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Abstract Embedded systems are considered one of the ar-
eas with more potential for future innovations. Two embed-
ded fields that will most certainly take a primary role in
future innovations are mobile robotics and mobile comput-
ing. Mobile robots and smartphones are growing in number
and functionalities, becoming a presence in our daily life.In
this paper, we study the current feasibility of a smartphone
to execute navigation algorithms and provide autonomous
control, e.g., for a mobile robot. We tested four navigation
problems: Mapping, Localization, Simultaneous Localiza-
tion and Mapping, and Path Planning. We selected repre-
sentative algorithms for the navigation problems, developed
them in J2ME, and performed tests on the field. Results
show the current mobile Java capacity for executing com-
putationally demanding algorithms and reveal the real pos-
sibility of using smartphones for autonomous navigation.
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1 Introduction

Autonomous navigation is an important aspect for mobile
robotics and for mobile devices with the goal of helping the
user to navigate in certain environments. A mobile device
such as a smartphone can be used to guide the user in mu-
seums, shopping centers, exhibitions, city tours, and emer-
gency scenarios when a catastrophe occurs; to control more
effectively home appliances like vacuum cleaners; to assist
impaired people, etc.

Currently, most navigation problems require solutions
dependent of computationally demanding algorithms. De-
spite their recognized complexity, those algorithms have not
been fully analyzed in the context of smartphones. Thus, this
paper presents a performance study of four navigation algo-
rithms when implemented using J2ME technology for mo-
bile devices. To test those algorithms on the field, we use a
system composed by a mobile robot and two smartphones.
In this system, a smartphone executes the navigation algo-
rithms and sends control instructions to the mobile robot us-
ing Bluetooth. A second smartphone acts as an intelligent
visual sensor, communicating processed visual information
to the former smartphone. A schematic of the system orga-
nization is presented in Figure 1.

Smartphone

Visual 

Sensor

Fig. 1 Organization of the system components.
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By developing and studying J2ME implementations of
navigation algorithms on smartphones, we hope to be con-
tributing to a clear understanding about the current capabil-
ities of high-end smartphones and J2ME, and possibly to
highlight future improvements on both.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an overview of navigation algorithms; Section 3
presents the experimental setup used, followed by Section 4
with the algorithms implemented; Section 5 shows experi-
mental results and Section 6 presents the main conclusions.

2 Autonomous Navigation

Autonomous navigation has been widely focused by the mo-
bile robotics area [15]. Navigation is defined as the process
or activity of accurately ascertaining one’s position, plan-
ning and following a route. In robotics, navigation refers to
the way a robot acquires a perception of the environment
where it is immersed in, finds its way and is able to move
itself in that environment [15]. Navigation is a common ne-
cessity and requirement for almost any mobile robot.

Leonard and Durrant-Whyte [13] briefly describe the gen-
eral problem of mobile robot navigation by three questions:
”Where am I going?”, ”Where am I?” and ”How do I get
there?”, each one relative to a navigation subproblem: Map-
ping, Localization and Path Planning, respectively.

2.1 Mapping

The mapping problem exists when the robot starts without
a map of the environment where it is immersed in and in-
crementally builds one as it navigates. While in movement,
the robot senses the environment and identifies key features
which allow it to register information of its surroundings.
The main concern for the mapping problem is how the mo-
bile robot does perceive the environment. There are many
sensors used for mapping, being the most common sonar,
digital cameras and range lasers. The complexity of the map-
ping problem is the result of a different number of factors
[23], being the most important: size of the environment, noise
in perception and actuation, and perceptual ambiguity.

Mapping approaches based on images captured by a vi-
sual sensor (e.g., digital camera), have been mostly accom-
plished through the extraction of natural features from the
environment or through the identification of special artifi-
cial landmarks. Artificial landmarks mainly consist of solid-
color or pattern-based features. Solid-color landmarks [18]
are in most cases easily identifiable, but can sometimes be
blend into the environment and become less detectable. In
contrast, patterns [1,8] are less blurred with the background
environment and can also be easily identified. An approach
based on natural landmarks existent in the environment [14,

20] is a more computationally demanding task, but benefits
from the fact that there is no need for an artificial preparation
of the environment.

2.2 Localization

Localization is the process of estimating where the robot is
relatively to some model of the environment, and using the
available sensor measurements. As the robot keeps moving,
the estimation of its position drifts and changes, and has to
be kept updated through active computation [15]. These up-
dates are performed based on the recognition of special fea-
tures in landmarks, sensor data and probabilistic models.

