical search concepts, expressed through
unitary operators, with Grover’s quantum search algorithm. From a classical point of view,
applying a search procedure can be understood as partitioning the search space into blocks.
Each block is then examined in order to determine if a solution is present. However, such an
approach did not in any way performed a kind of partition of the “quantum search space”.
Instead, it executed a sequence of actions in order to determine if a goal state was reached.
So the question naturally arises: Is there any procedure to perform a hierarchical quantum
search based solely on decomposition of the quantum search space?

Grover and Radhakrishnan were some of the first to purpose a possible approach to this
problem in [Grover and Radhakrishnan, 2004]. The main motivation of the work was the
following: consider a quantum search space containing a single solution is divided into l-blocks
of equal size, suppose that we wish to determine in which of the l-blocks the solution is, can
this process be performed with fewer queries than the original Grover algorithm? In practice,
this problem reduces to the one of determining the first m bits of the n bit computational
basis containing the solution, with m ≤ n. The authors proceed by analysing what happens
when a variation of Grover’s iterate for amplitude amplification is applied to each block. They
conclude that it is indeed easier to determine the initial m bits. However, as m grows closer to
n the computational gains obtained disappear [Grover and Radhakrishnan, 2004]. Later, an
optimization to this approach was proposed in [Korepin and Xu, 2007], albeit only marginally
improving the lower bound on the number of oracle queries.

22 L. Tarrataca, A. Wichert

A number of authors have also focused on extending Grover’s original search algorithm.
Namely, in [Zalka, 1999b] the quantum search algorithm was shown to be optimal in the sense
that it gives the maximal possible probability of finding a solution. Other examples of possible
extensions to Grover’s original work include returning a solution with certainty (please refer to
[Zalka, 1999a], [Brassard et al., 2000], [Long, 2001] and [Hu, 2002]) and assessing the impact
of having multiple solutions [Boyer et al., 1998]. Additionally, it should be mentioned that
no quantum black-box search algorithm can solve the search problem by making fewer than
Ω(

√
N) iterations. This result was first shown in [Bennett et al., 1997] and later revised on

[Boyer et al., 1998].

5 Conclusions

In this work we examined the ramifications of an hybrid quantum search system. We chose
to focus on two key aspects: the use of a non-constant branching factor and the adoption of
an heuristic point of view. Clearly, both of these cases are not without its flaws. However,
we consider the additional insight provided to be valuable. In the case of the non-constant
branching factor we were able to verify that deciding whether or not to Grover, or to proceed
classically, should take into account the maximum and the average branching factor. Addi-
tionally, by evaluating the states that are within a given threshold we are able to incorporate
some classical heuristic concepts into our approach. These concepts were further extended
with the use of probabilistic distribution functions allowing for a selection mechanism to be
obtained. This mechanism enables specific ranges of quantum states to be obtained in an
efficient manner.

6 Acknowledgements

This work was supported by FCT (INESC-ID multiannual funding) through the PIDDAC
Program funds and FCT grant DFRH - SFRH/BD/61846/2009.

References

[Aharonov et al., 2001] Aharonov, D., Ambainis, A., Kempe, J., and Vazirani, U. (2001). Quantum
walks on graphs. In Proceedings of ACM Symposium on Theory of Computation (STOC’01), pages
50–59.

[Aharonov et al., 1993] Aharonov, Y., Davidovich, L., and Zagury, N. (1993). Quantum random
walks. Phys. Rev. A, 48(2):1687–1690.

[Ambainis, 2003] Ambainis, A. (2003). Quantum walks and their algorithmic applications. Interna-
tional Journal of Quantum Information, 1:507.

[Ambainis, 2004] Ambainis, A. (2004). Quantum search algorithms. SIGACT News, 35(2):22–35.
[Ambainis, 2007] Ambainis, A. (2007). Quantum walk algorithm for element distinctness. SIAM
Journal on Computing, 37:210.

[Ambainis et al., 2001] Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., and Watrous, J. (2001).
One-dimensional quantum walks. In ACM Symposium on Theory of Computing, pages 37–49.

[Ambainis et al., 2005] Ambainis, A., Kempe, J., and Rivosh, A. (2005). Coins make quantum walks
faster.

Tree Search and Quantum Computation 23

[Anderson, 1983] Anderson, J. R. (1983). The Architecture of Cognition. Harvard University Press,
Cambridge, Massachusetts, USA.

[Bennett et al., 1997] Bennett, C. H., Bernstein, E., Brassard, G., and Vazirani, U. (1997). Strengths
and weaknesses of quantum computing.

[Boyer et al., 1998] Boyer, M., Brassard, G., Hoeyer, P., and Tapp, A. (1998). Tight bounds on
quantum searching. Fortschritte der Physik, 46:493.

[Brassard et al., 2000] Brassard, G., Hoyer, P., Mosca, M., and Tapp, A. (2000). Quantum amplitude
amplification and estimation.

[Campbell et al., 2002] Campbell, M., Hoane Jr., A. J., and Hsu, F.-h. (2002). Deep blue. Artificial
Intelligence, 134:57–83.

