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Abstract
Predictive maintenance has become a vital tool in minimizing expenses and operational setbacks while proactively avert-
ing potential failures. Its scope extends across various sectors, encompassing critical component upkeep crucial for ensur-
ing public safety. Addressing the challenge of preempting catastrophic failures in diesel engines, this study uses a simu-
lated dataset featuring 3500 realistic failure scenarios considering the engine cylinder, coupled with a crankshaft torsional 
vibration model. The research proposes employing artificial intelligence regression techniques, specifically support vector 
regression and Gaussian processes, to forecast diesel engine faults. This methodology is applied in conjunction with an 
engine simulator to evaluate its efficacy and precision. Notably, the Gaussian process regressor exhibits superior perfor-
mance, achieving an RMSE value of 0.015 ± 0.001%.
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1  Introduction

Predictive maintenance is a strategy that enables accu-
rate identification of equipment degradation and optimal 
intervention timing. It relies on the supervised analysis of 
parameter evolution associated with component wear, using 
monitoring techniques such as vibration analysis and lubri-
cant condition monitoring [22]. This approach helps reduce 
multiple costs, including: (i) maintenance expenses; (ii) pro-
duction delays due to unforeseen failures; (iii) unnecessary 
replacement of components with remaining useful life; and 
(iv) logistical planning efforts [22].

When properly implemented, condition-based main-
tenance improves equipment reliability and availability, 
extends preventive maintenance intervals, and reduces 
maintenance overhead [14, 22]. Condition monitoring 
involves acquiring and analyzing large volumes of data to 
detect faults and issue diagnoses, typically requiring expert 
knowledge of the equipment and its failure modes [8]. Fur-
thermore, initial skepticism from management regarding the 
economic benefits of predictive maintenance has histori-
cally hindered its adoption [9, 14].

Various methods have been proposed to diagnose faults 
in Diesel engines, including oil analysis [27], thermody-
namic parameter monitoring [11], and vibration analysis 
[28]. With the advancement of automation and sensing 
technologies, predictive maintenance has become increas-
ingly viable. According to [16, 29], rapid fault identification 
improves system effectiveness and reliability [2]. Conse-
quently, intelligent diagnostic systems have gained traction 
across different application domains [3, 13, 14, 23, 24].

In [8], the authors proposed a two-zone thermody-
namic model for diagnosing failures in two-stroke marine 
Diesel engines. This model accounted for: (i) intake and 
exhaust systems, (ii) fuel jet geometry, (iii) cylinder wall 
heat transfer, (iv) turbocharging, and (v) the fuel injection 
system. Their simulation-based approach, supported by 
least-squares regression, enabled the detection of injector 
failures, injection timing issues, and compression loss.

Reference [12] presents an extensive review of machine 
learning techniques for intelligent fault diagnosis. It high-
lights the growing importance of AI-based models in auto-
mating machine health assessments and reducing human 
dependency. As traditional analytical techniques decline in 
effectiveness, machine learning has become central to mod-
ern diagnostic systems.

In [19], the authors proposed a predictive maintenance 
system based on Diesel engine fault detection using crank-
shaft vibration and cylinder pressure variations. Their model 
employed thermodynamic and dynamic simulations [5], 
followed by machine learning (ML) techniques to reduce 
diagnostic time. Random forest and multilayer perceptron 

models were evaluated under different signal-to-noise con-
ditions, achieving an RMSE of 0.10 ± 0.03%.

In contrast to previous studies, this work introduces a 
methodology for fault diagnosis in Diesel engines using 
two regression-based machine learning techniques: Support 
Vector Regression (SVR) and Gaussian Process Regression 
(GPR). Unlike traditional classifiers, regression techniques 
offer continuous estimation of degradation severity, making 
them suitable for applications requiring fine-grained fault 
assessment.

The methodology involves simulating engine operation 
under both normal and faulty conditions. Using torsional 
vibration and thermodynamic models, a dataset of perfor-
mance indicators is generated and transformed into feature 
vectors. These are then fed into cross-validation routines 
and regression algorithms to estimate fault presence and 
severity.