Localization uncertainty rises from the sensing of the
robot, because of the indirect estimation process. The mea-
surements besides being noisy, because of real-world sensor
characteristics, may not be available at all times. Based on
the uncertainty characteristics of the localization problem,
similarly to other important mobile robotics problems, lo-
calization has been tackled by probabilistic methods [23].
Amongst the most commonly used are Markov Localiza-
tion [5] and Particle Filters [7].

2.3 Simultaneous Localization and Mapping (SLAM)

SLAM [21] involves both localization and mapping and con-
stitutes a technique used by autonomous robots to build up
a map within an unknown environment while at the same
time keeping track of their current position. This approachis
complex since it involves both localization and mapping si-
multaneously, both with uncertainties associated. One main
concern in SLAM is keeping the uncertainty controlled, for
both robot position and landmark position, in order to dimin-
ish errors as much as possible. For this double uncertainty,
SLAM normally uses methods based on Extended Kalman
Filters (EKF) [9,27] and Particle Filters [7]. There are cur-
rently further developments on the SLAM technique, being
FastSLAM [16], an optimization worth mentioning (which
is based on EKF and Particle Filters).

2.4 Path Planning

Path Planning is the process of looking ahead at the out-
comes of possible actions, and searching for the best se-
quence that will direct the robot to a desired goal location
[15]. It involves finding a path from the robot’s current loca-
tion to the destination. The cost of planning is proportional
to the size and complexity of the environment. The big-
ger the distance and the larger the number of obstacles, the
higher the cost of the overall planning. Path Planning tech-
niques for navigation can be divided into local path planning
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and global path planning. They mainly differ on the quan-
tity of information of the environment they need to possess.
Local techniques only need information of the environment
that is near to the robot, while global techniques use full in-
formation of the environment.

There are many different approaches to path planning, as
they try to solve the problem using different techniques. Two
examples of Path Planning techniques are the Artificial Po-
tential Field [10] and the technique based on Ant Colony [4].

3 Prototype

Our prototype consists of a mobile robot, a Lego Mind-
storms NXT1 kit, coupled with two smartphones (we have
used the Nokia N802 and the Nokia N953). One smartphone
is coupled to the mobile robot and positioned so its built-in
camera faces the front of the robot, enabling it to act as an in-
telligent image sensor (see Figure 2). The other smartphone,
which is the main processing unit, responsible for executing
the navigation algorithms, does not need to be physically
coupled to the mobile robot. The robot and the two smart-
phones communicate with each other viaBluetooth, requir-
ing always to be located within communication range.

Fig. 2 Prototype mobile robot with a smartphone.

Development for the smartphones was done in Java us-
ing its Micro Edition version (J2ME4). The choice of J2ME
development was mainly due to Java’s known portability
among the most common mobile phone manufacturers. De-
velopment for the mobile robot was also done using a sub-
set of Java supported by the JVM present in the custom
firmware leJOS NXJ [22], for the Lego’s NXT Brick.

3.1 NXT Middleware

A middleware component is responsible for the interaction
between the smartphones and the mobile robot. The naviga-
tion algorithms are executed in the central smartphone and

1 http://mindstorms.lego.com/
2 http://www.nseries.com/products/n80/
3 http://www.nseries.com/products/n95/
4 http://java.sun.com/javame/technology/

the control instructions are passed to the robot via the mid-
dleware. Raw data from sensing by the robot is acquired by
the middleware via aBluetooth interface. A block diagram
representation of the middleware is presented in Figure 3.

Mobile Device

(Smartphone)

Middleware

Client Application

Mobile Robot

(NXT)

leJOS firmware

Server Application

Fig. 3 NXT Middleware Platform.

The core functionality of the mobile robot middleware
consists in providing abstractions forBluetooth communi-
cation and also access to the mobile robot’s sensors and ac-
tuators. The main operations supported include: establishing
and ceasing connections; moving forward, backward and ro-
tating; and data acquisition from the available sensors. A
code snippet is provided in Figure 4. The middleware com-
ponent was developed in the Java programming language
and was built on top of the leJOS NXJ firmware [22].

