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Abstract

Production system theory is well suited to represent tree search space examination. Quantum computa-

tion enables a quadratic speedup in generic search procedures relatively to their classical counterparts.

This work presents a model for a quantum production system, which was developed with hierarchical

search spaces in mind and that examines: (1) unitary operator development, (2) the implications of

different types of branching factors; (3) the consequences of developing a heuristic that can be incorpo-

rated into the model. These concepts are then used to present a set of formal definitions for a quantum

production system. The model is also compared against quantum random walks on a graph. It is shown

that, in a worst-case scenario, both approaches differ in terms of nodes evaluated by a factor of two.

An iterative extension to the model is developed and an application to the quantum Halting problem

is described. This extension allows for (1) a detection of halt states without interfering with the final

result of a computation; (2) the possibility of non-terminating computation and (3) an inherent speedup

to occur during computations susceptible of parallelization. Details are presented of how such a model

can be employed in order to simulate classical Turing machines.

Keywords: reversible computation, quantum computation, unitary operator development, heuristic

function, tree search, quantum production system, quantum random walks, iterative deepening, quantum

entanglement detection, periodic search.
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T́ıtulo Sistema de Produção Quântico

Nome Lúıs Domingues Tomé Jardim Tarrataca

Doutoramento em Engenharia Informática e de Computadores

Orientador Doutor Andreas Miroslaus Wichert

Resumo

A teoria que suporta os sistemas de produção é particularmente relevante para realizar pesquisa em árvore.

A computação quântica permite uma melhoria de performance quadrática em mecanismos genéricos de

procura. Este trabalho apresenta um modelo para um sistema de produção quântico desenvolvido tendo

em vista espaços de procura hierárquicos e que examina: (1) o desenvolvimento de operadores unitários,

(2) as implicações de diferentes tipos de factores de ramificação, e (3) as consequências associadas ao

desenvolvimento de uma função heuŕıstica incorporável no modelo. Estes conceitos são utilizados para

apresentar um conjunto de definições formais para um sistema de produção quântico. O modelo é com-

parado com caminhadas quânticas aleatórias, sendo demonstrado que ambas as abordagens diferem por

um factor de dois no número de nós avaliados. É também desenvolvida uma extensão iterativa e é descrita

uma aplicação do modelo no contexto do problema da paragem quântica. Esta extensão permite: (1) a

detecção de estados de paragem sem interferir com o resultado final da computação; (2) a possibilidade de

não terminação da computação; e (3) um aumento de performance inerente em computações suscept́ıveis

de paralelização. São também apresentados os detalhes de como o modelo pode ser utilizado para simular

máquinas de Turing clássicas.

Palavras-chave: computação reverśıvel, computação quântica, desenvolvimento de operadores unitários,

função heuŕıstica, procura em árvore, sistema de produção quântico, caminhadas aleatórias quânticas,

procura iterativa, detecção de entreleçamento quântico, procura periódica.
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Chapter 1

Introduction

The field of artificial intelligence can be divided into a vast array of key topics, covering

natural language processing, automatic programming, automatic theorem proving, robotics,

machine vision, intelligent data retrieval systems, etc [165]. Each of these areas is so extensive

that it would be an insurmountable task to delve exhaustively into such matters. However,

a large part of these problems can be represented through some type of symbolical state

description. This internal representation of the problem can be evolved into other states by

a set of specific rules. An algorithmic procedure examines such states and decides which rule

should be applied in order to obtain some final result. Typically, algorithmic procedures aim

to deliver such final states correctly, and to do it whilst minimizing some type of performance

measure (e.g. time, space or error).

For some problems there may exist algorithms that are able to deduce which of the allowable

rules is best. However, for many other computational problems, at any given point in

time there may be multiple rules that can be applied and no single way of inferring which

one is best when trying to minimize the performance measure. The set of all possible

combinations of rules forms that which is commonly referred to as a search space. As

a result, for this type of problems the simplest algorithmic strategy for finding a solution

consists in systematically enumerating and evaluating every element of the search space until

goal states are found. Usually, search algorithms reflect a means of determining a sequence

of rules, composed of condition-action pairs, leading from an initial state to a goal state. The

process of determining such a sequence of actions is generically labelled as search. All that is

required to formulate a search problem is a tuple consisting of a set of states alongside subsets

describing initial and goal states, and a set of actions mapping states into successor states

[94]. Search algorithms are a central notion to many tasks in artificial intelligence.



Chapter 1. Introduction

As a motivating example please consider the graph presented in Figure 1.1, which represents

a form of state space search usually referred to as tree search. Tree search can be seen as

a subset of elementary graph theory representing acyclic connected graphs where each node

has zero or more children nodes and at most one parent node [63]. The binary tree presented

showcases the nodes reached from a root node A by applying one of two possible unconditional

rules whose actions are labeled p0 and p1. The cardinality of the set of applicable actions is

referred to as the branching factor b. It is not difficult to see that for non-unary branching

factors the search space grows exponentially fast. As a result, a total of bd leaf nodes exist

at a search depth level d. Each leaf node is reached after having applied d actions, e.g. node

I is reached after applying actions p0, p0 and p1. The set of actions leading to a leaf node is

often labeled as the path taken during the tree search. Tree search algorithms play a crucial

role in many applications, e.g. production systems (please refer to [178], [162], [160], [66],

[16], [131] and [130]) game playing programs [69] [111] [112] [38] and robot control systems

[187] [186].

A

B

D E

H I J K

C

F G

L M N O

Depth 0

Depth 1

Depth 2

Depth 3

Figure 1.1: The possible paths for a binary search tree of depth 3.

The simplest search strategies rely on a “brute-force” approach, in which an exhaustive

examination of all possible sequences of actions is performed until goal states are reached.

The search through the state space systematically checks if the current state is a goal state. If

a non-goal state is found then the current state is expanded by applying a successor function,

generating a new set of children states. The choice of which state to expand is determined

by a search strategy [183]. Search strategies that are only able to distinguish between goal

states and non-goal states, without knowing if one state is more promising than another

are called uninformed search strategies. Examples of uninformed search strategies include

the well known breadth first search [155], depth-first search [104], and also the iterative

deepening search [193]. In general, uninformed search methods can only solve small problem

instances. This is due to the exponential growth of the search space experienced by such

methods [77], and the consequent implications on time complexity. Unfortunately, most

problems of interest cannot be be handled in an uninformed search fashion.
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Informed search strategies arose naturally from this context. They employ problem specific

knowledge beyond the definition of the problem itself and are able to find solutions more

“efficiently” than uninformed search strategies. The term efficiently is employed carefully as

shall later be described. Typically, informed search strategies employ an evaluation function

f(n) which considers a cost function g(n) alongside a heuristic function h(n). Function g(n)

can be interpreted as representing the cost to reach node n whilst h(n) represents an estimate

on the cost to reach a leaf node from node n. From a practical point of view the performance

of search algorithms is greatly improved by the use of a heuristic evaluation function [125].

Traditionally, the node with the lowest evaluation is selected for expansion. Examples of

some of the best known informed search strategies include greedy search [161] and A∗ search

[92]. Other examples of informed strategies, with a strong emphasis on adversarial search,

include minimax [209] and also minimax with α − β pruning [94]. Subsequent advances on

informed strategies have focused on limiting the amount of memory used. Concrete examples

include IDA∗ [124] and RBFS [126], [127]. A time and space comparative assessment between

the various strategies is presented in Table 1.1. Although informed search strategies allowed

for an increase in terms of average performance, the worst-case computational complexities of

these methods still grew in an exponential manner. These limitations led to the development

of a new investigation field in the late 1970’s focusing on parallel search.

Search Reference Strategy Time Space

Breadth-first [155] Uninformed O(bd+1) O(bd+1)
Depth-first [104] Uninformed O(bm) O(bm)

Iterative-deepening [193] Uninformed O(bd) O(bd)
Greedy [161] Informed O(bm) O(bm)

A∗ [92] Informed O(bd) O(bd)

IDA∗ [124] Informed O(bd) O(bd)

RBFS [126] Informed O(bd) O(bd)
Minimax [209] Informed/Adversarial O(bm) O(bm)

Minimax α− β pruning [94] Informed/Adversarial O(bm) O(b
1
2m)

Table 1.1: Tree Search Algorithm Comparison (b - branching factor, d - depth of a solution,
m - maximum depth).

The remainder of this chapter is organised in such a way as to continue to present the main

reasons behind this work. As a result, Section 1.1 introduces some of the main concepts

supporting classical parallel algorithms in the context of tree search. This section is used

to reinforce the idea that despite the algorithmic advances, parallel search strategies are not

without its flaws. Namely, they fail to deliver any type of exponential speedup due to several

restrictions that will later be described. This inability to yield a significant performance

increase is used as a motivation to introduce in Section 1.2 Grover’s algorithm, a method

based on quantum computation capable of delivering a quadratic improvement. This section

also presents a set of questions on what is there to be gained by exploiting such concepts

from a quantum perspective. Tree search is also a key component in production system

3
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theory. This model is well suited to a quantum environment in which a superposition state

can be perceived as representing multiple path alternatives. The main concepts of classical

production system theory are presented in Section 1.3. These notions are then combined

in Section 1.4 in order to present the formal definition of this thesis’ statement. The same

section also list some of the main questions surrounding the development of a quantum

production system.

1.1 Classical Parallel Search Algorithms

Presently, parallel computation has assumed mainly two forms, namely multi-core architec-

tures and parallel computers communicating through some type of network infrastructure.

All of these processing elements need to collaborate in order to find a solution for a specific

problem. Typically, this collaboration process has performance costs. Evidently, the main

objective of employing parallel computation is to produce parallel algorithms that dramati-

cally improve the performance of the sequential ones. However, as drawn attention by [169],

the total amount of work performed by parallel algorithms, i.e. the number of computational

steps executed by each processing element summed over all processing elements can be no

smaller than the time complexity of the best sequential algorithm. Logically, any parallel

algorithm can be simulated by a sequential one that does the same amount of work. In the

context of tree search, the advent of parallel computation had the possibility to increase

drastically the number of nodes evaluated in a given amount of time. A higher number of

evaluated nodes could potentially provide optimal solutions, or improve decision quality [71].

Traditional approaches to parallelizing search algorithms include:

• Parallelize the processing of individual nodes, such as move generation and heuris-

tic evaluation [62], e.g. heuristic functions employing weighting schemes where each

term can be individually processed allowing for more complex evaluation functions.

Generally, a speedup achievable in this scheme is limited, however, by the degree of

parallelism available in move generation and evaluation.

• Parallel Aspiration [20] works exclusively for the minimax algorithm with α−β pruning.

This approach requires multiple processors calculating non-overlapping α−β intervals.

This approach is severely limited in speedup due to the obligatory expensive minimax

verifications that need to be performed.

• Concurrent subtree evaluation.

Most discussions of parallel search have focused on concurrent examination of independent

subtrees (please refer to [146], [71], [110] and [69]). The key challenge with parallel search
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1.1. Classical Parallel Search Algorithms

resides in how best to utilize multiple processing units when the communication cost can

be perceived as high, since it may result in idle processor time. Typically, it is a diffi-

cult task to separate neatly into chunks a great deal of problems. Even then, each chunk

requires processing and may thus require communication between different computational

resources to exchange intermediate results or synchronize status. Unfortunately, there is no

known optimal method for parallelizing search amongst N processors. Generally, a N -fold

increase in the number of nodes evaluated is not possible because of two key overheads,

namely [146]:

• Communication Overhead - some intercommunication between processors is always

necessary either through some message strategy or through a shared data structure.

This overhead may result in idle processor time.

• Search Overhead - if independent subtrees are searched concurrently, it is likely that

redundant nodes will be examined because the best bounds are not always available.

Accordingly, parallel search strategies may perform some redundant verifications that

would not be required by their sequential versions.

It is also noteworthy to mention that these overheads do not act independently of each

other. For example, significant communication overheads may be incurred between parallel

searches, resulting in improved data sharing. This data can potentially result in better cutoff

decisions, thus reducing the total amount of search overhead. But the inverse is also true, i.e.

the increased data sharing may actually not provoke better cutoff decisions. In general, com-

munication overhead is inversely related to search overhead [146]. As a consequence, classical

parallel search algorithms will likely never yield the full speed-up potential of applying N

processors. Due to the intricacies of classical parallel search algorithms these overheads are

unavoidable, although clearly some strategies may be devised focusing in either overheads

or on trying to strike a balance between both of the them.

In sequential search algorithms, potential performance increases arise from subtree cutoff

decisions. These decisions are based on the accumulated information obtained until a given

point in the search. Given the general nature of tree decomposition methods and the in-

curring search overheads associated with them, most authors have focused on parallelizing

branch-and-bound algorithms such as minimax with α − β pruning. Branch-and-bound

algorithms attempt to prune large sections of a search space in order to increase perfor-

mance. Table 1.2 presents some of the best known parallel algorithms alongside the respective

speedups (representing a scale factor of the additional states considered) relatively to their

single-processor sequential version, where n is the number of processors employed.

Curiously, the parallel tree search field seems to have had its investigation heyday in the

mid 1990’s with IBM’s Deep Blue initiative in 1996 and 1997 [38]. Deep Blue is the chess
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Algorithm Reference Hardware Speedup Obtained
Parallel Aspiration Search [20] Simulation ≤ 6 (for large n)
PV-Split [148] Sun 3 Network 3.75 (for n = 5)
Waycool [70] Intel Hypercube 101 (for n = 256)
Bound-and-Branch [71] Intel Hypercube 12 (for n = 32)
Delayed Branch Tree Expansion [110] Simulation 350 (for n = 1000)
Jamboree [129] CM-5 50 (for n = 512)
Dynamic Multiple PV-Split [147] AP-1000 32 (for n = 64)
APHID [33] Sparc 2 Network 6 (for n = 16)

Table 1.2: Parallel tree search comparison (n - number of processors, Source: [32]).

machine that defeated then-reigning World Chess Champion Garry Kasparov in a six-game

match in 1997. Amongst the major factors that contributed to its success was a massively

parallel system with multiple levels of parallelism. Previous research in game tree search

typically dealt with systems that searched order of magnitude fewer positions than Deep

Blue [38].

1.2 The Quantum Search Algorithm

Grover’s algorithm was first proposed in [82] and subsequently published as a letter in [83].

The procedure, also known as the quantum search algorithm, performs a search using the

principles of quantum computation. Whereas classical search algorithms require O(N) time

for data sets containing N elements. Grover’s algorithm requires O(
√
N ) time, providing a

quadratic speedup. The algorithm performs a search for a binary string amongst what can be

perceived as a database of binary strings. The algorithm focuses on verifying if a state belongs

to a solution set. Grover’s search algorithm employs features uniquely found in quantum

computation, such as quantum superposition, in order to query many elements of the search

space simultaneously, alongside entanglement and quantum interference. These elements

allow quantum computation to provide for a new paradigm of parallel computation.

Subsequently, it was proved that any procedure that evaluates states and marks the ones

representing solution in a black-box fashion will always require at least Ω(
√
N ) time. This re-

sult was first shown in [26], with earlier versions of the manuscript appearing before Grover’s

algorithm [22], and later revised on [29]. Grover’s algorithm was experimentally demon-

strated in [46]. In [220] the quantum search algorithm was shown to be optimal in the sense

that it gives the maximal possible probability of finding a solution. Examples of possible

extensions to Grover’s original work include returning a solution with certainty (please refer

to [219], [30], [141] and [113]) and assessing the impact of having multiple solutions [29].

Grover and Radhakrishnan [80] considered the speedup achievable if one was only interested

in determining the first m bits of a n bit solution string. In practice, their approach proceed
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with analysing different sections of the quantum search space. The authors prove that it

is possible to obtain a speedup, however, as m grows closer to n the computational gains

obtained disappear [80]. This speedup was then improved in [123] and [122] and an exten-

sion to multiple solutions was presented in [45]. In [81] the authors show that well known

quantum algorithms for the collision and element distinctness problems, respectively [31] and

[36], do not take advantage of the underlying structure to go beyond the standard quantum

search algorithm. A number of extensions have been proposed since Grover’s original work

in [87] and [88]. These procedures essentially targeted reduced time complexity bounds for

non-query operations and overall robustness. For a number of several novel search related

applications please refer to [84] [85] [86]. Others approaches to quantum search have been

detailed in [103], [100], [101] and [102].

Grover’s original idea focused on searching a collection of binary strings. The author’s work

did not have hierarchical search mechanisms in mind. Accordingly, the question arises: can

a mapping be devised for Grover’s algorithm allowing for a tree search procedure to be

performed? An initial mapping could take into consideration an initial state representation,

i.e. the root node, alongside a tree path, i.e. the sequence of actions to apply in a manner

reminiscent of depth-first search. Such an approach would give rise to a number of questions,

namely:

• What is there to be gained by employing such a method? And consequently, what are

the limitations?

• What is the best strategy for performing tree search in quantum fashion? Is the

quantum search algorithm the only viable solution? If other alternatives exist how do

they compare against each other?

• Is it possible to develop a quantum equivalent for informed search strategies in or-

der to influence the probability distribution amongst tree paths? If so, what are the

mechanisms available for doing so?

• Based on the ideas supporting tree search, namely that of performing search space

decomposition is it possible to develop alternative search algorithms? Namely, is it

possible to develop such procedure using existing, but unexploited quantum features,

which would in principle yield significant performance increases over amplitude ampli-

fication schemes? If so, what are the main requirements of such approaches and how

do they fare against Grover’s original proposition?

• Tree search is typically depth limited in order to ensure that an answer is obtained

within a certain temporal limit. However, iterative depth increases are also allowed.

In the context of quantum computation what is the best way to determine the length
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of the sequence of actions to apply? Is it possible to develop any iterative quantum

tree search process? If so, what are the associated requirements and corresponding

performance? Are there any broader implications for quantum computation besides

only performing tree search?

Some of the possible relationships between artificial intelligence and quantum computa-

tion have been established in [215]. However, this approach mostly aimed at providing an

introductory text to the artificial intelligence community into the field of quantum compu-

tation.

1.3 Production System

In terms of human cognition, tree search strategies are also commonly referred to as problem-

solving procedures. Such procedures model in abstract terms the techniques employed by

humans when trying to solve problems. Knowledge allows human beings to develop sets

of actions allowing for goals to be attained in complex environments. Additionally, ones

knowledge is not expected to remain static, but to change and grow over time as a person

learns. Post proposed a computational formalism known as the production system [178]

that has proved relevant in providing a connection between search algorithms and human

problem solving modeling. Post’s work was applied to model the principles of intelligence

in the SOAR system [163], used in programming languages such as OPS5 [74], and also

provided the theoretical foundations for expert systems such as Mycin [35]. Some of the best

known examples of human cognition-based production systems include the General Problem

Solver [162] [160] [66] [163], ACT [16] and SOAR [131] [130]. The orderly distinction between

knowledge and control brought upon by production systems makes them desirable for exper-

imentally modeling problem-solving behaviour [143]. In the field of artificial intelligence, one

of the possible applications of production system theory consists in determining a sequence

of actions leading to a desired state.

The formal behaviour of a production system can be described as performing a search where

sequences of rules are evaluated in order to determine if a given set of goal states is reached.

A production system is composed of condition-action pairs, i.e. if-then rules, which are also

called productions. A computation is performed with the aid of productions through the

transformation of an initial state into a desired state. The state description at any given

time is also referred to as working memory. A rule is applied when the conditional part is

recognized to be part of a given state. The action describes the respective problem-solving

behaviour. Applying an action results in the state of the problem instance changing accord-

ingly. On each cycle of operation, productions are matched against the working memory

8
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of facts. At any given point, more than one production might be deemed to be applicable.

This subset of productions represents the conflict set. A conflict resolution may be employed

to this subset in order to determine an appropriate production. However, the system may

also exist in a state where all the appropriate productions are simultaneously applied. This

induces the type of behaviour that is characteristic of tree search. The operational cycle is

brought to a close when a goal state is reached or when no more rules can be triggered. This

type of behaviour is almost indistinguishable from the one describing tree search. Produc-

tion system theory is therefore uniquely suited for detailing the dynamics of tree search. The

general architecture described in the previous paragraphs is illustrated in Figure 1.2.

Control

Recognize Act

Working Memory

Prodution Rules
(Conditon, Action)

C1          A1

C2          A2

Cn          An

Figure 1.2: General architecture for a production system (adapted from [143]).

Traditionally, production systems require translating the existing knowledge into a database

of symbolic rules, which in turn require adequate encoding mechanisms. When these rules are

applied to a given problem the strategy employed to search through the database allows for

two basic behavioural settings, namely forward- and backward- chaining. The former allows

the system to demonstrate why a given assertion was reached. The latter enables the system

to answer how an assertion was established [213]. Comprehensibly, this kind of systems can

also take advantage of parallel search algorithms. i.e. parallel production systems where

more than one production rule can fire simultaneously [75]. Regrettably, as was discussed in

Section 1.1 this kind of approaches have their own set of specific limitations.

In addition, the production system was shown to be equivalent in power to other well known

computational models such as the Turing Machine [205], Church’s lambda-calculus [48],

Post’s production system [178], and Markov algorithms [145]. Please refer to [2], [53] and

[54] for additional details on these equivalences. In practice this means that any function
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that is computable by a given model is also computable by all the other models. This is

equivalent to stating that production systems are comparable in power to a Turing machine.

However, it is my opinion that specifying the set of transitions performed by a tree search on

a Turing machines looses some of the elegance and simplicity provided by production system

theory.

1.4 Thesis Statement

The quantum computation community has placed a lot of effort and emphasis on examin-

ing quantum equivalents of traditional computational methods such as the Turing machine.

This research focus has resulted in important contributions to the field. However, less known

methods may also yield significant results. The production system is one specific example

that may have potential implications for quantum computation. Accordingly, a unique op-

portunity arises, namely to study the environment surrounding tree search from the per-

spective of a quantum computational model that is specifically designed with such a task in

mind.

Immediately a number of questions can be posed, namely: can a modular approach to a

production system be developed? I.e. is it possible to express through unitary operators, and

operator composition a logical separation between the standard computational components

of data, operations and control? If so, how does the operator evolve in relation with the

set of production rules? How can the transitions of a production system be expressed in

a probabilistic manner in order to allow for an adequate quantum amplitude mapping?

How to formalize a theoretical model of a quantum production system? Also, what are the

mechanisms allowing for symbolical rules to be adequately encoded? Do these encodings have

an impact on performance? Additionally, how do classical search concepts such as branching

factor, heuristic evaluation and iteration influence the model? Is it possible to extend existing

quantum methods to obtain similar behaviour? If such extensions are possible, what are

the associated requirements and how do the available mechanisms compare against each

other? Finally, can alternative search methods be developed, which are not based on Grover’s

algorithm, and that take into account the concepts considered in this work?

The following chapters provide answers to these questions. The results herein contained form

contributions that lend support to the following thesis:

Thesis: The quantum production system model represents a simple and elegant approach

to tree search with an inherent quadratic speedup. Furthermore, the model is also

well-suited when dealing with the possibility of non-terminating computation.
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1.5. Organisation

Some of the investigation tasks performed in the context of this research included, but

were not restricted to: developing computational algorithms; elaborating adequate adaption

strategies from a classical to a quantum context; evaluating the computational complexity,

time- and space-wise of the proposed methods; evaluating specific behavioural dynamics

associated with quantum computation models; evaluating potential performance bottlenecks;

developing quantum space decomposition methods.

1.5 Organisation

The remainder of this thesis is organised as follows: Chapter 2 presents some of the key

features associated with reversible state evolution, which represents a key concept in quantum

computation. Chapter 3 then presents the fundamental concepts of quantum computation

alongside some simple algorithmic examples. Given that this research essentially deals with

questions surrounding quantum search some of the main theoretical details surrounding

Grover’s algorithm will be presented. Both these chapters mostly serve to present the main

concepts that will later be employed to develop some of the results that are presented in this

work. Chapter 4 then builds on the circuitry knowledge discussed in the previous chapters

to develop an approach towards a quantum production system capable of solving instances

of the n-puzzle; Chapter 5 reflects on some of the issues of employing such an approach and

considers the requirements associated with informed search strategies; Chapter 6 generalizes

this approach in order to provide a model of quantum computation based on production

system theory; Chapter 7 considers tree search from a graph perspective alongside existing

quantum methods focusing on graph search; Chapter 8 presents an iterative extension to

the initial quantum production system in order to contemplate for the possibility of non-

terminating computation. Chapter 9 considers alternative quantum search models, albeit

not as efficient as Grover’s method, based on (1) the principles of quantum entanglement

detection alongside a recursive oracle definition; and (2) the notion of search space periodicity.

The overall conclusions alongside important reflections are presented in Chapter 10.

Throughout this work an explicit effort was made to provide the appropriate context for

all the results in a self-contained manner and also to make these easily comprehensible.

In addition, most of the results presented in this thesis were published elsewhere. The

majority of the results presented in Chapter 4 focusing on unitary operator development

and composition were decomposed into two papers that were published in [198] and [197].

The method for performing quantum tree search through Grover’s algorithm discussed in

Chapter 5 was first published in [199]. The quantum production system proposed in Chapter

6 was presented in [201]. The results concerning quantum random walks on trees introduced
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in Chapter 7 were published in [202]. The application of the iterative deepening extension to

the halting problem discussed in Chapter 8 was published in [196]. The results and definitions

regarding the quantum entanglement detection scheme discussed in Chapter 9 were published

in [200]. Because each publication incorporated the problem that was being tackled, a

small state of the art survey and the proposed solutions a choice was made to represent

each publication as an individual chapter with the closest form possible to the original

manuscript. However, some of the common material that was presented in these publications,

namely regarding motivation, research questions and general problem definition, was fused

into this introductory chapter, which became responsible for presenting the broad research

points.
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Chapter 2

Reversible Logic Fundamentals

2.1 Introduction

In classical computer science, information is represented by signals. Traditionally, the signals

employed use just two discrete values and are therefore said to be binary. Information is

represented in digital computers through binary strings (i.e. a sequence of binary variables)

and adequate encoding mechanisms. This binary information is manipulated through hard-

ware components, also known as digital circuits. A circuit may involve any number of inputs

and output bits, wires and logical gates which transmit information and perform some type

of processing.

The remainder of this chapter focuses on presenting some of the main connections between

irreversible and reversible computation. Reversibility is a key characteristic of the type of

operators employed to describe quantum computation. The reasons behind this requirement

will be examined in Chapter 3. Accordingly, this chapter is organised as follows: Section 2.2

presents the main details of classical circuit logic; Section 2.3 describes how these elements

can be described through linear matrix operators; and Section 2.4 describes the principles of

reversible computation.



Chapter 2. Reversible Logic Fundamentals

2.2 Classical Circuit Logic

A logical gate is a function f : {0, 1}k → {0, 1}l from some fixed number k of input bits to

some fixed number l of outputs bits [144]. Typically, each gate performs a specific logical

operation. The outputs of gates are applied to inputs of other gates to form a composite

digital circuit. The number of inputs associated with each gate describes its Fan-in and the

number of outputs describes its Fan-out.

Binary logic is then applied to each binary variable. Associated with the binary variables

are logical operations such as NOT, OR, AND, XOR and equivalent complement operations,

respectively, NOR, NAND and XNOR. The truth tables for these operations are presented

in Table 2.1. The table lists all possible combinations of values for two variables and the

results of the applying each aforementioned operation. Also, an additional operation is

considered, respectively NOP (drawing from assembly language “no operation” instruction),

that effectively maintains the state of the bit. It is important to draw attention to the fact

that the NAND and the NOR gates are considered to be universal. This universality stems

from the fact that every boolean function can be built by employing only this type of gates

[144].

X Y NOP X NOT X X AND Y X OR Y X NAND Y X NOR Y X XOR Y
0 0 0 1 0 0 1 1 0
0 1 0 1 0 1 1 0 1
1 0 1 0 0 1 1 0 1
1 1 1 0 1 1 0 0 0

Table 2.1: Truth table for the most common logical operations.

These logical operations may then be combined into a single Boolean function. A Boolean

function consists of a binary variable denoting the function and an algebraic expression

formed by using binary variables. Consider for example the Boolean function presented in

Expression 2.1. Recall that a boolean function expresses the logical relationship between

binary variables. Accordingly, it is evaluated by determining the binary value of the ex-

pression for all possible combinations of values for the variables. Table 2.2 lists all possible

input combinations, and respective outputs, for function F . A Boolean function can also

be transformed from an algebraic expression into a circuit diagram composed of logic gates.

The logic circuit diagram for F is shown in Figure 2.1.

F = X̄ + Y Z (2.1)
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2.3. Matrix Perspective

X Y Z F = X̄ + Y Z
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Table 2.2: Truth table for F = X̄ + Y Z.

AND

NOT

OR

X

Y

Z

Figure 2.1: Logic Circuit Diagram for F = X̄ + Y Z.

2.3 Matrix Perspective

As was previously seem, it is possible to forecast a circuit’s output by applying each individual

gate from left to right to the original input bits. A gate application acts on a specific subset

of the binary variables. Intuitively, the different bit values each variable has at given point

in time can be perceived as the system’s state. The state of any particular variable at a

given point in a circuit is just the value of the bit on that wire, respectively 0 or 1. This is

the classical behaviour expected from a deterministic process. However, there exist certain

probabilistic processes for which it is not possible to know for certain the state of the system

[99]. Typically, in these cases what is known is actually the probability distribution of the

states [212]. In this case the initial description for a circuit, i.e. that a bit value is either 0

or 1 is clearly not enough. This section reviews the classical circuit model of computation in

terms of vectors and matrices.

A motivating example consists of a single bit that is in state 0 with probability p0 and in state

1 with probability p1. By employing some simple linear algebra knowledge it becomes possible

to translate this information into a 2-dimensional vector of probabilities, as illustrated by

Expression 2.2 [118].

(
p0

p1

)
(2.2)

This representation is also capable of translating the deterministic behaviour previously

mentioned. Namely, a deterministic circuit whose final state is 0 is equivalent to say that p0 =

1 and since probabilities need to sum up to one, p1 = 0, as depicted in Expression 2.3.
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Chapter 2. Reversible Logic Fundamentals

(
1

0

)
(2.3)

A circuit whose state is 1 implies a p1 = 1 and a p0 = 0, which can be represented by the

vector illustrated in Expression 2.4.

(
0

1

)
(2.4)

What are the implications of employing a vector form to represent binary variables? Linear

algebra can be employed to evolve a state. A process which is usually done through matrix

operators. Accordingly, any logical gate can now be perceived to assume a matrix form.

Accordingly, each gate must specify exactly what happens to its inputs. In linear algebra, a

function f that maps a domain Rn into codomain Rm with m = n is called an operator [17].

The following sections detail the matrices for the NOP and NOT gate, respectively Section

2.3.1 and Section 2.3.2. Section 2.3.3 presents the matrix representation for a previously

unmentioned operation, respectively the CNOT gate. Section 2.3.4 details how the CNOT

gate can simulate the Fan-out operation.

2.3.1 Nop Matrix

The NOP operation explicit purpose is not to change the state of the bits. Intuitively, from

a linear algebra perspective there is a relationship between a state maintaining operator and

the identity matrix I, as illustrated by Expression 2.5.

NOP

(
1

0

)
=

(
1

0

)
, NOP

(
0

1

)
=

(
0

1

)
(2.5)

In order for the above statements to be verifiable it is easy to check that the NOP operator

is simply a 2× 2 identity matrix, as illustrated by Expression 2.6.

NOP = I2×2 =

(
1 0

0 1

)
(2.6)

It should also be clear from the aforementioned behaviours that in order to apply the NOP

gate it is only necessary to conduct a simple matrix multiplication by the state vector, as

depicted in Expression 2.7.
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NOP

(
p0

p1

)
=

(
1 0

0 1

)(
p0

p1

)
=

(
p0

p1

)
(2.7)

2.3.2 Not Matrix

The NOT gate requires a bit more effort but it is still a relatively simple operation. Take

into account the logical NOT gate, a possible matrix representation should always observe

the behaviour presented in Expression 2.8. This implies that the NOT operator can be

represented by the matrix presented in Expression 2.9.

NOT

(
1

0

)
=

(
0

1

)
, NOT

(
0

1

)
=

(
1

0

)
(2.8)

NOT =

(
0 1

1 0

)
(2.9)

2.3.3 Cnot Matrix

In order to obtain equivalent matrix representations for the remaining elementary logic gates

Expression 2.2 needs to be extended so that it can accommodate two bits. As a result, the

overall state consists of bits p and q. Again, let ki represent the probability of bit k being

in state i. A natural observation is that at any given point in time it is possible to have a

number of combinations, namely:

• Combination 1 - bit p may be in state 0 with probability p0 while bit q may be in

state 0 with probability q0;

• Combination 2 - bit p may be in state 0 with probability p0 while bit q may be in

state 1 with probability q1;

• Combination 3 - bit p may be in state 1 with probability p1 while bit q may be in

state 0 with probability q0;

• Combination 4 - bit p may be in state 1 with probability p1 while bit q may be in

state 1 with probability q1.

Following this reasoning it should come as no surprise that this information can also be

encoded as a vector, this time with dimension 4, as illustrated by Expression 2.10 [118].
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
p0q0

p0q1

p1q0

p1q1

 (2.10)

Recall that in a deterministic circuit a bit can be either in state 0 or in state 1. This implies

that the probabilities for a given bit being in a certain state will be either 0 or 1, namely the

possible combinations for bits p and q will be:

• If bit p is in state 0 then p0 = 1, and accordingly p1 = 0;

• If bit p is in state 1 then p1 = 1, and accordingly p0 = 0;

• If bit q is in state 0 then q0 = 1, and accordingly q1 = 0;

• If bit q is in state 1 then q1 = 1, and accordingly p0 = 0.

Expression 2.10 can be combined with the previously mentioned outcomes in order to obtain

appropriate vector representations, namely:

• Combination 1

p0=1,p1=0
q0=1,q1=0→


p0q0

p0q1

p1q0

p1q1

 =


1× 1

1× 0

0× 1

0× 0

 =


1

0

0

0



• Combination 2

p0=1,p1=0
q0=0,q1=1→


p0q0

p0q1

p1q0

p1q1

 =


1× 0

1× 1

0× 0

0× 1

 =


0

1

0

0



• Combination 3

p0=0,p1=1
q0=1,q1=0→


p0q0

p0q1

p1q0

p1q1

 =


0× 1

0× 0

1× 1

1× 0

 =


0

0

1

0



• Combination 4

p0=0,p1=1
q0=0,q1=1→


p0q0

p0q1

p1q0

p1q1

 =


0× 0

0× 1

1× 0

1× 1

 =


0

0

0

1


Intuitively, each of the aforementioned combinations can be perceived as being encoded in a

unique vector state, reflecting a binary coding. Accordingly, for four possible combinations

four vector states can be built that uniquely identify the originating combination. Expres-
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sion 2.10 makes it difficult to obtain equivalent matrix representations for the remaining

elementary logic gates. Intuitively, this can be perceived as a consequence of the remaining

gates starting out with two input bits and outputting a single bit. This kind of gates are

labeled as many-to-one functions. The output bit of these gates is neither of the input bits,

and so would require the introduction of an additional bit r to Expression 2.10.

However, Expression 2.10 is not without its use. Namely, assume that one is trying to

build a two-bit input gate responsible for outputting two bits. The input bits are labeled

as control bit c and target bit t. The gate always outputs bit c unaltered (the reasons for

this will become clearer in the next section). Besides outputting c the gate applies the NOT

operation to t if c is set to 1, i.e. c⊕ t. Otherwise the gate performs nothing. This behaviour

is extremely similar to the standard XOR gate. The single main difference resides in the fact

that an extra bit is outputted. This operation is commonly referred to as controlled-NOT

gate, or CNOT. A graphical representation for the CNOT operation is depicted in Figure

2.2.

CNOT

c

t

c

c     t 

Figure 2.2: CNOT gate.

The CNOT gate requires two input bits, thus a total of four possible combinations can be fed

into it. By using the previous method for mapping each combination into a state vector it is

possible to describe the overall computation as a simple matrix multiplication. Based on the

previous description, a matrix representation for the CNOT gate should be in accordance

with the behaviour presented in Expression 2.11.

CNOT


1

0

0

0

 =


1

0

0

0

 , CNOT


0

1

0

0

 =


0

1

0

0



CNOT


0

0

1

0

 =


0

0

0

1

 , CNOT


0

0

0

1

 =


0

0

1

0



(2.11)
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The aforementioned behaviour implies that the CNOT gate can be represented through the

matrix presented in Expression 2.12.

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2.12)

2.3.4 Fan-out Operation

The Fan-out operation previously described basically allows for individual bits to be copied

in order to provide input to other circuit gates. This operation can be performed by simply

using the CNOT gate alongside an auxiliary bit set to 0. In order to see this consider the

output c ⊕ t. Assume that t is set to 0 then c ⊕ t t=0→ c ⊕ 0 = c, i.e. by setting the input

bit t to 0 a copy of bit c is obtained. This situation combined with the CNOT gate always

outputting bit c effectively results in two copies of bit c being produced. This behaviour is

illustrated in Figure 2.3. This kind of reasoning, i.e. translating the inputs onto the outputs

alongside the introduction of auxiliary bits will be key to fully understanding the mechanism

behind reversible computation.

CNOT
(FAN-OUT)

c

0

c

c     0 = c 

Figure 2.3: Fan-out operation using a CNOT gate.