[Childs et al., 2003] Childs, A. M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., and Spielman,
D. (2003). Exponential algoritmic speedup by quantum walk. In Proceedings of the 35th ACM
Symposium on Theory of Computing (STOC 2003), pages 59–68.

[Childs et al., 2002] Childs, A. M., Farhi, E., and Gutmann, S. (2002). An example of the difference
between quantum and classical random walks. Quantum Information Processing, 1(1):35–43.

[Chuang et al., 1998] Chuang, I. L., Gershenfeld, N., and Kubinec, M. (1998). Experimental imple-
mentation of fast quantum searching. Phys. Rev. Lett., 80(15):3408–3411.

[DeGroot and Schervish, 2002] DeGroot, M. H. and Schervish, M. J. (2002). Probability and statis-
tics. Addison-Wesley, 3 edition.

[Dirac, 1939] Dirac, P. A. M. (1939). A new notation for quantum mechanics. In Proceedings of the
Cambridge Philosophical Society, volume 35, pages 416–418.

[Dirac, 1981] Dirac, P. A. M. (1981). The Principles of Quantum Mechanics - Volume 27 of Inter-
national series of monographs on physics (Oxford, England) Oxford science publications. Oxford
University Press.

[Edmonds, 1965] Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of Mathematics,
17:449–467.

[Ernst and Newell, 1969] Ernst, G. and Newell, A. (1969). GPS: a case study in generality and
problem solving. Academic Press.

[Farhi and Gutmann, 1998] Farhi, E. and Gutmann, S. (1998). Quantum computation and decision
trees. Phys. Rev. A, 58(2):915–928.

[Feldmann, 1993] Feldmann, R. (1993). Game Tree Search on Massively Parallel Systems. PhD
thesis, University of Paderborn.

[Garey and Johnson, 1979] Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide
to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences. W. H. Freeman.

[Gilchrist, 2000] Gilchrist, W. (2000). Statistical Modelling with Quantile Functions. Chapman and
Hall/CRC.

[Grover, 1996] Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In
STOC ’96: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages
212–219, New York, NY, USA. ACM.

[Grover, 1998a] Grover, L. K. (1998a). A framework for fast quantum mechanical algorithms. In
STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages
53–62, New York, NY, USA. ACM.

[Grover, 1998b] Grover, L. K. (1998b). Quantum computers can search rapidly by using almost any
transformation. Phys. Rev. Lett., 80(19):4329–4332.

[Grover, 1999] Grover, L. K. (1999). Quantum search on structured problems. Chaos, Solitons &
Fractals, 10(10):1695 – 1705.

[Grover, 2002] Grover, L. K. (2002). Trade-offs in the quantum search algorithm. Phys. Rev. A,
66(5):052314.

[Grover, 2005] Grover, L. K. (2005). Fixed-point quantum search. Phys. Rev. Lett., 95(15):150501.
[Grover and Radhakrishnan, 2004] Grover, L. K. and Radhakrishnan, J. (2004). Is partial quantum
search of a database any easier?

[Hart et al., 1968] Hart, P., Nilsson, N., and Raphael, B. (1968). A formal basis for the heuristic
determination of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on,
4(2):100–107.

24 L. Tarrataca, A. Wichert

[Hirvensalo, 2004] Hirvensalo, M. (2004). Quantum Computing. Springer-Verlag, Berlin Heidelberg.
[Hogg, 1998] Hogg, T. (1998). A framework for structured quantum search. PHYSICA D, 120:102.
[Hopcroft and Tarjan, 1973] Hopcroft, J. and Tarjan, R. (1973). Algorithm 447: efficient algorithms
for graph manipulation. Commun. ACM, 16(6):372–378.

[Hordern, 1987] Hordern, E. (1987). Sliding Piece Puzzles. Recreations in Mathematics, No 4. Oxford
University Press, USA.

[Hsu, 1999] Hsu, F.-h. (1999). Ibm’s deep blue chess grandmaster chips. Micro, IEEE, 19(2):70–82.
[Hsu, 2002] Hsu, F.-h. (2002). Behind Deep Blue: Building the Computer That Defeated the World
Chess Champion. Princeton University Press.

[Hu, 2002] Hu, C.-R. (2002). A family of sure-success quantum algorithms for solving a generalized
grover search problem.

[Hughes, 1995] Hughes, B. D. (1995). Random Walks and Random Environments, volume Volume 1:
Random Walks. Oxford University Press, USA.

[Kaye et al., 2007] Kaye, P. R., Laflamme, R., and Mosca, M. (2007). An Introduction to Quantum
Computing. Oxford University Presss, USA.

[Kempe, 2003] Kempe, J. (2003). Quantum random walks - an introductory overview. Contemporary
Physics, 44:307.

[Korepin and Xu, 2007] Korepin, V. E. and Xu, Y. (2007). Hierarchical Quantum Search. Interna-
tional Journal of Modern Physics B, 21:5187–5205.

[Korf, 1985] Korf, R. E. (1985). Depth-first iterative deepening: An optimal admissible tree search.
Artificial Intelligence.

[Korf, 1991] Korf, R. E. (1991). Best-first search with limited memory. UCLA Computer Science
Annual.