MobileClientNXT nxtClient = new1
MobileClientNXT(BluetoothAddress);
nxtClient.connect();2
nxtClient.forward(velocity);3
nxtClient.rotate(angle);4
nxtClient.stop();5
nxtClient.disconnect();6

Fig. 4 Example middleware client code snippet.

4 Navigation Algorithms Considered

In order to tackle the autonomous navigation problem, we
approached mapping, localization, simultaneous localization
and mapping, and also path planning, each with a method
chosen to be adapted to a smartphone constrained environ-
ment. For mapping, we based our technique on visual color
identification of artificial landmarks. For localization, we
used the particle filter probabilistic approach. For simultane-
ous localization and mapping, we used an Extended Kalman
Filter (EKF) approach. For path planning, we focused on the
potential fields technique.

4.1 Visual Landmark Recognition

For real-time mapping we rely on feature extraction by the
visual sensor. With the objective of keeping the detection

http://mindstorms.lego.com/
http://www.nseries.com/products/n80/
http://www.nseries.com/products/n95/
http://java.sun.com/javame/technology/
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and recognition of the landmarks as fast as possible, the ap-
proach implemented in this work uses solid-color cylindri-
cal artificial landmarks. The approach developed is similar
to the method used by [3]. In our approach, the visual sys-
tem detects a landmark, recognizes its color, and calculates
its distance and orientation to the visual sensor.

Color segmentation represents the first step for detecting
a landmark on each captured image by the smartphone built-
in camera. Previously, the landmark color features were gath-
ered and analyzed, providing a way to empirically produce
a set of rules in the RGB color space for detecting the col-
ors used in the artificial landmarks. These rules detect the
presence of a landmark in an image, thus allowing the cor-
responding landmark classification based on its color. E.g.,
for a green landmark we use the rules presented in Equa-
tion (1), whereR, G andB correspond to the red, green and
blue color components of the RGB color space. The value
X is an adjustment value, used to increase the green color
component relatively to the red and blue components.

(G≥ 130) and(G > R + X) and(G > B + X) (1)

The color segmentation process transforms the captured
image into a binary, black and white image, as can be seen
in Figure 5. White color pixels indicate the presence of the
green range color and black pixels the absence of it.

Fig. 5 Image captured with a green landmark (left image); binary im-
age after the application of the color segmentation (middleimage); and
landmark boundary detection after the application of the image noise
reduction filter (right image).

Reducing the noise present in an image is a necessary
step for the elimination of salt and pepper noise, caused by
the color segmentation stage. The noise may negatively in-
fluence results in future image processing stages and there-
fore needs to be removed or at least reduced. The filter im-
plemented uses a 3× 3 scanning window, that analyzes all
the landmark pixels present in the image. The window checks
if the pixels surrounding the current scanned pixel mostly
belong to the landmark or to the background. If the neigh-
borhood pixels are mostly background(≥ 50%) then the
pixel is most likely noise and is erased (see Figure 5).

For a more accurate calculations of distance and orien-
tation, we use a minimum rectangular boundary containing
the shape detected. This technique is used to help cope with
some small variations in the shape’s perspective, that can
vary due to the angle from which the image was acquired.

Both distance(d) and orientation(θ ) measures are cal-
culated from the visual sensor to the landmark and are based
on a method proposed by [28]. The landmark distance and
orientation information can be inferred from the landmark’s
size and position in the image (see Equations (2) and (3)),
by knowing the width(x′), height(y′) and center point of
the landmark(xLandmarkCenter), and having previously per-
formed measurements for camera calibration (k, m andl are
scaling and adjustment factors).

dy = ky×
1
y′

dx = kx×
1
x′

d =
dx + dy

2
(2)

θ = m× xLandmarkCenter + l (3)

In Figure 6 we present the pseudocode for a mapping al-
gorithm that uses visual landmark recognition. The mobile
robot has to explore all map positions in order to try to ac-
quire the map for the whole environment. At each location,
the mobile robot needs to capture an image, to perform the
landmark recognition and to build the map with the new in-
formation obtained.

Name : Mapping Algorithm
Output : Environment Map
for all possible positions do1

CaptureImage ();2
LandmarkRecognition ();3
BuildMap ();4

end5

Fig. 6 Pseudocode for the Mapping algorithm.

4.2 Particle Filter

For localization, we use a Particle Filter method, based on
the one presented in [19]. The environment is represented
as an occupancy grid map, where each grid cell matches an
area of the real environment at a specific ratio. Each grid cell
can be assigned with estimation probabilities of the mobile
robot’s position or with a possible presence of an obstacle.