2.4 Reversible Computation

Reversible computation was a matter throughly investigated on the seminal work on the

subject by Bennett [23]. For a detailed analysis on the history of reversible computation

and its interactions with other scientific fields please refer to [24] and [25]. The core ideas

behind reversible computation can be formulated in linear algebra terms. Bit states and gate

operators can be described through vectors and matrices [118]. Also, reversible gate operators

can be mathematically defined through unitary matrices. This linear algebra framework for

reversible computation provides a stable and proven basis for the reversible computation

process.
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Traditional logical gates employed in digital circuits can be classified according to their

reversibility. A gate is said to be reversible if it is always possible to uniquely recover the

input, given the output [98]. The NOP and NOT operators are examples of reversible logic

gates because, given the output of each gate, it is possible to infer what the input must have

been. In the case of the NOP operation there is no change to undo. Regarding the NOT

gate, traditional boolean algebra enables one to see that by just applying a second NOT

operation it is possible to obtain the original input, i.e. X = X.

This reversibility does not stand for other logical gates such as the universal NAND gate.

When a transition is performed to standard two-bit gates of classical computation, reversibil-

ity is lost. This loss of reversibility can be seen as a result of elementary gates starting out

with two bits and producing a single bit as output, i.e. f : R2 → R. This information loss

results in an irreversible process. If a logic gate is irreversible, then some of the information

input to the gate is lost irretrievably when the gate operates, i.e. some of the information has

been erased by the gate (please refer to [133], [23] and [132]). In a reversible computation,

no information is ever erased because the input can always be recovered from the output.

Thus, saying that a computation is reversible is equivalent to saying that no information is

erased during the computation [1]. Also if a function f is reversible then there also exists an

inverse function of f , respectively labeled as f−1 . The inverse function f−1 is responsible

for mapping f ’s outputs into the corresponding input states.

Earlier, it was mentioned that energy consumption in computation plays a crucial role in

reversible computation. So it is natural for one to question what is the connection between

energy consumption and irreversibility in computation? The theoretical foundations con-

necting energy consumption and irreversibility were established by Rolph Landauer in 1961

as Landauer’s principle, namely [133]:

• Landauer’s principle: The amount of energy dissipated into the environment when

a bit of information is erased is at least kBT log2 2, where kB is a universal constant

known as Boltzmann’s constant, and T is the temperature of the environment of the

computer. The factor kBT log2 2 should be interpreted as the heat equivalent of one bit

of entropy. This values corresponds to the amount of heat dissipated by any computer

operating at temperature T per elementary binary operation performed.

Accordingly, any kind of reversible process has to avoid irreversible operations that ultimately

lead to loss of information from any given state of the process. Associated with these

irreversible operations (many-to-one data operations), is always an incurred thermodynamic

penalty. One the other hand, reversible operations (one-to-one data operations) do not incur

such a cost [23]. An important observation to perform is that if all computations could be

done reversibly then no bits would be erased and as such no lower bound would exist on the

21



Chapter 2. Reversible Logic Fundamentals

amount of energy dissipated by the computer [164].

Operations such as NOP and NOT are intrinsically reversible. Yet, the remaining logical

operations are irreversible. Accordingly, the question naturally arises if an irreversible circuit

model can be transformed into a reversible one? Toffoli provided a mathematical abstraction

for reversible computation based on circuit design containing only reversible elements, by

making use of a reversible gate known as the Toffoli gate [204]. The following sections are

organised as follows: Section 2.4.1 presents the main details associated with the Toffoli gate;

Section 2.4.2 concludes by describing how these type of reversible gates can be employed in

order to develop more complex reversible circuits.

2.4.1 Toffoli Gate

The Toffoli gate has three input bits, a, b and c. Bits a and b are known, respectively, as

the first and second control bits, while c is the target bit. Besides outputting bits a and b,

the gate effectively flips the target bit, if and only if the control bits are are both state 1,

i.e. c ⊕ (ab). Otherwise, the Toffoli gate does not perform any operation. If this sounds

remarkably similar to the CNOT gate, that is because it is. In fact, it can be shown that the

Toffoli gate is a generalization of the CNOT gate [18]. By outputting bits a and b the Toffoli

gate allows one to determine the original value for input bit c from expression c⊕ (ab). This

way no information is lost, guaranteeing a reversible mechanism for the Toffoli gate. The

set consisting of just the Toffoli gate is universal for classical computation [204]. The truth

table for the Toffoli gate is presented in Table 2.3 [204].

Inputs Outputs
a b c a b c⊕ (ab)
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Table 2.3: Truth table of the Toffoli Gate.

The Toffoli gate representation is illustrated in Figure 2.4. How can the Toffoli be employed in

order to perform reversible computation? With some careful manipulation of the Toffoli gate

inputs, through the use of auxiliary bits, it becomes possible to construct reversible versions

of elementary logic gates. Although the NOP and NOT operations are by themselves already

reversible, it is still possible to employ the Toffoli gate to obtain equivalent gates. Can the

Toffoli gate simulate other elementary gates besides the NOP and NOT operations? The next

sections present the details surrounding the Toffoli’s gate potential for simulation.
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Toffoli Gate

a

b

c

a

b

c     (ab)

Figure 2.4: General purpose Toffoli Gate.

Toffoli–NOP Gate

What are the required inputs for the Toffoli gate to simulate the NOP gate on bit a. In

order to answer this question take into account output c⊕ (ab), which is an expression with

two operands, respectively c and ab, and XOR operator ⊕. The second operand depends on

the value of bit c. Also by setting bit b in ab the value a is obtained, i.e. (ab)
b=1→ a. The

value of bit c needs to be chosen in such a way that expression c ⊕ a evaluates to a. This

can be done by setting bit c to 0, i.e. c⊕a c=0→ a. The output from the NOP is on the target

output bit. This situation is illustrated in Figure 2.5.

Toffoli Gate
(NOP)

a

1

a

1

0     a = a0

Figure 2.5: NOP gate using a Toffoli Gate.

Toffoli-Fan-Out Gate

Before advancing any further, it should be drawn into attention a fact that might have

gone unnoticed. The Toffoli gate simulating the NOP operation presented in the previous

section besides outputting bit a in effect also performs a copy of bit a. In reality, for all

practical purposes there is no distinction between both operations. This situation is depicted

in Figure 2.6.

Toffoli Gate

(FAN-OUT)

a

1

a

1

0     a = a0

Figure 2.6: Fan-out operation using a Toffoli Gate is equivalent to a Toffoli gate simulating
a NOP gate.
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Toffoli-NOT Gate

The same line of reasoning can be applied in order to determine appropriate inputs for the

Toffoli gate simulating the NOT gate behaviour. As in the previous analysis, (ab)
b=1→ a.

Accordingly, c needs to be chosen such that a’s complement is obtained. By setting c to 1

the desired behaviour is obtained, i.e. c ⊕ a c=1→ a as illustrated by Figure 2.7. Again, the

output from the NOT is on the target output bit.

Toffoli Gate
(NOT)

a

1

a

1

1     a = a1

Figure 2.7: NOT gate using a Toffoli Gate.

Toffoli–NAND Gate

Can the Toffoli gate be employed in order to perform more advanced operations? It turns

out that the Toffoli gate can be employed to perform universal computation by simply

simulating the universal NAND operation. Suppose a NAND is to be performed with bits

a and b. The second operand from expression c⊕ (ab), respectively ab, already performs an

AND operation. It would be useful to somehow be able to perform a NOT operation, i.e.

to negate, this expression. Fortunately, by setting bit c to 1 the NAND operation can be

obtained, i.e. c ⊗ (ab)
c=1→ 1 ⊗ (ab) = ab. The output from the NAND is on the target bit.

The gate representation for the reversible NAND gate using a Toffoli gate is presented in

Figure 2.8. This behaviour is illustrated in the line entries of Table 2.3 where the the control

bit c is set to 1, respectively lines 2,4,6 and 8.

Toffoli Gate
(NAND)

a

b

1

a

b

1     (ab) = ab

Figure 2.8: Reversible NAND gate using a Toffoli Gate.

Since the NAND gate is universal for classical computation and the Toffoli gate can be used

to simulate the NAND gate, the Toffoli gate is also a universal gate for classical computation

[204]. It is also important to draw attention to the fact that by simply replacing all the

irreversible components with their reversible counterparts, a reversible version of a circuit is

obtained. If the circuit is executed backwards, by replacing each gate by its inverse, and the

output is provided as input then the original input is obtained.
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Toffoli Matrix

How can one obtain a matrix representation for the Toffoli gate? The Toffoli gate has three

inputs, so it is necessary to extend the previously presented vector representations for 1

and 2 bits, respectively presented in Expression 2.2 and Expression 2.10. This can easily

be achieved by the introduction of a third bit. Accordingly, let the Toffoli gate inputs be

labeled as a, b and c and let ki denote the probability of bit k being in state i. Again at any

given point in time a number of possible combinations may exist. The set of possible results

combining all the possible states for the three bits is presented in Table 2.4.

Combination a b c
1 a0 b0 c0
2 a0 b0 c1
3 a0 b1 c0
4 a0 b1 c1
5 a1 b0 c0
6 a1 b0 c1
7 a1 b1 c0
8 a1 b1 c1

Table 2.4: Possible combinations of results for three bits.

Recall from the previous discussions that the information contained in Table 2.4 regarding

the set of possible states can be encoded as a vector. In this case the vector has an 8 × 1

dimension as illustrated by Expression 2.13.



a0b0c0

a0b0c1

a0b1c0

a0b1c1

a1b0c0

a1b0c1

a1b1c0

a1b1c1


(2.13)

However, the circuit also needs to be deterministic, e.g. when bit a is in state 0 then a0 = 1

and since the probabilities need to sum up to one this automatically implies that a1 = 0. The

same holds true for the remaining bits. As a result, it is now possible to apply the specific

details surrounding each combination of Table 2.4 to Expression 2.13, respectively:
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• Combination 1

a0=1,a1=0
b0=1,b1=0
c0=1,c1=0→



a0b0c0

a0b0c1

a0b1c0

a0b1c1

a1b0c0

a1b0c1

a1b1c0

a1b1c1


=



1× 1× 1

1× 1× 0

1× 0× 1

1× 0× 0

0× 1× 1

0× 1× 0

0× 0× 1

0× 0× 0


=



1

0

0

0

0

0

0

0



• Combination 2

a0=1,a1=0
b0=1,b1=0
c0=0,c1=1→



a0b0c0

a0b0c1

a0b1c0

a0b1c1

a1b0c0

a1b0c1

a1b1c0

a1b1c1


=



1× 1× 0

1× 1× 1

1× 0× 0

1× 0× 1

0× 1× 0

0× 1× 1

0× 0× 0

0× 0× 1


=



0

1

0

0

0

0

0

0



• Combination 3

a0=1,a1=0
b0=0,b1=1
c0=1,c1=0→



a0b0c0

a0b0c1

a0b1c0

a0b1c1

a1b0c0

a1b0c1

a1b1c0

a1b1c1


=



1× 0× 1

1× 0× 0

1× 1× 1

1× 1× 0

0× 0× 1

0× 0× 0

0× 1× 1

0× 1× 0


=



0

0

1

0

0

0

0

0



• Combination 4

a0=1,a1=0
b0=0,b1=1
c0=0,c1=1→



a0b0c0

a0b0c1

a0b1c0

a0b1c1

a1b0c0

a1b0c1

a1b1c0

a1b1c1


=



1× 0× 0

1× 0× 1

1× 1× 0

1× 1× 1

0× 0× 0

0× 0× 1

0× 1× 0

0× 1× 1


=



0

0

0

1

0

0

0

0


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2.4. Reversible Computation

• Combination 5

a0=0,a1=1
b0=1,b1=0
c0=1,c1=0→



a0b0c0

a0b0c1

a0b1c0

a0b1c1

a1b0c0

a1b0c1

a1b1c0

a1b1c1


=



0× 1× 1

0× 1× 0

0× 0× 1

0× 0× 0

1× 1× 1

1× 1× 0

1× 0× 1

1× 0× 0


=



0

0

0

0

1

0

0

0



• Combination 6

a0=0,a1=1
b0=1,b1=0
c0=0,c1=1→



a0b0c0

a0b0c1

a0b1c0

a0b1c1

a1b0c0

a1b0c1

a1b1c0

a1b1c1


=



0× 1× 0

0× 1× 1

0× 0× 0

0× 0× 1

1× 1× 0

1× 1× 1

1× 0× 0

1× 0× 1


=



0

0

0

0

0

1

0

0



• Combination 7

a0=0,a1=1
b0=0,b1=1
c0=1,c1=0→



a0b0c0

a0b0c1

a0b1c0

a0b1c1

a1b0c0

a1b0c1

a1b1c0

a1b1c1


=



0× 0× 1

0× 0× 0

0× 1× 1

0× 1× 0

1× 0× 1

1× 0× 0

1× 1× 1

1× 1× 0


=



0

0

0

0

0

0

1

0



• Combination 8

a0=0,a1=1
b0=0,b1=1
c0=0,c1=1→



a0b0c0

a0b0c1

a0b1c0

a0b1c1

a1b0c0

a1b0c1

a1b1c0

a1b1c1


=



0× 0× 0

0× 0× 1

0× 1× 0

0× 1× 1

1× 0× 0

1× 0× 1

1× 1× 0

1× 1× 1


=



0

0

0

0

0

0

0

1


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It is also important do draw attention to a few facts regarding the behaviour of the Toffoli

gate and respective inputs originating from the set of possible combinations, namely:

• Combinations 1 through 6 imply that at least one of the control bits, i.e. a or b, is set

to 0. Accordingly, by the Toffoli’s gate definition no operation should be performed;

• Combination 7 has both control bits set to 1 and target bit c is in state 0. Accordingly,

the Toffoli gate should flip the value of the target bit, i.e. c should be set to 1, and also

output the control bits a and b. This is equivalent to a mapping between Combination

7 into Combination 8, since the values of the control bits are maintained and bit c is

set;

• The same reasoning process applied immediately above can be reused for analyzing

Combination 8. Combination 8 has both control bits set to 1 and target bit c is in

state 1. Accordingly, the Toffoli gate should flip the value of bit c to 0, and again

output the control bits a and b. This is equivalent to a mapping between Combination

8 into Combination 7, since the value of the control bits is maintained and bit c is set

to 0.

Based on the aforementioned behavioural description, a matrix representation for the Toffoli

gate should be in accordance with the following behaviour:
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TOFFOLI



1

0

0

0

0

0

0

0


=



1

0

0

0

0

0

0

0


, TOFFOLI



0

1

0

0

0

0

0

0


=



0

1

0

0

0

0

0

0



TOFFOLI



0

0

1

0

0

0

0

0


=



0

0

1

0

0

0

0

0


, TOFFOLI



0

0

0

1

0

0

0

0


=



0

0

0

1

0

0

0

0



TOFFOLI



0

0

0

0

1

0

0

0


=



0

0

0

0

1

0

0

0


, TOFFOLI



0

0

0

0

0

1

0

0


=



0

0

0

0

0

1

0

0



TOFFOLI



0

0

0

0

0

0

1

0


=



0

0

0

0

0

0

0

1


, TOFFOLI



0

0

0

0

0

0

0

1


=



0

0

0

0

0

0

1

0



With the above rules in mind it is possible to obtain the matrix of the Toffoli gate, T , as

presented in Expression 2.14. The first 6 lines of the Toffoli matrix effectively maintain

the probability distributions of those inputs whose control bits are both not set to state

1. Otherwise, the last two rows are responsible for performing a flip on target bit c while

maintaining the values for the control bits.
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T =
(T |0〉 T |1〉 T |2〉 T |3〉 T |4〉 T |5〉 T |6〉 T |7〉

|0〉 |1〉 |2〉 |3〉 |4〉 |5〉 |7〉 |6〉
)

=



T |0〉 T |1〉 T |2〉 T |3〉 T |4〉 T |5〉 T |6〉 T |7〉

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



(2.14)

2.4.2 Reversible Circuits

Recall that a key incentive supporting reversible computation stems from a need for higher

energy efficiency. Traditionally, classical computation is seen as an irreversible process, a

direct consequence from the use of thermodynamically costly many-to-one functions. The

reversible computation paradigm presents an alternative solution with logical elements such

as the Toffoli gate providing the support for reversibility. It was also described how the Toffoli

gate could be employed in order to simulate irreversible operations, such as the universal

NAND gate.

Generally, any irreversible circuit can be made reversible by substituting each irreversible

gate by an equivalent reversible gate [204]. In doing so a certain constant number of inputs

and outputs is introduced to each irreversible gate. It is this additional information that

provides for reversible computation. By assigning specified values to some input bits the

desired gate behaviour is obtained. This situation is illustrated in Figure 2.9.

In [118] the authors draw attention to the fact that given an irreversible function f , a

reversible mapping can be constructed with the form illustrated in Expression 2.15, where x

is a set of bits, also known as a register, and c is an auxiliary control bit.

(x, c) 7→ (x, c⊕ f(x)) (2.15)
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Irreversible 

Funtion
Input Output

(a)

Reversible 

Function

Input

Auxiliary

Input

Output

Auxiliary

Output

(b)

Figure 2.9: It is possible to transform an irreversible function 2.9a into a reversible function
2.9b. This mapping can be performed with the introduction of a number of constants and
auxiliary input and output bits. (Source: [203])

Toffoli draws attention to a number of facts resulting from a physical implementation per-

spective, namely [204]:

• Signals are encoded in some form of energy;

• Each auxiliary constant input incurs an associated energy cost and each auxiliary

output implies the removal of energy, with the associated thermodynamic penalty;

2.5 Conclusions

Energy consumption in computation is deeply linked to the reversibility of the computation.

Operations resulting in the loss or erasure of information incur a thermal penalty. Operators

incorporating concepts such as the ones described by the Toffoli gate allow for reversible

circuits to be obtained from traditionally irreversible circuits. A process which, in principle,

can always be performed. This conversion procedure can be performed by adding a moderate

number of resources.
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Chapter 3

Quantum Computation

Overview

3.1 Introduction

Quantum computation is a field resulting from the combination of exploring quantum me-

chanics alongside computer science. The underlying physical rules that govern computation

are changed to a quantum setting. This modification allows the model to have far-reaching

consequences on how computation is performed and perceived. Since quantum computation

represents such a fundamental shift from classical computation it is important to consider

what are the potential implications? Namely, what are the requirements associated with

quantum computation? Do the same principles that govern classical computation apply to a

quantum context? If not, how should computation be approached from a quantum perspec-

tive? Additionally, what are the key differences between both models of computation? Does

quantum computation provide any meaningful advantage over the classical model? This

chapter provides answers to these questions by presenting an overview of the basic concepts

surrounding quantum computation. In order to do so, this chapter first starts by describing

a probabilistic perspective of computation in Section 3.2. This approach is then extended in

Section 3.3 in order to accommodate for complex amplitudes. This model is then employed

to present some of the fundamental notions surrounding quantum computation in Section

3.4. The set of results presented there are fundamental in order to explain Grover’s algo-

rithm in Section 3.5, which is a fundamental result for the remaining work presented in this

thesis.
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3.2 Probabilistic Computation

The mathematical framework laid down in previous sections combined into a single hybrid

approach a matrix perspective alongside a probabilistic point of view. These factors were

responsible for producing a vector notation conveying not only the state of individual bits

but also the probability for each possible bit state combination (as illustrated by Expression

2.2, Expression 2.10 and Expression 2.13). However, this hybrid approach is usually applied

to translate the deterministic behaviour usually seen in classical computation, i.e. the proba-

bility that an individual bit is in a given state is either 0 or 1. Although this seems a rational

approach, it is nonetheless a restriction on the general probability theory. If individual bit

probabilities are allowed to strain beyond 0 or 1, i.e. p ∈ R and 0 ≤ p ≤ 1, then it is possible

to develop a new set of theoretical extensions.

3.2.1 Probabilistic Bit

In order to better understand probabilistic computation it is useful to first take into consid-

eration a simple example consisting of a single bit a and let a0 denote the probability that

bit a is in state 0, and a1 the probability that it is in state 1. Accordingly, it is possible to

build an adequate notation reflecting this probability distribution for bit a, as illustrated by

Expression 3.1. In addition, both a0 and a1 should be greater or equal than zero, i.e. a0 ≥ 0

and a1 ≥ 0. Also, both probabilities should some up to one, i.e. a0 + a1 = 1.

a0 State0 + a1 State1 (3.1)

3.2.2 Multiple Probabilistic Bits

In this section the notation previously presented will be extended in order to accommodate

any number of bits. Suppose a two bit system under consideration, respectively labeled as

a and b. Also, as previously defined, let ki represent the probability of bit k being in state

i. Now, instead of being limited to 0 or 1 probabilities, it becomes possible to employ any

kind of initial probability distribution. As a concrete example suppose that a0 = 0.7 and

b0 = 0.25. Since probabilities need to sum up to one, then a1 = 0.3 and also b1 = 0.75.

Table 3.1 illustrates the probabilities for each possible combination, i.e. state.

Table 3.1 also illustrates the close association between a state and its respective probability.

Although in a probabilistic system the state of the system is not known for certain, it is

possible to have a practical understanding of the probabilistic distribution of the states [99].
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Combination a b Individual Probabilities Probability
1 0 0 a0b0 0.7× 0.25 = 0.175
2 0 0 a0b1 0.7× 0.75 = 0.525
3 0 1 a1b0 0.3× 0.25 = 0.075
4 0 1 a1b1 0.3× 0.75 = 0.225

Table 3.1: Probability distribution for three bits with probability distribution a0 =
0.7, b0 = 0.25, a1 = 0.3, b1 = 0.75.

This situation is illustrated in Expression 3.2, with the sum of the probabilities normalized

to 1, i.e.
∑
i,j aibj = 1. The probability distribution of Table 3.1 can also be presented as

illustrated by Expression 3.3.

a0b0 State00 + a0b1 State01 + a1b0 State10 + a1b1 State11 (3.2)

0.175 State00 + 0.525 State01 + 0.075 State10 + 0.225 State11 (3.3)

Expression 3.2 can be simplified introducing the mathematical “ket” symbol | · · · 〉. For the

moment |a〉 will simply denote state a, in order to avoid having to explicitly write the word

“State”. Expression 3.2 can thus gain a new form, as illustrated by Expression 3.4.

a0b0|00〉+ a0b1|01〉+ a1b0|10〉+ a1b1|11〉 (3.4)

The notation presented in Expression 3.4 can easily be extended to accommodate any number

of states and accordingly any number of bits. As mentioned in [99], let x1, · · · , xn denote the

set of possible states with associated probabilities p1, · · · , pn then the probability distribution

over states xk can be represented as illustrated by Expression 3.5. Again ∀ipi ≥ 0 and∑
i pi = 1. This probability distribution is also commonly referred to as a mixed state, with

individual states xk labeled as pure states.

p1|x1〉+ · · ·+ pn|xn〉 (3.5)

It is important to mention that the distribution presented in Expression 3.5 might be viewed

as a vector with non-negative coordinates that sum up to 1 in an n-dimensional real vector

space having |x1〉, · · · , |xn〉 as basis vectors.
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3.2.3 Time Evolution

A probabilistic system is capable of undergoing discrete time evolution [99]. Although the

specific state towards which the system will evolve is not known it is possible to have a

certain understanding regarding the evolution of any specific state xk. Subsequent system

evaluations of each state xk should continue to reflect the system’s probabilistic nature.

Accordingly, any state xk can evolve to state xl with probability pkl. The overall state evo-

lution is illustrated by Expression 3.6. This notation also reflects a probability distribution

regarding state xk thus is should also be clear that pk1 + · · ·+ pkn = 1.

|xk〉 7→ pk1|x1〉+ · · ·+ pkn|xn〉 (3.6)

By combining the system’s probability distribution (Expression 3.5) with individual state

evolution (Expression 3.6) allows one to study the system’s overall discrete time evolution.

This situation is illustrated in Expression 3.7 [99], where p′i = p1p1i + · · ·+ pnpni.

p1|x1〉+ · · ·+ pn|xn〉 7→

7→ p1 (p11|x1〉+ · · ·+ p1n|xn〉) + · · ·+ pn (pn1|x1〉+ · · ·+ pnn|xn〉) =

= (p1p11 + · · ·+ pnpn1) |x1〉+ · · ·+ (p1p1n + · · ·+ pnpnn) |xn〉 =

= p′1|x1〉+ · · ·+ p′n|xn〉 (3.7)

A probabilistic system with the aforementioned time evolution is commonly labeled as a

Markov chain [179]. Expression 3.7 showcases the fact that in the end another probability

distribution is obtained. Accordingly, p′1 + · · · + p′n = 1. It should be drawn into attention

that this is an important conclusion, i.e. the time evolution sends each system’s probability

distribution into a combination of all the states with non-negative coefficients that sum up to

1 [99]. This behaviour is to be expected and allows for further extensions. These extensions

will be responsible for a different kind of interaction resulting in a profound impact in a

system’s discrete time evolution.

3.3 Extending the Non-Deterministic Framework

Succinctly, the previous section described: (1) how useful a probabilistic approach can be

when characterizing a computation; and (2) how a probabilistic system evolves during dis-
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crete time steps. The mathematical framework previously presented not only provided a

non-deterministic perspective towards computation but also a simple and elegant notation

for doing so. So the question naturally arises: How might this mathematical framework

be extended whilst maintaining the elegance of the probabilistic approach? In order to an-

swer this question it becomes necessary to stray beyond the real-number theory set that has

been employed far. A natural observation to perform is that the set of complex numbers C
contains the ordinary real numbers R so theoretically this might be a good place to start.

Accordingly, Expression 3.5 can be extended in order to contemplate complex numbers αi

(known as amplitudes [99]) as illustrated by Expression 3.8.

α1|x1〉+ · · ·+ αn|xn〉 (3.8)

Although this notation already carries a significant resemblance with the probabilistic ap-

proach previously presented it can still be further improved. Namely, by requiring the vector

(α1, · · · , αn) to be unit-length preserving it becomes possible to ensure that |α1|2 + · · · +
|αn|2 = 1. As a result, |αi|2 may be perceived as translating the probability of observing state

xi. This approach fits nicely with the previously mentioned probability framework.

3.3.1 Time Evolution

Understanding the time evolution of such a system can be performed by adding the complex

amplitudes requirement to Expression 3.6, as illustrated by Expression 3.9, which allows one

to study system’s evolution in discrete time steps.

|xk〉 7→ αk1|x1〉+ · · ·+ αkn|xn〉 (3.9)

This situation is illustrated in Expression 3.10 [99] where individual state evolution was

applied, as expressed by Expression 3.9 against the system’s state notation, as presented in

Expression 3.8, where α′i = α1α1i + · · ·+αnαni. This behaviour ensures that the operations

performed during the evolution operation are length preserving, i.e. |α1|2 + · · · + |αn|2 =

|α′1|2 + · · ·+ |α′n|2.
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α1|x1〉+ · · ·+ αn|xn〉 7→

7→ α1 (α11|x1〉+ · · ·+ α1n|xn〉) + · · ·+ αn (αn1|x1〉+ · · ·+ αnn|xn〉) =

= (α1α11 + · · ·+ αnαn1) |x1〉+ · · ·+ (α1α1n + · · ·+ αnαnn) |xn〉 =

= α′1|x1〉+ · · ·+ α′n|xn〉 (3.10)

Expression 3.11 can be derived from Expression 3.10, which can be presented in matrix form,

relating amplitudes α1, · · · , αn and α′1, · · · , α′n as illustrated by Expression 3.12 [99].


α′1 = α1α11 + · · ·+ αnαn1

...

α′n = α1α1n + · · ·+ αnαnn

(3.11)


α′1
...

α′n

 =


a11 · · · an1

...
. . .

...

a1n · · · ann



α1

...

αn

 (3.12)

This kind of linear, length-preserving and smooth operators are known in linear algebra terms

as unitary matrices. A matrix A is said to be unitary if A’s transpose complex conjugate,

denoted by A∗
T

, or simply by A†, is also the inverse matrix of A [99]. This is equivalent

to say that A−1 = A† and consequently A−1A = A†A = I. The unitary requirement also

implies that a quantum state evolution is always invertible, thus the close relationship with

reversible computation.

3.3.2 Assessing The Key Differences

How well does this latest approach fare when compared with the initial real-valued proba-

bilistic framework? In order to understand clearly the key differences it is useful to proceed

with a couple of well known examples taken from [99]. First, consider the example of a fair

coin.

Example 1 - Classical Approach Tossing a far coin will give head h or tail t with a

probability of 1
2 (for the specific case of this example it is important to mention that

only non-negative real values are considered, i.e. R+
0 ). Accordingly, independently

of whether the coins starts in the heads or tails position, the overall state of the
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system after a single time evolution step can be described as illustrated, respectively,

by Expression 3.13 and Expression 3.14.

|h〉 7→ 1

2
|h〉+

1

2
|t〉 (3.13)

|t〉 7→ 1

2
|h〉+

1

2
|t〉 (3.14)

The initial states |h〉 and |t〉 both produce the same state after a single step. Subsequent

time steps on the system’s state can now be determined, as illustrated by Expression

3.15.

1

2
|h〉+

1

2
|t〉 7→ 1

2

(
1

2
|h〉+

1

2
|t〉
)

+
1

2

(
1

2
|h〉+

1

2
|t〉
)

=
1

4
|h〉+

1

4
|t〉+

1

4
|h〉+

1

4
|t〉

=
1

2
|h〉+

1

2
|t〉 (3.15)

Since all the probabilities are always non-negative real numbers and since probabilities

need to sum up to 1 the final configuration will be equal to the initial one.

Example 2 - Non-Classical Approach Assume that a system with a similar behaviour

to that of the fair coin of the previous example is being employed. However, this

time the system’s state description will be restricted to amplitudes, i.e. C, instead

of probabilities, i.e. R+
0 . The mapping between probabilities and amplitudes can be

easily performed since the probability of observing a certain state xi with amplitude

αi is |αi|2. Accordingly, for probability 1
2 individual states can have amplitudes ± 1√

2
.

Suppose that the system’s time evolution is provided by Expression 3.16 and Expression

3.17.

|h〉 7→ 1√
2
|h〉+

1√
2
|t〉 (3.16)

|t〉 7→ 1√
2
|h〉 − 1√

2
|t〉 (3.17)

Both of the above expressions are consistent with the desired probabilistic behaviour

of the previous example but built-upon a different theoretical foundation. First, it is
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useful to examine an additional time evolution step regarding the initial state |h〉 as

described in Expression 3.18.

1√
2
|h〉+

1√
2
|t〉 7→ 1√

2

(
1√
2
|h〉+

1√
2
|t〉
)

+
1√
2

(
1√
2
|h〉 − 1√

2
|t〉
)

=
1

2
|h〉+

1

2
|t〉+

1

2
|h〉 − 1

2
|t〉

= |h〉 (3.18)

The same procedure can be applied to initial state |t〉 as depicted in Expression 3.19.

1√
2
|h〉 − 1√

2
|t〉 7→ 1√

2

(
1√
2
|h〉+

1√
2
|t〉
)
− 1√

2

(
1√
2
|h〉 − 1√

2
|t〉
)

=
1

2
|h〉+

1

2
|t〉 − 1

2
|h〉+

1

2
|t〉

= |t〉 (3.19)

These two examples are crucial for obtaining a clear understanding regarding the main

differences between the classical and non-classical approaches. As previously stated, the time

evolution of the real-valued approach illustrated in Expression 3.5 sends each basis vector

again into a combination of all the basis vectors with non-negative coefficients that sum

up to 1. In contrast, the complex-valued amplitudes of Expression 3.8 allow the system to

evolve very differently. More precisely, when the combination of amplitudes for a given state

cancel each other out the process is known as destructive interference. Naturally, destructive

interference does not occur when dealing with probabilities since all the coefficients are always

non-negative real numbers [99]. On the other hand, when the amplitudes for a given state

amplify each other, the process is called constructive interference. Quantum interference

between different computational basis in order to enhance correct outcomes, and in the

process eliminate incorrect states, is a key feature of quantum computation [49]. Finally, it

is important to mention that the joint operation described by Expression 3.16 and Expression

3.17 is known as the Hadamard transform, which has the matrix form described in Expression

3.20.

H =
1√
2

(
1 1

1 −1

)
(3.20)
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3.4 Quantum Computation Fundamentals

As previously stated, irreversible computational models are responsible for thermal entropy

of the system and its surroundings [15]. Reversible computation plays a pivotal duty in the

quest to develop ever more powerful and energy efficient computers. Curiously, reversibility

is also a key requirement quantum computation [99]. This reversibility, which translates into

the quantum evolution postulate, is a key feature of quantum physics, and is thus an intri-

cate part of quantum computation. The following sections present some of the key concepts

behind quantum computation by establishing the parallels between quantum computation

and the complex-valued non-deterministic approach previously presented. Namely: Section

3.4.1 presents the postulates that govern quantum computation; Section 3.4.2 describes the

quantum equivalent of the classical bit; Section 3.4.3 focuses on the concept of quantum

parallelism; Section 3.4.4 describes a simple quantum procedure, respectively Deutsch’s al-

gorithm.

3.4.1 Quantum Requirements

In this section some of the key features of a finite state quantum system are described in

state-vector formalism [99] [118].

Hilbert Space

The linear algebra notation used in quantum computation is the Dirac notation, which was

invented by Paul Dirac [59] [60]. In the Dirac notation, the symbol identifying a vector is

written inside a “ket”, i.e. | · · · 〉. This is the main reason why the ket symbol was previously

employed to describe states of a system. The vector spaces considered are restrained to com-

plex numbers C. In quantum mechanics the state of a system with n qubits is represented as

a unit-length vector in an 2n-dimensional complex vector space H2n . Such finite-dimensional

vector spaces are labeled as Hilbert spaces. These states can be represented as finite column

vectors in a given basis [99]. Each computational basis of such an Hilbert space can be rep-

resented through an n-length binary string encoding mechanism. Each one of the 2n basis

vectors can be associated to a column vector. The standard way to perform this association

is depicted in Expression 3.21 [118].
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| 0 · · · 00︸ ︷︷ ︸
n

〉 =



1

0
...

0

0




2n, |0 · · · 01〉 =



0

1
...

0

0


, · · · , |1 · · · 11〉 =



0

0
...

0

1


(3.21)

General System State

The state of a quantum system is a unit-length vector expressed in terms of the chosen

computational basis, as depicted in Expression 3.22. These general states are called super-

positions of basis states. Also, since the vector is unit-length, then |α1|2 + · · · + |αn|2 = 1.

Thus, Expression 3.22 also induces a probability distribution in the following manner: when

observing a general state such as the one depicted in Expression 3.22, then a state xi (in

quantum parlance a property) is observed with probability |αi|2.

α1|x1〉+ · · ·+ αn|xn〉 (3.22)

Compound Systems

Additionally, if two quantum systems interact, respectively an n-level system in space Hn

and an m-level system in Hm, then the state space of the combined system is described by

the tensor product (also known as the product) Hm ⊗Hn.

System Evolution

Finally, changes occurring to a quantum state can be described using the language of quan-

tum computation. Analogous to the way a classical computer is built from an electrical

circuit containing wires and logic gates, a quantum computer is built from a quantum cir-

cuit containing wires and elementary quantum gates to carry around and manipulate the

quantum information [58]. In quantum computation, the operations are described through

reversible operators, expressed in terms of matrices. This approach closely resembles that of

the previously presented reversible computation. The crucial requirement is for the state of

quantum systems to change via unitary transformation. The unitarity requirement provides

further support for the reversible computation approach.

As a concrete example the unitarity of the Toffoli matrix can be verified, as presented in

Expression 2.14, and also of the Hadamard transform, presented in Expression 3.20. Let H†
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denote the complex transpose of matrix H then it is easy to verify the result illustrated in

Expression 3.23, where the symbol ’×’ depicts matrix multiplication.

H ×H† =
1√
2

(
1 1

1 −1

)
× 1√

2

(
1 1

1 −1

)
=

1

2

(
2 0

0 2

)
= I2×2 (3.23)

The same procedure can also be applied to verify that the Toffoli gate is also a unitary

operator. Accordingly, let UT denote the Toffoli matrix and U†T be the complex transpose

of matrix UT . Expression 3.24 illustrates that matrix UT is unitary. Accordingly, both the

Toffoli gate and the Hadamard transform are legitimate quantum operators.

UT×U†T =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


×



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


= I8×8 (3.24)

3.4.2 The quantum bit

Computation is usually perceived as an abstract mathematical process. However, no matter

how abstract the computational process is, it must still be performed at a physical level.

Classical computers work by manipulating entities known as bits that exist in one of two

states, respectively 0 or 1. Typically, these discrete states are represented by voltage ranges,

direction of magnetization and also transistor conductivity. The bit is thus the crucial

element supporting classical computation and information. The bit concept inspired an

analogous fundamental concept in quantum computation and information, the quantum bit,

a.k.a. qubit.

Qubit

What is a qubit? Analogously to the classical bit a qubit also has a state. In fact, two possible

states for a qubit are the states |0〉 and |1〉. However, there is a fundamental different concept

between bits and qubits. A qubit can also be in a state other than |0〉 or |1〉. A qubit can

also be in a superposition, or put more simply, as a linear combination of the computational
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basis |0〉 and |1〉. This situation is illustrated in Expression 3.25, which closely resembles

that of a general quantum system, respectively presented in Expression 3.22, where α, β ∈ C.