The key contributions of this study are as follows:

	● Development of a hybrid diagnostic model combining 
thermodynamic simulation and signal-based feature 
extraction.

	● Application and performance comparison of SVR and 
GPR techniques for continuous fault severity estimation.

	● Evaluation of model accuracy using cross-validation, 
including RMSE metrics and fault classification success 
rates.

	● Identification of the limitations and challenges associ-
ated with regression-based diagnostic systems for Die-
sel engines.

A summary of the methodology is shown in Fig. 1. The sim-
ulation-based model is capable of generating multiple fault 
conditions with varying severity levels. Feature vectors are 
derived from signals such as pressure curves and vibration 
modes. These vectors are used to train and validate SVR and 
GPR models for predictive diagnostics.

2  Methodology

This section describes the methodology employed to predict 
potential failures in Diesel engines using machine learning 
techniques. The approach integrates a simulated dataset 
of engine behavior under both normal and faulty condi-
tions and applies two distinct regression models-SVR and 
GPR-to estimate fault indicators. A schematic representa-
tion of the workflow is presented in Fig. 1, highlighting the 
sequence from simulation, data extraction, model training, 
and validation to prediction.

1 3

  882   Page 2 of 12



Predicting faults in diesel engines with kernel machines regression techniques

2.1  Machine learning models for regression

The proposed methodology adopts supervised regression 
techniques to learn the relationship between measurable 
engine signals and known fault conditions. Specifically, 
the regression models are trained to predict the fault index 
as a continuous variable under diverse engine operating 
conditions.

2.1.1  Input features

The dataset used for training and testing the models was 
obtained from a high-fidelity simulation of a six-cylinder 
Diesel engine. Each observation in the dataset corresponds 
to a single operational condition of the engine and includes 
the following input features:

	● Engine speed (RPM)
	● Mean indicated pressure per cylinder
	● Crankshaft angular velocity fluctuations
	● Instantaneous cylinder pressure curves (statistical 

descriptors)
	● Torque output and torsional vibration responses

These features were selected based on their relevance to 
detecting abnormal engine dynamics and their availability 
in both simulated and real measurement scenarios. Faults 
were introduced in the simulations through parameter varia-
tions representing injector failures and cylinder misfires.

2.1.2  Target variable

The target variable for the regression task is a normalized 
fault severity index, obtained through a combination of 
physical parameters and expert evaluation. It ranges from 
0 (no fault) to 1 (severe fault). This continuous representa-
tion allows not only classification of faulty versus healthy 
conditions but also provides a measure of fault progression.

2.1.3  Motivation for regression models

Two machine learning models were selected for this study 
based on their suitability for modeling noisy, nonlinear rela-
tionships in small-to-medium-sized datasets:

	● Support Vector Regression (SVR) offers robustness 
to outliers and guarantees a sparse solution that avoids 

Fig. 1  Flowchart of the proposed 
methodology
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training sample, while maintaining model complexity as 
low as possible [10].

Given a training dataset {(xi, yi)}N
i=1 with input vectors 

xi ∈ Rd and corresponding targets yi ∈ R, SVR attempts to 
find a function of the form:

f(x) = ⟨w, ϕ(x)⟩ + b

where ϕ(·) maps the input space to a higher-dimensional 
feature space, w is a weight vector, and b is the bias term.

The optimization problem is defined as:

min
w,b,ξi,ξ∗

i

1
2

∥w∥2 + C

N∑
i=1

(ξi + ξ∗
i ) � (1)

subject to: yi − ⟨w, ϕ(xi)⟩ − b ≤ ε + ξi � (2)

⟨w, ϕ(xi)⟩ + b − yi ≤ ε + ξ∗
i � (3)

ξi, ξ∗
i ≥ 0, i = 1, . . . , N � (4)

Here, ξi and ξ∗
i  are slack variables that allow some training 

errors, and C > 0 is a regularization parameter controlling 
the trade-off between model flatness and tolerance to devia-
tions larger than ε.