The Particle Filter method can be divided into three main
stages: Prediction stage which involves a motion and noise
model for movement; Update stage which concentrates on
sensing the environment and altering the particles relevance
weight value; and a Resample stage where the particle popu-
lation is managed. At any given time a position estimate can
be acquired using different techniques.

The Prediction stage involves two different models. A
motion model, responsible for the robot’s path planner. This
model is responsible for providing at each step a path for the
mobile robot’s movement. In this work, two motion models
were developed: an explorer type model which visits all free
locations in the map, and a point-to-point model which is a
predefined obstacle-free path from one location in the envi-
ronment to another. A noise model, responsible for reflect-
ing odometry errors, is added to the robot’s motion and its
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implementation is based on the model provided in [19]. The
odometry errors considered were divided into rotation er-
rors and translation errors. Both errors were experimentally
established from the real odometry errors from the mobile
robot used. Translation and rotation with noise are accom-
plished using a pseudo-random value, drawn as a sample
from a Gaussian distribution.

The Update stage is represented by a measurement model
which provides, on each observation of the environment,
necessary information for a function that updates the par-
ticles weights. In this implementation, a particle’s weight is
considered to be a numeric valuew greater than 0. An ob-
servation consists on sensing the environment. Sensing is
done by using a simulated observation from the information
present in the internal map or by using the visual landmark
recognition method presented earlier.

Resampling occurs when a considerable amount of parti-
cles within the particle population have weight values below
a threshold and therefore have low contribution to the overall
estimation of the robot’s position. The resampling process
recognizes particles with small weight values(< threshold)

and replaces them with a random particle, whose weight
value is higher than the resampling threshold(≥ threshold).
This random replacement minimizes the problem of diver-
sity loss. When all particles have weights below the defined
threshold then a new random set of particles is generated.

In our approach, at a certain time,t, the position estimate
is given by the best particle, i.e., the one in the the current
particle set having the maximum weight value. There could
have also been used estimations of the robot’s position using
a weighted mean considering all particles or a robust mean.
The robust mean is in fact the weighted mean limited by a
small window around the best particle.

The pseudocode for the Particle Filter algorithm is pre-
sented in Figure 7. The ESS function used in Figure 7 rep-
resents the Effective Sample Size and can be calculated by
Equation (4). The coefficient of variation(cv2

t ) can be cal-
culated by Equation (5). The variablesM andi represent the
total number of particles and theith particle, respectively.
Recall thatw represents a particle’s weight.

ESSt =
M

1+ cv2
t

(4)

cv2
t =

var(wt(i))
E2(wt(i))

=
1
M

M

∑
i=1

(M×w(i)−1)2 (5)

In the algorithm, lines 4−7 are responsible for the Re-
sample phase; lines 8−10 are relative to the Prediction phase;
lines 11−14 are for the Update phase; and lines 15−17 are
used to normalize the weights of the particles.

Name: Particle Filter Algorithm

Input : A set of Particlesi at t = 0
(S0

i = [x j,w j] : j = 1. . .M)

W = w j : j = 1. . .M;1
while Exploring () do2

k = k + 1;3
if ESS (W) < β ∗M then4

Index =Resample (W);5
St

i = St
i(Index);6

end7
for j = 1 to M do8

rt+1
j = f̂ (rt

j ,α);9

end10
s =Sense ();11
for j = 1 to M do12

wt+1
j = wt

j ∗W (s, rt+1
j );13

end14
for j = 1 to M do15

wt+1
j =

wt+1
j

∑M
j=1wt+1

j

;
16

end17

end18

Fig. 7 Particle Filter Algorithm (adapted from
source: [19]).

4.3 Potential Fields

For path planning we use the Potential Fields approach [10].
This approach is amply used for path planning and collision
avoidance due to its mathematical simplicity and elegance,
providing acceptable and quick results [12] in real-time nav-
igation. This method is based upon the concept of attractive
and repulsive forces, where the goal is seen as a global min-
imum potential value (attractive force), and all obstaclesas
high valued potential fields (repulsive force). The movement
of the robot is then defined by the potential values present in
its path, moving ideally from high to low potentials. Exam-
ples of potential field functions are: Khatib’s FIRAS func-
tion [10], Superquadratic potential function [26], and Har-
monic potential function [11].