This behaviour is strange since a classical bit acts like a coin: either heads or tails up. A

qubit’s superposition ability is counterintuitive to the classical understanding of the physical

world, since it can “exist” as a combination of |0〉 and |1〉 1.

|ψ〉 = α|0〉+ β|1〉 (3.25)

The quantum laws also impose a set of seemingly strange rules, since they run counter to our

everyday understanding of the word. Namely, it is not possible to determine the quantum

state of a qubit as presented in Expression 3.25. When a qubit is observed, or in quantum

vocabulary measured, either the result 0 or the result 1 is obtained. More concretely, the

probability of measuring 0 is |α|2 whilst the probability of measuring 1 is |β|2. Quantum

mechanics provides no explanation for this kind of random collapse into 0 or 1.

Multiples qubits

The aforementioned concept of a qubit can also be easily extended in order to accommo-

date any number of qubits. For example a two qubit system has four computational basis,

namely |00〉, |01〉, |10〉, and |11〉. Accordingly a two qubit system can be expressed as a linear

combination of these computation basis, as illustrated by Expression 3.26.

|ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 (3.26)

3.4.3 Quantum parallelism

In quantum computation, it is common to employ computational structures known as oracles

to verify if an argument belongs to a certain language. This type of unitary operators

are typically represented as Ug or O depending on the literature in question. Oracles are

employed in order to indicate which of the values present in an amplitude register corresponds

to the searched ones. Function g(x) has the form presented in Expression 3.28. This process

can be performed by adding an additional input bit c to a unitary operator and performing

a XOR operation, as illustrated by Expression 3.27.

1It is important to mention that qubits are mostly dealt as abstract mathematical objects, although they
can be physically implemented e.g. [140] [175]. However, by choosing to treat qubits as mathematical entities,
the quantum computation community has been able to focus on developing new theories in a separate fashion
from the concrete details of a physical implementation
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Ug : |x〉|c〉 7→ |x〉|c⊕ g(x)〉 (3.27)

g(x) =

{
1 if x is a solution

0 otherwise
(3.28)

Recall that one of the key features of quantum computation is the ability for a qubit to

be in a superposition of states. Accordingly, take into account the circuit presented in

Figure 3.1 [164], which applies Uf to an input in the superposition |0〉+|1〉√
2

. This initial

input superposition fed to the circuit can be obtained through the Hadamard gate and

the computational basis state |0〉. In order to help understand the analysis of the circuit

behaviour it is useful to introduce in Figure 3.1 two auxiliary states, respectively |ψ0〉 and

|ψ1〉. State |ψ0〉 describes the composite input system whilst |ψ1〉 details the output.

t     f(d)t

d d

Figure 3.1: Uf evolves inputs |d〉|t〉 to |d〉|t⊕ f(d)〉. (Source: [164])

Uf acts on a composite system consisting of superposition |0〉+|1〉√
2

and an auxiliary qubit set

to |0〉, respectively |ψ0〉 as illustrated by Expression 3.29.

|ψ0〉 =

(
|0〉+ |1〉√

2

)
|0〉 (3.29)

The evolution of state ψ0 to ψ1 that results from applying unitary operator Uf is illustrated

in Expression 3.30.
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|ψ1〉 = Uf |ψ0〉

= Uf

[(
|0〉+ |1〉√

2

)
|0〉
]

= Uf

(
|0〉|0〉+ |1〉|0〉√

2

)
=
Uf |0〉|0〉+ Uf |1〉|0〉√

2

=
|0〉|0⊕ f(0)〉+ |1〉|0⊕ f(1)〉√

2

=
|0〉|f(0)〉+ |1〉|f(1)〉√

2

=
|0〉|f(0)〉√

2
+
|1〉|f(1)〉√

2
(3.30)

Before advancing any further it is important to assess the true impact of Expression 3.30.

To the system’s initial state, respectively |ψ0〉, operator Uf was applied once, which resulted

in state |ψ1〉 being obtained. State |ψ1〉 is itself a superposition containing information

about |f(0)〉 and |f(1)〉. Ergo, with a single application of Uf two values of f(d) were

simultaneously evaluated. This feature is known as quantum parallelism and contrasts with

classical parallel evaluation, which would require two individual circuits to perform the same

operation. However, due to the quantum collapse measurement effect it is only possible

to obtain one of those composite states, i.e. composite state |0〉|f(0)〉 is obtained with

probability 1
2 (recall that p = |α|2), or state |1〉|f(1)〉 with probability 1

2 . Apparently, this

parallelism is not without its consequences. Fortunately, this is not the end of the story as

Deutsch proved in [57].

3.4.4 Deutsch Algorithm

The Deutsch algorithm exemplifies how quantum interference can be employed alongside

quantum parallelism to extract information about more than one value of f(d) from su-

perposition states like the one in Expression 3.30. The circuit responsible for implementing

Deutsch’s algorithm is presented in Figure 3.2. In a similar fashion to the circuit presented in

Figure 3.1 the superposition principle will be employed by employing two Hadamard gates.

Again, several auxiliary states need to be introduced in order to aide in the understanding

of the circuit, respectively |ψ0〉, |ψ1〉, |ψ2〉 and |ψ3〉. The input state |ψ0〉 is illustrated in

Expression 3.31.
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t     f(d)t

d dH

H

H

Figure 3.2: Circuit implementing Deutsch algorithm. (Source: [164])

|ψ0〉 = |0〉|1〉 (3.31)

State |ψ1〉 translates the two Hadamard transforms that are applied in order to obtain the

superpositions of the input lines. This situation is illustrated in Expression 3.32.

|ψ1〉 = H|ψ0〉H|ψ1〉

=

(
|0〉+ |1〉√

2

)(
|0〉 − |1〉√

2

)
(3.32)

State |ψ2〉 translates the evolution the system undergoes when the unitary operator Uf is

applied to the superpositions. However, before analyzing state |ψ2〉 be mindful of what

happens when Uf is applied to a general data state |d〉 and the superposition |0〉−|1〉√
2

, this

situation is illustrated in Expression 3.33.
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Uf

[
|d〉
(
|0〉 − |1〉√

2

)]
= Uf

(
|d〉|0〉 − |d〉|1〉√

2

)
=
Uf |d〉|0〉 − Uf |d〉|1〉√

2

=
|d〉|0⊕ f(d)〉 − |d〉|1⊕ f(d)〉√

2

=
|d〉|f(d)〉 − |d〉|1⊕ f(d)〉√

2

=


|d〉|0〉−|d〉|1⊕0〉√

2
if f(d) = 0

|d〉|1〉−|d〉|1⊕1〉√
2

if f(d) = 1

=


|d〉|0〉−|d〉|1〉√

2
if f(d) = 0

|d〉|1〉−|d〉|0〉√
2

if f(d) = 1

=


|d〉(|0〉−|1〉)√

2
if f(d) = 0

−|d〉(|0〉−|1〉)√
2

if f(d) = 1

= (−1)f(d)|d〉
(
|0〉 − |1〉√

2

)
(3.33)

Since this is the more delicate part of the analysis it is useful to continue by stages. As

previously mentioned, state |ψ2〉 translates the evolution of the superpositions, as depicted

by Expression 3.34.

|ψ2〉 = Uf |ψ1〉

= Uf

[(
|0〉+ |1〉√

2

)(
|0〉 − |1〉√

2

)]
(3.34)

= Uf

[
|0〉√

2

(
|0〉 − |1〉√

2

)
+
|1〉√

2

(
|0〉 − |1〉√

2

)]
=

1√
2
Uf

[
|0〉
(
|0〉 − |1〉√

2

)]
+

1√
2
Uf

[
|1〉
(
|0〉 − |1〉√

2

)]
=

1√
2

(−1)f(0)|0〉
(
|0〉 − |1〉√

2

)
+

1√
2

(−1)f(1)|1〉
(
|0〉 − |1〉√

2

)
(3.35)

Expression 3.35 is a direct application of the result presented in Expression 3.33. In order

to advance recall that f(x) outputs a binary value. Accordingly, Expression 3.35 needs to

be evaluated for all possible combinations, as depicted in Expression 3.36.
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1√
2

(−1)f(0)|0〉
(
|0〉 − |1〉√

2

)
+

1√
2

(−1)f(1)|1〉
(
|0〉 − |1〉√

2

)
=

=



1√
2

(−1)0|0〉
(
|0〉−|1〉√

2

)
+ 1√

2
(−1)0|1〉

(
|0〉−|1〉√

2

)
if f(0) = 0, f(1) = 0

1√
2

(−1)0|0〉
(
|0〉−|1〉√

2

)
+ 1√

2
(−1)1|1〉

(
|0〉−|1〉√

2

)
if f(0) = 0, f(1) = 1

1√
2

(−1)1|0〉
(
|0〉−|1〉√

2

)
+ 1√

2
(−1)0|1〉

(
|0〉−|1〉√

2

)
if f(0) = 1, f(1) = 0

1√
2

(−1)1|0〉
(
|0〉−|1〉√

2

)
+ 1√

2
(−1)1|1〉

(
|0〉−|1〉√

2

)
if f(0) = 1, f(1) = 1

(3.36)

=



(
|0〉+|1〉√

2

)(
|0〉−|1〉√

2

)
if f(0) = 0, f(1) = 0(

|0〉−|1〉√
2

)(
|0〉−|1〉√

2

)
if f(0) = 0, f(1) = 1(

−|0〉+|1〉√
2

)(
|0〉−|1〉√

2

)
if f(0) = 1, f(1) = 0(

−|0〉−|1〉√
2

)(
|0〉−|1〉√

2

)
if f(0) = 1, f(1) = 1

(3.37)

Therefore, applying Uf to |ψ1〉 leaves the state in one of two possibilities, as illustrated by

Expression 3.38 [164].

|ψ2〉 =

±
(
|0〉+|1〉√

2

)(
|0〉−|1〉√

2

)
if f(0) = f(1)

±
(
|0〉−|1〉√

2

)(
|0〉−|1〉√

2

)
if f(0) 6= f(1)

(3.38)

Finally, state |ψ3〉 merely reflects the application of the Hadamard transform on the first

qubits, as depicted in Expression 3.39 [164].

|ψ3〉 =

±|0〉
(
|0〉−|1〉√

2

)
if f(0) = f(1)

±|1〉
(
|0〉−|1〉√

2

)
if f(0) 6= f(1)

(3.39)

What extra information does state |ψ3〉 provide? If Expression 3.39 is read carefully it is

possible to see that both possibilities differ only on the value of the first qubit, respectively

either |0〉 or |1〉. Therefore, if a measurement is performed on the first qubit and 0 is obtain

then automatically f(0) = f(1), i.e. the function is said to be constant. Otherwise, if

the measurement of the first qubit is 1 then f(0) 6= f(1), i.e. the function is labeled as

balanced. Both these conclusions can be learned with single quantum evaluation of function

f . Classically, determining if a function is balanced would require two different function

evaluations.
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3.5 Grover’s algorithm

Grover’s algorithm [82] builds a superposition representing the search space and employs a

specifically built oracle alongside an iterative amplitude amplification scheme. The iterate

is responsible for systematically increasing the amplitude of solution states and performing

the adequate unitary amplitude reduction of non-solution states. The algorithm executes

in O(
√
N ) time. This speedup is identical to the one delivered by the approach described

in [190]. Once the search algorithm terminates, the superposition state is measured and a

solution state is obtained, if one exists, with high probability. This type of oracle-based

amplitude amplification schemes was shown to be optimal in [26], i.e. no fewer than O(
√
N )

queries can be performed in order to obtain solution states with high probability.

The quantum search algorithm employs a system state |q〉|a〉 representing, respectively, the

query and answer register. Register |q〉 is configured with query elements belonging to a set

S of size N and is placed in a superposition |ψ〉 =
∑2n−1

x=0
1√
2n
|x〉 where n is the number of

bits required to encode the set of possible values contained in S, i.e. n = dlog2 |S|e. The

states present in the superposition are then marked by an oracle operator. This procedure

alongside setting |a〉 = 1√
2

(|0〉− |1〉) effectively marks with an amplitude flip the goal states.

The algorithm then proceeds by applying operator G = HU0⊥HUf , where Uf , H and U0⊥

are, respectively, the oracle, the Hadamard gate, and an n-qubit phase shift operator. The

latter applies a phase shift of −1 to all states orthogonal to state |0〉. Operator U0⊥ can thus

be written as presented in Expression 3.40. This means that operator HU0⊥H can also be

expressed as depicted in Expression 3.41.

U0⊥ =



1 0 0 · · · 0

0 −1 0 · · · 0

0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1


= 2|0〉〈0| − I (3.40)

HU0⊥H = H(2|0〉〈0| − I)H = 2H|0〉〈0|H† −H ×H = 2|ψ〉〈ψ| − I (3.41)

Both of these expressions are important in order to prove that operator HU0⊥H inverts

about the mean. More precisely, given a superposition state |φ〉 =
∑
x αx|x〉 it is possible

to show that HU0⊥H|φ〉 =
∑
x(2µ − αx)|x〉 where µ = 1

N

∑
x αx is the mean value of the

amplitudes. This demonstration is shown in Expression 3.42.
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HU0⊥H|φ〉 = (2|ψ〉〈ψ| − I)
∑
x

αx|x〉

= 2|ψ〉

(
1√
N

N−1∑
y=0

N−1∑
x=0

αx〈y||x〉

)
−
∑
x

αx|x〉

= 2|ψ〉 1√
N

N−1∑
x=0

αx −
∑
x

αx|x〉

= 2
1√
N

N−1∑
y=0

|y〉 1√
N

N−1∑
x=0

αx −
∑
x

αx|x〉

= 2

N−1∑
y=0

|y〉 1

N

N−1∑
x=0

αx −
∑
x

αx|x〉

= 2

N−1∑
y=0

|y〉µ−
∑
x

αx|x〉

=

N−1∑
x=0

(2µ− αx)|x〉 (3.42)

Expression 3.42 means that each application of G adds roughly 2√
N

to the amplitude of

marked states and slightly decreases the amplitude of the remaining states such that the

overall unit-length norm is still preserved[118]. After performing O(
√
N ) amplifications

the algorithm is capable of evaluating a superposition of N states and deliver, with high

probability, a goal state upon measurement. When multiple solutions k exist the algorithm’s

complexity can be restated as O
(√

N
k

)
. For more details concerning the algorithm please

refer to the original work [82] as well as the texts [164] and [118].

Notice that superposition |ψ〉 is built with a polynomial amount of resources but generates

a superposition with an exponential number of states. It should also be emphasized that

the exponential parallelism that results from evaluating |ψ〉 does not automatically imply

an exponential increase in performance. In [3] the author emphasizes the main reasons

behind such behaviour. Namely, the nature of quantum computation requires that once

the computation is finished a measurement needs to be performed on the superposition

state, which causes a random collapse amongst the exponentially many states. As a result,

one loses all the gains provided by the extreme parallelism. In order to gain a quantum

advantage it is necessary to combine parallelism alongside another feature from quantum

computation, respectively quantum interference. The interference mechanism allows for

some states to cancel each other out. Accordingly, the main difficulty resides in determining
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specific interference patters that allow for solution states to be obtained upon measuring

state |ψ〉.

3.6 Conclusions

Algorithms based on the principles of quantum mechanics have allowed for speedups to be

obtained relatively to their classical counterparts. In the context of space search, Grover’s

algorithm if of particular relevance since it provides a quadratic speedup relatively to classical

brute force approaches.
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Chapter 4

An n-puzzle quantum

production system model

4.1 Introduction

Chapter 3 stated that changes occurring to a quantum state can be described by reversible

circuitry capable of manipulating quantum information. In addition, it also established

how to build basic reversible logic operations and how these could be mapped into unitary

operators. From a computer science perspective it would be coherent and advisable to focus

on developing an initial approach capable of tackling tree search, which is characteristic

of production system behaviour, alongside the specific details surrounding the development

of the corresponding unitary operator. The circuit model presents itself as a more logical

approach to computation than Turing machines. Nevertheless, circuits represent a rigid

behavioural model. Accordingly, in opting for a circuit approach some of the powerful

computational abstractions provided by Turing machines are sacrificed.

In order to develop a quantum production system focus must first be given on how to

perform the tree procedure illustrated in Figure 1.1, alongside the requirement to be able to

“generate” multiple states by applying an action to a parent node. In quantum computation

state evolution is expressed through mathematical operators known as unitary matrices. This

kind of operators corresponds to bijective functions, i.e. one-to-one mappings. One possible

approach is to take into account not only the state but also the set of actions involved

in an N -level depth search. Also, in order to gain a quantum advantage the quantum

superposition principle needs to be employed. Consequently, special care has to be taken in
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order to maximize the probability of obtaining a solution and not just a random projection.

Associated with each quantum state in a superposition exists an amplitude value. The

probability of observing a state reflects the associated amplitude. Amplitude amplification

processes such as the one described by Grover [82] can be employed to increase the probability

of observing a solution state.

All of the above issues will be key features of the quantum production system proposition,

which will be explored in the remainder of this chapter. Section 4.2 will present an in-depth

analysis of the theoretical details surrounding this proposal for problem-specific quantum

production system. The the key ideas of this model will be illustrated using the sliding block

puzzle using the sliding block puzzle. Section 4.3 then describes how the developed model

can be extended in order to accommodate the requirements of other problems. Section 4.4

presents the conclusions of this chapter.

4.2 Sliding block puzzle

The sliding block puzzle is a familiar problem commonly approached in the artificial intelli-

gence community, which conveniently showcases core notions. The next couple of sections are

organised as follows. Section 4.2.1 will start by describing a classical production system for

the sliding block 8-puzzle. Section 4.2.2 will then build on these results and develop a more

quantum-suitable sliding block 3-puzzle. Since the work presented in this chapter intends to

be a simple approach to a problem-specific quantum production the major components of

the system will be presented on a gradual fashion. The general idea of such an approach is to

provide some experience when dealing with reversibility and unitary operator construction.

The knowledge secured in this chapter also serves as initial basis for a more formal definition

of a general-purpose quantum production system.

4.2.1 Sliding block 8-puzzle

Many artificial intelligence applications involve composing a sequence of operations. The

search space generated by an 8-puzzle sliding block puzzle is both complex enough to be

interesting and small enough to be tractable. It also lends itself to solution using a production

system [143]. A sliding block puzzle challenges a player to shift pieces around on a board

without lifting them to establish a certain end-configuration. This non-lifting property makes

finding moves, and the paths opened up by each move important parts of solving sliding block

puzzles [105]. It is also important to mention that both the initial- and end-configuration

might be chosen randomly, as illustrated by Figure 4.1. However, the end-configuration
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4.2. Sliding block puzzle

typically reflects some sort of logical arrangement, as exemplified in Figure 4.1b. The final

logical arrangement is specific to individual problem instances of sliding block puzzles. The

set of possible elements for the 8-puzzle, S8−puzzle, is presented in Expression 4.1.

S8−puzzle = {One, Two, Three, Four, F ive, Six, Seven,Eight,Blank} (4.1)

4

7

2

5 8

3

6

1

1 2 3

1

2

3

(a) Initial board configuration

4

7

2

5

8

3

6

1

1 2 3

1

2

3

(b) End board configuration

Figure 4.1: A sliding block puzzle example with a board of dimension 3× 3.

Typically, each sliding block puzzle has a blank cell, which can be perceived to move on a

set of possible directions. This way generality is gained by thinking of “moving the blank

cell” rather than moving a numbered tile. In the case of the sliding block puzzle exemplified

in Figure 4.1 only diagonal movements are not allowed. Accordingly, the set of possible

movements for the blank cell consists of actions Up, Down, Right and Left, as illustrated by

Expression 4.2. A solution to the problem space is an appropriate sequence of moves, such

as “‘move blank cell up, move blank cell left, ..., etc‘””. Clearly, not all possible actions are

applicable to all positions within the board. In fact, only position (2, 2) is able to execute

the full range of motions. If the blank cell is in any of the remaining positions of the board

then only 2 to 3 moves can be executed.

Possible Actions = {Up,Down,Left,Right} (4.2)

It is important to focus on a few points regarding the complexity of solving sliding block

puzzles. More precisely, is there any way of determining if an end-configuration is obtainable

from an initial configuration? If so, what is the minimum set of movements for achieving the

desired state? Apparently, short of trial and error, it is impossible to present an answer to

these questions [76]. This apparent inability to solve efficiently sliding block puzzles stems

from computational complexity theory. Sliding-block puzzles have been shown to belong to
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a class of problems known as PSPACE-complete [96] [95]. PSPACE consists of all decision

problems that can be solved by employing a polynomial amount of space.

As previously stated, in order to solve a problem using a production system a set of items

must be specified, namely a working memory, the productions set and the control strategy.

Suppose that a working memory is configured with the board configuration depicted in Figure

4.1a and the state illustrated in Figure 4.1b is target board configuration. It is possible to

define an illustrating set of production rules as presented in Table 4.1. The only remaining

issue is due to the control strategy employed, which might be defined as [143]

1. Try each production in order;

2. Do not allow loops;

3. Stop when goal state is reached.

Condition Action
goal state in working memory → halt
blank is not on the top edge → move the blank up

blank is not on the right edge → move the blank right
blank is not on the bottom edge → move the blank down

blank is not on the left edge → move the blank left

Table 4.1: Production rules set for the 8-puzzle. (Source: [143] )

4.2.2 Sliding block 3-puzzle

The development of the quantum production system will concentrate on a board with di-

mension 2 × 2, i.e. a 3-puzzle, merely for explanatory reasons. However, as will later be

demonstrate, the model can be easily extended in order to accommodate any N -puzzle, with

N ≥ 3.

2 3

1

1 2

1

2

(a) Initial board configu-
ration

2

3

1

1 2

1

2

(b) Target board configu-
ration

Figure 4.2: A 3-puzzle example.

Figure 4.2 depicts a 2×2 sliding block puzzle with an initial board configuration (Figure 4.2a)
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and a target configuration (Figure 4.2b). The set of possible movements for the blank element

remains the same as in the case of the 8-puzzle, respectively illustrated in Expression 4.2.

However, for the 3-puzzle, at any given position only two movements are deemed possible

to be executed. Since the blank cell always occupies a corner position, its movement can

be perceived as performing a clockwise or counter-clockwise movement. This kind of binary

movement is illustrated in Figure 4.3. The set of possible elements for the 3-puzzle, S3−puzzle,

is presented in Expression 4.3.

S3−puzzle = {One, Two, Three,Blank} (4.3)

2

31

(a) Counter-clockwise
movement

2 3

1

(b) Clockwise movement

Figure 4.3: Movement example for the blank cell given the board configuration depicted
in Figure 4.2a.

The various components and overall behaviour of the approach will be presented in Sec-

tion 4.2.2. Section 4.2.2 establishes the parallels between production systems and hierar-

chical search mechanisms. Section 4.2.2 discusses the quantum superposition principle in

the context of the production system. The reversible circuit conversion is presented in Sec-

tion 4.2.2.

Building the reversible circuit for the 3-puzzle

Since the overall purpose is to develop a reversible circuit representing the production system

for the 3-puzzle, a proper binary representation for the board configuration is required.

Each possible board configuration incorporates four elements, i.e. |S3−puzzle| = 4. Logic

dictates that a total of log2 |S3−puzzle| = 2 bits are required in order to represent each

element of S3−puzzle.
1 Let Table 4.2 depict the bit encoding for each possible element.

1Another possible strategy would consist in encoding each of the |S3−puzzle|! = 4! = 24 possible board
configurations. This strategy would require dlog2 24e = 5 bits, allowing for three bits to be saved. However,
such an encoding mechanism would also translate into a lack of clarity in what refers to determining, which
element is at each position of the board. In this case an option was made favouring clarity instead of the
aforementioned encoding.
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Board configurations can now be perceived as a binary string of length 8 containing the

encodings for each position of the board. This process is illustrated in Table 4.3. The binary

representation for board configurations will be crucial to the development of the reversible

circuit.

b1 b2 Element
0 0 Blank
0 1 One
1 0 Two
1 1 Three

Table 4.2: Binary encoding for elements of a 3-puzzle

Board Position (1, 1) (1, 2) (2, 1) (2, 2)
Bits b1 b2 b3 b4 b5 b6 b7 b8

Initial Board Configuration 1 0 1 1 0 1 0 0
Target Board Configuration 0 1 1 0 1 1 0 0

Table 4.3: Binary strings depicting the board configurations presented in Figure 4.2a and
Figure 4.2b.

In order to proceed with the analysis a few design concepts must be taken into account.

Conceptually, in order to develop a production system capable of tackling a sliding block

puzzle the following abilities are required:

Requirement 1 Determine if a given board configuration is a target board configuration.

Requirement 2 Given a board configuration and a production rule determine the new

board configuration generated by applying the production;

When dealing with reversible computation, it is helpful to first envisage the desired opera-

tional behaviour in terms of a classical gate. In doing so, useful insight is gained into the

inputs and outputs of the reversible operator.

Focusing on the first requirement involves developing a gate capable of receiving as an argu-

ment a binary string depicting the state of the board to be tested. In classical computation,

a single bit would be used for output, having value 1 if the board presented was the tar-

get board configuration and 0 otherwise. This computational process can be represented as

function f illustrated in Expression 4.4.

f(b1, b2, b3, b4, b5, b6, b7, b8︸ ︷︷ ︸
board configuration

) =

{
1 if target board configuration

0 otherwise.
(4.4)

Expression 2.15 requires that the inputs should also be part of the output, i.e. the board

configuration should also be part of the outputs. The only issue is due to the result bit,
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which requires that a single control bit be provided as an input. Accordingly, the reversible

gate will have a total of 9 input and output bits, 8 of which are required for representing the

board and 1 bit serving as control. This gate, labeled as the target board unitary operator,

is illustrated in Figure 4.4 2. Table 4.4 showcases the gate’s behaviour for a few board

configurations, where f(b) denotes f(b1, b2, b3, b4, b5, b6, b7, b8).

It is important to point out the fact that when the gate determines that a board is a target

board configuration it effectively switches the control bit, as highlighted in Table 4.4. This

is expected behaviour in reversible computation and a key part of some quantum algorithms

such as the well known Shor’s factorization algorithm [191] and Grover’s search [82].

Target Board
Unitary Operator

Description: Given board 

configuration [b1, ..., b7] verify 

if it is the target board 

configuration

b1

b2

b3

b4

b5

b6

b7

b8

c c

b1

b2

b3

b4

b5

b6

b7

b8

f( b1, b2, b3, b4, b5, b6, b7, b8 )f( b1, b2, b3, b4, b5, b6, b7, b8 )

Figure 4.4: The target board unitary operator.

Inputs Outputs
b1 b2 b3 b4 b5 b6 b7 b8 c b1 b2 b3 b4 b5 b6 b7 b8 c ⊕ f(b)

0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0

0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1

0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0

0 0 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1
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0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 1

0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 0
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1 1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 0

1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1

Table 4.4: A selected number of results from the truth table of the target board unitary
operator.

From a mathematical point of view, how can the inner-workings of the reversible circuit

illustrated in Figure 4.4 be expressed? The construction of simple unitary operators was

described in Chapter 2. Accordingly, the set of column permutations needs to be specified.

Let T denote the unitary operator responsible for implementing the behaviour of function

2This gate could be extended in order to receive as an input the desired target board configuration. This
addition would be carried out at a cost of 8 additional input and output bits. However, since the main goal
is design simplicity, the target board configuration will be “hard coded” into the gate. In doing so, generality
is lost but a simpler design is gained.
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f . T is a matrix with dimensions 29 × 29. From Table 4.4 it should be clear that only

two input states map onto other states rather than themselves. Namely, T |216〉 → |217〉
and T |217〉 → |216〉. Accordingly, the 217th column of T should permute to |217〉, and the

218th column map to state |216〉. All other remaining states would continue to map onto

themselves.

Focusing on the second requirement implies that the new gate should also output a new board

configuration, i.e. the result. Also, in the context of a production system the move blank

cell unitary operator should only be applied if and only if the inputted board configuration

is not a target board configuration. Otherwise, the production system would systematically

discard any potential solutions found. This process can be performed by including a reference

to function f in the new function g’s definition.

The only issue is due to how to output the new board configuration in a reversible man-

ner. As was previously discussed in Chapter 2 given an irreversible function f , a reversible

mapping can be constructed with the form illustrated in Expression 2.15, which illustrated

how this process could be performed for a single result bit. In this specific case 8 result

bits are required for representing the new board configuration. Developing a reversible ver-

sion of the gate requires the addition of 8 control bits, that should be included as input.

Expression 2.15 can be easily extended in order to accommodate any number of control

bits, as illustrated by Expression 4.5 where x is an input register, ci are control bits, and

f(x) = (y1, y2, · · · , yn).

(x, c1, c2, · · · , cn) 7→ (x, c1 ⊕ y1, c2 ⊕ y2, · · · , cn ⊕ yn) (4.5)

With Expression 4.5 in mind it is now possible to define a function g responsible for producing

the new board configuration. Function g should receive as inputs the current board config-

uration and a bit m indicating whether the blank cell should perform a clockwise (m = 1)

or counter-clockwise movement (m = 0). By systematically checking for the position of

the blank cell and with the movement described in bit m it is possible to generate the new

board.

Let g : {0, 1}9 → {0, 1}8 with g(b,m) = (y1, y2, y3, y4, y5, y6, y7, y8), where b denotes a

valid board configuration3 (b1, b2, b3, b4, b5, b6, b7, b8), and m the type of movement. The

computational behaviour of g is presented in Expression 4.6.

3A valid board configuration means that a board configuration must be an unordered collection of size
four composed of distinct elements taken from Table 4.2.
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4.2. Sliding block puzzle

g(b,m) =



(b5, b6, b3, b4, b1, b2, b7, b8) if f(b) = 0 and b1 = b2 = 0 and m = 0

(b3, b4, b1, b2, b5, b6, b7, b8) if f(b) = 0 and b1 = b2 = 0 and m = 1

(b3, b4, b1, b2, b5, b6, b7, b8) if f(b) = 0 and b3 = b4 = 0 and m = 0

(b1, b2, b7, b8, b5, b6, b3, b4) if f(b) = 0 and b3 = b4 = 0 and m = 1

(b1, b2, b3, b4, b7, b8, b5, b6) if f(b) = 0 and b5 = b6 = 0 and m = 0

(b5, b6, b3, b4, b1, b2, b7, b8) if f(b) = 0 and b5 = b6 = 0 and m = 1

(b1, b2, b7, b8, b5, b6, b3, b4) if f(b) = 0 and b7 = b8 = 0 and m = 0

(b1, b2, b3, b4, b7, b8, b5, b6) if f(b) = 0 and b7 = b8 = 0 and m = 1

(b1, b2, b3, b4, b5, b6, b7, b8) otherwise

(4.6)

With function g defined it becomes relatively simple to develop the corresponding reversible

gate. As before, special attention needs to be devoted in order to endow the gate with

reversibility. Accordingly, the unitary operator has to incorporate the following characteris-

tics:

• 8 input and output bits for the current board configuration;

• 1 input and output bit for describing the type of movement;

• 8 control and result bits in order to account for the new board configuration.

The reversible gate, respectively labelled as the move blank cell unitary operator M , is

illustrated in Figure 4.5. M is a matrix of dimension 28+1+8× 28+1+8, which can be built in

a similar way to T , i.e. from the corresponding truth table determine the mappings between

states. These mappings can then be translated as columns permutations.

Move Blank Cell
Unitary Operator

Description: Given board 

configuration [b1, ..., b8] and a 

single movement bit m output 

the board configuration 

resulting from applying m to 

[b1, ..., b8].
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Figure 4.5: The move blank cell unitary operator.
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Chapter 4. An n-puzzle quantum production system model

With both the target board and the move blank cell gates designed it is now possible to

continue with the development of the reversible production system. Recall that a production

system has the following elements: working memory, set of production rules and a control

strategy. The auxiliary bits employed by each of the previously defined gates can be perceived

as the working memory of the system. Function f and g can be seen as enforcing the policies

of a control and act cycle specific to the problem at hand. For now the set of production

rules will be deliberately missing. Instead, focus will be given on certain features of the

working memory and control strategy.

Generally speaking, for the production system to work it is fundamental to have the ability

to verify if a target board configuration has been reached after applying a production rule.

The move blank cell operator M already incorporates in its design a test for determining

if the gate should be applied or not. Accordingly, it is only required to verify if the final

board configuration corresponds to a target board configuration. This process is illustrated

in Figure 4.6 4 where res has the value presented in Expression 4.7.

res = c9 ⊕ f(c1 ⊕ y1, c2 ⊕ y2, c3 ⊕ y3, c4 ⊕ y4, c5 ⊕ y5, c6 ⊕ y6, c7 ⊕ y7, c8 ⊕ y8) (4.7)

Notice that the concept of working memory is contemplated through the initial board con-

figuration bits b1, b2, b3, b4, b5, b6, b7, b8 and the result bits c1⊕y1, c2⊕y2, c3⊕y3, c4⊕y4, c5⊕
y5, c6 ⊕ y6, c7 ⊕ y7, c8 ⊕ y8. Also, the circuit design translates the control strategy (although

a very primitive one), i.e. if it is possible move the blank cell and test if the new board is a

target board. It is worthy to draw attention to the fact that Figure 4.6 illustrates the appli-

cation of a single movement operator M alongside a target board operator T . Algebraically,

this operation can be expressed as presented in Expression 4.8, where I⊗9 = I ⊗ I ⊗ · · · ⊗ I
repeated 9 times, since operator T should only take into consideration bits c1, c2, · · · , c9. The

unitary operator presented in Expression 4.8 would act on Hilbert space H = Hb⊗Hm⊗Hc,

where Hb is the Hilbert space spanned by the basis states employed to encode the board

configuration bits b = b1, b2, · · · , b8, Hm is the Hilbert space spanned by the basis states

employed to represent the set of productions, and Hc is the Hilbert space spanned by the

auxiliary control bits.

(I⊗9 ⊗ T )M |b1, b2, · · · , b8,m, c1, c2, · · · , c8, c9〉 (4.8)

The above strategy can be extended in order to apply any number of movement operators,

4Alternatively, one could try to first employ the target board unitary operator and then redirect the
output containing the result to a modified move blank cell gate. The modified version of the movement gate
would employ that outcome in order to determine if the input board was in a target configuration or not.
However, this would result in an unnecessary level of complexity to be added to the solution.
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4.2. Sliding block puzzle

where the output of a movement gate is provided as input to another movement operator.

In doing so, a guarantee is added that, if possible, another production rule is applied to the

initial board configuration. This process is illustrated in Figure 4.7 where two movement

gates, i.e. productions, are applied to an initial board configuration b1, b2, b3, b4, b5, b6, b7, b8.

Accordingly, two movement bits are required, namely m1 and m2. The former is fed as input

to a first movement gate M1, whilst the latter is provided as input to a second movement gate

M2. Consequently, res has the value presented in Expression 4.9. Applying M2 requires that

its application be “shifted” by a total of 9 positions, whilst operator T should be applied after

input bit 18. The circuit behaviour can be described as presented in Expression 4.10.

res = c17⊕f(c9⊕y9, c10⊕y10, c11⊕y11, c12⊕y12, c13⊕y13, c14⊕y14, c15⊕y15, c16⊕y16) (4.9)
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Unitary Operator
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RES

Figure 4.6: A reversible circuit incorporating the application of a single production rule
for the 3-puzzle and a test condition in order to determine if the final board is a target
configuration board.

(I⊗18 ⊗ T )(I⊗9 ⊗M)M |b1, b2, · · · , b8,m1, c1, · · · , c8,m2, c9, · · · , c16, c17〉 (4.10)

How can this result be expanded in order to accommodate any n-puzzle? Let E be the

set of possible elements for an n-puzzle, then the number of bits required to encode each

element is e = dlog2 |E|e. This implies that the number of bits required to encode a board

configuration is b = |E|e. Additionallly, let P be the set of possible productions for the

same n-puzzle. Accordingly, p = dlog2 |P |e bits will be required for each production. Each
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Figure 4.7: A reversible circuit illustrating the application of two move blank cell operators
for the 3-puzzle and a target board gate in order to determine if the final board is a target
configuration board.

movement operator M will require a total of b + p + b = 2b + p input and output bits,

and each target operator T will require a total of b + 1 input and output bits. How many

bits will be required by the circuit? Suppose the M operators need to be applied a total of

m times. The first operator M1 requires 2b + p bits. Since a part of M1 outputs will be

provided as input to M2 an additional b+p bits will be added to the circuit. This means that

2b+ p+ (m− 1)(b+ p) bits of the circuit are required just to move the blank element. Since

operator T requires a single control bit this implies that the overall circuit employs a total of

n = 2b+p+(m−1)(b+p)+1 bits. Of these n bits c = n−(b+mp) = mb+1 bits are control, or

auxiliary, bits. These control bits can be perceived as the working memory of the production

system. Furthermore, the sequence of bit indexes after which a movement operator M should

be applied is V = {0, b+ p, 2(b+ p), 3(b+ p), · · · , (m− 1)(b+ p)}. Based on these statements

it is possible to describe a general formulation for an n-puzzle circuit C employing adequate

M and T operators. This process is presented in Expression 4.11. Unitary operator C

would act on an input register |x〉 encompassing the initial board configuration, the set of

productions and also the auxiliary control bits. Accordingly, operator C would act upon a

Hilbert space H spanned by the computational basis states required to encode x. Also, the

number of movement operators T grows linearly with the depth of the search, which is a key

component of the input register.
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4.2. Sliding block puzzle

C = (I⊗m(b+p) ⊗ T )
∏
k∈V

(
I⊗k ⊗M

)
(4.11)

3-Puzzle search approach

It is rare for an artificial intelligence application to have the ability to choose the best produc-

tion rule out of the set of available productions. This is to due to a lack of information that is

inherent to most control strategies [165]. In the case of the 3-puzzle the situation is even more

delicate since at any given time both kinds of movements, clockwise and counter-clockwise,

are possible. Consequently, it is not uncommon for control strategies to perform a systematic

combination of available productions, until a sequence yielding a goal configuration of the

working memory is discovered.