[Korf, 1993] Korf, R. E. (1993). Linear-space best-first search. Artificial Intelligence, 62(1):41–78.
[Laird et al., 1987] Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987). Soar: An architecture for
general intelligence. Artificial Intelligence, 33(1):1–64.

[Laird et al., 1986] Laird, J. E., Rosenbloom, P. S., and Newell, A. (1986). Chunking in soar: The
anatomy of a general learning mechanism. Machine Learning, 1(1):11–46.

[Long, 2001] Long, G. L. (2001). Grover algorithm with zero theoretical failure rate. Phys. Rev. A,
64(2):022307.

[Luger and Stubblefield, 1993] Luger, G. F. and Stubblefield, W. A. (1993). Artificial Intelligence:
Structures and Strategies for Complex Problem Solving: Second Edition. The Benjamin/Cummings
Publishing Company, Inc.

[Mano and Kime, 2002] Mano, M. and Kime, C. R. (2002). Logic and Computer Design Fundamen-
tals: 2nd Edition. Prentice Hall.

[Meyer, 1996] Meyer, D. (1996). From quantum cellular automata to quantum lattice gases. Journal
of Statistical Physics, 85(5):551–574.

[Moore, 1959] Moore, E. (1959). The shortest path through a maze. In Proceeding of an International
Symposium on the Theory of Switching, Part II, pages 285–292, Cambridge, Massachusetts. Harvard
University Press.

[Nayak and Vishwanath, 2000] Nayak, A. and Vishwanath, A. (2000). Quantum walk on the line.
Technical report, DIMACS Technical Report.

[Newell, 1963] Newell, A. (1963). A guide to the general problem-solver program gps-2-2. Technical
Report RM-3337-PR, RAND Corporation, Santa Monica, CA, USA.

[Newell and G, 1965] Newell, A. and G, E. (1965). The search for generality. In Information Pro-
cessing 1965: Proceeding of IFIP Congress, volume 1, pages 17–24, Chicago. Spartan.

[Newell et al., 1959] Newell, A., Shaw, J., and Simon, H. A. (1959). Report on a general problem-
solving program. In Proceedings of the International Conference on Information Processing, pages
256–264.

[Nielsen and Chuang, 2000] Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and
Quantum Information. Cambridge University Press.

[Nilsson, 1982] Nilsson, N. J. (1982). Principles of Artificial Intelligence. Morgan Kaufmann Pub-
lishers, Inc.

Tree Search and Quantum Computation 25

[Post, 1941] Post, E. (1941). The Two-Valued Iterative Systems of Mathematical Logic. (AM-5).
Princeton University Press.

[Post, 1943] Post, E. (1943). Formal reductions of the general combinatorial problem. American
Journal of Mathematics, 65:197–268.

[Russell et al., 2003] Russell, S. J., Norvig, P., Canny, J. F., Edwards, D. D., Malik, J. M., and Thrun,
S. (2003). Artificial Intelligence: A Modern Approach (Second Edition). Prentice Hall.

[Santos et al., 2009a] Santos, A. C., Tarrataca, L., and João, C. (2009a). An analysis of navigation
algorithms for smartphones using j2me. In In Proceedings of the Second International ICST Con-
ference on MOBILe Wireless MiddleWARE, Operating Systems, and Applications (Mobilware’09,
Berlin-Germany, April 28-29), LNICST, volume 7, pages 266–279. Springer.

[Santos et al., 2009b] Santos, A. C., Tarrataca, L., and João, C. (2009b). Context inference for mobile
applications in the upcase project. In In Proceedings of the Second International ICST Conference
on MOBILe Wireless MiddleWARE, Operating Systems, and Applications (Mobilware’09, Berlin-
Germany, April 28-29), LNICST, volume 7, pages 352–365. Springer.

[Shenvi et al., 2003] Shenvi, N., Kempe, J., and Whaley, K. B. (2003). Quantum random-walk search
algorithm. Phys. Rev. A, 67(5):052307.

[Shor, 1994] Shor, P. (1994). Algorithms for quantum computation: discrete logarithms and factoring.
In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134.

[Slate and Atkin, 1977] Slate, D. and Atkin, L. R. (1977). Chess 4.5 - northwestern university chess
program. In Chess Skill in Man and Machine, pages 82–118, Berlin. Springer-Verlag.

[Toffoli, 1980a] Toffoli, T. (1980a). Reversible computing. In Proceedings of the 7th Colloquium on
Automata, Languages and Programming, pages 632–644, London, UK. Springer-Verlag.

[Toffoli, 1980b] Toffoli, T. (1980b). Reversible computing. Technical report, Massschusetts Institute
of Technology, Laboratory for Computer Science.

[Woess, 2000] Woess, W. (2000). Random Walks on Infinite Graphs and Groups. Number 138 in
Cambridge Tracts in Mathematics. Cambridge University Press.

[Zalka, 1999a] Zalka, C. (1999a). A grover-based quantum search of optimal order for an unknown
number of marked elements.

[Zalka, 1999b] Zalka, C. (1999b). Grover’s quantum searching algorithm is optimal. Physical Review
A, 60:2746.