The pseudocode of the algorithm for the potential fields
is depicted in Figure 8. Our approach uses as basis the poten-
tial field functions presented by [6]. The potential field func-
tions used are defined as follows:UTotal(p) denotes the total
scalar potential field;UAtt(p) the attractive scalar potential
field; URep(p) the repulsive scalar potential field;FTotal(p)
the total vector potential force which is equal to the negative
gradient (∇) of the total potential field;FAtt(p) the attractive
vector potential force;FRep(p) the repulsive vector potential
force; andp the position[x,y] of the robot.

UTotal(p) = UAtt(p)+URep(p) (6)

FAtt(p) = −∇UAtt(p) (7)

FRep(p) = −∇URep(p) (8)
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FTotal(p) = FAtt(p)+ FRep(p)

= −∇UTotal(p) =−

[

∂U
∂x

,
∂U
∂y

]

(9)

Input : Robot Position (rp), Goal Position (gp),
Obstacle Positions (op[])

Output : Directional Action Vector

while NotInGoalPosition do1
FAtt ← AttractivePotentialForce (rp, gp);2

FRep ← RepulsivePotentialForce (rp, op[]);3
FTotal ← FAtt + FRep;4
Velocity← DetermineVelocity (FTotal);5
Angle← DetermineAngle (FTotal);6
UpdateRobotPosition (Velocity, Angle) ;7

end8

Fig. 8 Potential Fields approach.

The most difficult problem for the Potential Field method,
known as the local minima, has been addressed using es-
cape techniques (e.g., Random Escape, Perpendicular Vec-
tor Escape [25], Virtual Obstacle Concept Escape [17]). In
order to provide a smoother robot movement, a lookahead
function was implemented which prevents the mobile robot
from falling into local minima locations by detecting them in
advance. Other recognized problems and limitations of this
method include: difficulty in considering different obstacle
geometry, e.g., concave shaped obstacles; obstacle grouping
and closely positioned obstacles; and goals non-reachable
with obstacles nearby. Note, however, that the implemen-
tation studied in this work is considered representative, al-
though being kept as simple as possible.

4.4 Extended Kalman Filter (EKF)

The most complex problem in mobile navigation is the si-
multaneous localization and mapping (SLAM). In this case,
the robot builds the map of the environment, while it tries to
localize itself on the map. Thus, the robot starts by neither
having the map of the environment nor its localization.

One of the most well-known approaches to SLAM is
the use of the Extended Kalman Filter (EKF) algorithm [9,
21]. We evaluate here the use of an EKF implementation
based on the C implementation proposed in [2]. The J2ME
implementation uses float data types and emulates the in-
put robot’s position information from an internal odometer
and a set of landmarks from sensors. As output, it produces
improved robots position estimations and a stochastic map
based on landmarks (features). Those features are represen-
tations of physical objects such as corners, walls, etc.

A feature extractor generates the distance, the orienta-
tion, and the signature of an observed landmark relative to
the robot’s localx− y coordinates.

EKF is a very complex computational task. Its compu-
tational complexity scales quadratically with the number of
landmarks (features) in the map. EKF requires Jacobian cal-
culations and heavily involves matrix operations. Although
improvements over EKF have been proposed (e.g., the Fast-
SLAM [16] optimization), we adopt the EKF as a reference
and representative solution.

5 Experimental Results

In this section, we present and discuss experimental results
for representative approaches to the navigation problems of
mapping, localization, SLAM and path planning. Here, we
evaluate the performance of the algorithms developed, by
comparing executions between the used smartphones and a
desktop PC (equipped with an AMD Athlon 64 X2 Dual
Core Processor at 2.20 GHz with 1GB of RAM), and an-
alyzing the feasibility of using smartphones for real-time
autonomous navigation. A first study of performance was
done with profiling results gathered from the Sun Java Wire-
less Toolkit5 PC MIDP6 (Mobile Information Device Pro-
file) emulator. Next, we conducted several experiments on
the field (environment shown in Figure 9).

Fig. 9 Field environment for testing of the navigation algorithms.

Complementary to the evaluation of the algorithms, an
assessment of the computational power for the two smart-
phones used was also conducted by analyzing both camera
and low-level operations.