This process is remarkably familiar with classical hierarchical search strategies such as tree

search. Tree search is utilized whenever decisions must be made that are based on complex

knowledge, which cannot be implemented directly on a machine. The simplest, and by some

measures, the most successful, applications have as their basis a “brute-force” search, in

which an exhaustive examination of all possible sequences of actions are performed until

goal states are reached [69]. The reversible circuit presented in Figure 4.6 applies a single

movement gate and can thus be perceived as performing a depth-limited search of a single

level. On the other hand, the two movement gates belonging to the circuit presented in

Figure 4.7 enable it to perform a search of depth 2.

Quantum superpositions

In order to proceed with the analysis take into account the circuit presented in Figure 4.6.

Conceptually, it is possible to differentiate between three inputs, respectively:

• the board configuration bits, b1, b2, · · · , b8, refered to as an 8-bit register |b〉.

• the movement bit m, which is basically a one bit register |m〉;

• the control bits, c1, c2, · · · , c17, refered to as a 17-bit register |c〉.

Let Ug refer to the unitary operator characterizing the reversible circuit presented in Figure

4.6. The behaviour of Ug can be described as illustrated by Expression 4.12.

Ug : |b〉|m〉|c〉 7→ |b〉|m〉|c1⊕y1, c2⊕y2, c3⊕y3, c4⊕y4, c5⊕y5, c6⊕y6, c7⊕y7, c8⊕y8, res〉 (4.12)
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Chapter 4. An n-puzzle quantum production system model

Input register |b〉|m〉|c〉 can then be initialized to a specified value and by applying Ug it

becomes possible to obtain the respective result. However, at first sight, the added overhead

required for reversible computation of never destructing information does not seem to pro-

vide an improvement over a classical computation. Gaining a quantum advantage through

Grover’s algorithm requires: (1) building a uniform superposition state spanning a multitude

of possible configurations and (2) applying an amplitude amplification process. With the

assistance of a Hadamard gate, whose behaviour is presented in Expression 4.13, it is possible

to build a uniform superposition of 2n states, where n is the number of bits, represented by

|ψ〉.

H⊗n|0〉 = |ψ〉 =
1√
2n︸ ︷︷ ︸

amplitude

2n−1∑
x=0

|x〉 (4.13)

State |ψ〉 will be used in conjunction with unitary operator Ug in order to evaluate a super-

position containing all possible board configurations and productions. The control bits do

not need to be placed in a superposition since they are only employed in order to assist the

overall process. Accordingly, the control bit register is initialized to |0〉⊗c, where c is the

number of control bits. Let |ψb〉 denote the superposition for the board configurations, |ψm〉
the superposition of the productions and |ψ〉 denote the combined superposition, which has

the form presented in Expression 4.14.

|ψ〉 = |ψb〉|ψm〉|0〉⊗c

=
1√
28

28−1∑
x=0

|x〉 1√
21

21−1∑
x=0

|x〉|0〉⊗c

=
1√
29

29−1∑
x=0

|x〉|0〉⊗c (4.14)

Where each |x〉 should be interpreted as a state of the combined input register |b〉|m〉. It is

now possible to apply unitary operator Ug to the superposition register. In practice this pro-

cess means that all values present in the superposition register are processed simultaneously.

This operation is illustrated in Expression 4.15.

Ug|ψ〉 =
1√
29

29−1∑
x=0

Ug|x〉|0〉⊗c (4.15)
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However, due to the effects of a process known as quantum decoherence only one of the

states conveying the answer can be obtained. This collapse from a multitude of states into a

single one takes into account the probabilities associated with each state [99]. Accordingly,

states with a higher probability are more likely to be obtained, whilst states with smaller

probabilities are less likely to be obtained. This does not imply that only those states with

higher probabilities will be obtained.

Oracle development

Ideally, in order to take advantage of Grover’s algorithm the reversible circuit being developed

up until this moment should mimic the behaviour illustrated in Expression 3.27 as opposed

to the one presented in Expression 4.12. In order to carry on with such a mapping it is

important to make a simple observation, namely that Expression 3.27 effectively means that

all the inputs, excluding bit c, should also be part of the outputs.

Accordingly, the circuits presented in Figure 4.6 and Figure 4.7 should somehow undo their

computation. As previously stated in Section 4.2.2, this operation can be performed by

building a “mirror“ circuit, where each component is the inverse operation of original cir-

cuit. Then, with both circuits developed, it is just a matter of establishing the appropriate

connections, i.e. the outputs of the original circuit are provided as inputs to the mirror. The

application of these operations to the reversible circuit presented in Figure 4.6 is illustrated in

Figure 4.8 whose unitary operator computes Ug : |b〉|m〉|c〉 7→ |b〉|m〉|c〉. Logically, the overall

operation results in the original state being obtained. Equivalently, it is possible to state

this result in terms of the unitary operator C of Expression 4.11 as C−1C|x〉 = |x〉.
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Figure 4.8: A reversible circuit showcasing the application of a single movement gate for
the 3-puzzle, and then undoing the previously performed computations.

Consequently, an additional form of control has to be incorporated into the circuit design

in order for the circuit’s overall computation to be saved, respectively, the res value of
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Expression 4.9. This operation can be performed with the introduction of another control

bit alongside a controlled-NOT gate, denoted CNOT, which is a famous gate in quantum

computation. The gate acts on two bits, labelled the control bit and the target bit. The

control bit is always unaffected by the CNOT gate. The target bit is switched, i.e. applied

the NOT operation, if the control bit is set to 1. Otherwise, if the control bit has value 0,

the gate does nothing. The truth table for the CNOT gate is presented in Table 4.5.

Inputs Outputs
c t c c⊕ t
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Table 4.5: Truth table for the CNOT gate.

The introduction of the CNOT gate allows the result to be saved in a reversible manner,

which, as previously mentioned, is pre-requisite for describing operations in quantum compu-

tation. The combination of the reversible circuit presented in Figure 4.8 alongside the CNOT

gate is shown in Figure 4.9. The circuits overall computation is presented in Expression 4.16

where res has the value shown in Expression 4.7. Let the input register |b〉|m〉|c〉 be referred

to as |x〉 then Expression 4.16 is equivalent to Expression 3.27.
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Figure 4.9: A reversible circuit showcasing the application of a single movement gate for
the 3-puzzle whilst incorporating the principles of an oracle.

Ug : |b〉|m〉|c〉︸ ︷︷ ︸
input

|c10〉︸︷︷︸
oracle’s control bit

7→ |b〉|m〉|c〉|c10 ⊕ res〉 (4.16)

Alternatively, it is possible to state this result in more general terms by employing unitary

operator C, presented in Expression 4.11, as showcased by Expression 4.17.
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O = C−1(I⊗2b+p+(m−1)(b+p)CNOT )C|b〉|m〉|c〉|cmb+2〉 (4.17)

In both cases the Hilbert space H of the input register is augmented with the basis states re-

quired to encode the additional auxiliary control bit, accordinglyH = Hb⊗Hm⊗Hc⊗Hcmb+2
.

The reversible circuit presented in Figure 4.9 alongside Grover’s algorithm provide a quan-

tum mechanism for performing a hierarchical search of depth level 1, i.e. for a given board

configuration b and the set of all possible movements, verify if a target board configuration

is reached by applying the respective production. This behaviour is equivalent in function

to that of a classical production system.

4.3 Additional Reflections

The previously presented approach towards quantum hierarchical search focused on the theo-

retical details surrounding the 3-Puzzle. The reversible circuit proposed can be decomposed

into two types of components: an operator responsible for recognizing which production

should be applied to the working memory alongside with an operator capable of detecting

target states. At each depth level of the search a new production operator is applied. Ac-

cordingly, the circuits overall width, i.e. the number of bits, will be mostly imposed by

the production applying operator. Once all possible productions have been applied a test

operator is applied in order to determine if a target state was reached. The specific details

of both operators incorporate concepts such as a set of productions, a control-act strategy

and a working memory.

The binary string employed encoded, excluding the control bits, the original board config-

uration alongside the set of productions to be applied. Afterwards, the reversible circuit

was extended in order to perform a search of depth level N . The developed circuit used

as an input argument a binary string with the form presented in Expression 4.18, where

m1m2 · · ·mN can be viewed as individual 1-bit registers.

b1b2b3b4b5b6b7b8︸ ︷︷ ︸
board configuration

m1m2 · · ·mN︸ ︷︷ ︸
productions

(4.18)

Recall that from a tree search perspective this process can be viewed as a depth-limited

search where at each possible node two actions, i.e. productions, can be applied. Accord-

ingly, an initial state is used as input, also known as the root, and for each action another

node is reached, as illustrated in Figure 1.1. Each action can thus be viewed as leading to a
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Chapter 4. An n-puzzle quantum production system model

different subtree of the tree until a leaf node is reached. If after applying Grover’s iterate the

measurement outcome returns a solution, the state obtained represents a board configuration

alongside the respective set of productions, i.e. path, yielding a target configuration. Clas-

sical search strategies require O(bd) time, where b is the branching factor and d the depth

of a solution. A hierarchical search mapping to quantum computation employing Grover’s

algorithms allows this time to be reduced to O(
√
bd ), effectively cutting the depth factor in

half.

This model can also be extended in order to accommodate non-binary trees. Suppose for

a given problem instance, e.g. 16-puzzle, it is always possible to build a reversible circuit

in oracle form capable of determining if a target configuration is reached after applying

N productions. Assuming a constant branching factor b then dlog2be bits are required.

This means that an input register containing m1m2 · · ·mN productions can be fed into an

adequate reversible circuit and the corresponding unitary operator.

However, one delicate question remains: how many productions should be applied?, i.e. how

deep should the search procedure go? It is not hard to see that this is a complex issue, which

requires taking into account a series of factors. e.g. an initial configuration might yield a

solution after applying one production, whilst others may require more. Theoretically, one

can argue that it is possible to determine an upper bound (however large) after which all

possible combinations have been exhausted. The reversible search circuit presented in Sec-

tion 4.2 effectively stops applying productions as soon as a solution is found. Accordingly,

the circuit could be extended in order to accommodate the upper-bound value. Yet, this is

neither feasible nor practical, since the circuit would perform too many unnecessary compu-

tational steps. One should also mention the fact that it is possible to tweak the circuit in

order to perform more useful computation according to specific needs. The reversible circuit

presented receives a board configuration alongside a set of productions as input and tests if

a target state is reached, namely it might be interesting to develop a gate that only receives

a set of productions as input and has the initial desired board configuration is “hard coded”

into the operational behaviour of the circuit.

4.4 Conclusions

In this chapter a possible model for a quantum production system for the n-puzzle was

presented. The proposed model can be viewed as an hybrid between a pure quantum search

mechanism, such as the one detailed in Grover’s algorithm, and a classical production system.

By combining the concepts of these elements it is possible to search through the possible

combinations of an n-puzzle quadratically faster than its classical counterparts. Also, this
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proposition placed a strong emphasis on determining the set of productions leading up to a

target node.
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Chapter 5

Model Performance Analysis

5.1 Introduction

Chapter 4 described an initial approach towards a problem-specific production system. In

this chapter an analysis is presented on how the concepts discussed for a Grover-based

production system are influenced by traditional search concepts. The concepts supporting

production system theory will be formalized from a quantum perspective through Grover’s

algorithm in Chapter 6.

For instance, what are the ramifications of a variable such as the branching factor? Would

the system require the use of a constant branching factor? Clearly, this is not always the

case for the complete set of problems that can potentially be addressed by search algorithms.

When considering a non-constant branching factor, what would be the associated impacts

in overall system performance? Additionally, traditional search strategies typically employ

some kind of information to determine which states are more promising than others when

trying to reach a goal state. Can a heuristic bounded procedure be incorporated into such

an approach? If so, is there any significant advantage to be gained?

These and other questions will be addressed in the remaining sections of this chapter, namely:

Section 5.2 focuses on assessing how such a system would perform from a branching factor

perspective; Section 5.3 analyses the impacts of incorporating heuristic concepts into the

quantum tree search method; Section 5.4 presents and discusses the parallels, alongside the

differences, between the proposal for a quantum production system and another well-known

kind of graph inspection tool, respectively the quantum random walk; Section 5.5 presents

the conclusions of this chapter.
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5.2 Branching factor ramifications

In theoretical computer science one possible way to measure a problem’s complexity consists

in assessing how long a given algorithm takes to find a solution. However, time performance

is dependent on a multitude of hardware related factors. Accordingly, it is often more

suitable to take appropriate steps to determine the total number of items that are to be

evaluated. In the case of a classical tree search this equates to the number of nodes to take

into account. From a classical tree search perspective complexity is expressed in terms of

b, the branching factor or maximum number of successors of any node; d, the depth of the

shallowest goal node; m, the maximum length of any path in the state space [183]. Section

5.2.1 focuses on the aspects surrounding a constant branching factor. The requirements

for a non-constant branching factor are presented in Section 5.2.2. The impact of using a

non-constant branching factor is presented in Section 5.2.3.

5.2.1 Constant branching factor

As previously stated, the proposal for quantum tree search system only relied on a constant

branching factor b. This was mostly due to simplification reasons. However, a constant

branching factor requirement is not feasible when considering potential applications of search

algorithms. Since, at its essence, this system can be perceived as evaluating a superposition

of all possible paths up to a depth level d, it is pivotal to determine the impact of a non-

constant branching factor in this approach. Before proceeding, it is important to examine a

couple of examples in order to have a clear understanding of the search process.

Figure 1.1 illustrates a search tree where at any given node it is always possible to apply

two actions, which will be respectively refer to as a0 and a1. These actions can be encoded

in a binary fashion. In order to do so, it is necessary to determine how many bits n are

required. For an even number of actions calculating the base-2 logarithm suffices. However,

an odd number of actions might be required. In this case the base-2 logarithm needs to

be map into the next largest integer, which can be done through the ceiling function, i.e.

n = dlog2|A|e bits, where |A| denotes the cardinality of the action set. The complete range

of values allowed with n bits might not be used, i.e. |A| < 2n. It is the unitary operator’s

responsibility to validate whether a binary string is an admissible action. In the case of the

search tree illustrated in Figure 1.1 which possesses a branching factor b = 2 actions only

a single bit is required. Accordingly, let value 0 denote a0 and value 1 represent a1. The

binary strings encoding the paths leading to each leaf nodes of the search tree illustrated in

Figure 1.1 are presented in Table 5.1.
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Path to node 1st Action 2nd Action 3rd Action

H 0 0 0
I 0 0 1
J 0 1 0
K 0 1 1
L 1 0 0
M 1 0 1
N 1 1 0
O 1 1 1

Table 5.1: Binary encoding for each possible path of the search tree illustrated in Figure 1.1

Suppose that a search up to depth level d is to be performed. Then it is possible to: (1)

build a string of d elements, one for each possible depth, with each element requiring a

binary representation using n bits. In total, the binary string will employ n × d bits; and

(2) construct a quantum superposition |ψ〉 encompassing all the actions to be applied up to

depth level d as illustrated by Expression 5.1. This superposition |ψ〉 can then be employed

alongside an oracle operator and Grover’s algorithm.

|ψ〉 =
1√

2n×d

2n×d−1∑
x=0

|x〉 (5.1)

5.2.2 Non-constant branching factor

Suppose that the tree presented in Figure 5.1 with an action set A = {a0, a1, a2, a3, a4} is

being evaluated.

First, there no longer exists a constant branching factor at each node. In fact for this

particular case it is convenient to distinguish between two types of branching factor, namely,

the theoretical maximum branching factor bmax = |A| = 5, and the average branching factor

of each node bavg = 2, not including the leafs. In order to encode each of the possible actions

n = dlog2 |A|e = 3 bits are required. Let the encodings of each action be those presented in

Table 5.2. The binary strings leading to each leaf node are illustrated in Table 5.3.

In order to employ Grover’s algorithm the quantum superposition state |ψ′〉 would need to

be similar to that presented in Expression 5.1. Again, state |ψ〉 would consist of those states

with d elements, each of which with n bits. However, there is a crucial difference between

both tree searches. Take into account the case illustrated in Figure 5.1 where a search to

depth level d = 3 alongside bmax = 5 is performed. Superposition |ψ′〉 would contain all the

quantum states belonging to the range [0, 2d×n − 1] = [0, 29 − 1] = [0, 511], i.e. a total 512
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A
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G H I J
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Figure 5.1: A search tree with a maximum branching factor bmax = 5 and an average
branching factor bavg = 2+1+2+2+1+4

6 = 2.

action b0 b1 b2
a0 0 0 0
a1 0 0 1
a2 0 1 0
a3 0 1 1
a4 1 0 0

undefined 1 0 1
undefined 1 1 0
undefined 1 1 1

Table 5.2: Binary encoding for each possible path of the search tree illustrated in Figure 5.1

possible paths would be able to be encoded when in reality only those states presented in

Table 5.3 would need to be encoded1. In reality, the vast majority of the states present in

the superposition would contain inadmissible configurations of actions.

It is important to draw attention to the fact that Grover’s algorithm provides a quadratic

speedup O(
√
N ) where N is the number of elements present in the superposition. By

employing n = dlog2 bmaxe bits, when in practice n = dlog2 bavge bits might have sufficed,

the search space is being unnecessarily extended thus resulting in a loss of some of the

speedup provided by Grover’s algorithm. Naturally, the question arises: Considering the

above encoding mechanism, and a bavg < bmax when does the quantum production system

applied to tree search stop providing a speedup over classical approaches?

1An alternative approach would consist in encoding each possible state, instead of encoding in an binary
fashion the sequence of actions. However, this would have a meaningful impact on the complexity and design
of unitary operator U since each admissible input string would have to be mapped onto a predefined sequence
of actions.
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Path to node 1st Action 2nd Action 3rd Action

G 000 000 000
H 000 000 001
I 001 010 011
J 001 100 000
K 001 100 001
L 001 100 010
M 001 100 100

Table 5.3: Binary encoding for each possible path of the search tree illustrated in Figure 5.1

5.2.3 Analysis

How should one proceed in order to analyze the problem depicted in the previous section?

As with so many other fields it is usually easier to start out with an example and extrapolate

from that. Accordingly, envisage the following scenario: a tree search is to be performed

using the quantum search system up to depth level 10; the maximum branching factor,

bmax, is 5, however on average only three actions can be performed, i.e. bavg = 3. Does this

approach still provides an advantage over classical search strategies?

In order to answer this question the complexities of classical search algorithms need to be

considered. Traditionally, these methods experience some type of exponential growth in the

number of leaf nodes that need to be assessed. Since the number of elements to be evaluated

is a function of the branching factor b and the depth of the search d the associated complexity

is typically of the form O(bd). Clearly, in the case of the scenario envisaged it necessary to

differentiate between the two branching factors, respectively bmax and bavg. Accordingly, if

bmax is considered then a total of O(bdmax) = O(510) = 9765625 nodes might potentially need

to be evaluated. On the other hand, by employing bavg a total of O(bdavg) = O(310) = 59049

nodes may be considered. These values differ by a factor of ≈ 165, which is considerable

when in practice it is acceptable to perceive bavg as the de facto branching factor.

How many times would one need to apply Grover’s iterate? In this case there is no distinction

to be made between bmax and bavg since a quantum superposition state encoding all of the

bmax actions up to a depth level d would still need to built. As previously stated this

would result in a total of n × d = 3 × 10 = 30 bits being required, with n = dlog2 bmaxe =

dlog2 5e = 3. Accordingly, for the above scenario Grover’s iterate would need to be applied a

total of O(
√
N ) = O(

√
230 ) = 32768 times in order to obtain a solution. By comparing the

number of states classically evaluated by using bavg against the total number of iterations

required by Grover’s algorithm it is possible to see that both values differ by a factor of ≈ 1.8.

Although a speedup is still obtainable over the classical approach it is severely lessened.
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Intuitively, this behaviour can be perceived in the following manner:

• As bavg grows closer to bmax the number of times to apply Grover’s iterate will be

optimal relatively to the classical approaches;

• As bavg grows more distant to bmax the number of Grover iterations to apply will be

closer to bdavg.

From the above reasoning it is a simple task to determine the number of times that Grover’s

iterate should be applied, respectively |G|, as illustrated by Expression 5.2.

|G| =
√
N

=
√

2n×d

=
√

2dlog2bmaxe×d

= 2
dlog2bmaxe×d

2 (5.2)

Determining where the threshold lies between the number of elements of a classical search, re-

spectively bdavg and the total number of times to apply Grover’s iterate |G| can be formulated

as presented in Expression 5.3, which when solved results in Expression 5.4.

bdavg = |G| (5.3)

⇔ bdavg = 2
dlog2bmaxe

2

d

⇔ bavg = 2
dlog2bmaxe

2 (5.4)

Accordingly, when bavg < 2
dlog2bmaxe

2 then the total number of nodes evaluated in classical

search will be less than the number of times to apply Grover’s iterate, i.e. bdavg < |G|.
Appropriately, when bavg > 2

dlog2bmaxe
2 then the system will yield a speedup over classical

search algorithms. The plot of Expression 5.4, for bmax ∈ [2, 128], is presented in Figure

5.2. The shaded area indicates those values of bavg that will produce better performance

results classically over the quantum production system. For this specific case, the analysis

focused in the worst-case scenario where a single solution exists. However, when the search

space contains multiple solutions k, Grover’s complexity can be restated as O(
√
N/k ). This

function grows slower than the original upper-bound limit. As a consequence, the number of

required iterations would be lower, resulting in a decrease of the shaded area where classical

search would prove more advantageous.
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Figure 5.2: The area plot of bavg ≤ 2
dlog2bmaxe

2 for bmax ∈ [2, 128]. The shaded area
indicates those values of bavg that will produce better performance results over the quantum
production system.

Figure 5.2 also showcases the characteristic ladder effect of functions employing the ceiling

function required by the branching factor binary coding mechanism. In practice this means

that there will always be ranges of values for bmax where the number of iterations, |G|,
will remain the same. Consequently, the average branching factor, bavg, for the boundary

condition presented in Expression 5.3 will also remain constant in those intervals. This

happens despite the fact that bmax is growing in the associated range.

It is also important to examine in more detail each bmax and the associated range of bavg

values. In order to encode in a binary fashion any bmax value a total of n = dlog2bmaxe bits

are required. The use of the ceiling function effectively forces certain ranges of bmax values to

require the same number of n bits. As was previously seen, the number of Grover iterations

is a function of the total number of bits required. It is easy to see how this influences bavg

by taking Expression 5.4 into account. Clearly, for those bmax values requiring the same

number of bits, the associated bavg values will remain the same. It is only when the required

number of bits for bmax changes that an impact will be felt regarding bavg. Accordingly,

it is interesting to try to determine what happens when a transition is performed from, for

example, n to n+1 bits. In this case the bavg value grows from 2
n
2 to 2

n+1
2 , which differ by a
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factor of
√

2 . Let bnavg denote the average branching factor bavg associated with an interval

requiring n bits. Then, it is possible to express bn+1
avg as a function of bnavg. This recurrence

behaviour is illustrated in Expression 5.5.

bn+1
avg =

√
2 bnavg (5.5)

Expression 5.5 can be improved if the use of the ceiling function employed in Expression 5.4

is dropped.

In doing so, the ladder effect presented in Figure 5.2 is deliberately being lost. This new

formulation is presented in Expression 5.6.

bavg = 2
log2bmax

2 =
√
bmax (5.6)

As a result, a direct mapping of Expression 5.5 is impossible. Instead, it is possible to define

a function, b′avg, depicting the new upper-range values of bavg, as illustrated in Expression

5.7. This
√

2 -constant growth factor is depicted in Figure 5.3.

b′avg =
√

2 bavg =
√

2bmax (5.7)

5.3 Heuristic Perspective

Determining which action should be applied is an important part of the overall search process.

In a great deal of occasions an artificial intelligence application does not possess the adequate

level of knowledge allowing for full differentiation amongst the set of possible actions [165].

At any given point in time during the search process it would be useful to somehow know

which action might produce a state that is closer to a goal state. Intuitively, this process

may be described as trying to determine the quality of a path of actions with an optimal

solution having the lowest path cost among all solutions [183]. A key component of these

systems, and many other algorithms in artificial intelligence, consists of a heuristic function

h(n) responsible for presenting an estimate of the distance that a given state n is relatively to

a goal state. Function h(n) is typically employed alongside a function g(n), which reflects the

search cost incurred to reach state n. Traditionally, the conjunction of both these functions is

incorporated within a single evaluation function f(n) as illustrated by Expression 5.8.
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Figure 5.3: The
√

2 -constant growth between b′avg and bavg superimposed on the original

bavg = 2
dlog2bmaxe

2 function for bmax ∈ [2, 128].

f(n) = g(n) + h(n) (5.8)

Function h(n) can have a number of different definitions depending on the specifics of

the problem at hand. In a sense, heuristic functions are responsible for providing extra-

information about how-well a search is performing. However, search procedures need not

depend on the use of heuristics. Systems which do not take into consideration any kind of

auxiliary information are referred to as uninformed strategies. In the case of “uninformed”

search systems the choice of which action to apply is performed at random. On the other

hand, “informed” strategies enable search algorithms to select an appropriate rule.

The quantum production system model can be perceived as systematically trying to apply

actions in an uninformed fashion. This operation is performed until a goal state is reached.

Such behaviour resembles that of a standard blind depth-limited search process. Intuitively,

the heuristic concepts incorporated into informed search strategies appear to be an adequate

extension idea to the proposal. However, it remains to be seen if these concepts can be

adequately mapped into the approach and if doing so provides an advantage. The remain-

der of this section is organised as follows: Section 5.3.1) considers how to incorporate the
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use of a heuristic the unitary operator; Section 5.3.2) provides an analysis of the quantum

computation procedure incorporating the use of a heuristic. Section 5.3.3) builds on these

results to present an extended quantum heuristic mechanism.

5.3.1 The Quantum Heuristic

As previously mentioned, at its core, the system can be perceived as evaluating a super-

position of all possible paths. Expression 5.1 illustrated this perspective, where a quantum

superposition state is composed by an amplitude value and a multitude of sub-states, i.e.

the computational basis. From a quantum mechanics perspective it is important to reinforce

the idea that the mechanisms allowing quantum states of a superposition to communicate

with the other states are complex and restricted in what they achieve. Those algorithms

that are able to provide a meaningful speedup do so by employing, and determining, some

type of global property e.g. Grover’s algorithm is able to determine the mean amplitude

A of a quantum superposition and perform an inversion about the mean [82]. Also Shor’s

algorithm for factoring numbers is able to efficiently determine the period of periodic quan-

tum states [191]. This fact immediately poses a problem: traditionally, the use of heuristics

is employed to choose among possible tree paths, ideally producing an optimal sequence of

actions. However, with the system in question it is not possible to quantum mechanically

perform such a comparison. Ergo, is there any way to incorporate any heuristic concepts

into the system? In [30] the authors argue that many classical problems can be executed

in o(
√
N ) time by employing heuristic functions, which would therefore make amplitude

amplification schemes less useful. The authors are able to show that these heuristics can

be incorporated into the amplitude amplification process. However, the heuristic function

employed represents a probabilistic algorithm, running in polynomial time, that outputs a

solution state with some non-negligible probability.

This contrasts with the non-probabilistic route that will be followed in this chapter. Namely

from a simplified point of view, a heuristic function outputs a value estimating the distance

to a goal. Optionally, it is possible to take into account only those states whose f value is

below a certain threshold T . However, deliberately ignoring these same states may later on

result in a loss of optimal solution paths. Incorporating the heuristic function into the search

process requires that the adequate modification are performed on the corresponding unitary

operator. Grover’s algorithm requires that the unitary operator U employed has an oracle

form where the amplitudes of the solution states are flipped. Expression 5.9 reflects both

of the previous requirements, where |n〉 represents the current node being processed and ai

an action taken at depth i and f stands for the function evaluation of the arguments, i.e.

f(n, a1, a2, · · · , ad).
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U |n〉|a1a2 · · · ad〉 =

{
− |n〉|a1a2 · · · ad〉 iff ≤ T
|n〉|a1a2 · · · ad〉 otherwise

(5.9)

In a similar way as to deciding which of two possible heuristics to employ, the matter of

deciding the threshold value T could be left to statistical studies, or even informed intuition

based on hands-on experience [165]. However, in no way did this circumvent the problem of

comparing multiple paths. In conclusion, it is possible with such a method to incorporate

some of the concepts surrounding the use of heuristics, but not all of them.

5.3.2 Interpretation

What happens when a unitary operator U is employed with the form presented in Expression

5.9 with Grover’s algorithm? I.e. is there anything to be gained by incorporating heuristic

concepts into the system? The following sections tackle this question, namely: the first

section illustrates how superposition |ψ〉 can be decomposed into two components; the second

section provides a graphical illustration of the impacts of performing search up to different

depth levels.

Decomposing the superposition state

Answering this question requires extending the analysis of what happens when unitary oper-

ator U is applied to superposition |ψ〉, i.e. U |ψ〉. Suppose superposition |ψ〉 takes the form

illustrated in Expression 5.10, where n represents the number of bits.

|ψ〉 =

√
1

2n

2n−1∑
x=0

|x〉 (5.10)

Before advancing any further, it is important to emphasize that in an uniform superposition,

associated with each state |x〉 there is an amplitude α ∈ C, which in this case is
√

1
2n for

all states. Let αi denote the amplitude associated with state |i〉. Quantum computation

requires the norm of amplitudes to be unit-length, i.e.
∑2n−1
x=0 |αx|2 = 1, at all times.

Note that the initial quantum superposition |ψ〉 can be decomposed into two parts [118].

One part will contain all those states that are solutions, which will respectively be labeled

as set Xgood. Another part will include the non-solutions states, respectively labeled as set

Xbad. Also, assume that k solutions exist. This implies that |Xgood| = k and |Xbad| = 2n−k.

Accordingly, an uniform superposition of the states belonging to Xgood would set an equal
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amplitude among its k elements, i.e.
√

1
k . By the same reasoning, an uniform superposition

of the states in Xbad would impose an amplitude values of
√

1
2n−k . Accordingly, it is possible

to define the superposition states |ψgood〉 and |ψbad〉, respectively presented in Expression

5.11 and Expression 5.12.

|ψgood〉 =

√
1

k

∑
x∈Xgood

|x〉 (5.11)

|ψbad〉 =

√
1

2n − k
∑

x∈Xbad

|x〉 (5.12)

Superposition |ψ〉 can now be expressed in terms of the subspaces |ψgood〉 and |ψbad〉. This

process is illustrated in Expression 5.13, which is indispensable to the rest of the analy-

sis.

|ψ〉 =

√
k

2n
|ψgood〉+

√
2n − k

2n
|ψbad〉 (5.13)

The requirement that the norm must be preserved at all times induces a probabilistic be-

haviour. More specifically, state |ψ〉 whose norm is

∣∣∣∣√ k
2n

∣∣∣∣2 +

∣∣∣∣√ 2n−k
2n

∣∣∣∣2 = 1, i.e. a sum of

values which sum up to 1 similarly to a probability distribution. Accordingly, the probabil-

ity of obtaining state |ψgood〉 =

∣∣∣∣√ k
2n

∣∣∣∣2 and state |ψbad〉 =

∣∣∣∣√ 2n−k
2n

∣∣∣∣2. Applying Grover’s

iterate effectively changes the amplitudes, maximizing the probability of obtaining a solution

contained in the subspace spawned by |ψgood〉. As a result, the amplitude associated with

state |ψgood〉 will increase. Since the norm of state |ψ〉 must be preserved, employing Grover

also implies that the amplitude of |ψbad〉 will be decreased.

Heuristic Impact

In order to continue the analysis of such a heuristic method consider the ideal scenario

where an admissible heuristic is possessed which always eliminates candidate states with

each additional level of depth. Although this is a rather optimistic strategy the heuristic’s

behaviour can be viewed as ideal. This best case scenario to demonstrate the system’s

potential performance. Given a sufficiently high depth level d the heuristic will have to

eventually produce the exact number of solutions k. Let kd denote the number of solutions

at depth level d. Then, with such a heuristic would result in k1 < k2 < · · · < kd ≤ k.
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However, fewer than k solutions can never expected to be produced, since that would violate

basic assumptions about the search space of the problem.

The above process can be visualized geometrically. The initial superposition |ψ〉 containing k

solutions can be viewed as vector with two components (|ψgood〉, |ψbad〉) = (
√

k
2n ,

√
2n−k

2n ).

Therefore, state |ψ〉 can be mapped it into a two dimensional plane with axis |ψgood〉 and

|ψbad〉. This mapping process is illustrated in Figure 5.4. From a quantum computation per-

spective, this process can be best understood with the use of different states |ψkd〉 reflecting

a search up to depth level d. State |ψkd〉 is a simple reformulation in terms of kd of state

|ψ〉, as presented in Expression 5.14.

|ψkd〉 =

√
kd
2n
|ψgood〉+

√
2n − kd

2n
|ψbad〉 (5.14)

Clearly, as the number of solutions kd approaches k, the |ψgood〉 and |ψbad〉 components will

tend towards the values of the original state vector |ψ〉. This behaviour is illustrated in

Expression 5.15.

lim
kd→k

(√
kd
2n

,

√
2n − kd

2n

)
=

(√
k

2n
,

√
2n − k

2n

)
(5.15)

As the depth of the search increases the corresponding state vector |ψkd〉 gets closer to the

original |ψ〉, as can be perceived from Figure 5.4. Additionally, each state |ψkd〉 can be

understood as forming an angle θ whose tangent is shown in Expression 5.16.

tan θkd =

√
kd
2n√

2n−kd
2n

=

√
kd

2n − kd
(5.16)

Using this approach it is possible to perform a comparison between the angles of different

search depth levels. If a comparison of how the search advanced between depth levels d1 and

d2 is to be performed, then it possible to define an operator ∆θkd1 ,kd2 with the behaviour

defined in Expression 5.17.

∆θkd1 ,kd2 := arctan

√
kd2

2n − kd2︸ ︷︷ ︸
θkd2

− arctan

√
kd1

2n − kd1︸ ︷︷ ︸
θkd1

(5.17)

Operator ∆θkd1 ,kd2 provides a mechanism for determining the operational success of adding
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(d2 − d1) extra levels of depth relatively to d1. Accordingly, small ∆θkd1 ,kd2 values can be

understood as not contributing in a significant manner to changing the system’s overall state.

Conversely, high ∆θkd1 ,kd2 values reveal that the system’s state significantly shifted towards

|ψ〉. Ultimately, one can only expect to get as far as state |ψ〉. From this point on Grover’s

usual O(
√
N ) iterations will still be required in order to perform a rotation of |ψ〉 towards

|ψgood〉, leaving the algorithm overall complexity unchanged.

Figure 5.4: The geometric interpretation of the original state vector |ψ〉 alongside different
state vectors |ψi〉 reflecting the state attained by performing a search to depth-level i. Deeper
searches will be closer to the original |ψ〉 state. All states are unit-length vectors.

5.3.3 Extending the quantum heuristic

Can the concepts of the quantum heuristic be extended in such a way as to perform some type

of useful task? In order to answer this question assume that the heuristic function employed

86



5.3. Heuristic Perspective

has a probabilistic distribution. The following sections review some principles surrounding

heuristic distributions and describe how to incorporate these concepts into the tree search

method.

Heuristic distributions

Assume that the heuristic function employed has a probabilistic distribution, i.e. the

probability of each output value is between 0 and 1. This behaviour can be written as

0 ≤ P (X = x) ≤ 1 where X is a random variable representing an output event, and x is a

possible value of X. Additionally, a random variable may be either discrete or continuous

depending on the values that it can assume. Random variables whose set of possible values

belong to Z are said to be discrete. On the other other hand, continuous variables map

events to an uncountable set such as R. For a discrete random variable X, the sum of the

set containing all possible probability values is 1 as illustrated by Expression 5.18.

n∑
i=1

P (X = xi) = 1 (5.18)

The sliding block puzzle discussed in Chapter 4 can also be employed when trying to study

heuristic distributions. It is possible to define a simple heuristic function for this problem,

namely h1, which simply calculates the number of misplaced tiles between a board and

a target board configuration. For the 8-puzzle, function h1 outputs values belonging to

the range [0, 9] and consequently can be classified as discrete. The discrete probability

distribution for function h1 is presented in Figure 5.5.

If X is a continuous random variable then there exists a nonnegative function P (X), the

probability density function of the random variable X. The density function P (X = c) is

defined as the ratio of the probability that X falls into an interval around c, divided by the

width of the interval, as the interval width goes to zero [55]. This process is illustrated in

Expression 5.19. Additionally, the density function must be nonnegative for all arguments

and must obey the behaviour presented in Expression 5.20 [183].