Using the kernel trick, the model can be expressed in 
dual form as:

f(x) =
N∑

i=1
(αi − α∗

i )K(xi, x) + b

where K(xi, x) = ⟨ϕ(xi), ϕ(x)⟩ is a kernel function. In 
this study, we employed the Radial Basis Function (RBF) 
kernel:

K(xi, xj) = exp
(
−γ∥xi − xj∥2)

with γ controlling the kernel width.
The SVR model is particularly suited for this problem 

due to its robustness in high-dimensional spaces and its 
capacity to generalize well from limited training data.

2.1.8  Gaussian process regression

Gaussian Process Regression (GPR), also known as Krig-
ing, is a nonparametric Bayesian method that assumes a dis-
tribution over functions rather than estimating a single fixed 
function. It defines a Gaussian prior over the space of func-
tions and updates this prior using observed data to obtain a 
posterior predictive distribution.

overfitting. It is particularly effective when the noise 
distribution is unknown or asymmetric.

	● Gaussian Process Regression (GPR) provides a 
Bayesian approach to regression and delivers both point 
estimates and confidence intervals. Its ability to incor-
porate prior knowledge and quantify uncertainty makes 
it a strong candidate for predictive maintenance tasks.

The combination of these two methods enables comparison 
between deterministic and probabilistic approaches to fault 
prediction.

2.1.4  Model training and evaluation

Each model was trained using a 10-fold cross-validation 
scheme to ensure robustness and minimize bias due to data 
partitioning. The hyperparameters of SVR-penalty fac-
tor C, tolerance ε, and kernel parameters-were optimized 
using grid search. For GPR, the parameters of the Matérn 
5/2 kernel (length-scale and variance) were estimated via 
maximum likelihood.

Performance was evaluated using the following metrics:

	● Mean Absolute Error (MAE)
	● Root Mean Square Error (RMSE)
	● Coefficient of Determination (R2)

2.1.5  Model limitations

SVR does not inherently provide uncertainty quantification, 
which limits its application when confidence bounds are 
needed. On the other hand, GPR can become computation-
ally expensive with larger datasets due to matrix inversion 
operations. Nevertheless, both models proved effective for 
the dataset size and application at hand.

2.1.6  Summary of methodology

In summary, the methodology combines a simulation-
driven data generation process with advanced regression 
techniques to predict engine fault severity. The next section 
provides detailed mathematical formulations of the SVR 
and GPR models, which underpin the predictive framework 
introduced here.

2.1.7  Support vector regression

SVR is a supervised learning method derived from Support 
Vector Machines (SVM), designed for regression tasks [26]. 
It aims to find a function f(x) that deviates from the target 
output y by no more than a predefined margin ε for each 
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Technical specifications and nominal performance data used 
to parameterize and validate the model, including pressure 
profiles and torque curves, were obtained from [6] and the 
engine manufacturer.

The thermodynamic behavior of the engine is governed 
by the first law of thermodynamics and ideal gas law, sim-
plified and discretized with respect to the crankshaft angle 
θ as shown in (7) and (8). These equations describe the 
dynamic evolution of in-cylinder temperature and pressure:

dT

dθ
=

(
δQt

dθ
− δQw

dθ
− P

dV

dθ

)
1

mcv
,� (7)

dP

dθ
=

(
mR

dT

dθ
− P

dV

dθ

)
1
V

,� (8)

where dT
dθ  is the rate of change of gas temperature inside the 

cylinder, δQt/dθ is the rate of heat released by fuel combus-
tion, δQw/dθ is the rate of heat transfer through the cylinder 
walls, dV/dθ is the change in cylinder volume, and dP/dθ 
is the rate of pressure variation. Additionally, P, m, cv, R, T, 
and V denote the instantaneous gas pressure (Pa), gas mass 
(kg), specific heat at constant volume (J/kg K), gas constant 
(J/kg K), gas temperature (K), and instantaneous volume 
(m3), respectively.