5.1 Smartphone Performance

J2ME grants access to a phone’s camera through the Mo-
bile Media API (MMAPI7) library, which provides audio,

5 http://java.sun.com/products/sjwtoolkit/
6 http://java.sun.com/products/midp/
7 http://java.sun.com/products/mmapi/

http://java.sun.com/products/sjwtoolkit/
http://java.sun.com/products/midp/
http://java.sun.com/products/mmapi/
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video and other multimedia support to resource constrained
devices. Applications which rely on image acquisition and
processing, to be successful, need the underlying device to
be able to execute heavy algorithms as well as acquire im-
ages at a significant acquisition rate. Factors like image pro-
cessing and camera performance in J2ME should be care-
fully analyzed as they carry possible bottleneck implications
for the feasibility of applications that use them.

Considering the evaluated smarpthones, the Nokia N95
boasts a Texas Instrument’s OMAP2420 chipset, contrast-
ing with the Nokia N80 which features an OMAP1710. The
former, OMAP2420, features an ARM1136 processor core
clocked at 330 MHz whilst the latter, OMAP1710, features
an ARM926TEJ clocked at 220 MHz.

Considering camera performance it is important to no-
tice that current MMAPI implementations do not support the
access to frames in video capture mode, preventing a stream-
oriented video acquisition. Nevertheless, MMAPI enables
video snapshot acquisition. MMAPI also allows the access
to RGB pixel values from an image in order to proceed
with data processing. These correspond to the steps required
in order to execute some useful computation over a given
image, and as such the combined total time can be inter-
preted as representing the acquisition time [24]. Figure 10
illustrates the average acquisition times obtained for Nokia’s
N80 and N95 models.
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Fig. 10 Image acquisition time for different image resolutions.

It should be noted that the N80 and N95 smartphones
boast different cameras, respectively with 3 and 5 megapix-
els, and also with unique sets of characteristics, such as auto-
focus and red-eye reduction, that could not be directly ma-
nipulated using the API. In order to provide accurate results
regarding camera performance, it would have been impor-
tant to control such features. We were unable to achieve im-
age resolutions superior to 800× 600, since higher resolu-
tions requests generated a media exception.

Both models present relatively high acquisition times
even for such low resolutions as 160× 120, making it im-

possible to meet real-time requirements, and showing the
need for fast video acquisition in order to access individual
frames at high rates. Also noteworthy and without apparent
justification is the fact that both models present an acquisi-
tion time drop for the 640×480 resolution.

Regarding J2ME processing performance in the N80 and
N95, we measured the processor’s execution time for basic
low-level operations to determine the overall speed and to
identify the fastest and slowest operations. Operations tested
considered integer data types and consisted on: access an ar-
ray; increment a variable; add two variables; use bit shift op-
erators to multiply and divide by a power of two; and com-
pare two variables (equal, less or equal, less).

The results presented in Figure 11 reveal average execu-
tion times for each operation, obtained by measuring indi-
vidual repetitive runs.
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Fig. 11 Operation times regarding some low-level operations.

For the operations considered, division is the slowest op-
eration in both smartphone models followed respectively by
array accesses, comparison operators and finally the other
arithmetic operations. Although the N80 and N95 feature
different base ARM processors and one expected to see bet-
ter performance from the latter, it was still surprising to see
that regarding the less or equal operation the N95 was more
than three times slower than the N80. Regarding the remain-
ing operations it is possible to see a clear performance supe-
riority from the N95.

5.2 Mapping

We show here mapping experiments that test the application
of the Visual Landmark Recognition method while trying to
map the environment presented in Figure 9. Tests executed
indicated good identification of the landmark colors, as well
as possible problems due to illumination variations, which
were the main sources for the incorrect identifications.
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Figure 12 presents profiling results for capturing an im-
age and applying the landmark recognition stages. As can
be seen, most of the time was consumed on two stages: 51%
of the execution time was spent on color segmentation, and
21% on camera image capture.
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Fig. 12 Contribution to the overall execution time of each step associ-
ated to the Visual Landmark Recognition algorithm.

Table 1 compares the execution time obtained when run-
ning the algorithms on the PC, on a Nokia N80, and on
a Nokia N95. Obviously, the PC is the fastest to execute
the application. Comparing the two smartphones, execution
time is slower in the Nokia N95 compared to the N80. As
seen in previous testing, the N95 has a more complex built-
in camera with higher resolution, making it slower when
capturing an image with J2ME.

Table 1 Execution time measurements for the Visual Landmark
Recognition method.