P (X = c) = lim
dx→0

P (c ≤ X ≤ c+ dx)/dx (5.19)

∫ +∞

−∞
P (X)dx = 1 (5.20)

The n-puzzle search problem is also helpful when trying to develop a continuous heuristic
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Figure 5.5: Discrete probability distribution for h1 when applied to the 8-puzzle

function. What is only required is to determine a heuristic function h2 mapping values into

a real codomain. This can be done by employing a metric such as the euclidean distance.

For instance, h2 can be defined in such a fashion as to calculate the euclidean distance

for all the corresponding elements of a board and a target board configuration. I.e., h2 =∑
∀ tiles d(ltile, l

′
tile), where d is the euclidean distance, ltile the location of a tile in a board

configuration and l′tile the location of the corresponding tile in the target configuration. The

probability density function for h2 regarding the 8-puzzle is presented in Figure 5.6.

The probability that a random variable X takes on a value that is less than or equal to x is

referred to as the cumulative distributive function F and has the form F (x) = P (X ≤ x).

The cumulative distribution function F (a) for a discrete random variable is a simple sum

of the values up to element a. This behaviour is illustrated in Expression 5.21. Similarly, a

cumulative probability density function F (a) can be defined for a continuous random variable

as shown in Expression 5.22.

F (a) =
∑

all x≤a

P (X = x) (5.21)

F (a) =

∫ a

−∞
P (x)dx (5.22)

88



5.3. Heuristic Perspective

0 5 10 15 20
0.000

0.005

0.010

0.015

0.020

0.025

Figure 5.6: Continuous probability density function for h2 when applied to the 8-puzzle

It may also be important to determine when, i.e. for which values, the cumulative distri-

bution function equals a certain probability p, i.e. F (x) = p. In probability theory, this

mapping is known as the quantile function of a cumulative distribution function F (x) and

is expressed as F−1(p) = x. Care must be taken in order to differentiate between discrete

and continuous random variables. In the former, there may exist gaps between values in the

domain of the cumulative distribution function, accordingly F−1 is defined as presented in

Expression 5.23 where inf denotes the infimum operator [79].

F−1(p) = inf{x ∈ R : p ≤ F (x)} (5.23)

In the case of a continuous random variable obtaining a clear expression for the quantile

function is not so trivial since it requires determining the inverse of an integral. Notwith-

standing, it is still possible to determine such expressions, for instance, the quantile function

of a normal distribution with mean µ and standard deviation σ is illustrated in Expression

5.24, where erf is the Gauss error function [79].

F−1(p, µ, σ2) = µ+
√

2 σerf−1(2p− 1), p ∈ [0, 1] (5.24)
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Extended quantum heuristic

Naturally, the question arises, how can this process be combined with the quantum produc-

tion system approach? It turns out that when a fourth of all possible states analyzed by

Grover’s algorithm are marked as solutions, i.e. k = 1
4 .N then a single iteration is required

in order to obtain with certainty one of the solution states [99]. Accordingly, it is possible

to try to fine tune the behaviour of the unitary operator such that it outputs a solution for

a fourth of all cases. This procedure can be performed with the assistance of the quantile

function concept introduced in the previous section.

Envisage a scenario where it is important to obtain the states which are closest to a solution

and a heuristic function f : X → Y is supplied. Then, the states that should be marked as

solutions are those that produce the smallest values of codomain Y . Also, assume that the

states which are closer to a goal node are those who tend to happen less times (as exemplified

by Figure 5.5 and Figure 5.6). From a probabilistic point-of-view it is possible to check if the

heuristic value is less than or equal to the quantile function output for a probability of 25%.

This behaviour is illustrated in Expression 5.25, where f stands for the function evaluation

of the arguments, i.e. f(n, a1, a2, · · · , ad).

U |n〉|a1a2 · · · ad〉 =

{
− |n〉|a1a2 · · · ad〉 iff ≤ F−1(0.25)

|n〉|a1a2 · · · ad〉 otherwise
(5.25)

Ideally, by using this approach it is possible to obtain a superposition containing one fourth

of the “closest” states to a goal configuration by applying a single iteration of Grover’s

algorithm. Additionally, the results of Expression 5.25 can be expanded in order to con-

template different sections of a probability distribution. For instance, it is possible to ob-

tain in a single iteration of Grover’s algorithm the states which lie between heuristic values

(F−1(0.5)−F−1(0.25)). Similarly, a choice could also be made to obtain the states belonging

to (F−1(0.75)− F−1(0.5)) or (F−1(1)− F−1(0.75)). More generally, let a and b denote two

probability values such that b− a = 0.25, then it is possible to determine if a given heuristic

value belongs to the range [F−1(a), F−1(b)]. This strategy for selecting 25% of the search

space is presented in the unitary operator shown in Expression 5.26, where f stands for the

function evaluation of the arguments, i.e. f(n, a1, a2, · · · , ad).

U |n〉|a1a2 · · · ad〉 =

{
− |n〉|a1a2 · · · ad〉 iff ∈ [F−1

(a) , F
−1
(b) ]

|n〉|a1a2 · · · ad〉 otherwise
(5.26)

In a certain sense, employing this type of procedure allows for a kind of partial selection of

the search space to be performed using a single Grover iteration. The selection is only partial
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because upon measurement a random collapse amongst the marked states is obtained.

5.4 Final considerations

The proposal for a quantum production system incorporates classical search concepts, ex-

pressed through unitary operators alongside Grover’s quantum search algorithm. The method

relies on testing a sequence of actions in order to determine if a goal state was reached. How-

ever, other applications may not require this type of precise knowledge. For instance, some

problems may be interested in determining the first m bits of a n bit solution string. Grover

and Radhakrishnan were some of the first to purpose a possible approach to this problem

in [80]. The main motivation of their work was the following: suppose a quantum search

space containing a single solution is divided into l-blocks of equal size, and that the goal is to

determine in which of the l-blocks the solution is, can this process be performed with fewer

queries than the original Grover algorithm? In practice, this problem reduces to the one of

determining the first m bits of the n bit computational basis containing the solution, with

m ≤ n. The authors proceed by analysing what happens when a variation of Grover’s iterate

for amplitude amplification is applied to each block. They conclude that it is indeed easier

to determine the initial m bits. However, the speedup obtained does not change the overall

complexity. In addition, as m grows closer to n the computational gains obtained disap-

pear [80]. The original work focused exclusively on finding a single block with one solution.

Subsequently, a generalization method was proposed in [45] considering multiple solution

states equally spread amongst a number of solution blocks. Grover-Radhakrishnan’s result

was further improved in [123] when the authors developed a simple partial search algorithm

targeting a large number of blocks. An additional optimization to Grover-Radhakrishnan’s

work was proposed in [122] improving the lower bound on the number of oracle queries. The

motivation behind partial search allows the method to sacrifice precision for speed. Analo-

gously to the intuition behind heuristics it is possible to envisage a quantum search system

where different subtrees are tested for a solution using the principles of partial search. Such

a system would require an adequate mapping mechanism in order for the different blocks

present to convey information about the subtree, i.e a correspondence between the block

and subtree concepts. Upon measuring, the collapsed state would contain valid information

about the subtree where the solution can be found. This behaviour would be similar to that

of an informed search.
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5.5 Conclusions

In this chapter some of the ramifications of the quantum production system were examined.

Two key aspects were used, namely: the use of a non-constant branching factor and the

adoption of a heuristic point of view. Clearly, both of these cases are not without its flaws.

However, the additional insight provided is valuable. In the case of the non-constant branch-

ing factor, deciding whether or not to employ Grover, or to proceed classically, is a process

that should take into account the maximum and the average branching factor. Addition-

ally, by evaluating the states that are within a given threshold it is possible to incorporate

some classical heuristic concepts into the approach. These concepts were further extended

with the use of probabilistic distribution functions allowing for a selection mechanism to be

obtained. This mechanism enables specific ranges of quantum states to be obtained in an

efficient manner.
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Chapter 6

A quantum production model

6.1 Introduction

In this chapter the circuit-based approach presented in Chapter 4 is generalized in order to

provide a model of quantum computation based on production system theory with a clear

emphasis on problem-solving behaviour. Traditional approaches such as the quantum Turing

machine are complex mechanisms oriented towards general purpose computation. A quantum

production system model would be more suited to typical artificial intelligence tasks such

as reasoning, inference and hierarchical search. From the onset it is possible to immediately

pose some questions, namely: How should such a quantum production system model be

developed? What are the requirements of quantum computation and its respective impact

on the aforementioned model? How to develop the associated unitary operator? Additionally,

what are the performance gains from employing quantum mechanics and how does such a

proposition compare against similar strategies? Finally, are there any requirements that

should be observed for those improvements?

By employing such an approach it is possible to (1) provide a detailed explanation of how

to develop a quantum production system model; (2) assess the main differences between

this proposition and its classical analog; and (3) provide an insight into better describing

the power of quantum computation. However, it is not my intention to present an exact

characterization of quantum computational models. Answering this question would have far-

reaching consequences on complexity theory which are beyond the scope of this work.

The following sections are organised as follows: Section 6.2 presents the formal definitions

of the proposition for a quantum production system; Section 6.3 presents an assessment
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comparing the performance of classical production systems against the quantum proposition.

The concluding remarks of this chapter are presented in Section 6.4.

6.2 Formal Definitions

In this section a modular approach to the quantum production system proposition is pre-

sented. Accordingly, a set of definitions is described in Section 6.2.1 incorporating traditional

production system behaviour. General reversibility requirements associated with quantum

computation are presented Section 6.2.2. These concepts are then employed to enumerate

the characteristics of a probabilistic production system in Section 6.2.3. The probabilistic

model will serve as a basis for the quantum production system, which will extend those

concepts in Section 6.2.4.

6.2.1 Classical Production System

Any approach to a general quantum production system model needs to incorporate powerful

computational abstractions, which are not bounded by input length, in a similar manner to

the classical Turing machine [205] and its quantum counterparts. Accordingly, the following

definitions are presented through set theory. As previously discussed each production system

S consists of a set of production rules R and a control system C alongside a working memory

W . The following definitions embody the production system incorporate discussed in Section

1.3, respectively:

Definition 1: Let Γ be a finite nonempty set whose elements are referred to as symbols.

Additionally, let Γ∗ be the set of finite strings over Γ.

Definition 2: The working memory W is capable of holding a string belonging to Γ∗. The

working memory is initialized with a given string, who is also commonly referred to as

the initial state γi.

Definition 3: The set of production rules R has the form presented in Expression 6.1.

{(precondition, action)|precondition, action ∈ Γ∗} (6.1)

Each rules precondition is matched against the contents of the working memory. If

the precondition is met then the action part of the rule can be applied, changing the

contents of the working memory.
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Definition 4: The formal definition of a production system S is a tuple (Γ, Si, Sg, R, C)

where Γ, R are finite nonempty sets and Si, Sg ⊂ Γ∗ are, respectively, the set of initial

and goal states. The control function C satisfies Expression 6.2.

C : Γ∗ → R× Γ∗ × {h, c} (6.2)

The control system C chooses which of the rules to apply and terminates the compu-

tation when a goal configuration, γg, of the memory is reached. If C(γ) = (r, γ′, {h, c})
the interpretation is that, if the working memory contains symbol γ then it is substi-

tuted by the action γ′ of rule r and the computation either continues, c, or halts, h.

Traditionally, the computation halts when a goal state γg ∈ Sg is achieved through a

production, and continues otherwise.

6.2.2 Reversible Requirements

As stated in Chapter 3, discrete state evolution is achieved through mathematical maps

known as unitary operators [164]. These maps correspond to injective and surjective func-

tions, i.e. bijections. Bijections guarantee that every element of the codomain is mapped

by exactly one element of the domain [28]. From a computational perspective, the bijection

requirement can be obtained by employing reversible computation. Classical computation

is an irreversible process since at its core the use of many-to-one binary gates makes it im-

possible to ensure a one-to-one and onto mapping. A computation is said to be reversible

if given the outputs the inputs can be uniquely recovered [204] [203]. Irreversible computa-

tional processes can be made reversible by (1) substituting irreversible logic elements by the

adequate reversible equivalents; or (2) by accounting for the information that is traditionally

lost.

The emphasis in production system theory consists in determining what state is obtained

after applying a production. Forward chaining is employed when moving from the condi-

tions to the actions, i.e. an action is applied when all the associated conditions are met.

Conversely, there may be a need for determining which state preceded the current state, i.e.

a sort of backtrace mechanism from a given state up until another state. This mechanism

allowing one to reverse the actions applied and thus obtaining the associated conditions is

also commonly referred to as backward chaining. Although this behaviour seems fairly sim-

ple and intuitive it is possible to immediately pose a question regarding the system’s nature,

namely what are the requirements associated with a reversible production system?

It is possible to adapt Bennett’s original set of definitions [23] in order to describe the
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behaviour of a production system by a finite set of transition formulas also referred to as

quadruples, in an allusion to the form of Expression 6.2. Each quadruple maps the present

state of the working memory to its successor. By introducing the tuple terminology it

becomes simpler to present the following set of definitions:

Definition 5: A production system can be perceived as being deterministic if and only if

its quadruples have non-overlapping domains.

Definition 6: A production system is said to be reversible if and only if its quadruples have

non-overlapping ranges.

Definition 7: A reversible and deterministic production system can be defined as a set of

quadruples no two of which overlap either in domain or range.

These definitions contrast with Bennett’s more elaborated model where information regard-

ing the internal states of the control unit before and after the transition, alongside tape

movement with the associated reading and writing information is maintained. In order to

fully understand the exact impact of such requirements picture a production system re-

sponsible for sorting strings composed of letters a, b, c, d, and e based on [213]. The set

of production rules is presented in Table 6.1. Whenever a substring of the original string

matches a rule’s condition the production is applicable. Applying a specific rule consists in

replacing the original substring, i.e. precondition, by the action string. The sequence of

rules that is applied when the working memory is initialized in state “edcba” is illustrated

in Table 6.2, with the computation proceeding until the string is fully sorted.

Bennett [23] points to the fact that any irreversible computation can be made reversible by

saving all the information that is typically erased. However, this reversible history needs

to be saved into a resource. Reusing this resource would require the information to be

erased or thrown away, merely postponing the problem. The solution relies on performing

a computation, saving the intermediate information that is typically lost, and then using

this information to backtrack to the original input. Since both forward and backward stages

are done in a reversible manner, the overall process always preserves the original informa-

tion.

However, before undoing the computation, care has to be taken in order to ensure that the

output is preserved. This requires copying the output to an output register, an operation

which has to be performed reversibly. Once the output copy has been completed it is pos-

sible to proceed with the backward stage, i.e reverse the consequences of each quadruple

application. Eventually, the computation terminates, the production system returns to its

original state and the result of the procedure is stored in the output medium. In Bennett’s

original work the reversible Turing machine is composed of three tapes, namely [23]:
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Rule Precondition Action Symbolic

R1 ba ab ba → ab
R2 ca ac ca → ac
R3 da ad da → ad
R4 ea ae ea → ae
R5 cb bc cb → bc
R6 db bd db → bd
R7 eb be eb → be
R8 dc cd dc → cd
R9 ec ce ec → ce
R10 ed de ed → de

Table 6.1: Rule set for sorting a string composed of letters a, b, c, d, and e (adapted
from [143]).

Iteration Number Working Memory Conflict Set Rule Fired Continue?

0 edcba {R1, R5, R8, R10} R1 continue
1 edcab {R2, R8, R10} R2 continue
2 edacb {R5, R3, R10} R3 continue
3 eadcb {R5, R8, R4} R4 continue
4 aedcb {R5, R8, R10} R5 continue
5 aedbc {R6, R10} R6 continue
6 aebdc {R8, R7} R7 continue
7 abedc {R8, R10} R8 continue
8 abecd {R9} R9 continue
9 abced {R10} R10 continue
10 abcde ∅ ∅ halt

Table 6.2: An example of the sequence of rules applied for sorting a string composed of
letters a, b, c, d, and e.
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• working tape - where the program’s input is initially stored and computation is per-

formed in order to obtain an output which is later reversed to the original input;

• history tape - where the information that is traditionally thrown away is kept, once

the program’s output has been copied the history information is used in order to revert

the working tape to its original state;

• output tape - where the program’s output is stored.

By observing Table 6.2 it is possible to see that in order to ensure that the original input is

obtained, the sequence of rules leading from an initial state γi to a goal state γg needs to be

accounted for. This sequence of rules can be used in order to “undo” each action. In doing

so it is possible to obtain each precondition that led to a particular action being applied,

up until an initial state γi ∈ Si. The quadruples presented in Expression 6.2 effectively

convey information about which production is applied when going from a certain condition

to the appropriate action. Additionally, in production system theory there exists a strong

emphasis on the sequence of rules leading up to a target state. This situation contrasts with

the traditional interest of merely knowing the final state of the working memory. If Bennett’s

original definitions of the reversible Turing machine are adapted then it becomes possible

to obtain a mapping for a reversible production system. This process can be performed by

requiring that:

1. applying a production results in its addition to the history tape, instead of a new

control-unit state. Since the quadruple and production rules are equivalent concepts

the same transitional information employed by Bennett’s model is being stored;

2. once the computation halts it is necessary to copy the contents of the history tape to

the output tape, this contrasts with the original copying of the working tape. In order

to do so the history tape’s head needs to be place at the tape’s beginning. Afterwards,

the copy process from the history tape to the output tape can proceed.

3. upon the copying mechanism’s conclusion, the output tape’s head needs to be placed

at the beginning. This process can be performed by shifting left the output tape until

a blank symbol is found.

Table 6.3 illustrates this set of ideas for a reversible production simple based on the string

sorting production system presented earlier (Table 6.1 and Table 6.2). As it is possible

to verify the computation proceeds normally for iteration 0 through 10, also known as the

forward computation stage. The only alteration to Bennett’s model consists in adding the

productions fired to the history tape. Once this stage has concluded the history tape’s head

needs to be properly placed at the beginning. This step is carried out in iteration 11. The

position of a tape’s head by an underbar. The system then proceeds in iteration 12 by

98



6.2. Formal Definitions

Iteration Memory Rule History Tape Output Tape

0 edcba R1 { } { }
1 edcab R2 {R1} { }
2 edacb R3 {R1, R2} { }
3 eadcb R4 {R1, R2, R3} { }
4 aedcb R5 {R1, R2, R3, R4} { }
5 aedbc R6 {R1, R2, R3, R4, R5} { }
6 aebdc R7 {R1, R2, R3, R4, R5, R6} { }
7 abedc R8 {R1, R2, R3, R4, R5, R6, R7} { }
8 abecd R9 {R1, R2, R3, R4, R5, R6, R7, R8} { }
9 abced R10 {R1, R2, R3, R4, R5, R6, R7, R8, R9} { }
10 abcde ∅ {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} { }
11 abcde ∅ {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} { }
12 abcde ∅ {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}
13 abcde ∅ {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}
14 abcde ∅ {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}
15 abced R10−1 {R1, R2, R3, R4, R5, R6, R7, R8, R9} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}
16 abecd R9−1 {R1, R2, R3, R4, R5, R6, R7, R8} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}
17 abedc R8−1 {R1, R2, R3, R4, R5, R6, R7} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}
18 aebdc R7−1 {R1, R2, R3, R4, R5, R6} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}
19 aedbc R6−1 {R1, R2, R3, R4, R5} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}
20 aedcb R5−1 {R1, R2, R3, R4} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}
21 eadcb R4−1 {R1, R2, R3} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}
22 edacb R3−1 {R1, R2} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}
23 edcab R2−1 {R1} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}
24 edcba R1−1 { } {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

Table 6.3: Operation of a reversible production system based on the example of Table 6.2
and Bennett’s model for a reversible Turing machine. The underbar denotes the position of
the head.

copying the contents of the history tape onto the output tape. Additionally, the output

tape’s head is placed at the beginning in iteration 13. The last stage of the computation

consists in undoing each one of the applied productions, as illustrated from iteration 14 to

24. The inverse of a rule R mapping a precondition A into an action B, i.e. R : A → B, is

represented by R−1 such that R−1 : B → A. By inverting the rules applied implies reversing

the consequences of each associated quadruple.

6.2.3 Probabilistic Production System

Consider a production system whose control strategy chooses a rule to apply from set of

production rules based on a probability distribution. This behaviour can be formalized with

a simple reformulation of Expression 6.2 as illustrated by Expression 6.3, where C(γ, r, γ′, d)

represents the probability of choosing rule r, substituting symbol γ with γ′ and making a

decision d on whether to continue or halt the computation if the memory contains γ.

C : Γ∗ ×R× Γ∗ × {h, c} → [0, 1] (6.3)

Additionally, it would have to be required that ∀γ ∈ Γ Expression 6.4 be observed

∑
∀(r,γ′,d)∈R×Γ×{h,c}

C(γ, r, γ′, d) = 1 (6.4)
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This modification to the deterministic production system allows the control strategy to yield

different states with probabilities that must sum up to 1. In such a model, a computation

can be perceived has having an associated probability, which is simply the multiplication

of each production’s probability. If the several possibilities are accounted for the overall

computational process presents a tree form as the one illustrated in Figure 1.1.

6.2.4 Quantum Production System

A suitable model for a probabilistic production system enables a mapping between real-

valued probabilities and complex-value quantum amplitudes. Specifically, the complex valued

control strategy would need to behave as illustrated in Expression 6.5 where C(γ, r, γ′, d)

provides the amplitude if the working memory contains symbol γ then rule r will be chosen,

substituting symbol γ with γ′ and a decision d made on whether to continue or halt the

computation.

C : Γ∗ ×R× Γ∗ × {h, c} → C (6.5)

The amplitude provided would also have to respect Expression 6.6, ∀ γ ∈ Γ.

∑
∀(r,γ′,d)∈R×Γ×{h,c}

|C(γ, r, γ′, d)|2 = 1 (6.6)

Is it possible to elaborate on the exact unitary form that C should take? Developing a

classical computational gate for calculating Expression 6.2 would require the form illustrated

in Figure 6.1a. Since multiple arguments could potentially map onto the same element

such a strategy would not allow for reversibility. Theoretically, any irreversible production

system can be made reversible by adding some auxiliary input bits and through the addition

modulo 2 operation [203], a process formalized in Expression 6.7 and shown in Figure 6.1b.

Since the inputs are now part of the outputs, this mechanism allows for a bijection to

be obtained. Notice that Expression 6.7 does not output a complex value. However, the

unitary matrix that can be derived from such an expression can be employed alongside unit-

length complex-valued vectors to obtain an overall control strategy that is in accordance

with Expression 6.5.

(γ, b0, b1, b2)︸ ︷︷ ︸
input vector v1

C→ (γ, r ⊕ b0, γ′ ⊕ b1, {h, c} ⊕ b2)︸ ︷︷ ︸
output vector v2

(6.7)
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(a) (b)

Figure 6.1: An irreversible control strategy 6.1a can be made reversible 6.1b through the
introduction of a number of constants and auxiliary input and output bits.

The gate can be perceived as acting on vector v1 and delivering v2. Then such behaviour can

be described as shown in Expression 6.8, where C is the required unitary operator.

C|v1〉 = |v2〉 (6.8)

Based on Expression 6.7 and Expression 6.8 it becomes possible to develop a unitary oper-

ator C. Accordingly, C acts upon an input vector v1 conveying specific information about

the argument’s state. From Expression 6.7 it is possible to verify that any input vector |v1〉
should be large enough to accommodate γ, b0, b1 and b2. Since b0, b1 and b2 will be used

for bitwise addition modulo 2 operations with, respectively, r, γ′ and {h, c}, then the appro-

priate dimensions for a binary encoding of these elements need to be determined. Assume

that:

• α = dlog2 |Γ|e, represents the number of bits required to encode the symbol set

• β = dlog2 |R|e, represents the number of bits required to encode each one of the pro-

ductions;

• δ is a single bit used to encode either h or c

If a binary string is employed to represent this information, then its length will be α+ β+ δ

bits, thus allowing for a total of 2α+β+δ combinations. This information about the input’s

state can be conveyed in a column vector v1 of dimension 2α+β+δ. The general idea being

that the mth possible combination can be represented by placing a 1 on the mth row of such a

vector. These same principles are still observed by v2. The unitary operator’s responsibility

relies on interpreting such information and presenting an adequate output vector v2. The

overall requirements of unitarity alongside the dimensions of input and output vectors imply

that unitary operator C will have dimension 2α+β+δ × 2α+β+δ.

A parallel can be established between C’s behaviour and the truth table concept of classical

gates. Truth tables are classical mechanisms employed to describe logic gates employed in
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electronics. The tables list all possible combinations of the inputs alongside the respective

results [144]. In a similar manner, it is possible to build a unitary operator C by going through

all possible combinations and decoding the information present in each combination. This

procedure is illustrated through pseudo-code in Procedure 1. Lines 1-3 are employed in order

to determine the required number of bits for the encoding mechanism. These values can also

be used to determine the dimension 2α+β+δ × 2α+β+δ of unitary operator C. This operator

is initialized in line 4 as a matrix with all entries set to zero.

The cycle for from lines 5-15 is responsible for going through all possible combinations.

Line 6 of the code obtains a string S, which is the binary version of decimal combination λ,

represented as λ(2) to illustrate base-2 encoding. Recall from Expression 6.1 that each input

vector needs to convey information about γ, b0, b1 and b2. Accordingly, for each λ the different

elements of the string need to be parsed in order to determine those values. This process

is illustrated through lines 7-10, which are responsible for obtaining the binary substrings.

For any string S, S[i, j] is the contiguous substring of S that starts at position i and ends at

position j of S [91]. Line 11 is responsible for invoking function mapBinaryEncoding, which

maps substring S1 to a symbol γ ∈ Γ.

Once the input symbol γ has been determined it is possible to calculate the transition

depicted in Expression 6.2. It is important to mention that the transition calculated in Line

12 through function C should not be confused with the associated unitary operator C of line 4.

The next logical step consists in forming a binary string represented as w(2), which is simply

the concatenation of elements S1, r(2)⊕S2, γ
′
(2)⊕S3 and d(2)⊕S4. Again, this step is done by

employing the base-2 version of elements r, γ′ and d. After the conclusion of line 13 all the

information required to determine the corresponding mapping will have been determined, λ

can be viewed as the decimal encoding of the input state, whilst ω can be interpreted as the

new decimal state achieved. This behaviour can be adequately incorporated into the unitary

operator by marking column λ and row ω with a one, a procedure realized in line 14.

Correctness Proof: In order to verify the correctness of Procedure 1 operator C needs to

be confirmed as indeed performing a bijective mapping. At its core a bijection performs a

simple permutation of all possible input state combinations. Accordingly, for a collision to

occur, i.e. multiple arguments mapping into the same image, would require that several λ’s

produced the same ω. If the transition function employed in Line 12 is irreversible then it

is conceivable that different γ’s may produce the same output vector (r, γ′, d). However, the

new state w besides contemplating output (r, γ′, d) through the addition modulo 2 elements

r(2) ⊕ S2, γ
′
(2) ⊕ S3 and d(2) ⊕ S4 also takes into consideration the original input symbol γ

allowing for a differentiation of possible collision states. As a consequence, for a collision

to still occur would require that function mapBinaryEncoding produced the same γ for

102



6.3. Classical vs. Quantum Comparison

Algorithm 1 Pseudo code for building unitary operator C

1: α = dlog2 |Γ|e
2: β = dlog2 |R|e
3: δ = 1
4: C = zeros[2α+β+δ, 2α+β+δ]
5: for all integers λ ∈ [0, 2α+β+δ] do
6: S = λ(2)

7: S1 = S[0, α− 1]
8: S2 = S[α, α+ β − 1]
9: S3 = S[α+ β, 2α+ β − 1]

10: S4 = S[2α+ β, 2α+ β + δ − 1]
11: γ = mapBinaryEncoding( Γ, S1 )
12: C(γ) = (r, γ′, d)
13: ω(2) = S1, r(2) ⊕ S2, γ

′
(2) ⊕ S3, d(2) ⊕ S4

14: Cω,λ = 1
15: end for

different binary strings. This same binary mapping behaviour can be easily avoided with

proper management of an adequate data structure thus guaranteeing the correctness of such

a procedure.

Unitary operator C is only responsible for applying a single production of the control strat-

egy. This represents a best case scenario where a problem’s solution can be found within the

immediate neighbours, i.e. those nodes that can be reached by applying a single production.

However, the production system norm relies on having to apply a sequence of rules before

obtaining a solution state. This proposition can be easily extended in order to apply multiple

steps. Such an extension would require developing a logical circuit employing elementary

gates C alongside any necessary output redirection to the adequate inputs. Algebraically,

such a procedure would require unitary operator composition acting upon the appropriate

inputs, which would continue to guarantee overall reversibility. Additionally, it is important

to emphasize that any potential unitary operator requires the ability to verify if the condi-

tional part of a rule is met (determine if a string contains a substring), which can be achieved

with simple comparison operators.

6.3 Classical vs. Quantum Comparison

Deutsch described a universal model of computation capable of simulating Turing machines

with inherent quantum properties such as quantum parallelism that cannot be found in

their classical counterparts [57]. However, the number of computational steps required by

Deutsch’s model grew exponentially as a function of the simulated Turing’s machine run-
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ning time. Subsequently, a more efficient model for a universal quantum Turing machine

was proposed in [27]. In the same work the authors questioned themselves if a quantum

Turing machine can provide any significant advantage over their classical equivalents. They

proceeded by showing that a quantum Turing machine described in [56] is capable of effi-

ciently solving the Fourier sampling problem. However, care was also employed in order to

emphasize that their result did not prove that quantum Turing machines are more powerful

than probabilistic Turing machines, since the latter can sample from a distribution within

ε total variation distance of the desired Fourier distribution [27]. In [39] Yao shows that

for any function computable in polynomial time by a quantum Turing machine there is an

equivalent polynomial quantum circuit.

Naturally, the question arises: how does this quantum production system proposal fare

against its classical counterpart? Namely, what is there to be gained by applying quantum

computation? And what are the requirements associated to those improvements? In order

to answer these questions take into account a unitary operator C, which is applied to an

initial state x ∈ Si. Additionally, assume that C needs to be applied a total of d times for a

result to be obtained, where d ∈ N is chosen such that the computation is able to proceed

until it stops. The result of applying C can be represented as g(x), which in production

system theory can be a simple output of the productions applied. As a consequence, the

quantum register employed needs to convey information about the initial state and also be

large enough to accommodate for g(x). This requirement can be fulfilled by employing a

unspecified length register |z〉. Accordingly, the initial state of the system can be represented

by the left-hand side of Expression 6.9. The right-hand side represents the result obtained

after unitary evolution.

Cd|x, z〉 = |x, z ⊕ g(x)〉 (6.9)

It is now possible to initialize register |x〉 as a superposition, |ψ〉, of all starting states, a

procedure illustrated in Expression 6.10, where Si ⊂ Γ∗ is the set of starting states. This

procedure is also depicted in Figure 6.2, where multiple binary searches are performed simul-

taneously, with the dotted line representing initial nodes that, for reasons of space, are not

shown, but are still present in the superposition. Now envisage a scenario where the produc-

tion system definition only contemplates a single initial state, i.e. |Si| = 1. Since it is not

possible to explore the high levels of parallelism provided by the superposition principle, no

significant advantage would be gained over the sequential procedure by applying |ψn〉. How-

ever, if the productions set cardinality is greater than one, then there exist several neighbour

states, which can be employed as initial states thus circumventing the problem.
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|ψ〉 =
1√
|Si|

∑
s∈Si

|s〉 (6.10)

A

A1 A2

A3 A4 A5 A6

B

B1 B2

B3 B4 B5 B6

Z

Z1 Z2

Z3 Z4 Z5 Z6

Figure 6.2: Parallel search with Si = {A,B, · · · , Z} and |ψn〉 = 1√
|Si|

∑
s∈Si
|s〉 . The

dotted lines represent the initial states belonging to superposition |ψn〉

This approach differs from other strategies of hierarchical search, namely [199] and [200],

who, respectively, (1) evaluate a superposition of all possible tree paths up to a depth-level

d in order to determine if a solution is present and (2) present an hierarchical decomposition

of the quantum search space through entanglement detection schemes.

The following sections are organised as follows: Section 6.3.1 extends the concepts of Grover’s

algorithm in order to present a system combining the quantum production system proposal

alongside the quantum search algorithm. Section 6.3.2 presents the concluding remarks

by discussing the performance gains achieved over the classical production system equiva-

lent.

6.3.1 Oracle Extension

In this section an extension to the oracle operator employed by Grover’s algorithm is pre-

sented allowing it to be combined alongside the quantum production system proposal. As a

result, it is important to determine what happens when two different functions f and g are

combined into a single unitary evolution, as illustrated by Expression 6.11. In this specific

case a choice was made to employ three quantum registers, namely |x〉, which is configured

with the system’s initial state, alongside registers |y〉 and |z〉 where, respectively, the output

of functions f(x) and g(x) is stored. The original amplitude flipping process is a result of

placing register |y〉 in the superposition state |0〉−|1〉√
2

. Accordingly, it is necessary to verify if

the amplitude flip still holds with the oracle formulation of Expression 6.11 alongside |y〉’s
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O|x〉 |0〉 − |1〉√
2
|z〉 =

1√
2

(|x〉|f(x)〉|z ⊕ g(x)〉 −O|x〉|1⊕ f(x)〉|z ⊕ g(x)〉) (6.12)

=

{
1√
2

(|x〉|0〉|z ⊕ g(x)〉 − |x〉|1〉|z ⊕ g(x)〉) if f(x) = 0
1√
2

(|x〉|1〉|z ⊕ g(x)〉 − |x〉|0〉|z ⊕ g(x)〉) if f(x) = 1

=

{
|x〉 |0〉−|1〉√

2
|z ⊕ g(x)〉 if f(x) = 0

|x〉 |1〉−|0〉√
2
|z ⊕ g(x)〉 if f(x) = 1

= (−1)f(x)|x〉 |0〉 − |1〉√
2
|z ⊕ g(x)〉 (6.13)

superposition initialization. This behaviour is shown in Expression 6.12. From Expression

6.13 it is possible to verify that despite the new oracle formulation the amplitude flipping

continues to occur.

O|x, y, z〉 = |x, y ⊕ f(x), z ⊕ g(x)〉 (6.11)

6.3.2 Performance Analysis

In order to proceed with the performance analysis picture a production system whose defini-

tions are incorporated into a unitary operator C combining the results of Expression 6.9 and

Expression 6.11. Accordingly, C will have the form presented in Expression 6.14, where |x〉
is initialized with a superposition of the production system starting states. In addition, an

auxiliary register |z〉 with an unspecified length will be employed in order to accommodate

for the productions applied, i.e the output growth of function g(x).

Such a formulation of a production system C allows one to employ it alongside Grover’s

algorithm in order to speedup the computation. In this particular case f(x)’s definition

needs to be changed in order to check if a goal state s ∈ Sg is achieved after having applied

d productions. E.g. assume that state M shown in Figure 1.1 is a goal state, then, assuming

no backtracking occurs, such state can be reached by applying productions p1, p0 and p1. As

a consequence, such a state evolution as C3|A, 0,0〉 = |x, 1, {p1, p0, p1}〉, where 0 represents

a vector of zeros. Function f new definition is presented in Expression 6.15. The state of

the system is described by a unit vector in a Hilbert space H2m = H2n ⊗H2 ⊗H2p .

Cd|x, y, z〉 = |x, y ⊕ f(x), z ⊕ g(x)〉 (6.14)
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f(x) =

{
1 , if Cd|x〉 ∈ Sg
0 , otherwise

(6.15)

Grover’s original speedup was dependent on superposition |ψ〉 and the associated number

of possible states. More concretely, the dimension of the space spanned is dependent on

the dimension of the query register |x〉 employed. However, by applying an oracle C whose

behaviour mimics that of Expression 6.14 the elements present in superposition |ψ〉 will

interact with registers |y〉 and |z〉. Typically, register |y〉 is ignored when evaluating the

running time, producing an overall superposition |ξ〉, which will no longer span the original

2n possible states but 2n+p. From an algebraic perspective, the interaction process is due

to the tensor product employed to describe the overall state between |x〉, |y〉 and |z〉. As a

result, it is possible to pose the following question: what can be said about the growth of

|z〉 and its respective impact on overall system performance?

Assume that a solution state can always be found after d invocations, either by indeed finding

a goal state or by applying a heuristic function to determine an appropriate state selection.

Classically, an evaluation function would be invoked once for each one of the initial states,

i.e., C = |Si|d times. Is it possible to do any better with the proposed model? Answering

this question requires determining appropriate boundary conditions on the exact dimensions

of |z〉 for which it is still possible to obtain a speedup over classical procedures.

Employing Grover’s algorithm results in a search procedure that will span the dimension of

|ξ〉, which varies between [2n, 2n+p]. Accordingly, in the very unlikely best case scenario,

the procedure will execute in O(
√
|Si| ) time. The number of quantum invocations will be√

|Si| d. Comparing both values allows one to conclude that C and Q differ by a factor

of
√
|Si| , effectively favoring the quantum proposal. Typically two things can be verified,

namely: (1) d grows linearly and (2) |Si| generates an exponential growth search space. Such

a ratio does not take into account the dimension of register |z〉. Therefore, it is important

to determine what happens when |z〉 grows and how it affects overall performance. Let m

denote the number of bits employed by registers |x〉 and |z〉, then the number of quantum

iterations will be Q =
√

2m . Accordingly, the C
Q ratio can be restated in terms of m, as

depicted in Expression 6.16, which effectively conveys the notion that each additional bit

added to |z〉 impacts the ratio negatively by a factor of 1√
2

.