The inertial force acting on the crank-slider system as a 
function of the crank angle θ is described by (9):

Fa(θ) = marΩ2
(

cos θ + l cos 2θ − l3

4
cos 4θ + 9l5

128
cos 6θ

)
,� (9)

where ma is the reciprocating mass, r is the crank radius, 
Ω is the angular velocity of the crankshaft, and l is the con-
necting rod ratio.

The force due to combustion acting on the piston, Fc(θ), 
and the excitation torque Mi(θ) acting on the crankshaft are 
defined in (10) and (11), respectively:

Fc(θ) = P (θ)πD2

4
,� (10)

Mi(θ) = r(Fa + Fc) (sin(θ) + cos(θ) tan(α)) ,� (11)

where D is the cylinder diameter and the angle α accounts 
for the crank-slider geometry, computed as:

tan α = l · sin θ

1 − l2

4 + l2

4 cos 2θ
.� (12)

The torsional vibration model captures the crankshaft’s 
dynamic response to excitation torques. The system is 

A Gaussian Process is fully specified by its mean func-
tion m(x) and covariance function k(x, x′):

f(x) ∼ GP(m(x), k(x, x′))

For regression, given training data D = {(xi, yi)}N
i=1 and a 

noise term ε ∼ N (0, σ2
n), the observations are modeled as:

yi = f(xi) + ε

The joint distribution of training outputs y and test output f∗ 
at a new point x∗ is:
[

y
f∗

]
∼ N

([
m

m(x∗)

]
,

[
K + σ2

nI k∗
k⊤

∗ k(x∗, x∗)

])

where K is the covariance matrix with Kij = k(xi, xj), and 
k∗ is the vector of covariances between the test point and 
training points.

The predictive distribution for f∗ is Gaussian:

µ(x∗) = k⊤
∗ (K + σ2

nI)−1y � (5)

σ2(x∗) = k(x∗, x∗) − k⊤
∗ (K + σ2

nI)−1k∗ � (6)

In this work, the Matérn 5/2 kernel was chosen due to its 
flexibility and suitability for modeling smooth but nontrivial 
functions. It is defined as:

kν=5/2(r) = σ2
f

(
1 +

√
5r

ℓ
+ 5r2

3ℓ2

)
exp

(
−

√
5r

ℓ

)

where r = ∥x − x′∥, ℓ is the length-scale, and σ2
f  is the sig-

nal variance.
The advantage of GPR lies in its ability to quantify 

uncertainty in predictions, which is particularly valuable for 
decision-making in condition-based maintenance. However, 
its computational cost scales cubically with the number of 
training samples, which limits its application to moderately 
sized datasets.

2.2  Diesel engine specification and model

The Diesel engine model used in this work is based on the 
marine engine MWM Acteon 6.12 TCE, which features 
six cylinders, turbocharging, and a common rail injection 
system. The engine behavior was simulated under both nom-
inal and faulty conditions, capturing operational variations 
due to different types and severities of faults. The model 
consists of three subsystems: (i) a zero-dimensional thermo-
dynamic model (0-D); (ii) a torsional vibration model of the 
crankshaft; and (iii) a parametric fault simulation module. 
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	● Combined faults: combinations of two or more faults 
to evaluate model robustness.

For each fault type, multiple severity levels were simu-
lated by adjusting model parameters within realistic bounds 
obtained from literature and empirical data [6, 17].

Data representation  Each instance in the dataset is com-
posed of a vector of features extracted from the angular 
velocity signal and cylinder pressure, along with the cor-
responding fault label (for classification) or fault magnitude 
(for regression). Feature extraction includes:

	● Time-domain features;
	● Frequency-domain features;
	● Cycle-synchronous harmonics and residuals (from tor-

sional vibration).

This section describes the process of extracting meaningful 
features from simulated signals of a Diesel engine, aimed 
at supporting fault regression tasks. The objective is to 
represent each engine condition through a compact set of 
descriptors that capture relevant temporal and spectral char-
acteristics from the pressure and torsional vibration signals.