PC Nokia N80 Nokia N95
Execution time(ms) 453.00 3,079.40 5,824.30

Using a single captured image and considering a good
landmark detection and color segmentation process, the dis-
tance calculation revealed quite accurate presenting an av-
erage relative error of 5.72%. The angle orientation mea-
surement revealed reasonably accurate with an average rel-
ative error of 10.06%. When testing on-the-field, the robot’s
physical movement and variable lighting conditions prevent
the method from achieving its best results. Although this so-
lution cannot be considered a very reliable method for ac-
curate mapping purposes in real-time mobile robot naviga-
tion, it presents typical mapping tasks and it is used here as
a benchmark for studying the performance obtained by the
two smartphones used.

Figure 13 shows the achieved mapping accuracy using
Visual Landmark Recognition on the environment presented
in Figure 9. The grid depicts the obstacles as black colored
cells, obstacle estimates calculated in the cells marked with
an ”X”, and the path taken by the mobile robot is presented
marked with numbers.

X

X

X

X

X

Fig. 13 Mapping results with estimated landmark positions.

The visual sensing revealed itself as time demanding
and cannot, without further optimizations, be used to nav-
igate mobile robots at high speed. Nevertheless, considering
a slower motion, this solution was able to provide a mecha-
nism for mobile robot mapping.

5.3 Localization

Experiments for Localization were conducted considering
only a global localization approach based on the Particle Fil-
ter method.

For profiling the Particle Filter implementation, we con-
sidered a total number of 1,000 particles and using the en-
vironment in Figure 14.

Fig. 14 Occupancy grid map for Particle Filter (50× 40 with robot
initial location at the top right and target location at the bottom left).

Also, we consider that the robot position estimation is
only performed at the end of the mobile robot’s predefined
movement. Figure 15 presents the percentages of execution
time of the main phases of the Particle Filter method. Ta-
ble 2 presents the execution time comparison when running
the implemented localization approach on a PC, on a Nokia
N80, and on a Nokia N95.
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Fig. 15 Contribution to the overall execution time of each phase of the
Particle Filter.

Table 2 Execution time measurements for the Particle Filter method.

PC Nokia N80 Nokia N95
Time (ms) 78.00 3,618.00 1,725.00

According to the experiments, the phase responsible for
the highest percentage of execution time was the Prediction
phase with 48%. The Update phase followed with 41%. Fi-
nally, and considering the number of particles used and their
distribution within the environment, the Resample phase took
9% of the total execution time. The last 2% is spent by aux-
iliary tasks and by the attainment of the pose estimate (cal-
culating the best particle).

Our next experience uses the Particle Filter method to
localize the mobile robot in the environment presented in
Figure 9. The localization approach is implemented as a dis-
tributed system, were the Particle Filter approach is executed
on a Nokia’s N95 smartphone, considering 1,000 particles;
and the measurement model as a visual sensor with the land-
mark recognition method, running on the Nokia N80.

Results for five executions of this field experiment are
presented in Table 3. Consider that the positions are given
asx− y coordinates andθ orientation:[x;y;θ ]. The robot’s
real position at the end of the predefined path is[7;0;90◦].

Table 3 Estimations for the same real position ([7;0;90◦]) for tests
on-the-field using the Particle Filter method.

Experiment Best Particle Position
#1 [4;0;90◦]
#2 [7;0;90◦]
#3 [9;1;90◦]
#4 [4;0;90◦]
#5 [0;11;180◦]

By analyzing Table 3, we can observe that one of the
experiments estimated the robot to be at its exact physical
location. In the other four experiments, three were relatively
close to the robot’s real position, and the last one was very
far from it.

The random initialization of the particles is a character-
istic that makes the method difficult to predict, by provid-
ing very different results on different runs of the algorithm,
since areas in the environment can be highly populated with
particles while others deprived from them (see experiments
#1 to #5 in Table 3). One possible solution to this problem
is the increase of the number of particles, but with high ad-
ditional computational costs. Figure 16 shows the elapsed
time for each loop iteration considering three sets of parti-
cles (100, 1000, and 10000) for five sizes of the occupancy
grid (50×40, 64×64, 128×128, 256×256, and 500×400).
These measurements are related to the execution of the par-
ticle filter algorithm with the Nokia N95.
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Fig. 16 Particle Filter iteration elapse time for a variable numberof
particles and map size.