C

Q
=
|Si|√
2m

(6.16)

Additionally, it is also interesting to determine when is the number of quantum iterations Q

smaller than the number of classical iterations C, as shown in Expression 6.17.
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Q < C (6.17)

⇔ 2m < |Si|2

⇔ m < log2 |Si|2 (6.18)

Expression 6.18 needs to be further refined since m ∈ N but the right-hand side may produce

a value belonging to R. This output is a consequence of having to deal with initial state

sets Si whose cardinality is not a power of 2. Notice that the measurement of performance

chosen, respectively, the ratio C/Q will eventually be 1 when m = log2 |Si|2. Accordingly,

if a larger number of bits is employed it effectively yields C/Q < 1, which will no longer

translate into a speedup by the quantum version. That being the case, it is possible to choose

to restrict the model to those cases where m < blog2 |Si|2c. Furthermore, m should also be

large enough to contain the set of possible binary encodings of Si, i.e. m ≥ dlog2 |Si|e. The

general boundary conditions are presented in Expression 6.19.

dlog2 |Si|e ≤ m ≤ blog2 |Si|2c (6.19)

Figure 6.3 illustrates the three-dimensional plot of Expression 6.16 as a function of a number

of initial nodes in the range [1, 213] alongside the required boundary conditions described by

Expression 6.19. The plot presents the characteristic ladder effect associated with employing

logarithmic functions in conjunction with functions that map real domains to the integer set.

As a consequence, a plateau is reached for some combinations where a number of different

cardinality Si sets can be mapped by the same number of bits, thus presenting the same C/Q

ratio. Relinquishing the floor and ceiling functions allows one to obtain a crude comparison

between the lower and upper limits of Expression 6.19. More concretely, it is possible to verify

that these limits differ by a log2 |Si| factor. This means that the system, besides requiring

dlog2 |Si|e bits for register |x〉, can still employ an additional log2 |Si| bits to encode g’s

output and in the process still perform better than its classical counterpart.

On the growth of g’s output

Consider a production system with a constant branching factor where a set of productions

is applied then there will exist a total of |R|d possible tree paths at depth level d, who will

require dlog2 |R|de bits for an adequate encoding. Clearly, if dlog2 |R|de ≤ dlog2 |Si|e then g’s

output can encode the sequence of productions applied. If this is not the case there is also

the possibility to encode an unspecified number of productions applied according to some
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Figure 6.3: The performance measurement ratio C/Q for |Si| ∈ [1, 213] illustrating the
logarithmic growth dlog2 |Si|e ≤ m ≤ blog2 |Si|2c alongside the associated p√

2

√
|Si| decrease

in performance.

previously chosen strategy. As a consequence, this proposal may be more appropriate when

dealing with large Si sets since this would automatically imply that a large set of working

bits would be required. Even if this is not the case it is still possible to employ as initial

states the set of nodes that can be found at a depth d.

6.3.3 Comparison with Quantum Finite Automata

Some of the early results regarding quantum finite automata were discussed in [121, 154]

and illustrated the consequences of applying complex amplitudes and transitions to the

computational procedures. The propose presented in [154] requires: (1) building a system

that is configure in a superposition of initial states; (2) performing unitary evolution and

(3) measuring the system. Alternatively, the method described in [121] employs multiple

measurements in order to determine whether the system is in an accepting, rejecting or

non-halting state. This initial research allowed for a number of results that illustrated some

significant differences from their classical counterparts, e.g.: quantum finite automata can

have exponentially less states than classical automata recognizing the same language [13] and

any periodic language with period n can be recognized with a quadratic improvement in the

number of states [149]. There are clear similarities between the proposed model for a quantum

production system and quantum finite automata. Namely, both models share a number of
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similar definitions regarding the use of a finite set of states, accepting or rejecting subsets of

states, input symbols and transition functions. However, there is a inherent different focus

between both approaches since the production system model differentiates itself by opting

to encode state transitions in a deterministic way through operator C, which is built in such

a way to accommodate for amplitude amplification. This contrasts with the emphasis that

is placed on amplitude induced state transitions by the finite automata models.

6.4 Conclusions

In this chapter a quantum computational model based on production system theory was

presented. Quantum computation is an inherently reversible process and as a consequence

the proposed model would also allow for a reversible decision process. Since production

systems share some key characteristics with classical tree search the proposed model also

allows for an hierarchical quantum search mechanism. The formalization of the theoretical

foundations of this approach allowed for the enumeration of the reversible and quantum

requirements. These requirements enabled the development of a method allowing for the

construction of the associated unitary operator. This proposition was then extended in

order to be combined with Grover’s algorithm. Such an approach enabled: (1) an adequate

study of the system performance to be performed; and (2) to enumerate those cases in

which the model outperforms its classical counterpart. Although this proposition is able

to compute faster, the p√
2

√
|Si| performance penalty associated with each additional bit

required is expensive, favoring the choice of models that rely exclusively on exploiting the

class of problems NP through polynomial time verifications and path superpositions.
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Chapter 7

Quantum Random Walks on

Trees

7.1 Introduction

Some of the graph dynamics considered in this work relate directly to the well-studied quan-

tum random walks on graphs (for an introduction to this research area please refer to [10],

[119] and [7]. Quantum random walks were developed as an extension to classical random

walks in order to take advantage of quantum effects such as the superposition principle

(please refer to [114] [214] for basic facts regarding random walks). Quantum random walks

were initially approached in [5], [150], [159] and [12] in one-dimensional terms, i.e. walk on a

line. The system is described in terms of a position n on the line and a direction d, i.e. |n〉|d〉
in the Hilbert space H = Hn⊗Hd where Hn is the Hilbert space spanned by the basis vectors

encoding the position and Hd the Hilbert space spanned by the vectors of the direction. The

direction register, sometimes referred to as the coin space, is initialized to a superposition of

the possible directions, in the case of a walk on a line, either left or right, and the position

n updated based on the direction of the walk. The choice of which superposition to apply

is also a matter investigated. Surprisingly, if the system is executed for t steps it behaves

rather differently than its classical random walks. Specifically, the authors found that the

system spreads quadratically faster over the line than its classical equivalent.

The initial approaches proposing quantum random walking on graphs can be found in [68],

[101], [4] and [44]. Let G(V,E) represent a d-regular graph, and let HV be the Hilbert space

spanned by states |v〉 where v ∈ V , and HE be an Hilbert space of dimension d spanned
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by basis states |1〉, · · · , |d〉. Overall, the system can be described through basis states |v〉|e〉
for all v ∈ V and e ∈ E. The common approach is to randomly select one of the edges e

adjacent to v and to update the current position of the graph, i.e. U |v〉|e〉 → |v′〉|e〉, if e has

edge points v and v′. The random selection may also be performed using a d-dimensional

coin space. Perhaps more interesting is the hitting time, i.e. the time it takes to reach a

certain vertex B starting from a vertex A. In [44] and [42] a graph example is presented

where a classical random walk would take Ω(2d) steps to reach B, where d is the depth of the

graph. However, the quantum equivalent walk can reach B in O(d2) computational steps,

providing for an exponential speedup. Other examples of quantum random walks include

how to: (1) adapt the models to perform a search (please refer to [190], [7], [14], and [11])

and (2) perform quantum image processing (please refer to [208], [207] and [206]).

Due to the hard computational problems being asked, the vast majority of these approaches

put a strong emphasis on actually determining if a node can be reached, and if so how

fast. Consequently, questions about the path leading to a pre-specified node have not been

properly addressed. For instance, this fact is explicitly pointed out in [42], namely: “Note

that although our algorithm finds the name of the exit, it does not find a particular path

from entrance to exit”. For many artificial intelligence applications the ability to answer this

question is a crucial one as it provides the basis for powerful inference mechanisms capable

of knowledge deduction. The ability to obtain the full path open measurement is a key

feature of the search system proposed in this work. Additionally, quantum random walks

incorporate previous knowledge of a graph in the form of the relationship G(V,E). This

kind of knowledge may not always be available from start, e.g. systems where new nodes are

generated based on the information accessible to a system at any given point in time. The

quantum random walk approach differs drastically from the model discussed in the previous

chapters.

Furthermore, quantum random walks can be employed in order to evaluate binary formulas,

which represent a form of tree search. Recall that tree search is a subset of elementary

graph theory. The original Grover’s algorithm can be adapted to evaluate the logical OR of

N bits. The quantum search algorithm can even be employed to evaluate AND-OR trees

in time O(
√
N logN) as was demonstrated in [37], where N is the number of nodes in

the tree. Ambainis proved that computing an AND of ORs requires time Ω(
√
N ) [6]. In

addition, every NAND formula of size N can be evaluated in time N
1
2 +o(1) [40]. Ambainis

then presented an O(
√
N ) discrete query quantum algorithm for evaluating balanced binary

NAND formulas [8], which was also proven to be optimal [9]. In [67] a continuous time

quantum random walk algorithm was presented capable of evaluating a balanced AND-OR

tree in time O(
√
N ). A discrete version of this algorithm was later presented [43] requiring

N
1
2 +o(1) queries. These results were later employed to demonstrate how to evaluate minmax
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trees with N
1
2 +o(1) queries [50].

The following sections review and describe how to adapt existing quantum search methods

and are organised as follows: Section 7.2 presents the formal definition of the problem; Section

7.3 presents the main results regarding quantum random walks on graphs and extends the

existing framework such that the computational path is obtained; Section 7.4 compares both

methods and illustrates the key differences between them from a tree search perspective;

Section 7.5 provides some additional insight regarding the dynamics and impacts associated

with set E; the overall conclusions of this chapter are presented in Section 7.6.

7.2 Problem

Tree search can be seen as a subset of elementary graph theory, i.e. an acyclic connected

graph where each node has zero or more children nodes and at most one parent node. Graph

theory assumes a pivotal dimension in computer science, where it is usually employed in

order to depict transitions between different computational states. In its most simple form a

graph depicts a set of points, referred to as vertexes, that may or may not be interconnected

through edges [192]. A generic graph G can be represented as a pair G = (V,E) where V and

E represent, respectively, the sets of vertexes and edges. The number of edges at a particular

vertex is referred to as the degree of a vertex. Depending on the particular problem being

solved, the degree may or may not be constant.

Graph search problems can be represented as a tuple (V,E, Si, Sg) comprising, respectively,

(i) the set of all possible vertexes representing system states; (ii) the set of possible edges

of the form (x, y) representing transitions from state x to state y; (iii) a set of initial states

with Si ⊆ V and (iv) a set of goal states with Sg ⊆ V . Elementary graph algorithms

traditionally focus on searching a graph, i.e. systematically following the edges of the graph

so as to visit the vertices of the graph [52]. The objectives of the search can be various but

typically include discovering specific details about the structure of the graph, determining

the presence of certain vertexes or can also focus on the specific details regarding possible

sequences of edges.

One of the most important tasks resides in determining a sequence of edges P , also known

as path, capable of leading the system from an initial state to a goal state, as illustrated by

Expression 7.1, where d ∈ Z+ is referred to as the solution depth and 1 ≤ k ≤ d. Determining

P is important because it reflects a type a logical process of transitions responsible for

performing an adequate system evolution. Representative examples include determining the

sequence of moves in a game of chess leading to a victory [112], solving Rubik’s cube, or
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developing general mechanisms for problem solving [130].

P := ((x1, x2), (x2, x3), · · · , (xd−1, xd)|xk ∈ V, x1 ∈ Si, xd ∈ Sg) (7.1)

This procedure is illustrated in Figure 7.1, where vertex A is the initial state and vertex E

the goal state. Accordingly, possible examples of computational paths leading from A to E

include the sequences of edges ((A,B), (B,E)) and ((A,C), (C,D), (D,E)).

A B

C D

E

(A,B)

(A,C)

(B,E)

(D,E)

(C,D)

(C,B) (B,D)

Figure 7.1: A graph with five vertexes and seven edges.

Graph search procedures based on quantum random walks only focus on obtaining goal states,

and do not take into account the dynamics associated with determining the corresponding

computational path P . Given that this is such a crucial task in many computational prob-

lems, the question naturally arises of how P can be determined? Namely, how can quantum

random walks be adapted such that P is obtained? More specifically, what are the mech-

anisms available, alongside respective requisites and limitations. In addition, it would also

be important to determine how such an approach would fare against our original proposi-

tion for performing tree search based on Grover’s algorithm, not only from a computational

perspective but also performance-wise.

7.3 Paths on Quantum Random Walks

There are two types of quantum random walks, namely, discrete- and continuous-time. Both

approaches perform a random walk without intermediate measurements. In classical models

of computations such as the Turing machine a computational procedure is specified through a

set of discrete transitions associating input states to output states. A discrete and finite space

is also important when such systems need to be simulated on a classical finite computer [119].

As a result, the results presented in this chapter will focus on discrete-time quantum random
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walks since they allow for a simple mapping between previously discussed concepts. The

following sections are organised as follows: Section 7.3.1 provides the necessary details for

understanding quantum random walks on graphs; Section 7.3.2 describes how to extend these

concepts in order to store the computational path performed.

7.3.1 Original Quantum Random Walk on Graphs

The simplest discrete-time quantum random walk on a graph G = (V,E) can be described

by a unitary operator U acting upon a Hilbert space H = HS⊗HC , where HS represents the

space associated with vertexes of the graph whilst HC is associated with a “coin space” [190].

The coin operation owns its name from the classical random walk where a destination state

would be chosen according to some probabilistic distribution. Operator U can be described

as presented in Expression 7.2 [4], which is obtained through a composition of operators S

and C. Each step of the quantum walk can be perceived as consisting of two operations,

namely [41]: (1) building a superposition over the appropriate neighbour states; and (2)

moving the system state to the new target destination. Additionally, operator U employs

states of the form |j〉|k〉, where (j, k) ∈ E.

U = SC (7.2)

Operator C is responsible for building a superposition in register |k〉 spanning the neighbours

of j. This behaviour is presented in Expression 7.3 (adapted from [211]), where deg(j)

represents the degree of vertex j, i.e. the number of edges at vertex j [192]. Let Pj,k represent

the probability of making a transition from j to k, then in order to preserve unit-length

normalization required by quantum states
∑|V |
k=1 Pj,k = 1. Assuming a uniform distribution

amongst the neighbours of a vertex j this is equivalent to
∑
m:(j,m)∈E

1
deg(j) = 1.

C|j〉|k〉 → |j〉 1√
deg(j)

∑
m:(j,m)∈E

|k ⊕m〉 (7.3)

The state |j, k〉 obtained after applying the coin operator indicates to operator S that the

system should be moved from state j to state k. Subsequently, operator S performs a

conditional shift based on the state of the coin space, as illustrated by Expression 7.4. The

overall effect of Expression 7.2 emphasizes the notion that the quantum random walk takes

places on the edges of the graph.

S|j〉|k〉 → |k〉|j〉 (7.4)
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In [190] the authors proposed an approach capable of obtaining goal states when searching

N elements in time O(
√
N ). Given that N = |V | this can be restated as O(

√
|V | ). Initially,

the goal states are marked through an oracle operator O|x〉|y〉 → |x〉|y ⊕ f(x)〉, where f(x)

is a function that return 1 when x is a solution and 0 otherwise. Oracle operators can be

perceived as simple verification procedures that verify membership for a given language L.

This procedure effectively results in an amplitude flipping of the marked states when |y〉 is

initialized in the superposition 1√
2

(|0〉−|1〉). The authors then proceed by reformulating the

coin operator in order to perform Grover’s diffusion operator [82], which was first proposed

in [153]. The reformulated coin operator C is presented in Expression 7.5.

C|j〉|k〉 → |j〉

 2√
deg(j)

∑
m:(j,m)∈E

|k ⊕m〉〈k| − I

 (7.5)

The quantum random walk search algorithm first initializes the system state |j〉|k〉 to a

uniform superposition |ψi〉 covering all vertexes in a graph G and the respective neighbours,

as illustrated by Expression 7.6. State |ψi〉 can be obtained by applying n Hadamard gates

to state |0〉, i.e. H⊗n|0〉, where n is the number of bits required to encode the elements in H.

This procedure assumes that the number of states employed is a power of two, which simplifies

analysis. However, for the remaining cases this procedure may have an adverse impact on

system performance since a larger than necessary search space needs to be examined [199].

The algorithm then proceeds by applying the oracle followed by unitary operator SC. This

process is repeated for π
2

√
2n times allowing for a superposition state |ψf 〉 to be obtained

that is primarily composed of the marked state. Each application of SC effectively increases

the amplitude of the goal state [190]. However, as the authors point out, |ψf 〉 also possesses

small contributions from the closest neighbours to the solution state [190]. The procedure

is concluded by performing a measurement on the quantum register, yielding with high

probability a solution state.

|ψi〉 =
1√
|V |

∑
v∈V
|v〉 1√

deg(v)

∑
m:(v,m)∈E

|m〉 (7.6)

7.3.2 Adapting Quantum Random Walks

In order for the computational path performed by the walk to be stored an auxiliary operator

needs to be introduced, respectively Rt. The operator is responsible for copying the edge

transition performed at time step t of the walk to an additional memory register |m〉. This

register should have an adequate length in order to store the appropriate sequence of transi-
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tions. Accordingly, since the algorithm requires O(
√
|V | ) time this means that |m〉 should

have length d =
√
|V | , i.e. |m〉 = |m0,m1, · · · ,md−1〉. This behaviour is illustrated in

Expression 7.7 where mk represents an individual auxiliary memory slot with n = dlog2 |E|e
bits. As a result the overall memory register |m〉 will require d × n bits. After each step t

of the quantum walk, the application of operator Rt ensures that, for each element of the

superposition, the associated transition will be stored in register |m〉. This procedure is

performed by applying the reversible action mt ⊕ (j, k).

Rt|j, k〉|m0,m1, · · · ,md〉 → |j, k〉|m0,m1, · · · ,mt ⊕ (j, k), · · · ,md−1〉 (7.7)

Operator Rt is unitary since it performs a bijection between input and output states. Namely,

any irreversible logical function f can be made reversible by introducing a constant number

of auxiliary input and output bits to a logical gate [118]. This procedure produces as a result

a unitary operator Uf |x〉|y〉 → |x〉|y⊕ f(x)〉. Since the original input states |j〉, |k〉, and the

auxiliary memory slots mk are part of the outputs it immediately follows that Rt is unitary.

The original version of the algorithm would require an operator of the form (SC)d. However,

the introduction of operator Rt also requires that index t is properly updated. The overall

operator sequence for a quantum walk requiring d steps is described in Table 7.1. Once the

final measurement on superposition |ψf 〉 is performed the computational state will translate

not only the goal state obtained but also the computational path leading to it.

Walk length Operator Sequence

1 (R0SC)|ψ〉
2 (R1SC)(R0SC)|ψ〉
...

...
d (Rd−1SC)(Rd−2SC) · · · (R0SC)|ψ〉

Table 7.1: Operator sequence for the modified quantum random walk search algorithm.

7.4 Comparison against the quantum production sys-

tem model

Although both quantum randoms walks and the quantum production system deliver a

quadratic speedup over their classical counterparts, they nonetheless still grow in an ex-

ponential manner, albeit expressed as different functions. Namely, quantum random walks

execute in time O(
√
|V | ) whilst Grover’s algorithm upper-bound complexity is O(

√
bd ).

Hence, how do these functions compare against each other? First, it is important to analyse
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how these functions behave in the context of tree search. Note that with tree search the di-

mension of set V grows exponentially fast, since each additional level of depth adds bd to V .

As a result, the method based on quantum random walks will need to evaluate b0+b1+· · ·+bd

states. In contrast, the approach based on Grover’s algorithm will only evaluate the possible

computational paths, which represent the number of leaf nodes, respectively bd. In practice

the latter should outperform the former since bd < b0 + b1 + · · · + bd. But precisely how

much of an improvement is obtained? Since quantum random walks need to examine more

states, Grover’s algorithm performance can be viewed as the standard to which to compare.

This means that random walks will perform an additional effort relatively to the quantum

search algorithm. Accordingly, it is possible to represent the supplementary effort performed

as a function of the branching factor b and depth d, respectively ξ(b, d), as illustrated in

Expression 7.8. For d > 0, ξ(b, d) > 1 since the last term of the series is bd

bd
= 1.

ξ(b, d) =

∑d
k=0 b

k

bd
=

1

bd
1− bd+1

1− b
(7.8)

Figure 7.2 illustrates the additional effort required to search a binary tree up to depth level

d = 100. As it is possible to verify the function rapidly grows until approximately depth

level d = 25 but then stabilizes when ξ ' 2. In practice, this means that for this specific

case both approaches differ in complexity by a constant factor of two. Hence, if Grover’s

algorithm considers bd = 2d paths, the random walk approach will need to evaluate twice the

number of nodes, i.e. 2× 2d = 2d+1. Consequently, for binary tree search this is equivalent,

performance-wise, to extending the search by an additional depth limit, which represents a

significant hindrance. This result is also valid from a classical point of view.

Expression 7.8 represents a geometric series with a common ratio of b, which for non-trivial

computation is always greater than one. As a result the series will never fully converge.

This fact makes it difficult to predict exactly how ξ will behave as both b and d grow

towards infinity. The analysis is somewhat simplified if Expression 7.2 is perceived as a

ratio of exponential growth functions. As a result, the last last p terms of the series can be

perceived as being the ones that contribute the most to the effort performed. The initial

d − p terms drop off suddenly and stop contributing in a meaningful manner to the overall

effort. This p-error approximation is presented in Expression 7.9, where p ∈ N is chosen so

that d− p ≥ 0.

ξ(b, d, p) =

∑d
k=d−p b

k

bd
=
bd−p + bd−p+1 + · · ·+ bd−1 + bd

bd
=

1

bp
+

1

bp−1
+· · ·+ 1

b1
+

1

b0
(7.9)
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Figure 7.2: The additional effort performed by quantum random walks relatively to
Grover’s algorithm when searching a binary tree up to depth level 100.

By focusing on the p-error it becomes possible to effectively forgo the depth variable from

the equation. As b grows towards infinity, and assuming a constant error p, the only relevant

term will be the last one, respectively bd

bd
. Hence, up to p-error, limb→+∞ ξ(b, d, p) = 1.

The constant factor of two presented in Figure 7.2 thus illustrates an optimal performance

gain, since any increases in branching factor and depth will only exacerbate the rate at

which the remaining elements, other than the last one, stop contributing significantly to the

effort.

7.5 Final Considerations

For some specific applications knowing in advance the precise form of sets V and E maybe

problematic given the sheer number of possibilities to consider, and consequently, to specify.

For example, picture a chess playing application where V may be represented in more general

terms as V := {x|x is an admissible chess state}. The same process could be applied to

set E, since it would also be infeasible to completely specify all possible edges. In these

situations, this issue is usually tackled through the use of symbolical rules γ belonging to

a set R, which has the form presented in Expression 6.1, where Γ∗ is a set of strings over

a finite nonempty set Γ. The elements of Γ∗ are an integral component of the overall state
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description. The application of any of these rules effectively verifies if an input state x meets

certain conditions, and if so performs a computational action that results in a transition to

state y, respectively represented by the tuple ((x, y), γ), where x, y ∈ V and γ ∈ R.

Notice that a single rule γ has the potential to: (1) be applied to multiple input states

depending on whether or not the conditions are met by these; and (2) generate multiple

output states depending on the original node. This process is represented in Figure 1.1.

Suppose that node K in Figure 1.1 is a goal state, then the computational path leading to

it can be perceived as applying the sequence of rules 0, 1, 1 which map, respectively, to the

transitional tuples ((A,B), 0), ((B,E), 1) and ((E,K), 1).

By employing set R one can obtain the same computational behaviour represented by the

original set of transitions E, although through a much smaller specification. In order to

accommodate for these requirements, the specific terms of the definition may be modified

such that a stronger emphasis is placed on determining sequences of rules that lead to goal

states. Accordingly, it is possible to represent such problems by a tuple (V,R, Si, Sg), and

where the overall objective consists in determining P , but this time reformulated in order to

store sequence of rules, as illustrated in Expression 7.10.

P := (((x1, x2), γ1), ((x2, x3), γ2), · · · , ((xd−1, xd), γd)|xk ∈ V, x1 ∈ Si, xd ∈ Sg, γi ∈ R)

(7.10)

Expression 7.10 can be simplified since it is a simple task to determine a successor state y

given an input state x alongside a rule γ. Accordingly, it suffices to merely keep track of

the sequence of rules performed, since the original edges of a path P can be reconstituted in

linear time given an initial state i ∈ Si, as presented in Expression 7.11.

P := (γ1, γ2, · · · , γd|γi ∈ R) (7.11)

Although both approaches achieve the same functional purposes of determining P they differ

substantially on the costs required for obtaining the computational path. Namely, the use

of rules allows one to describe a set R that will impose a maximum branching factor b.

As a result the computation would execute in O(
√
bd ) time. Alternatively, employing a

traditional graph representation would require specifying bd edges, which by itself would

involve an exponential amount of time. Ultimately, such a procedure would yield an O(bd)

time complexity since there is a “hidden cost” associated with generating V .
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7.6 Conclusions

This chapter described how to adapt quantum random walks in order to store the paths

leading to solutions states. Additionally, the results presented also described that the best

result one should expect, performance-wise, is a constant speedup of two that tends to di-

lute when the branching factor is increased. Although both approaches provide a quadratic

speedup relatively to their classical counterparts, they are intrinsically different. The path

approach based on quantum random walks performs in O(
√
|V | ) time and upon measure-

ment produces a path whose length grows as a function of the search space. This means

that typical exponential growth search spaces will also deliver a computational path with an

exponential number of transitions. With quantum random walks not only is the complexity

exponential time-wise but the space required to store the path also grows exponentially fast.

Further, the path obtained may be non-optimal since nothing in quantum random walks

theory prevents loops from occurring.

The quantum production system method allows for a time of O(
√
bd ) with the associated

path length expressed as a function of the search depth d, which grows linearly. In addition

there is a greater control over what computational paths should be processed since one has

the ability to build path-verifying oracle operators. Although this may first be perceived as

advantageous over quantum random walks it is not clear how to perform node evaluation

that requires non-linear transversal of the tree. Namely, it would be interesting to determine

how to evaluate a node whose value is calculated as a function of its children, which is

precisely the type of computational behaviour required by procedures such as the minimax

algorithm. This difficulty arises since each state of the superposition represents individual

computational paths.

Accordingly, with the current formulation of these procedures, deciding which of the two

methods should be employed is a matter of elaborating a careful analysis of the problem

being tackled. If no requisites exist involving the analysis of a node based on the forest of

nodes starting at it, then the method based on Grover’s algorithm is adequate. Otherwise,

the approach based on random walks is the most suitable.
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Chapter 8

Quantum Iterative Deepening

with an application to the

Halting problem.

8.1 Introduction

Classically, the status of any computation can be determined through a halt state. The con-

cept of the halting state has some important subtleties in the context of quantum computa-

tion. Ekert draws attention to this fact stating that there are two possibilities to circumvent

such an issue, namely [65]: either run the computation for some predetermined number of

steps or alternatively employ a halt flag. This flag is then employed by a computational

model to signal an end of the calculation. Traditionally, such a flag is represented by a halt

bit, which is initialized to 0 and set to 1 once the computation terminates. Accordingly,

determining if a computation has finished is simply a matter of checking if the halt bit is set

to 1, a task that can be accomplished through some form of periodic observation.

Furthermore, there is a class of computational problems, respectively undecidable problems

(such as the famous Entscheidungsproblem challenge proposed by Hilbert in [97]), for which

no solution can be found no matter how much time and space is provided to the algorithmic

process. As a result, any computational model that is employed in order to try to solve these

problems require the ability to proceed indefinitely. Classically, the recurrent observation

of a halt bit that is required can be performed without affecting the overall result of the

calculation. Undecidable problems are important because they demonstrate the existence of
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a class of problems that does not admit an algorithmic solution no matter how much time

or spatial resources are provided. This result was first demonstrated by Church [47] and

shortly after by Turing [205].

8.1.1 Problem

Deutsch [57] was the first to suggest and employ such a strategy in order to describe a

quantum equivalent of the Turing machine, which employs a compound system |r〉 expressed

as a tensor of two terms, i.e. |r〉 = |w〉|h〉, spanning a Hilbert space Hr = Hw ⊗ Hh. The

component |w〉 represents a work register of unspecified length and |h〉 a halt qubit, which is

used in an analogous fashion to its classical counterpart. However, Deutsch’s strategy turned

out to be flawed, namely suppose a unitary computational procedure C acting on input

|x〉 is applied d times and let dC,x represent the number of steps required for a procedure

C to terminate on input x. Then it may be possible that there exist i and j for which

dC,i < d < dC,j ,∀i 6= j. Now, consider what happens when such a behaviour is observed

and |w〉 is initialized as a superposition of the computational basis. Then those states which

only require a number of computational steps less than or equal to d in order to terminate

will have the halt qubit set to |1〉, whilst the remaining states will have the same qubit set

to |0〉. This behaviour effectively results in the overall superposition state |w〉|h〉 becoming

entangled as exemplified by Expression 8.1, where n represents the number of bits used by

|w〉.

1√
2n

2n−1∑
x=0

Cd|x〉︸ ︷︷ ︸
|ψ〉

|0〉 =



| 00 · · · 0︸ ︷︷ ︸
n bits

〉|0〉 =⇒ dC,00···0 > d

|00 · · · 1〉|1〉 =⇒ dC,00···1 ≤ d
...

|11 · · · 0〉|1〉 =⇒ dC,11···0 ≤ d

|11 · · · 1〉|0〉 =⇒ dC,11···1 > d

(8.1)

More generally, suppose that the compound system after the unitary evolution Cd is in the

entangled state represented by the right-hand side of Expression 8.2. Also, assume that the

probability of observing the halting qubit |h〉 with outcome k is P (k) =
∑2n−1
x=0 |αx,k|2. The

projection postulate implies that a post observation state of the whole system is obtained as

the one illustrated in Expression 8.3, where the system is projected to the subspace of the

halting register and renormalized to the unit length [99].
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1√
2n

2n−1∑
x=0

Cd|x〉|0〉 =

2n−1∑
x=0

1∑
j=0

αx,j |x〉|j〉 (8.2)

1√
P (k)

2n−1∑
x=0

αx,k|x〉|k〉 (8.3)

Consequently, observing the halt qubit after d computational steps have been applied, will

result in the working register containing either: (1) a superposition of the non-terminating

states; or (2) a superposition of the halting states. Such behaviour has the to dramatically

disturb a computation since: (1) a halting state may not always be obtained upon measure-

ment due to random collapse, if indeed there exists one; and (2) any computation performed

subsequently using the contents of the working register |w〉may employ an adulterated super-

position with direct consequences on the interference pattern employed. Roughly speaking,

there is no way to know whether the computation is terminated or not without measuring the

state of the machine, but, on the other hand, such a measurement may disturb the current

computation.

8.1.2 Current approaches to the quantum halting problem

Ideally, one could argue that any von Neumann measurement should only be performed

after all parallel computations have terminated. Indeed, some problems may allow one to

determine max dC,|x〉,∀|x〉 ∈ |ψ〉, i.e. an upper-bound dC,x on the number of steps required

for every possible input x present in the superposition. However, this procedure is not viable

for those problems which, like the Entscheidungsproblem, are undecidable. Bernstein and

Vazirani subsequently proposed a model for a universal quantum Turing machine in [27],

which did not incorporate into its definition the concept on non-termination. Although their

model is still an important theoretical contribution it is nonetheless only capable of dealing

with computational processes whose different branches halt simultaneously or fail to halt at

all. These same arguments were later employed by Myers in [158] who argues that it is not

possible to precisely determine for all functions that are Turing-computable, respectively µ-

recursive functions, the number of computational steps required for completion. Additionally,

the author also states that the models presented in [57] and [27] cannot be qualified as being

truly universal since they do not allow for non-terminating computation. The work described

in [27] is also restricted to the class of quantum Turing machines whose computational paths

are synchronized, i.e. every computational path is synchronized in the sense that they must

each reach an halt state at the same time step. This enabled the authors to sidestep the

halting problem.
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Following Myers observation of the conflict between quantum computation and system obser-

vation a number of authors provided meaningful contributions to the question of halting in

quantum Turing machines. Ozawa [167] [166] proposed a possible solution based on quantum

nondemolition measurements, a concept previously employed for gravitational wave detec-

tion. Linden [139] argued that the standard halting scheme for Turing machines employed

by Ozawa is unitary only for non-halting computations. Additionally, the author described

how to build a quantum computer, through the introduction of an auxiliary ancilla bit that

enabled system monitoring without spoiling the computation. However, such a scheme in-

troduced difficulties regarding different halting times for different branches of computation.

These restrictions essentially rendered the system classical since no useful interference oc-

curred. In [168] expands the halting scheme described in [167] in order to introduce the

notion of a well-behaved halting flag, which is not modified upon completion. The author

showed that the output probability distribution of monitored and non-monitored flags is

the same. Miyadera proved that no algorithm exists capable of determining if an arbitrar-

ily constructed quantum Turing machine halts at different computational branches [152].

Iriyama discusses halting through a generalized quantum Turing machine that is able to

evolve through states in a non-unitary fashion [117].

Measurement-based quantum Turing machines as a model for computation were defined in

[171] and [170]. Perdrix explores the halting issue by introducing classically-controlled quan-

tum Turing machines [173], in which unitary transformations and quantum measurements

are allowed, but restricts his model to quantum Turing machines that halt. Muller shows

the existence of a universal quantum Turing machine that can simulate every other quantum

Turing machine until the simulated model halts, which then results in the universal machine

halting with probability one [156, 157]. The author describes operators that do not disturb

the computation as long as the original input employed halts the calculation process. This

requires presenting a precise definition of the concept of halting state, resulting in parts of

the domain being discarded since some of those requirements are not met.

In [61] a method is presented for verifying the correctness of measurement-based quantum

computation in the context of the one-way quantum computer described in [180]. This type

of quantum computation differs from the traditional circuit based approach since one-qubit

measurements are performed on an entangled resource labeled as a cluster state in order

to mold a quantum logic circuit on the state. With each measurement the entanglement

resource is further depleted. These results are further extended in [181] in order to prove

the universality of the computational model. Subsequently, in [34] these concepts were used

in order to prove that one-way quantum computations have the same computational power

as quantum circuits with unbounded fan-out. Perdrix [172] discusses partial observation of

quantum Turing machines, which preserve the computational state through the introduction
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of a weaker form of the original requirements of linear and unitary δ functions suggested by

Deutsch in [57]. Recently, [151] proved that measurements performed on the (X,Z)-plane

of the Bloch sphere over graph states is a universal measurement-based model of quantum

computation.

The topic of quantum halting has also been approached from the perspective of a Markov

chain model of concurrent quantum programs (please refer to [218, 216]). In addition, such

an approach also allows for a characterization of reachable space and uniformly repeatedly

reachable space. The authors derive a quantum version of a classical model of probabilistic

concurrent programs presented in [93]. In classical concurrent program execution, each

procedure is perceived as executing in sequence for a given amount of time. As a result, no

two processes ever execute simultaneously [93]. The quantum extension is also developed

with this type of sequential program execution in mind. Therefore, the question of how

to represent parallel program execution through a superposition state does not arise. This

behaviour allows for a measurement to be performed after each execution step which decided

whether or not the computation should proceed without disturbing the computation. In [217]

the authors propose a method to remove multiple measurements from quantum random walk

which requires: (1) extending the Hilbert space by adding a register for step counting; and (2)

modifying the evolution operator in order to accommodate for such an extension. Afterwards,

the authors show that the extended version of the walk not only shares the original concurrent

hitting time but also a one shot hitting time at specific steps. This behaviour is employed

to produce an amplitude amplification technique that delivers a quadratic speedup over the

original walk with success probability O(1).

8.1.3 Objectives

In his seminal paper [57], Deutsch emphasizes that a quantum computer needs the abil-

ity to operate on an input that is a superposition of computational basis in order to be

“fully quantum”, When confronted with the halting issue Myers naturally raised the ques-

tion if a universal quantum computer could ever be fully quantum? And how would such

a computational model eventually function? This chapters aims to provide an answer to

these questions by extending the quantum production system previously described. This

extension is employed in order to gain additional insight into the matter of halting and uni-

versal computation from a different perspective than that of the standard quantum Turing

machine.

As Miyadera stated, the notion of probabilistic halting in the context of quantum Turing

machines cannot be avoided, suggesting that the standard halting scheme of traditional

quantum computational models needs to be reexamined [152]. The proposal described in
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this chapter is essentially different from the ones previously discussed since it imposes a strict

notion of how the computation is performed and progresses in the form of the sequence of

instructions that should be applied. The proposed method evaluates d-length sequences of

instructions representing different branches of computation, enabling one to determine which

branches, if they exist, terminate the computation. Underlying the proposed model will be

Grover’s algorithm in order to amplify the amplitude of potential halting states, if such states

exist, and thus avoiding obtaining a random projection upon measurement. As a result, the

computational complexity associated with such a model will be described in order to show

that it does not differ from that of Grover’s algorithm.

The work described in this chapter focuses on: (1) preserving the original principles proposed

by Deutsch of linearity and unitary operators, in contrast with other proposals such as

[172] and [117], which perform modifications to the underlying framework; (2) developing

a model which considers all possible computational paths and (3) works independently of

whether the computation terminates or not taking into account each possible computational

path. Additionally, some of the implications of being able to circumvent the halting problem

will also be considered. Computation universality is a characteristic attribute of several

classical models of computation. For instance, the Turing machine model was shown to be

equivalent in power to lambda calculus and production system theory. Accordingly, it would

be interesting to determine what aspects of such a relationship are maintained in the context

of quantum computation. Namely, it would be interesting to determine if it is possible to

simulate a classical Turing machine given a quantum production system.