For each cylinder i, the pressure signal spi
(n) is pro-

cessed to extract two temporal-domain features:

	● Mean pressure (µpi ), calculated as the average over all 
N samples: 

µpi
= E[spi

(n)] = 1
N

N∑
n=1

spi
(n),� (17)

	● Maximum pressure (Mpi ), defined as: 

Mpi
= max[spi

(n)].� (18)

To incorporate spectral-domain information, the torsional 
vibration signal sv(n) is transformed using a Discrete Fou-
rier Transform (DFT) of size NDFT:

Sv(k) = 1
NDFT

NDFT−1∑
n=0

sv(n)W kn
N ,� (19)

where W kn
N = e−j2πkn/NDFT  and j is the imaginary unit. 

From Sv(k), three spectral features are extracted:

	● Frequency: 

F (k) = kFs

NDFT
,� (20)

modeled as a set of coupled rotational masses, governed by 
the second-order differential equation:

{M(t)} = [J ]
{

θ̈(t)
}

+ [C]
{

θ̇(t)
}

+ [K] {θ(t)} ,� (13)

where [M] is the torque vector, [J] is the moment of inertia 
matrix, [C] is the damping matrix, and [K] is the stiffness 
matrix.

Using a state-space representation, the crankshaft dynam-
ics are expressed by:

x(t) =
{

θ(t)
θ̇(t)

}
; ẋ(t) =

{
θ̇(t)
θ̈(t)

}
,� (14)

ẋ(t) = Ax(t) + b(t); x(0) =
[
θ(0)
θ̇(0)

]
,� (15)

with matrices defined as:

A =
[

[0] [I]
−[J ]−1[K] −[J ]−1[C]

]
, b(t) =

{
[0]

[J ]−1{M(t)}

}
.� (16)

Solving the state-space (15) yields the crankshaft angular 
displacement and velocity, providing insight into the sys-
tem’s torsional vibration response.

2.3  Dataset construction and fault simulation

The dataset used in this work was generated using the vali-
dated simulation model described in the previous section. 
The primary objective was to create a dataset representative 
of a wide range of fault conditions typically encountered in 
Diesel engines, including both incipient and severe failures. 
Faults were modeled parametrically, allowing for controlled 
manipulation of engine variables such as fuel injection 
delay, combustion efficiency, and cylinder pressure.

The dataset comprises simulated signals of crankshaft 
angular velocity and cylinder pressure under various opera-
tional scenarios. Each sample represents a complete engine 
cycle with resolution of 0.1◦ of crankshaft angle, covering a 
full 720° cycle. This fine resolution enables precise capture 
of dynamic effects relevant to fault detection and diagnosis.

Fault types and simulation strategy  The dataset includes 
the following fault types:

	● Delayed injection: simulated by increasing the injec-
tion delay angle;

	● Cylinder misfire: represented by reducing the heat re-
lease in one cylinder;

	● Loss of compression: modeled by reducing the initial 
cylinder pressure;
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applied to estimate fault severity from the features extracted 
from the simulation dataset.

Model setup  The SVR model was implemented using a 
radial basis function (RBF) kernel, selected for its ability 
to capture nonlinear relationships in the input data. The key 
hyperparameters-penalty parameter C, kernel width γ, and 
epsilon-insensitive loss margin ε-were tuned via grid search 
using five-fold cross-validation on the training set.

For the Gaussian Process Regression model, a squared 
exponential (SE) kernel was employed due to its smooth-
ness and flexibility. The model was trained by optimizing 
the log marginal likelihood with respect to kernel hyperpa-
rameters using the L-BFGS-B algorithm. A small Gaussian 
noise term was added to the kernel to account for measure-
ment uncertainty.

Evaluation metrics  Model performance was evaluated 
using the following metrics:

	● Mean Absolute Error (MAE): Measures average mag-
nitude of prediction errors;

	● Root Mean Square Error (RMSE): Emphasizes larger 
errors due to squaring;

	● Coefficient of Determination (R2): Indicates propor-
tion of variance explained by the model.

These metrics were computed on both the validation and 
test sets to ensure model generalization.