For a 500×400 map and using 10,000 particles, the al-
gorithm requires 1.4s to perform the particle filter stages.
This result makes evidence that the smartphone is able to
effectively use the particle filter algorithm in real-time for
maps of this or lower dimension and using a significant num-
ber of particles.

5.4 Simultaneous Localization and Mapping

As previously referred we tested an EKF solution to deal
with the SLAM problem. The EKF uses heavily 2-D matrix
operations such as multiplications, transpositions, etc.Fig-
ure 17 shows the execution time of each iteration of the main
loop of the EKF varying the number of features (landmarks).

As can be seen, the number of features influences tremen-
dously the execution time (a quadratically increase with the
number of features, as expected) and may impose unaccept-
able delays between successive readings of sensor data. De-
spite the heavy use of 2-D matrixes and operations between
matrixes, the EKF implementation was very stable for the
two smartphones used in the experiments. Once again the
N95 model achieved better performance than the N80.
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Fig. 17 EKF execution time for a variable number of features.

The profiling results show the heavy impact of the ma-
trix multiplications (92% of the overall execution time is
typically spent by this operation). Figure 18 illustrates the
contribution of the more significant functions of the EKF
when not considering the 92% spent by the matrix multi-
plications. The most time consuming function of the second
group are the matrix subtractions (30%), followed by matrix
prediction (14%), addition of features (14%), transpositions
(13%), and realloc 2D (12%).
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Fig. 18 Contribution of the EKF functions regarding the 8% of the
overall execution time (the remainder 92% is spent with matrix multi-
plications).

5.5 Path Planning

The next experiments analyze the Potential Fields. For this
particular implementation, we used a lookahead value of 5
for local minima detection and the Virtual Obstacle Concept
escape technique. This preemptive detection is responsible
for about 79% of the overall execution time, while the po-
tential calculations for the effective next movement occupies
the remaining 21% of the total time. Table 4 shows the exe-
cution time for the path presented in Figure 19. As expected,

the PC presents the lowest execution time, followed by the
Nokia N95 and finally by the Nokia N80.

Table 4 Time measurements for the Potential Fields algorithm.

PC Nokia N80 Nokia N95
Avg. Step Time(ms) 11.00 377.00 278.75

Total Time(ms) 7,664.60 253,442.75 187,882.75

Fig. 19 Environment used for Potential Fields profiling (map size of
600×500, with robot initial location at the bottom left and target loca-
tion at the top right).

When performing experiments on-the-field, the robot re-
vealed some strange orientation changes when avoiding ob-
stacles. This fact was never very noticeable in the simula-
tions performed. We concluded that, even in the absence of
local minima locations, some raw directional vectors cannot
be directly applied for the robot’s movement. Some of these
directional vectors force the robot to perform expensive ro-
tations that need to be smoothen beforehand.

5.6 Summary

Globally, the experiments revealed a considerable robust-
ness of the current JVM available in the mobile devices used
and the potential for those devices to execute complex nav-
igation algorithms. However, the current state of the J2ME
platform makes it difficult to provide more efficient imple-
mentations of the algorithms used, especially when video
acquisition is needed, which can be seen by the execution
times presented. Nevertheless, the execution of complex al-
gorithms is possible and there is still room for further im-
provements (e.g., code optimizations).
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6 Conclusions

The work presented in this paper focused on a study of the
viability to accomplish autonomous navigation with smart-
phones and J2ME. Tests with well known navigation al-
gorithms (e.g., potential fields, particle filter, and extended
Kalman filter) have been performed. To achieve realistic ex-
periments, we use a mobile robot controlled by a smart-
phone, which is able to execute complex and computation-
ally intensive navigation algorithms and communicate with
the robot viaBluetooth. The other smartphone is used as an
intelligent visual sensor.

The mobile implementation of the algorithms revealed
high consistency and robustness. The experiments on-the-
field show that it is feasible to execute navigation algorithms
in high-end smartphones, especially with soft real-time re-
quirements. The current processing capabilities of smart-
phones and J2ME can fully fulfill acceptable time require-
ments in environments where the smartphone might be used
to assist user navigation (e.g., tourist exploring an unfamiliar
city, customer looking for a store at a shopping center).

From the experiments performed for visually recogniz-
ing a landmark, it is clear that future enhancements of J2ME
should include the capability to acquire video streaming and
to access individual frames. The current implementation is
required to perform single image capture, which is too slow
for most requirements needing real-time video processing.
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