8.1.4 Organisation

The ensuing sections are organised as follows: Section 8.2 presents the details of a model

capable of dealing with the halting issue; Section 8.3 demonstrates how such a model can

be employed in order to coherently simulate a classical Turing machine. The conclusions are

presented in Section 8.4.

8.2 Quantum Iterative Deepening

Universal models of computation are capable of calculating µ-recursive functions, a class of

functions which allow for the possibility of non-termination. These functions employ a form

of unbounded minimalization, respectively the µ-operator, which is defined in the following

terms [138]: let k ≥ 0, c ∈ N, m ∈ N and g : Nk+1 → N, then the unbounded minimization of g

is function f : Nk+2 → N as illustrated in Expression 8.4, for any n̄ = n1, · · · , nk ∈ Nk.
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f(g, n̄, c) =

{
the least m such that g(n̄,m) = c , if such an m exists

0 , otherwise
(8.4)

The unbounded minimization operator can be perceived as a computational procedure re-

sponsible for repeatedly evaluating a function with different inputs m until a target condition

g(n̄,m) = c is obtained [195]. However, as illustrated by Expression 8.4, there is no guar-

antee that the target condition will ever be met. Accordingly, it is possible to express

the inner-workings of f as an iterative search that may never terminate, as illustrated in

Algorithm 1. Notice that although µ-recursive functions employ a collections of variables

belonging to the set of natural numbers, for practical purposes these values are restricted

by architecture-specific limits on the number of bits available for representing the range of

possible values.

Algorithm 1 The classical µ-operator (adapted from [195])

1: function f(g, n̄, c)
2: m← 0
3: while g(n̄,m) 6= c do
4: m← m+ 1
5: return m

From a quantum computation perspective, it is possible to perform a generic search for

solution states through amplitude amplification schemes such as the one described by Grover

in [82] and [80]. This section discusses how to combine production system theory alongside

the quantum search algorithm in order to develop a new computational model better suited

to deal with the halting issue.

The next sections are organised in the following manner: Section 8.2.1 proposes an oracle

formulation of a the quantum production; Section 8.2.2 focuses on how to integrate these

components into a single unified approach for a computational model based on production

system theory capable of proceeding indefinitely without affecting the overall result of the

computation; Section 8.3 presents a simple mapping mechanism of how the method described

can be used to simulate a classical Turing machine.

8.2.1 Quantum Production System Oracle

A comparison of Expression 8.5 and Expression 3.27 allows one to reach the conclusion that

oracle O performs a verification whilst C focuses on executing an adequate state evolution.

Therefore, an alternate mechanism needs to developed that behaves as if performing a ver-

ification. This can be done by focusing on one of the main objectives of production system
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theory, namely that of determining the sequence of production rules leading up to a goal

state. Formally, it is of particular interest to establish if an initial state i ∈ Si alongside a

sequence of d productions rules {r1, r2, · · · , rd} ∈ R leads to a goal state g ∈ Sg. If the se-

quence of rules leads to a goal state, then the computation is marked as being in a halt state

h, otherwise it is flagged to continue c. It is therefore possible to proceed with a redefinition

of the control function presented in Expression 6.5, as illustrated in Expression 8.5, which

closely follows the oracle definition presented in Expression 3.27.

C : Γ∗ ×Rd × {h, c} − C (8.5)

Recall that the oracle operator is applied to register |r〉 = |w〉|h〉. Register |w〉 is represented

as a tensor of two products, namely |w〉 = |s〉|p〉, where |s〉 is responsible for holding the

binary representation of the initial state and |p〉 contains the sequence of productions. Reg-

ister |h〉 is used in order to store the status s of the computation. Additionally, the revised

version of the quantum production system C with oracle properties should also maintain

a unit-norm, as depicted by Expression 8.6, ∀γ ∈ Γ∗. For specific details surrounding the

construction of such a unitary operator please refer to [198].

∑
∀(r1,r2,··· ,rd,s)∈Rd×{h,c}

|C(γ, r1, r2, · · · , rd, s)|2 = 1 (8.6)

Any computational procedure can be described in production system theory by specifying

an appropriate set of production rules that are responsible for performing an adequate state

evolution. This set of production rules can be applied in conjunctions with a unitary operator

C incorporating the behaviour mentioned in Expression 8.5 and Expression 8.6. In doing

so it is possible to obtain a derivation of a production system that can be combined with

Grover’s algorithm. From a practical perspective, |p〉 can be initialized as a superposition

over a set PR,d representing the sequence of all possible production rules ∈ R up to a depth-

level d, as illustrated by Expression 8.7 and Expression 8.8. Implicit to these definitions is

the assumption that set P has a total of bd possible paths.

PR,d := {sequence of all possible production rules ∈ R up to a depth-level d} (8.7)

|p〉 =
1√
bd

∑
∀x∈PR,d

|x〉 (8.8)

Traditionally, throughout a computation set Si remains static in the sense that it does not
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grow in size. However, variable d is constantly increased in order to generate search spaces

covering a larger number of states. As a result, given a sufficiently large depth value the

number of bits required for PR,d will eventually surpass the amount of bits required to encode

set Si. Accordingly, in the reasonable scenario where the number of bits required to encode

the sequence of productions over PR,d is much larger than the number of bits required to

encode the set of initial states Si, i.e. log2 |PR,d| � log2 |Si|, then the most important factor

to the dimension of the search space will be the number of productions.

8.2.2 General procedure

Any approach to a universal model of quantum computation needs to focus on two main

issues, namely: (1) how to circumvent the halting problem and (2) how to handle compu-

tations that do not terminate without disturbing the result of the procedure. The following

sections describe the general procedure. Initially, Section 8.2.2 will focus on the second re-

quirement given that it provides a basis for model development by establishing the parallels

between µ-theory and production system theory. Section 8.2.2 then describes how these

arguments can be utilized in order to develop a computational model capable of calculating

µ-recursive functions. Section 8.2.2 describes how such a proposal is essentially non-different,

complexity-wise, from the original Grover algorithm employed.

Parallels between µ-theory and production system theory

Universal computation must allow for the possibility of non-termination, a characteristic that

is achievable through the ability to calculate µ-recursive functions. Therefore, the question

naturally arises if it is possible to develop a quantum analogue of the iterative µ-operator?

By itself µ-recursive functions are not seen as a model of computation, but represent a class

of functions that can be calculated by computational models. Accordingly, it would be

interesting to determine if it is possible to develop a quantum computational model, namely

by employing the principles of production system theory, capable of calculating µ-recursive

functions without affecting the end result.

In order to answer this question it is important to first start by establishing some par-

allels between these concepts. Namely, consider the µ-operator presented in Algorithm 1

that receives as an argument a tuple (g, n̄, c) and a production system defined by the tuple

(Γ, Si, Sg, R, C). Accordingly, parameter g can be perceived as a control strategy C respon-

sible for mapping a set of symbols Γ in accordance with a set of rules R. Variable n̄ can be

interpreted as an element of the set of initial states, i.e. i ∈ Si. The target condition c can be

understood as the set of goal states Sg. In addition, the unbounded minimization operator
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employs a parameter m that represents the first argument where the target condition is met.

Analogously, from a production system perspective, variable m can be viewed as the first

depth d where a solution to the problem can be found. Finally, the condition g(n̄,m) 6= c of

the while loop is equivalent to applying the control strategy C at total of d times, i.e. Cd,

and evaluating if a goal state was reached.

Iterative Search

The fact that such mappings can be performed hints at the possibility of being able to

develop a quantum equivalent of the µ-operator based on production system fundamentals.

All that is required is a while loop structure, mimicking the iterative behaviour of the µ-

operator, that exhaustively examines every possibility for d alongside C, until a goal state is

found. The quantum production system oracle presented in Expression 8.5 can be combined

alongside Grover’s iterate for a total of
√
bd times in order to evaluate a superposition of

all the available sequences of productions up to depth-level d, i.e. PR,d. After applying

Grover’s algorithm, a measurement M can be performed on the superposition. If the state

ξ obtained is a goal state, then the computation can terminate since a solution was found at

depth d.

This process is illustrated in Algorithm 2, which receives as an argument a tuple (Γ, i, Sg, R, C),

where i is an initial state, i.e. i ∈ Si. The procedure is represented as a form of pseudocode

that is in accordance with the conventions utilized in [52], namely: (1) indentation indicates

block structure, e.g. the set of instructions of the while loop that begins on line 5 consists

of lines 6-14; (2) the symbol ← is used to represent an assignment of a variable; and (3) the

symbol . indicates that the remainder of the line is a comment.

Line 8 is responsible for applying the oracle alongside an initial state and all possible se-

quences of productions. Recall that register |h〉 will be set if goal states can be reached.

Line 9 is responsible for applying Grover’s algorithm. If goal states are present in the super-

position, then Grover’s amplitude amplification scheme allows for one of them to be obtained

with probability | sin [ θ2 (π2

√
bd

k + 1)]|2 [164], where k represents the number of solutions and

θ = 2 arccos (
√

bd−k
bd

). It is possible that state |ψ2〉 contains a superposition of solutions.

Therefore, measuring the system in Line 10 will result in a random collapse amongst these.

If the measurement returns an halt state, then register |p〉 will contain a sequence of pro-

ductions leading to a goal state. Once the associated sequence has been obtained one has

only to apply each production of the sequence in order to determine precisely what was the

goal state obtained [198] (Line 11). Otherwise, the search needs to be expanded to depth

level d+ 1 and the production evaluation process repeated from the start. As a result, this
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Algorithm 2 Quantum Iterative Deepening

1: function f(Γ, i, Sg, R, C)
2: d← 0
3: ξ ← ∅
4: |s〉 ← i
5: while true do
6: |p〉 ← 1√

bd

∑
∀x∈PR,d

|x〉 . Build superposition of productions

7: |h〉 ← 1√
2

(|0〉 − |1〉)
8: |ψ1〉 ← Cd|s〉|p〉|h〉 . Mark if goal states exist at depth d

9: |ψ2〉 ← G
√
bd |ψ1〉 . Apply Grover’s iterate

10: ξ ←M |ψ2〉 . Measure the superposition
11: if ξ ∈ Sg
12: return ξ . If a goal state was found terminate
13: else
14: d← d+ 1 . Otherwise, continue searching

procedure requires building a new superposition of productions PR,d+1 each time a solution

was not found in PR,d.

Due to the probabilistic nature of Grover’s algorithm there is also the possibility that the mea-

surement will return a non halting state, even though |ψ2〉 might have contained sequences

of productions that led to goal states. This issue can be circumvented to a certain degree.

Notice that the sequences expressed by PR,d+1 also contain the paths PR,d as subsequences.

This means that when PR,d+1 is evaluated the iteration procedure has the opportunity to

re-examine PR,d. As a result, operator C would have the chance to come across the exact

subsequences that had previously led to goal states but that were not obtained after the

measurement. Therefore, the control strategy would need to be modified in order to signal

an halt state as soon as a solution is found, i.e. the shallowest production, independently

of the sequence length being analyzed. With such a strategy the probability of obtaining a

non-halting state in each unsought iteration level d would be 1−| sin [ θ2 (π2

√
bd

k + 1)]|2.

Each iteration of Algorithm 2 starts by building a superposition |p〉 spanning the respective

depth level. This means that the original interference pattern that was possibly lost upon

measuring the system in the previous iteration is rebuilt and properly extended by the tensor

product that is performed with the new productions. Because of this process the computation

is able to proceed as if undisturbed by the measurement. Such a reexamination comes at a

computational cost, which will be shown to be neglectable in Section 8.2.2. This behaviour

contrasts with the original approach discussed by Deutsch where: (1) a computation would

be applied to a superposition |ψ〉; (2) a measurement would eventually be made on the

halt qubit collapsing the system to |ψ〉′ and (3) if a goal state had not been obtained the

computation would proceed with |ψ〉′.
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Complexity Analysis

Algorithm 2 represents a form of iterative deepening search, a general strategy employed

alongside tree search, that makes it possible to determine an appropriate depth limit d, if

one exists [183]. The first documented use of iterative deepening in the literature is in Slate

and Atkin’s Chess 4.5 program [193], a classic application of an artificial intelligence problem.

Notice that up until this moment no upper-limit value for depth d was specified. This was

done deliberately since the essence of µ-recursive functions relies in the fact that such a value

may not exist. In general, iterative deepening is the preferred strategy when the depth of

the solution is not known [183]. Accordingly, the while loop will execute forever unless the

state ξ in line 11, obtained after the measurement, is a goal state.

Since Grover’s algorithm is employed the measurement performed does not necessarily need

to be applied to the halting register. Instead it is possible to perform a measurement on the

entire Hilbert space of the system in order to verify if a final state is obtained. This type of

a control structure is responsible for guaranteeing the same type of partial behaviour that

can be found on the classical µ-operator. Consequently, Algorithm 2 also does not guarantee

that variable d will ever be found, i.e. the search may not terminate. Line 8 of the algorithm

uses the register |r〉 = |w〉|h〉 = |s〉|p〉|h〉 described in Section 8.2.1.

Quantum iterative deepening search may seem inefficient, because each time Cd is applied to

a superposition spanning PR,d, the states belonging to previous depth levels multiple times,

∀d > 0, are being re-evaluated. However, the bulk of the computational effort comes from the

dimension of the search space to consider, respectively bd, which grows exponentially fast.

As pointed out in [124] if the branching factor of a search tree remains relatively constant

then the majority of the nodes will be in the bottom level. This is a consequence of each

additional level of depth adding an exponentially greater number of nodes. As a result,

the impact on performance of having to search multiple times the upper levels is minimal.

This argument can be stated algebraically by analysing the individual time complexities

associated with each application of Grover’s algorithm for the various depth levels. Such a

procedure is illustrated in Expression 8.9, which gives an overall time complexity of O(
√
bd )

remaining essentially unchanged from that of the original quantum search algorithm.

√
b0 +

√
b1 +

√
b2 + · · ·+

√
bd = O(

√
bd ) (8.9)

By employing the previously described proposal it becomes possible to develop a quantum

computational model with an inherent speedup relatively to its classical counterparts. Notice

that this speedup is only obtained when searching through a search space with a branching

factor of at least 2 (please refer to [199] [198]). In addition, if the set of goal states is de-
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fined to be the set of halt states, then Algorithm 2 can be used to circumvent the halting

problem. The algorithm is able to do so since it can compute a result without the associated

disruptions of Deutsch’s model. Such a term is employed carefully, since it may be argued

that the measurements performed during computation will inherently disturb the superpo-

sition. This is not a problem if a halt state is found. However, if such a goal state is not

discovered, the algorithm proceeds to an extended superposition through PR,d, representing

an exponentially greater search space, where the states from the previous tree levels are

included. Consequently, it becomes possible to recalculate the computation as if it had not

been disturbed and without changing the overall complexity of the procedure.

8.3 Turing machine simulation

The approach proposed in this chapter allows for the possibility of non-termination, without

inherently interfering with the results of the quantum computation. This hints at the pos-

sibility that the method described can be applied to coherently simulate classical universal

models of computation such as the Turing machine. Specifically, what needs to be done

for the previously described iterative quantum production system to simulate any classical

Turing machine?

In order to answer this question it is useful to present a set of mappings between Turing

machine and production system concepts in a manner analogous to the trivial mapping

described in [75]. Both models employ some form of memory where the current status of

the computation is stored. The Turing machine model utilises a tape capable of holding

symbols. Each element of the tape can be referred to through a location. Tape elements

are initially configured in a blank status, but their contents can be accessed and modified

through primitive read and write operations. These operations are performed by a head

that is able to address each element of the tape. As a result, the memory equivalent of the

production system, respectively, the working memory should convey information regarding

the current head position and the symbols, alongside the respective locations, on the tape.

In addition, the tape employed in Turing’s model has an infinite dimension. Consequently,

the working memory must also possess an infinite character.

The Turing machine model utilises a δ function to represent finite-state transitions. The δ

functions maps an argument tuple containing the current state and the input being read to

tuples representing a state transition, an associated output and some type of head movement.

This set of transitions can be represented as a table whose rows correspond to some state and

where each column represents some input symbol. Each table entry contains the associated

transition tuple representing the next internal state, a symbol to be written, and a head
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movement. Notice, that this behaviour fits nicely into the fixed set of rules R employed by

production systems. Namely, δ’s argument and transition tuples can be seen, respectively,

as a precondition and associated action of a certain rule. Accordingly, for each table entry of

the original Turing transition function it is possible to derive an adequate production rule,

thus enabling the obtention of R.

The only remaining issue resides in defining a control strategy C that mimics the behaviour

presented in Expression 8.5. Consequently C needs to choose which of the rules to apply by

accessing the working memory, determining the element that is currently being scanned by

the head, and establishing if a goal state is reached after applying some specific sequence of

Rd rules. Once this is done, it becomes possible to apply the iterative quantum production

system to simulate the behaviour of a classical Turing machine. The δ-function conversion

to an adequate database of productions is a simple polynomial-time procedure (please refer

to [2] and [189] for additional details). In addition, it is important to mention that this

approach will only provide a speedup if the Turing machine simulated allows for multiple

computational branches. Otherwise, if the computation is not capable of being parallelized

then nothing can be gained, performance-wise, from employing such an approach.

8.4 Conclusions

In this chapter an approach was presented for an iterative quantum production system with a

built-in speedup mechanism and capable of the partial behaviour characteristic of µ-recursive

functions. The proposal described makes use of a unitary operator C that can be perceived

as mapping a total function since it maps for every possible input into a distinct output.

However, operator C is employed in a quantum iterative deepening procedure that examines

all path possibilities up to a depth level d until a solution is found, if indeed there exists one.

Due to the probabilistic nature of Grover’s algorithm there is always the possibility that, upon

measurement, a non-terminating state is obtained. As a consequence, the procedure would

iterate to an additional level of productions and could therefore fail to recognize a halting

state. This issue can be sidestepped through the development of specific control strategies

capable of signaling that an halting state has been found at the shallowest production yielding

such a conclusion, independently of the sequence length being analyzed.

The model is able to operate independently of whether the computation terminates or not,

a requirement associated with universal models of computation. As a result, it becomes

possible for the model to exhibit partial behaviour that does not disturb the overall result

of the underlying quantum computational process. This result is possible since: (1) Grover’s

algorithm effectively allows one to obtain halting states, if they exist, with high probability
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upon system observation; and (2) the overall complexity of this proposition remains the same

of the quantum search algorithm. This procedure enables the development of verification-

based universal quantum computational models, which are capable of coherently simulating

classical models of universal computation such as the Turing machine.
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Chapter 9

Different Quantum Search

Frameworks

9.1 Introduction

Computational algorithms encompass a large scope of tasks that range from sorting arrays,

performing signal analysis and encrypting/decrypting information. A large part of these

problems can be represented through some symbolical state. This internal representation

of the problem can be evolved into other states by a set of specific rules. An algorithmic

procedure examines such states and decides which rule should be applied in order to obtain

some final result. Typically, algorithmic procedures aim to deliver such final states correctly,

and to do it whilst minimizing some type of performance measure (e.g. time, space or

error).

It is the task of algorithms to determine, and apply, the sequence of rules that will correctly

lead to the best performance. As previously stated, for some problems there may be a way

to deduce which rule is best. However, for many other computational problems, at any

given point in time there may be multiple rules that can be applied and no single way of

inferring which one is best when trying to minimize the performance measure. The set of

all possible combinations of rules forms what is referred to as the search space. As a result,

for this type of problems the simplest algorithmic strategy for finding a solution consists

in systematically enumerating and evaluating every element of the search space until goal

states are found. This type of procedures are usually referred to as search algorithms whose

goal can be succinctly described as finding elements within a search space that fulfill certain
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conditions.

It is also interesting to question if it is possible to develop alternatives to Grover’s algo-

rithm? Namely, what concepts can be explored besides amplitude amplification schemes?

Also, what are the implications of these alternatives performance-wise? The following sec-

tions examine these questions from two distinct perspectives. Section 9.2 analyses a quantum

search algorithm based on entanglement detection schemes when used in conjunction with

purposely tune unitary-operators. Section 9.3 evaluates the consequences of employing peri-

odic search spaces in order to perform search, an idea that tried to explore the performance

gains delivered by the quantum factoring algorithm.

9.2 Quantum Entanglement and Partial Search

Computer scientists are often faced with the task of constructing algorithms capable of

delivering a solution for a given problem. For some problems it is possible to engineer

algorithms capable of producing a solution with a number of computational steps that is

bounded by a polynomial nk where n is the length of the input and k some constant. The

class of problems for which a polynomial-time algorithm exists is known as P. Problems

belonging to P are usually seen as being efficiently solvable. Class EQP represents the

quantum equivalent of P.

For other problems it is possible to verify in polynomial-time if a given configuration is a

solution, although there are no known methods for efficiently calculating a solution. For these

type of problems, there is no alternative but to perform an exhaustive search of all possible

configurations. The class NP consists of those problems whose possible configurations can

be verified in polynomial-time. Clearly, P ⊆ NP since the possibility of constructing a

solution in polynomial time also implies that a solution can be verified efficiently. One of the

outstanding questions in computer science consists in determining if the class NP is equivalent

to the class P, i.e. P=NP? Traditionally, approaches to answering this question have focused

at a subclass of NP, namely NP-complete problems. This subclass contains those problems

which are both NP and NP-hard. A problem is said to be NP-hard if an algorithm capable

of solving it can be translated into an adequate algorithm for any NP problem. An efficient

solution for a problem in NP-complete implies that an efficient solution exists for all problems

in NP.

In [56] some clues were given that some problems that are classically hard may have an

efficient quantum solution. Shor’s algorithm for efficient factorization [191] reinforced this

idea. Later, Grover’s search algorithm [82] provided an asymptotical quadratic speed-up over
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classical strategies. The quantum search algorithm systematically increases the probability of

obtaining a solution with each iteration. After the algorithm has concluded, a measurement

is performed in a quantum superposition, in order to obtain a solution with high probability.

The superposition state represents the set of all possible results. Grover’s approach sparked

interest by the scientific community on whether it would be possible to devise a faster search

algorithm. Shortly after this result was published, a lower-bound of Ω(
√
N ) oracle queries

for the search problem was proved in [26].

In this section an alternative search method based on the principles of tree search decompo-

sition and quantum entanglement detection was presented. Unlike traditional approaches,

this one does not rely on measuring a quantum superposition of possible values. Rather, the

proposed method exploits the unitary operator that is applied to a quantum superposition in

order to infer possible solutions with certainty. However, an implicit caveat exists associated

to this quantum search proposal. Namely, the system implies a trade-off between speed and

space that will become apparent in the following sections.

The next sections are organised as follows: Section 9.2.1 presents the hybrid approach, com-

bining tree search decomposition alongside with quantum entanglement detection schemes.

Section 9.2.2 presents the conclusions of this work.

9.2.1 Approach

How should an alternative approach to Grover’s algorithm be developed? First, it is useful

to envisage the following scenario: suppose a quantum system composed of a query register,

|q〉, and the answer register, |a〉, acting on Hilbert space H = Hq ⊗Ha. The query register

is an n-qubit register where possible values for the binary variables of a specific problem

instance will be setup. Typical examples include the SAT problem, which was the first

problem ever shown to be NP-complete [51]. In order to gain a quantum advantage over

classical computation |q〉 needs to be placed in a uniform superposition of the computation

basis. This can be done efficiently by applying the Hadamard transform H a total of n

times to the n-qubit state |0〉, i.e. H⊗n|0〉⊗n = 1√
2n

∑2n−1
x=0 |x〉. Such a procedure enables

the creation of a superposition containing an exponential number of states, each of which

representing a possible tree path, by only employing a polynomial number of gates. The

answer register contains a single qubit, which is initialized to state |0〉. The overall state of

the system can thus be described as illustrated in Expression 9.1. Additionally, suppose that

a quantum oracle O specific to the problem being considered is constructed with the form

presented in Expression 3.27.
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|q〉|a〉 =
1√
2n

2n−1∑
x=0

|x〉|0〉 (9.1)

If oracle O is applied to the combined state of Expression 9.1 a result like the one illustrated

in Expression 9.2 may be obtained, where |ψ′〉 denotes the overall superposition evaluation.

For simplification issues assume that there exists at least a solution. Naturally, some of the

query values produce a solution, whilst others do not.

|ψ′〉 =
1√
2n

2n−1∑
x=0

O|x〉|0〉 =



| 00 · · · 0︸ ︷︷ ︸
n bits

〉|0〉

|00 · · · 1〉|0〉
...

|11 · · · 0〉|1〉

|11 · · · 1〉|0〉

(9.2)

From this point on the system’s state can no longer be expressed as a tensor product between

query and answer register, i.e. the system becomes entangled. Quantum entanglement is

a key feature of quantum mechanics, which details the connections between subsystems of

compound quantum systems. It was a key aspect of the quantum world formalism proposed

by von Neumann in 1932 [210]. Although the intriguing impacts of quantum inseparability

were only later grasped by Einstein, Podolsky and Rosen [64] alongside Schrödinger [188].

Quantum entanglement is also a key resource in quantum information.

Mathematically, the state of each register can be described by tracing out the remaining

register, through the partial trace mechanism. In this case the main object of interest is the

state of the answer register. In order to obtain the partial trace of the answer register it is

first required to calculate the density operator of the quantum state presented in Expression

9.2, respectively %. The overall form for %a is illustrated in Expression 9.4

% = |ψ〉〈ψ|
= 1√

2n
(|00 · · · 0〉|0〉+ · · ·+ |11 · · · 1〉|0〉)

1√
2n

(〈00 · · · 0|〈0|+ · · ·+ 〈11 · · · 1|〈0|)
= 1

2n |00 · · · 0〉|0〉(〈00 · · · 0|〈0|+ · · ·+ 〈11 · · · 1|〈0|)+
+ · · ·+
1

2n |11 · · · 1〉|0〉(〈00 · · · 0|〈0|+ · · ·+ 〈11 · · · 1|〈0|)

(9.3)
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%a = Trq(%)

= 1
2n (〈00 · · · 0||00 · · · 0〉|0〉〈0|+ 〈00 · · · 1||00 · · · 1〉|0〉〈0|+
+ · · ·+
〈11 · · · 0||11 · · · 0〉|1〉〈1|+ 〈11 · · · 1||11 · · · 1〉|0〉〈0|)

= 1
2n [(2n − 1)|0〉〈0|+ |1〉〈1|]

(9.4)

Generally, the result presented in Expression 9.3 can be improved if the number of solutions

is taken into account. Accordingly, let k denote the overall number of solutions, then %a takes

the form shown in Expression 9.5. The overall state is separable only when k = 0, i.e. no

solution exists, or when k = 2n, each value belonging to [0, 2n − 1] is a solution. Otherwise,

the system is entangled. Thus, the problem of determining whether or not a solution to a

problem exists can be reduced to the problem of determining whether the state is separable

or entangled.

%a =
1

2n
[(2n − k)|0〉〈0|+ k|1〉〈1|] (9.5)

Quantum entanglement detection

The quantum separability problem consists in determining if a given a density matrix %

representing a quantum state is entangled or separable [78]. Efficiently deciding on the

nature of such states has grabbed researchers attention and remains a problem of crucial

importance to the fields of quantum computation and information [116]. Generally speaking,

quantum entanglement is studied in accordance with a varied mix of properties (just to

name a few of these: bipartite vs. multipartite systems, pure vs. mixed states, bound

entanglement; for exhaustive reviews please refer to [128], [109] and [89]). The quantum

separability question has been approached from both classical and quantum perspectives.

These approaches typically consider the nature of the input (classical vs. quantum), and

whether any required processing will be performed on a classical or quantum computer

[115]. This problem was shown to be NP-hard classically [90]. However, as mentioned in

[115] the processes involving both quantum input and processing have not been thoroughly

investigated.

In the case of this specific approach it would suffice to restrict the analysis to bipartite

quantum systems with mixed states. As pointed out in [106] the mixed state requirement

stems from the fact that any potential laboratory demonstration of this approach would have

to deal with mixed states rather than pure ones, due to the uncontrolled interactions with

the environment. These requirements are present in one of the existing quantum detection
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schemes, namely the one proposed in [108]. The method employed by the authors is exper-

imentally viable and provides for a direct detection mechanism of quantum entanglement.

Their approach is based on the theoretical foundations laid down in [106]. The method

determines whether a state % is separable or not, i.e. entangled, based on the mathematical

properties of linear positive maps acting on matrices. More specifically [109], let Md →Md

be the space of matrices of dimension d, a map Λ : Md → Md is called positive if it is

Hermitian and has non-negative spectrum. Additionally, the map Λ is completely positive if

and only if I ⊗ Λ is positive for identity map I on any finite-dimensional system. A state %

is separable if and only if the result presented in Expression 9.6 is observed for all positive

but not completely positive maps Λ : Md →Md.

[I ⊗ Λ](%) ≥ 0 (9.6)

Expression 9.6 cannot be directly used since it requires knowing state % beforehand. Addi-

tionally, positive maps Λ cannot be directly implemented in laboratory [109]. It is possible

to obtain a physically realizable map by mixing an appropriate proportion of [I ⊗Λ] with a

depolarizing map. This approach allows for a new map [Ĩ ⊗ Λ] to be obtained, which have

been referred to as structural physical approximations. For more on this subject please refer

to [73]. The separability criterion can then be restated as follows [108]: % is separable if and

only if for all positive maps Λ the condition presented in Expression 9.7 is observed.

[Ĩ ⊗ Λ](%) ≥ d2λ

d4λ+ 1
(9.7)

Where λ corresponds to the most negative eigenvalue obtained when the induced map [(I ⊗
I)⊗ (I ⊗Λ)] acts on the maximally entangled state of the form 1

d2

∑d2

i=1 |i〉|i〉. Accordingly,

Expression 9.7 states that the lowest eigenvalue of the transformed state %′ = [Ĩ ⊗ Λ](%)

should be greater than d2λ
d4λ+1 for % to be separable.

The authors devised a method which allows for an estimate of the lowest eigenvalue to

be obtained efficiently and directly. It requires that a joint measurement be performed

on N copies of state %′. The overall input density operator of the estimation problem is

%′⊗N , which exists on the Nth tensor power H⊗N [120]. The error ε associated with the

estimate of the lowest eigenvalue decreases exponentially with N . Such a measurement can be

represented as a quantum network implementing projections on the symmetric and partially

symmetric subspaces [108]. An efficient method addressing these questions was proposed

in [19] requiring a number of auxiliary gates that grows quadratically with the dimension

of the input, i.e. O(n2), where n is the number of bits. If %′ represents the state of an n
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qubit register, then each additional tensor power will mean that another n bits should be

taken into account. Consequently, an %′⊗N system will have a total of N × n bits, which

means that the quantum network responsible for estimating the lowest eigenvalue will have

O(N2n2) complexity.

Clearly, this approach is dependent on map Λ, which have not been operationally character-

ized so far [107]. As pointed out in [109] in general the set of positive but not completely

positive maps is not characterized and it involves a hard problem in contemporary linear

algebra. However, for low dimensional systems, namely those with dimension 2⊗ 2 or 2⊗ 3,

the positive partial transpose map proposed in [174] can be employed as the Λ. In [107] the

authors draw attention to the fact that: “Recently, the progress in this direction has been

made [136] [137] which suggests that tests of separability based on positive maps will soon

acquire practical meaning beyond the scope of two-qubit systems.” Whether such a map Λ

acting on Hd ⊗Hd quantum systems can be determined remains an open question.

Subset entanglement inducing oracle

Grover’s algorithm provides an Ω(
√
N ) lower bound when employing oracles searching on

the full range of searchable items. It would be desirable to develop an alternative search

approach not solely based on amplitude amplification schemes. In classical tree search it is a

standard technique to start by analyzing subtrees and deciding whether these may eventually

lead to a solution. Based on problem requirements it is possible to automatically exclude, i.e.

prune, certain subtrees. Pruning may eventually be responsible for discarding large sections

of the tree, and therefore allow the search to terminate faster. These classical search concepts

can be used in order to develop an alternative quantum hierarchical search approach.

Quantum algorithms employing traditional oracles provide at most a polynomial advantage

over classical algorithms for total functions, i.e. functions defined for the whole of {0, 1}n,

where n is the number of bits. The oracle model contemplates superpolynomial advantage

but only when partial functions are defined which operate on a subset of {0, 1}n [21]. Classical

search can be viewed as a procedure which evaluates subsets of an initial range. Since in

quantum computation the oracle operator can be applied to a superposition of computational

basis, evaluating subsets is equivalent to only evaluating specific ranges of the superposition.

Accordingly, it is possible to develop an oracle responsible for evaluating only a certain subset

of the initial range [0, 2n − 1] allowed with n qubits.

Although this approach focuses in evaluating a specific subset there are other alternatives

for trying to decompose a quantum search space. For instance, Grover concluded in [80] that

determining the first n bits of a solution by employing amplitude amplification schemes is
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only slightly easier than determining the total bits.

This model for a range specific entanglement inducing oracle can be described as presented in

Expression 9.8, which employs an auxiliary function f[a,b](q) defined in Expression 9.9.

O[a,b]|q〉|a〉 = |q〉|a⊕ f[a,b](q)〉 (9.8)

f[a,b](q) =

1 if f(q) is a solution and q ∈ [a, b]

0 otherwise
(9.9)

As was previously pointed out, the oracle evaluation process has the overall effect of entan-

gling the quantum registers. By testing whether the oracle has induced, or not, quantum

entanglement it is possible to check for the presence of a solution state in a given range.

This mechanism allows for ranges containing solutions to be further decomposed. In con-

trast, the absence of a solution allows for a specific range to be pruned from the overall

search procedure.

Ideally, the entanglement detection scheme should present some type of polynomial upper-

bound behaviour such as the one described in the previous section. 1 If the state % resulting

from applying an oracle O with the form presented in Expression 9.9 is separable then

the range evaluated can automatically be discarded. Discarding a wide range of potential

candidates en masse can be understood as the classical tree search operation of pruning

certain subtrees. On the other hand, if % is entangled then it is possible to further decompose

the associated range. Eventually, this sort of recursive branch and bound procedure, by

constantly readjusting the range of oracle O, will “zoom in” on a solution. Additionally, it

would be a relatively easy task to search problem spaces comprising of multiple solutions

k. Namely, one would simply need to systematically focus on previously non-expanded but

solution-bearing ranges.

This approach requires a new oracle to be defined with each iteration in terms of a specific

subset that may be entangled. The set of oracles applied throughout the search can be

viewed as a single “dynamic” oracle, which differs substantially from the standard “static”

oracle applied in quantum search. Additionally, in contrast with Grover’s algorithm, this

approach does not rely on performing an amplitude amplification process. Rather, the

method discussed is mainly concerned with decomposing the quantum search space.

1The entanglement detection approach described in [108] requires the overall bipartite system to be d⊗d.
Consequently, the answer register |a〉 should have the same dimension than |q〉, i.e. n bits. This requirement
has no direct consequences in the overall oracle since unitary evolution can still be assured.
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On the growth of the number of copies required

Clearly, one question still lingers: What can be said about the number of copies N of the

system that are required? According to [118] any procedure that on input |ψZ〉 guesses

whether state Z = X or Z = Y will guess correctly with probability of at most 1 − ε =
1
2 + 1

2

√
1− δ2 where δ = |〈ψx||ψy〉|. In this case it is interesting to distinguish two cases,

namely:

• |ψsolution〉 which results from applying U |ψ〉 when one solution exists;

• |ψno−solution〉 which results from applying U |ψ〉 when no solution exists;

For search spaces of dimension L the initial amplitudes αi associated with each computational

basis i of the superposition |ψ〉 will have value 1√
L

. After having applied oracle O the

two states remain exactly equal except for two computational basis where the amplitudes

permuted. This means that when calculating the inner product the permuted computational

basis will only slightly contribute to a general decrease. Accordingly, the inner product will

sum the value 1√
L

2
a total of L− 1 times, as depicted in Expression 9.10.

δ = 〈ψsolution||ψno−solution〉 =
L− 1

L
(9.10)

The approach devised in [108] requires N copies of the system. Generalizing, this means

that the combined δ has the value δN =
(
L−1
L

)N
. The three-dimensional plot of δN as a

function of L ∈ [21, 230] and N ∈ [21, 230] is illustrated in Figure 9.1.

Figure 9.1: Three-dimensional plot of δ⊗N as a function of L ∈ [21, 230] and N ∈ [21, 230].

In order for these states to be distinguished with significant probability the inner product

δN must be made small. However, in order to achieve this one needs to choose a number of
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copies N that grows in accordance with the dimension of the search space L, i.e. N = O(L).

Consequently, this approach would not provide for any gains over classical search.

Consequences for efficient entanglement detection schemes

What would be the consequences if the number of system copies N was not a function of

the search space? Suppose the proposed search procedure is executed on n-qubits placed

on a superposition. Initially, the algorithm has to decompose the [0, 2n − 1] initial range.