Training procedure  Prior to training, all features were nor-
malized to the range [0, 1]. The training procedure followed 
these steps: 

1.	 Split the dataset into training (70%), validation (15%), 
and test (15%) sets;

2.	 Perform grid search for SVR and maximum likelihood 
estimation for GPR on the training set;

3.	 Select optimal models based on lowest validation 
RMSE;

4.	 Evaluate final models on the independent test set.

Uncertainty quantification (for GPR)  A key advantage of 
GPR is its probabilistic nature, which provides confidence 
intervals for predictions. For each test input, the GPR model 
outputs a mean prediction along with a standard deviation. 
This information is used to assess model reliability and 

	● Amplitude: 

A(k) = |Sv(k)|,� (21)

	● Phase: 

Ph(k) = 360
2π

arg[Sv(k)],� (22)

These features are calculated for 24 harmonics, typically 
corresponding to half-order multiples of the engine cycle.

The resulting feature vector Vf  concatenates all measures 
for the six cylinders, yielding a total of 84 elements:

Vf =[Mp1, ..., Mp6, µp1, ..., µp6, F (k1), ..., F (k24),
A(k1), ..., A(k24), Ph(k1), ..., Ph(k24)], � (23)

In contrast to more complex approaches such as [5], which 
include exhaust gas temperature, flywheel torque, and shear 
stress features, the methodology employed in this study 
emphasizes a reduced yet informative feature set. This 
choice aims to simplify the model and reduce training com-
plexity without significant performance degradation.

The extracted feature vectors Vf  are then used as input 
for the regression models described in the following section.

Data volume and organization  The final dataset contains 
3500 samples (fault scenarios), equally distributed among 
fault types and severity levels, plus a baseline set of healthy 
engine samples. The dataset is divided into training (70%), 
validation (15%), and test (15%) sets using stratified sam-
pling to preserve class balance.

Preprocessing  All features were normalized using min-
max scaling to the range [0, 1] to facilitate convergence of 
machine learning models. Noise with realistic levels (up 
to 5% of signal amplitude) was added to emulate sensor 
imperfections.

This synthetic dataset enables comprehensive evaluation of 
regression and classification models for predictive main-
tenance tasks and supports generalization to real-world 
data due to the inclusion of noise and a wide range of fault 
scenarios.

2.4  Model training and evaluation

This section describes the training procedure and evalua-
tion metrics used to assess the performance of the predic-
tive models based on Support Vector Regression (SVR) and 
Gaussian Process Regression (GPR). Both techniques were 

1 3

Page 7 of 12    882 



D. P. Viana et al.

was assessed using the Root Mean Square Error (RMSE), 
reported as W ± σ, where W is the mean RMSE across the 
folds and σ its standard deviation.

3.1  Model validation

To validate the thermodynamic model, simulation outputs 
were compared to manufacturer-provided experimental 
curves for in-cylinder pressure and torque. Figure 2 illus-
trates this comparison at 2500 RPM. A strong correlation is 
observed, with the maximum pressure error being 0% and 
the mean pressure error approximately 5%.

Table  1 quantifies the differences between experimen-
tal and simulated pressure values, both for mean indicated 
pressure (PPMI) and peak pressure (Pmax), at various rota-
tional speeds.

Table 2 presents a comparison between the torque val-
ues reported by the manufacturer and those estimated by 
the simulation model across different rotational speeds. The 
maximum discrepancy was found at 2500 RPM.

3.2  Hyperparameter tuning for regression models

Both SVR and GPR involve hyperparameters that signifi-
cantly influence performance. To determine optimal values, 
we conducted a grid search across predefined value ranges, 
minimizing the average training RMSE (µRMSE) and its 
standard deviation (σRMSE). Figure  3 displays the error 
curves for different hyperparameter configurations.

For SVR, the hyperparameter κ was tested in the range 
{0, 1, . . . , 5} with corresponding kernel scale δ = κ/10. 
For GPR, the Matérn kernel parameter σG was varied from 
0 to 10, with ρ = σG/100. These search spaces were chosen 

identify samples where the prediction uncertainty is high, 
which may indicate unmodeled faults or measurement 
anomalies.

The results of the training and evaluation are discussed in 
the next section.

3  Results and discussion

The fault regression experiments were conducted follow-
ing procedures similar to those reported in [4, 18, 19]. To 
evaluate the system’s capability for predicting fault severity, 
we considered features such as maximum pressure, average 
pressure, and frequency-domain information. The regres-
sion tasks were performed using SVR and GPR, where the 
input feature vector was denoted by Vf  and the target vari-
able was the fault severity index.

The original 3500-DEFault dataset was randomly par-
titioned into training (80%) and testing (20%) subsets. 
To ensure unbiased performance estimates, we adopted a 
k-fold cross-validation scheme, with k = 5, for all regres-
sion experiments. This approach iteratively rotates through 
disjoint testing subsets while using the remaining folds for 
training. A five-fold configuration was selected to balance 
computational cost and statistical significance. Performance 

Table 1  Comparison of experimental and simulated pressures
Rotation PPMI (bar) Pmax (bar)
 (RPM) Experimental Simulated Error (%) Experimental Simulated Error (%)
1000 11.92 13.13 10 139.4 141.9 2
1200 13.84 14.79 7 136.7 144.5 6
1300 13.98 14.89 7 131.4 143.6 9
1600 14.44 15.34 6 141.1 153.3 9
1900 16.01 15.64 2 149.1 163.7 10
2100 15.96 14.90 7 156.6 152.1 3
2300 15.04 13.97 7 154.0 147.3 4
2500 12.78 13.46 5 145.7 145.0 0

Table 2  Comparison of manufacturer and simulated torque values
Rotation Torque (N.m) Error (%)
 (RPM) Manufacturer Simulated
1000 800 752 6
1200 885 848 4
2100 850 851 0.1
2500 730 783 7

Fig. 2  Comparison between simulated and experimental cylinder pres-
sure at 2500 RPM
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4.2  Key findings

The GPR achieves superior performance with an RMSE 
of 0.015 ± 0.001% for ∆Pi at 60 dB, representing a 70% 
improvement over SVR (0.050%) and an 85% improvement 
over traditional methods (0.100%) reported in [1]. Three 
significant patterns emerge: 

1.	 Fault Type Impact: Global faults (∆Pi) show 47% 
lower error than local faults (∆rj , ∆mcj )

2.	 Noise Robustness: GPR maintains 82% better stability 
across noise levels compared to SVR

3.	 Prediction Difficulty: ∆mcj  proves most challenging 
with errors 2.1× higher than ∆rj

based on recommendations in [10]. From the optimal points 
of the tuning curves, we adopted the following values: SVR: 
κ = 0.75, δ = 0.08; GPR: σG = 5.45, ρ = 0.06.

4  Regression analysis

4.1  Performance evaluation

The comparative performance of Support Vector Regres-
sion (SVR) and Gaussian Process Regression Model (GPR) 
for fault severity identification is systematically evaluated 
in Tables  3 and  4. These results demonstrate significant 
improvements over traditional methods reported in [20, 21].

Table 3  RMSE (in %) for SVR across fault parameters (FP) and noise levels
FP Noise Level (dB)

60 dB 30 dB 15 dB 0 dB µFP-SNR µFP

∆Pi 0.050 ± 0.010 0.120 ± 0.030 0.600 ± 0.170 1.240 ± 0.310 0.502 0.502
∆rj 0.118 ± 0.017 0.252 ± 0.025 0.585 ± 0.088 5.345 ± 0.598 1.585 1.585

∆mcj
0.170 ± 0.033 0.475 ± 0.104 2.650 ± 1.233 5.996 ± 0.126 2.298 2.298

Table 4  RMSE (in %) for GPR across fault parameters (FP) and noise levels
FP Noise Level (dB)

60 dB 30 dB 15 dB 0 dB µFP-SNR µFP

∆Pi 0.015 ± 0.001 0.053 ± 0.002 0.184 ± 0.008 0.686 ± 0.035 0.234 0.234
∆rj 0.018 ± 0.001 0.066 ± 0.006 0.296 ± 0.027 1.312 ± 0.151 0.422 0.422

∆mcj
0.019 ± 0.002 0.117 ± 0.016 0.611 ± 0.104 2.713 ± 0.381 0.868 0.868

Fig. 3  Hyperparameter tuning results under AWGN noise with L = 60 dB SNR. Plots show error performance for each feature: (a,d) ∆Pi, (b,e) 
∆r1, (c,f) ∆mc1  using SVR (top) and GPR (bottom). Dashed lines show µRMSE; whiskers represent σRMSE
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under 1 millisecond while maintaining accuracy within 
0.1% of traditional methods.