Assuming that any specific range being considered is split in half, then the procedure needs

to verify if evaluating the elements in [0, 2n−1 − 1] produces an entangled quantum state

%. If this is found to be true then subset [0, 2n−1 − 1] can be also split in half and evalu-

ated. Otherwise, subset [2n−1 − 1, 2n − 1] needs to be decomposed. Independently of what

subset induces entanglement, the algorithm is able to prune half of the 2n initial states,

i.e. 2n/2. Accordingly, for iteration i, the oracle is able to focus on 2n/2i states. Clearly,

when i = n a single state is being considered and consequently a solution can be determined

with certainty by employing O(n) oracle queries. Associated with each oracle query is the

quantum entanglement detection scheme bringing the overall complexity of the approach to

O(N2n3).

It is my belief that it is not possible to efficiently detect quantum entanglement. Taking into

account the simplicity of the search procedure designed in Section 9.2.1 then if such a method

existed it would be possible to efficiently search, i.e. in quantum polynomial time, a problem

space of dimension d. Accordingly, it is possible to define the following conjecture.

Quantum entanglement detection conjecture - It is not possible to efficiently detect

quantum entanglement non-classically since this would automatically imply that a

simple algorithm exists proving that NP=EQP.

The above conjecture stresses the notion that there appears to be a relationship between en-

tanglement detection and search in terms of computational complexity, i.e. both problems

appear to be equally difficult. Indeed, since quantum entanglement detection via classical

methods was shown to be NP-hard [90] any polynomial classical algorithm capable of solving

NP-hard problems would allow for efficient mappings capable of tackling both quantum en-

tanglement detection as well as exponential-growth search problems. From a quantum com-

putation perspective it appears that, by employing such an entanglement detection scheme,

there exists a direct relationship where a trade-off between space and time occurs. Nonethe-

less, this approach can still be perceived as a form of quantum computation, although one

requiring a careful examination of the total time and space resources employed.
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9.2.2 Conclusions

Shor’s algorithm provided a superpolynomial speed-up by exploiting a hidden structure of

the problem [191]. However, traditional tree search mechanisms are employed when such

an element of structure cannot be determined. Quantum computation provides at best a

polynomial speed-up when oracles mapping total functions are employed. Superpolynomial

speed-up is achievable but only if a subset of a functions domain is analyzed. This section

focused on the dynamics of partial function unitary evolution alongside quantum entangle-

ment detection schemes. The general characterization of positive but not completely positive

linear maps Λ alongside quantum entanglement detection schemes and partial range entan-

glement inducing operators may eventually be responsible for producing efficient algorithmic

solutions capable of searching exponential-growth search spaces. Although some research

has already been carried out, further thorough analysis into the subject is still required.

However, given that N = O(L) current methods cannot be employed in order to speed up

quantum search.

9.3 Periodic Search Space

Despite the quadratic improvement brought upon by quantum computation to classical

search procedures the fact of the matter is that the overall time complexity of current

approaches still grows in an exponential manner. Accordingly, it would be interesting to

determine if more efficient approaches exist. Besides search, perhaps one of the best known

applications of quantum computation is Shor’s algorithm [191] for factoring numbers. Clas-

sically, finding the factors of an n-bit number is a non-tractable computational task that

requires sub-exponential time as a function of n (please refer to [176], [177], [134] and [135]).

The quantum factoring algorithm is capable of determining the factors in time that is poly-

nomial in log n. The procedure is able to deliver a superpolynomial speed-up relatively to

the classical methods by reducing the original problem to one of calculating the period of

a function, a problem that is thought to be hard in classical computation. In a quantum

setting, determining the period of a function is an easy task that can be performed through

the quantum Fourier transform. More recently, researchers have been able to develop a quan-

tum processor capable of factoring a composite number into prime factors [142]. Given the

ability of determining periods exponentially faster through the quantum Fourier transform,

it is natural to raise the question of whether it is possible to incorporate the concepts of

periodicity to search a state space?

In this section some of the ideas behind Shor’s algorithm are explored in order to develop
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a platform for search, which by itself raises some interesting questions, namely: how should

the search problem be tackled in such a context? How should the procedure operate? What

are the requirements and limitations associated with such a procedure? Finally, is there

something to be gained performance-wise? Although the procedure can be used for search,

there are some important limitations associated with it, namely concerning the specific com-

position of the search space. However, the limitations of trying to map the search problem

into the period finding problem are still worthy to be analysed. More concretely, the degree

of feasibility of developing an alternative method for performing quantum search based on

periodicity alongside space decomposition are examined.

The following sections are organised as follows: Section 9.3.1 describes the general period

finding strategy employed by the quantum Factoring algorithm; Section 9.3.2 elaborates on

these concepts in order to develop an alternative quantum search method; Section 9.3.3

presents the overall conclusions of this work.

9.3.1 Quantum Period Finding

Shor’s algorithm to factoring integers reduces the problem to one of determining the orders

of integers modulo M . Specifically, given integers a and M such that the greatest common

divisor between them is 1, the order of a mod M is the small positive integer r so that

ar ≡ 1(mod M). Such an order r effectively translates as the period of sequence. The

quantum factoring algorithm builds a superposition capable of encompassing several periodic

occurrences of the function f(x) = ax mod M . Such a procedure results in a state with the

form presented in Expression 9.11.

|ψ〉 =

2dlog2 M2e−1∑
x=0

|x〉|ax mod M〉 (9.11)

Where the number of bits n employed is such that 2n ≥ 2r
2

. In this case n was chosen

such that n = dlog2M
2e, in order to deliver a bound on the error capable of producing a

correct period estimate with high probability [118]. The periodic analysis is simplified if a

measurement is performed on the second register [182]. After performing such a measurement

the first register will be in a superposition of periodic values, as depicted in Expression

9.12

|b〉+ |b+ r〉+ |b+ 2r〉+ · · ·+ |b+ zr〉,∀z : 0 ≤ b+ zr < 2n (9.12)
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Expression 9.12 represents a periodic superposition of states of the form presented in Expres-

sion 9.13, with period r, shift b, and m repetitions of the period. By subsequently applying

the inverse quantum Fourier transform, denoted by QFT−1
m in Expression 9.14, on the basis

states |0〉, |1〉, · · · , |mr − 1〉, it is possible to able to obtain the superposition state repre-

sented by Expression 9.15 (please refer to [118] for additional details into quantum Fourier

analysis).

|φr,b〉 =
1
√
mb

∑
z:0≤b+zr<2n

|b+ zr〉 (9.13)

QFT−1
2n |x〉 →

1√
2n

2n−1∑
y=0

e−2πi x
2n y|y〉 (9.14)

QFT−1
mr|φr,b〉 =

1√
r

r−1∑
k=0

e−2πi br k|mk〉 (9.15)

If a measurement is performed upon the superposition represented by Expression 9.15 a com-

putational basis |mk〉 is obtained. It is now possible to compute mk
mr = k

r in lowest terms,

since mr is known. If instead QFT−1
2n is applied to the stated depicted in Expression 9.13

then performing a measurement will yield a value x such that x
2n is close to k

r , for a random

integer k ∈ {0, 1, 2, · · · , r}, with probability mb

2n
4
π2 [118]. The probability of obtaining an in-

correct estimate is at most ε, and can be made small with a marginal increase in the number

of bits employed by the quantum Fourier circuit [164]. Additionally, it can be shown that∣∣ x
2n − k

r

∣∣ ≤ 1
2r2 when the number of period repetitions is greater or equal than the period,

i.e. m ≥ r. This fact allows for the fraction k
r to be subsequently determined through the

continued fractions algorithm, which executes in time polynomial in n. Let L = dlog2Me,
the computational resources required are [164]: (1) O(L) Hadamard gates for the initial

superposition; (2) O(L2) gates for the QFT−1; (3) O(L3) gates for the modular exponenti-

ation employed for phase estimation; (4) O(L3) gates for the continued fractions procedure

involves. The overall procedure for determining periods through this manner executes in

O(L3) and succeeds with O(1) probability. In conclusion, given a periodic superposition

state it is possible to efficiently determine the period of the respective sequence.

9.3.2 Quantum Periodic Search

How can the ideas supporting Shor’s algorithm be adapted in order to perform search? As

previously mentioned, two of the main concepts employed are: (1) the notion of periodicity
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and (2) the use of the quantum Fourier transform to determine such a period. Accordingly,

any Shor inspired approach to the search problem needs to somehow incorporate into its

definition the concept of periodicity.

In the following sections a potential alternative search procedure is presented that explores

these ideas, namely: Section 9.3.2 explains the general ideas supporting the search algorithm;

Section 9.3.2 examines the running time of the proposal; Section 9.3.2 analyses the intricacies

of the approach and elaborates on the specific details of how the search space should be

composed in order for the algorithm to work.

General Procedure

One possible solution to the concept of search periodicity may reside in spanning the search

space multiple times. This approach allows for any potential solution to occur multiple times

and thus generate the equivalent of a periodic signal. More specifically, suppose a search

space of dimension 2n that is generated by n bits is employed. Traditional search procedures

would need to evaluate such a space and determine which elements x are solution states, i.e.

x ∈ Sg. Typically, this is done with the help of a boolean evaluation function f , as the one

illustrated in Expression 9.16, which returns the symbolic truth-assignment value of 1 if a

goal state is found, and 0, i.e. false, otherwise.

f(x) =

{
1 if x ∈ Sg
0 otherwise

(9.16)

In order to get a periodic distribution the original search space needs only to be extended

with m − 1 copies, for a total of m periodic repetitions. This procedure involves extending

the original space in order to accommodate for such a periodicity. This can be done by

building a superposition state |ψ〉 = 1√
2nm

∑2nm−1
x=0 |x〉. Accordingly, it is possible to build

an extended search space where the original 2n states need to be repeated m times, resulting

in 2nm states. Consequently, the verification function f employed needs to ensure that the

space repetition is taken into account. This can be accomplished by redefining function f

in order to accommodate for modular arithmetic, as described in Expression 9.17. Such a

procedure guarantees that when function f is employed to analyse elements of the 2nm-

dimensional space these will be decomposed into the smaller components of the original

search space of size 2n.

By employing such a binary formulation of the evaluation function it is possible to build the

associated unitary operator required by quantum computation with relative ease. Specifi-

cally, for every irreversible function f a reversible mapping can be constructed with the form
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Of |x〉|y〉 7→ |x〉|y ⊕ f(x)〉, where x is a set of bits, also known as a register, and y is an

auxiliary bit. If register |y〉 is placed in the superposition state 1√
2

(|0〉 − |1〉), then perform-

ing the oracle evaluation function can be perceived as a phase-shift, which effectively flips

the amplitude of the solution states, i.e. |x〉 → (−1)f(x)|x〉. This type of quantum oracles

employing irreversible functions can also be easily constructed with a linear growth in the

amount of resources required (please refer to [201] and [198] for additional details).

f(x) =

{
1 if x mod 2n ∈ Sg
0 otherwise

(9.17)

Once the notion of periodicity is clearly defined it becomes possible to develop a simple

procedure to search a space. One possibility consists in evaluating the extended search space

|ψ〉 and determining whether a period r exists. If the procedure to determine a period

returns a valid period r that is different than zero (this subject is elaborated further in

Section 9.3.2), then this is indicative that a solution exists. Conversely, an absence of a valid

period indicates that no solution exists. In order to understand this notice that a period only

occurs when certain states are marked as solution states, i.e. when an amplitude inversion

occurs, otherwise every element x of the space will have the same amplitude, which will

result in QFT−1|ψ〉 failing to produce a valid period. Such a scheme provides the ability to

efficiently determine whether a period exists. Accordingly, what is only required is the ability

to somehow decompose the search space and systematically check if such decompositions

produce a period. Failure to produce a period indicates that the procedure should focus on

other decompositions. This can be done by recursively decomposing the extended search

space and for each decomposition build a superposition state representing the range being

currently considered.

The general idea is that ranges that are periodic should be further decomposed and examined

until a solution state is found. These ideas are illustrated in Algorithm 3, which starts

by determining the number of bits n required to encode a range [a, b] into an adequate

superposition state |ψ〉. The algorithm then proceeds to determine the period of |ψ〉 in Line

4. If a valid period exists, then the algorithm knows that the current range being considered

contains a solution. Accordingly, the procedure tries to determine if the range in question

cannot be further decomposed. This happens when the range only contains two elements,

as tested in Line 6. If this is the case, the algorithm simply tests and outputs a solution

state. Otherwise, the algorithm proceeds by decomposing the original range [a, b] in half,

as illustrated in Line 12 and Line 14. The algorithm then performs a recursive call to itself

with the new sub-ranges (Line 12 and Line 14), which are then submitted again to the same

evaluation process. The methods returns the first solution state it encounters, if one exists.
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Otherwise, it simply outputs the symbolic constant NO SOLUTION FOUND.

Algorithm 3 Quantum Periodic Search

1: function search(a, b)
2: n = dlog2(b− a)e
3: |ψ〉 = 1√

2nm

∑
x∈[a,m(b+1)−1]Of |x〉

4: r = determinePeriod(QFT−1|ψ〉)
5: if r 6= 0
6: if b− a == 1
7: if a ∈ Sg
8: return a
9: else

10: return b
11: else
12: result = search(a,

⌊
a+ b−a

2

⌋
)

13: if result == NO SOLUTION FOUND
14: search(

⌈
a+ b−a

2

⌉
, b)

15: else
16: return NO SOLUTION FOUND

Performance Analysis

Analysing the performance of the algorithm requires determining an upper-bound on the

maximum number of recursions performed. Each recursion splits the interval range evenly.

Assuming that the dimension of the extended search space is a power of two, i.e. 2nm = 2k,

then after d = k − 1 levels of recursion the length of the ranges being considered will be 2.

This length signals the terminating condition of the recursion. Each recursion level invokes

at most two recursive calls. After d levels of recursion a maximum of 2d recursive calls will

have been made since every recursion immediately returns once a solution is determined not

to exist in a specific range. The overall complexity of the procedure grows linearly with k,

i.e. O(k).

Probability Distribution Analysis

In this section the specific details of why the proposed method fails to deliver a solution

state are examined. Given how crucial the QFT−1 is to the search procedure, namely when

it comes to determining the period, it becomes important to try to precisely determine the

consequences of evaluating such a periodic search space. Accordingly, is there something

that can be said about the probability distribution associated with QFT−1|ψ〉? First, bear

in mind that the extended search space consists of m periodic repetitions of a search space
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of dimension 2n. As a result, it is automatically known from the start that the period will be

2n. In other words, f(x) = f(y) if the period r = 2n divides x−y evenly with zero remainder,

respectively denoted as r|x− y. However, employing a binary function f does not guarantee

that f(x) = f(y) if and only if r|x−y. Consequently, evaluating superposition state |ψ〉 with

such a scheme will potentially produce a binary superposition state, with one part containing

the set of goal states and the other containing non-solution states. In practice, this means

that the evaluated superposition state will have the form presented in Expression 9.18, where

Xγ = {x|f(x) = γ}. Such a distribution is presented in Figure 9.2 where a search space of

dimension 64 with a single randomly chosen solution state, respectively |30〉, was extended

64 times.

Of |ψ〉 =

√
|X0|
2nm

∑
x∈X0

|x〉|0〉 −
√
|X1|
2nm

∑
x∈X1

|x〉|1〉 (9.18)
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0.015

Figure 9.2: A search space of dimension 64 with a single randomly chosen solution state,
respectively |30〉, replicated for 64 times.

Since the state represented by Expression 9.18 differs from Expression 9.13 it is important to

understand how this fact impacts the application of the inverse quantum Fourier transform.

The analysis is simplified if the QFT−1 is considered with a different form than that of

Expression 9.14. Namely, in [182] the authors draw attention to the fact that the QFT−1

can be perceived as operating on a quantum state as described in Expression 9.19, where

a(x) denotes the amplitude of state |x〉. In addition, A(x) represents the Fourier coefficients

of the discrete Fourier transform of a(x), respectively presented in Expression 9.20, where N
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is chosen in order to process all the elements of the search space, respectively 2nm.

QFT−1
∑
x

a(x)|x〉 =
∑
x

A(x)|x〉 (9.19)

A(x) =
1√
N

N−1∑
k=0

a(k)e−2πi kx
N (9.20)

Such a formulation is important because it helps analysing two particular cases after applying

QFT−1, namely (1) what happens with state |0〉 and (2) what can be expected from the

remaining states. Regarding the first question, notice that Expression 9.20 reduces to A(x) =
1√
N

∑N−1
k=0 a(k) for x = 0, which simply sums over all amplitudes. Now, consider a typical

search space where the number of goal states is very small comparatively to the dimension

of the space. As a result, performing the operation QFT−1|ψ〉 will produce a superposition

where the amplitude associated with state |0〉 of the superposition will be the one described

in Expression 9.21. Typically, |X1| << |X0|, as a result the number of amplitude flips

occurring, respectively |X1|, will contribute only very slightly to a general decrease in the

DC component of the state QFT−1|ψ〉. Thus, performing any type of measurement on |ψ〉
will deliver |0〉 with a high probability. Also, if no solution exists, i.e. |X1| = 0, then

Expression 9.21 will reduce to 1√
2nm

2nm√
2nm

= 1, thus ensuring that state |0〉 will be the only

one obtained upon measurement, thus justifying Line 5 of Algorithm 3.

1√
2nm

(
|X0|√
2nm

− |X1|√
2nm

)
=
|X0| − |X1|

2nm
(9.21)

Regarding the question of what happens with the remaining states, it is important to mention

that if the period r divides N , i.e. r|N , the Fourier coefficients A(x) will be non-zero only for

those x that are multiples of N/r. If r does not divide N evenly, the result only approximates

this behaviour, with the highest values at the integers closest to multiples of u = N/r and

low values at integers far from these multiples [182]. Given that it is known that r = 2n

then choosing N = 2nm automatically guarantees that N will be divided evenly by r. In

addition, it immediately follows that the u multiples will have the form kNr = k 2nm
2n = km

where k ∈ [0, 1, 2, · · · ]. Moreover, this means that for a search space of dimension 2nm

the Fourier coefficients will be different than zero for a total of 2n times in the QFT−1

distribution since 2nm
m = 2n.

It is now possible to determine the probability of the remaining states in QFT−1|ψ〉. Let

M represent the set of states different than |0〉 and with non-zero probability. Set M
corresponds to the complementary event of obtaining state |0〉. As a result, the probability
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associated with setM, respectively P (M), can be easily obtained, as described by Expression

9.22. Accordingly, the individual probability of each state in M is P (M)
2n−1 . The amplitude

distribution for the periodic search space described in Figure 9.2 is shown in Figure 9.3.

P (M) = 1− P (|0〉) = 1−
∣∣∣∣ |X0| − |X1|

2nm

∣∣∣∣2 (9.22)

1000 2000 3000 4000

0.2
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0.6

0.8

1.0

Figure 9.3: Fourier analysis of the search space illustrated in Figure 9.2.

Finally, P (M) ≈ 0 when |X0| >> |X1|, implying that in practice state |0〉 will always

have a very high probability of being obtained upon measurement. This fact makes it very

improbable that Line 5 of Algorithm 3 will be able to determine a period different than zero,

causing the algorithm to fail. Accordingly, it is important to ask the question of when is it

possible to efficiently determine r? For this to happen the probability of obtainingM should

at least equal that of obtaining |0〉, i.e. P (M) = P (|0〉). This way it becomes possible to

repeat the period finding process a constant number of times in order to deliver r on half of

the attempts. Since P (M) = 1 − P (|0〉) this implies that P (|0〉) = 1
2 for P (M) = P (|0〉).

Determining the precise number of non-solution states that must exist in the space for such

a probability distribution thus becomes a trivial task, as described by Expression 9.23. The

term 2n−
1
2 may generate non-integer numbers and as such requires the use of some type of

rounding function.

∣∣∣∣ |X0| − |X1|
2nm

∣∣∣∣2 =
1

2
⇔ |X0| = 2n−

1
2 + |X1| (9.23)
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How does such a value compare against the overall length of the extended search space?

A simple ratio, as illustrated by Expression 9.24, allows one to verify that approximately

at most 1√
2

of the search space should be composed of non-solution states. If this is the

case then the period to be accurately determined. As a direct consequence this means that

when roughly a third of the search space is composed of solution states then the algorithm is

able to efficiently perform search, i.e. deliver a solution in polynomial time using Algorithm

3.

2n−
1
2 + |X1|
2nm

= 2−
1
2 +
|X1|
2nm

≥ 1√
2

(9.24)

The period finding algorithm can be generalized to determine the period r of a function

f : Z → X, for some finite set X. However, f(x) must be different than f(y) unless r|x− y,

so that f(x) = f(y) if and only if r|x−y [118]. This means that for an extended search space

of dimension 2nm with period 2n only m equal image values could be observed. This poses

a problem when applied to decision problems that merely output yes or no answers, and

are thus limited to codomains with binary cardinality. The proposed method allows for an

alternative view of a periodic sequence, where elements need not obey the rule f(x) = f(y) if

and only if r|x− y, but are in fact restricted to non-solution states representing at most 1√
2

of the search space. This means that it is still possible to discover the period of a sequence

that is composed, in a worst-case scenario, of 1√
2

0’s and 1− 1√
2

1’s.

9.3.3 Conclusions

The quantum period finding algorithm is often described in general terms as being able

to discover the period of a function. In this section the question of what would be the

consequences for search if no conditions were attached to such an algorithm was examined.

This process required redefining basic notions such as space as well as the verification function

employed in order to accommodate for the concept of periodicity. This process required

redefining basic notions such as space as well as the verification function employed in order

to accommodate for the concept of periodicity. Although the proposed algorithmic has its

drawbacks, it is still capable of performing search when roughly at most 1√
2

of the search

space represents non-solution states. Although such a behaviour can be perceived as a

drawback, it can also be described as a characteristic that must be observed when trying

to determine the period of a function. This fact is missing from current discussions of the

period finding algorithm. Moreover, the algorithm is capable of executing in O(k) time,

where k represents the number of bits required to encode the extended search space. Even

though such a search space composition is not a practical assumption, the overall procedure
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still raises some important questions that deserve further investigation. Namely, it would be

interesting to determine if the DC component of QFT−1|ψ〉 can somehow be removed. Or,

if it is possible to develop methods of increasing the amplitude of the periodic peaks whilst

diminishing the probability of |0〉.

It is also interesting to note that Grover’s algorithm is able to deliver a solution with certainty

and in O(1) time if the number of solution states represents a quarter of the search space [99].

Such a search space composition is only marginally different than the one that is required by

the proposition described in this section. As a further matter, the quantum search algorithm

performance actually decreases when the number of solution states represents at least half

of the search space. In this case there are two solutions available: (1) either simply pick a

random state and verify if a solution is obtained with at least 50% probability; (2) or extend

the search space with non-solution states thus diminishing the overall percentage of solution

states. The use of entanglement detection schemes to perform search also has the potential

to deliver efficient algorithms. However, for the time being, it appears that this task will

also be difficult since it depends on the mathematical properties of linear positive maps λ,

which have not been operationally characterized. This proposition shares with the former the

use of quantum Fourier transform, although it does not rely on an amplitude amplification

scheme, and with the latter the notion of space decomposition to perform search. Given

the diversity of methods employed by the aforementioned search algorithms and the type of

performance they deliver, it is not inconceivable to conjecture that search will remain a hard

computational task in the foreseeable future.
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Chapter 10

Conclusions and Reflections

Quantum computation can trace its origins to Feynman’s seminal work [72] questioning the

apparent difficulties probabilistic Turing machines had in simulating quantum physical sys-

tems. Since then an elaborated body of scientific work has extended our understanding of

this computational paradigm. Up until now, the field of quantum computation has been

largely dominated by the physics and mathematics communities. From the experience gath-

ered during the last couple of years I believe this to be due to a combination of factors

involving: (1) the physics background required; (2) the novelty of the theme; (3) an inherent

different approach to computation that clashes with what is currently performed and (4)

a largely theoretical framework, lacking any viable practical mechanism for implementing

quantum computation. This last factor contributed for some members of the computer sci-

ence community to view the field with a certain skepticism. My background on classical

computer science enables a different perspective, which has the potential to help to bridge

the gap between classical and quantum computation. In doing so, I hope to contribute in

a meaningful way for a more complete understanding of some of the dynamics associated

with quantum computation. However, the scientific community is still very far from having

a detailed picture on the powers and limitations, of quantum computation devices.

The onset of this work started with a very simple question, namely, how to perform tree

search, a task that is recurrent in artificial intelligence, in a quantum manner? I knew that

quantum equivalents of the Turing machine existed. Accordingly, this seemed to provide

an apparently good starting point to my research. The rationale was simple: present day

computers are able to perform tree search and they essentially mimic the capabilities of Tur-

ing machines. Therefore it would be a reasonable assumption to perform the corresponding

quantum mapping. However, further analysis revealed that such an assumption was in fact
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erroneous. Multiple definitions of Turing machines existed, which were also not directly com-

parable. The Turing models considered included Deutsch’s model [57], which was inefficient

and later proven to be wrong in [158], to Bernsteins and Vazirani’s improved model [27]

to Perdrix measurement based devices (described in [171] and [170]). Besides the variety of

exiting models, these were also inherently complex making it difficult to understand not only

the associated dynamics but also any potential performance gains. As a result, although it

was possible to express such computations by quantum Turing machines, it would be wise

to consider other methods first.

Alternatively, another possibility consisted in exploring amplitude amplification schemes such

as the ones described in Grover’s algorithm [82] and in quantum random walks [190]. These

approaches were specifically focused on search, which was a central part of the problem that

was being tackled. However, by choosing such methods some of the computational character

embedded in Turing machines would also be lost. Grover’s algorithm in particular seemed

ideally suited since it searched a space of possibilities. The only issue that remained was

how exactly to express an abstract form of search where symbolical conditions need to be

verified in order to trigger an adequate action.

It was also decided that it would be best to base any initial approach on a specific problem

instance, namely the sliding block puzzle. Besides understanding the dynamics of the quan-

tum search algorithm, such an approach would require developing a purposely built unitary

operator with an oracle form. Given that unitary operators represent bijections and that

such functions can be obtained by reversible computation, logic dictated that this would be

an ideal place to start. By focusing on developing the required reversible circuitry it was

possible to take a less theoretical and more practical approach to the problem. It would also

enable for an understanding of the requirements associated with reversible computation and

how such circuitry could be employed in order to obtain the equivalent unitary operator.

Once the initial circuit operator had been developed it would be a relatively easy task to

store the result and undo the computation in order to obtain the proper oracle. Such a prac-

tical approach was fundamental in gaining a firm understanding of how to represent unitary

operators through operator composition and basic mathematical operators. In addition, it

also made possible to understand how the dimensions and complexity of unitary operators

were dependent on the corresponding reversible circuit. Namely, each additional bit would

imply an exponential growth in the dimensions of the unitary operator.

Furthermore, a comparison of how the number of quantum iterations fared against the clas-

sical one was also performed. The overall conclusion reached was that both approaches differ

by a quadratic factor that is dependent on the number of initial states, respectively,
√
|Si| .

Each additional bit that the system requires implies a 1√
2

performance penalty in the worst
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case complexity. By studying the dynamics of such a ratio it was possible to determine

general boundary conditions, which were expressed as dimensions of the lengths of the reg-

isters employed. Although this initial analysis hinted at some of the variables influencing

overall performance it did not take into account concepts that are relevant to tree search.

Accordingly, a more comprehensive examination was required, some of the crucial points ex-

amined included: (1) the reverberations of contemplating the use of non-constant branching

factors and (2) determining the consequences of incorporating a heuristic perspective into a

quantum tree search model. As a result, two variables were determined that influence the

performance of performing tree search in such a fashion, namely, the average and maximum

branching factor, respectively bavg and bmax. It was also determined that such a strategy

generally works best with balanced trees. This result is due to bmax ≈ bavg, which allows for

a more complete use of all possible combinations represented in the quantum superposition,

thus minimizing the number of times Grover’s iterate needs to be applied.

In addition, the system performance also exhibits a ladder effect that reflects the overall

number of bits required for the average branching factor. Regarding the use of heuristic

functions, it was shown how to fine tune a unitary operator in order to produce a set of

states that fall below a certain evaluation level T . Such a threshold represents an estimate

of the cost to reach a goal state from the last node obtained after having applied a sequence

of productions. The concept of the heuristic function can also be used in order to mark a

quarter of the search space as goal states. This procedure enables one to obtain with a single

application of Grover’s iterate one of those states, whilst classically each state evaluated

would have a 3
4 probability of not being a marked state, which for a d-level depth search

would mean a total probability of
(

3
4

)d
chance of not obtaining a marked state.

Starting with a concrete example allowed for a foundation to be established, which would

later be used to develop a more stable set of theoretical definitions. The initial approach

lacked the mathematical formalism that is characteristic when defining models of computa-

tion. As a result, a re-examination of the proposed mechanisms from a theoretical perspective

was required. Initially, a choice was made to focus on presenting a formal set of definitions

specifying the classical behaviour of production systems. Once the classical behaviour had

been defined it was possible to re-address the issue of reversibility, but this time the focus was

placed on developing a model for a reversible production system, which was a simple mapping

of Bennett’s reversible Turing machine. This procedure allowed for a set of definitions to be

obtained specifying the requirements and behaviour associated with a reversible production

system. This allowed for the presentation of a probabilistic control strategy, which enabled

for a mapping from real-valued probabilities to complex quantum amplitudes. Solving the

issues of reversibility was important before defining any type of probabilistic control strate-

gies for production systems. This process guaranteed that the conditions required further
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along by unitary operators would be ensured.

I also realized that a specific field of quantum computation, namely, quantum random walks

had interesting parallels with the problem being tackled. A significant portion of the lit-

erature focused on analysing the dynamics of quantum random walks applied to graphs

alongside the corresponding hitting and spreading times. However, only a single reference,

respectively [190], was found that focused on obtaining a marked stated. This approach also

possessed some similarities with Grover’s search, namely, the quantum coin employed was

in fact Grover’s iterate. Logically, I considered if such an approach could be adapted in

order to: (1) perform tree search and (2) store the sequence of transitions performed that

led to goal states. This process would simply require storing the corresponding edge choses

at a particular time t during the walk in an auxiliary register. Given that at each time step

the walk is allowed to choose from a multitude of directions, and that the complexity was

still O(
√
N ) this would imply a register whose length grew in accordance. Furthermore,

given the randomness nature of the walk it would also not be possible to guarantee that the

path obtained was the shortest or even free of cycles. However, it was possible to perform a

comparison of the total states generated by both approaches. This allowed me to conclude

that the randoms walks approach could be perceived as searching an extra level of depth

comparatively with the model proposed. However, both approaches are not without their

merits: quantum random walks are ideally suited to evaluate parent nodes that are calcu-

lated as a function of children, whilst the approach inspired by production system theory

delivers an increase in performance when the children are calculated solely as a function of

the parent nodes involved.

More recently, quantum random walks were applied to calculate the value of balanced NAND

trees in [67]. In such a structure, each node of the tree corresponds to a binary NAND gate

that is recursively calculated as a function of its children up to the leafs that are assigned

a specific bit value. The overall objective is to calculate the value of the root node. The

algorithm devised by the authors makes use of a continuous time quantum walk with time

O(N
1
2 +o(1)). The optimal classical randomized algorithm for NAND tree evaluation executes

in Θ(N0.7537) time, where N is the number of leafs (please refer to [194], [184] and [185]). The

quantum NAND algorithm inspired an approach to evaluate AND-OR trees that depends

on the equivalent NAND tree structure [9]. The authors prove that there exists a bounded-

error N
1
2 +o(1)-time quantum algorithm based on a discrete-time quantum random walk that

is close to optimal. The authors also prove that for balanced or approximately balanced

trees the algorithm executes in time O(N
1
2 ), which is optimal. The algorithm first starts

by performing a random walk on the tree in time O(
√
N ), which is the number of steps

required to evaluate the root node. During this time, the algorithm also performs a dynamic

change of the adjacency operator H associated with the underlying NAND tree. The authors
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then proceed to demonstrate that it is possible to detect these changes in the spectrum of

the operator based on the underlying value of the root. Namely, if the root evaluates to 0

then the associated phase will be 0 with a certain probability. However, if the root evaluates

to 1 then the phase will be different than zero. All that is required is that the phase

estimation procedure has sufficient precision (namely O( 1√
N

) bits) in order to allow for this

distinction.

This algorithm led to the development of a quantum procedure for evaluating Min-Max

trees [50]. The authors devise a method for evaluating Min-Max trees based on examining

the entire tree as an AND-OR tree with different thresholds. They are able to achieve a

O(
√
N logN) time, which is the result of a logarithmic slowdown of the original AND-OR

quantum tree evaluation. Although it is not explicitly mentioned most of these approaches

only focus on evaluating a tree, and do not take into account the time or space required

to generate the respective structure. Clearly, generating such an input through traditional

mechanisms will still require an exponential amount of time. This is a significant difference

from the approach discussed in this thesis, since the superposition principle employed en-

ables the construction of an exponential-growth input using polynomial resources without

hindering the original speedups. In terms of space required, the adjacency matrix employed

will require |V |2 ≈ b2d elements. By comparison, the C operator described in Chapter 6

requires 22(α+β+γ) space. If operator C is perceived as acting upon a branching factor of

dimension 2α then both operators will have similar sizes when d = β+γ
2 .

Parallel to these initiatives a simple extension to the initial quantum production system

proposal was also envisaged in order to yield an iterative version of the production system,

which would still deliver the original quadratic speedup. Also, such a model of computation

would be ideal to tackle the quantum halting issue that was highlighted in [158]. In the

halting issue each time an observer wishes to verify if the computation has halted he needs

to measure a halt qubit. As a result the interference patterns are irremediably changed.

Therefore the original interference pattern cannot be employed if the computation is to

proceed from that point onwards. The only way to obtain the original pattern is to restart

the computation, but the problem is not solved since a measurement will still eventually

need to be made. Developing such an extension required incorporating into the model the

capabilities that are characteristic of µ-recursive functions, a class of functions, which allows

for the possibility of non-termination. The extensions that were incorporated allowed for

the model to be endowed with an iterative character. In the end it was possible to obtain

a model of quantum computation that: (1) allows for a detection of halt states without

interfering with the final result of a computation; (2) contemplates the possibility of non-

termination and (3) allows for an inherent speedup to occur during computations susceptible

of parallelization. Additionally, the model can also be employed in order to simulate classical
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Turing machines.

Given that search is such a crucial part of this work it was also important to consider other

methods besides the one described by Grover. One such approach was to explore forms

of decomposing a quantum search space. Ideally, some form of space analysis would need

to be performed alongside the ability to determine if a solution was present or not. Two

possibilities existed, one exploiting quantum entanglement detection schemes and the other

utilising the notion of periodicity. From a computational perspective each time an oracle

evaluates a quantum superposition and marks a state as being a solution it also entangles the

superposition. Consequently, it would be opportune to determine if quantum entanglement

detection schemes existed. Several methods were found to exist, of which [108] seemed par-

ticularly well suited since it offered a method for direct detection of quantum entanglement.

Curiously, the method’s original motivation placed a strong emphasis on an experimentally

viable direct detection of quantum entanglement. As a result, such an application would

be considered novelty in the context of quantum computation. Subsequently, a recursive

definition of a unitary operator was developed that was capable of dividing the search space

into equal-length intervals.

This type of operators was labeled as entanglement inducing operators, which were to be

applied to a superposition state followed by the entanglement detection method. The method

was developed in order to produce a solution state with certainty. This proposal sacrificed

space for speed, since the number of state copies L grew as a function of the original dimension

of the search space. Such an entanglement based search method was also dependent on

the mathematical properties of linear positive maps Λ, which have not been operationally

characterized. Whether such a Λ can be easily determined remains an open question and

would have far-reaching consequences for quantum computational theory. However, if this

were to be the case then the entanglement search method would search an exponential-growth

search space in polynomial time.

Besides trying to perform search by entanglement detection the question of how periodicity

could affect quantum search was also posed. The original idea supporting this question was

based on Shor’s factoring algorithm that was able to deliver a superpolynomial speedup by

employing the quantum Fourier transform to analyse the period of a signal. This behaviour

led to the question if it would be possible to employ the same principles but this time applied

to the specific constraints of search. By extending the search space in order to accommodate

multiple repetitions of the original one it was possible to develop a recursive algorithm

capable of running in time O(k), where k represents the number of bits employed by the

extended space. In addition, it was also showed that the algorithm is only able to work

correctly when at most 1√
2

of the search space is composed of non-solution states.
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These statements form important contributions proving that the proposition for an alter-

native model of quantum computation based on production system theory has merit. The

quantum production system employs the concept of tree search to describe computation in a

quantum fashion. I believe the solution is simple and elegant in contrast with the complex-

ity of the existing proposals for quantum Turing machines. Furthermore, these models are

also not without some issues, the most prominent of which is the quantum halting matter.

In comparison, the model is capable of dealing with the issue of quantum halting without

interfering with the overall interference pattern. Such behaviour is ideal in the context of

non-terminating computation. In addition, the proposed approach is also able to benefit

from an explicit quadratic speedup. The only condition required for this speedup is that

a non-unary branching factor is employed. Accordingly, it is my believe that the results

presented form important contributions that lend support to this thesis.
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[198] Lúıs Tarrataca and Andreas Wichert. Problem-solving and quantum computation.

Cognitive Computation, 3:510–524, 2011.
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[207] Salvador Eĺıas Venegas-Andraca and S. Bose. Quantum computation and image pro-

cessing: New trends in artificial intelligence. In Proceedings of the International Con-

ference on Artificial Intelligence IJCAI-03, pages 1563–1564, 2003.
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