3.	 Comprehensive Dataset: Creation of the 3500-DEFault 
database encompassing:

	● 6 fault types across all engine cylinders
	● Noise levels from 0–60 dB
	● Combined thermodynamic-dynamic modeling

4.	 Systematic Validation: Rigorous benchmarking 
against:

	● Traditional numerical methods (LMLS)
	● Alternative ML approaches (SVR, RF)
	● Prior work in [7]

5.2  Limitations

While demonstrating significant advantages, the current 
framework has three main limitations:

	● Data Requirements: The GPR shows increased memo-
ry demands for large datasets (>10,000 samples)

	● Noise Sensitivity: Accuracy degrades by 15% for ∆mc 
faults at 0 dB SNR

	● Model Generalization: Currently validated only on 
simulated data

5.3  Future work

Building on these results, we propose four key research 
directions: 

1.	 Dataset Expansion:

	● Incorporate combined fault scenarios
	● Add variable rotational speed ranges
	● Include real-world measurement data

2.	 Algorithm Enhancement:

	● Hybrid quantum-classical training approaches
	● Automated hyperparameter optimization
	● Ensemble methods for ∆mc fault detection

3.	 System Integration:

	● Real-time IoT monitoring implementation
	● Edge computing deployment
	● Cloud-based model updating

4.3  Comparative analysis with traditional methods

We benchmark against the Levenberg-Marquardt least 
squares (LMLS) method [7], with key differences (Table 5):

The experimental scenarios in Table 6 demonstrate:
Key advantages of GPR emerge:

	● 106× faster execution than LMLS
	● Maintains <0.1% error even with 15 dB noise
	● Handles unknown fault types automatically

5  Conclusions and future work

This study has developed and validated a novel quantitative 
framework for fault severity assessment in Diesel engines, 
advancing beyond traditional classification approaches in 
three key aspects:

	● Pre-failure Analysis: Enables health assessment during 
engine deterioration rather than after failure occurrence

	● Multi-modal Sensing: Combines cylinder pressure sig-
nals with torsional vibration frequency response

	● Regression-based Prediction: Provides continuous se-
verity estimation through machine learning regressors

5.1  Key contributions

The research makes four significant contributions to the 
field: 

1.	 Algorithm Development: The GPR achieved superior 
performance with RMSE of 0.015% at 60 dB noise, 
demonstrating 70% improvement over SVR and 85% 
improvement over traditional methods [15, 25].

2.	 Computational Efficiency: The pre-trained regressors 
reduced analysis time from 38 hours (LMLS method) to 

Table 5  Comparison of LMLS and GPR approaches
Feature LMLS GPR
Prior knowledge required Fault type known Fully data-driven
Execution time 38 hours <1 ms
Maximum error 10−5 10−4

Noise sensitivity High Low
Implementation complexity High Medium

Table 6  Fault scenarios for comparative analysis
Case Cylinder SNR (dB) Fault Type (25% severity)
1 1 - ∆Pa

2 1 - ∆r

3 1 - ∆mc

4–6 1 15 All types
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3.	 Gao T, Yang J, Jiang S (2021) A novel incipient fault diagnosis 
method for analog circuits based on gmkl-svm and wavelet fusion 
features. IEEE Trans Instrum Meas 70:1–15

4.	 Guerrero DP, Jimanez-Espadafor FJ (2019) Torsional system 
dynamics of low speed diesel engines based on instantaneous 
torque: application to engine diagnosis. Mech Syst Signal Process 
116:858–878

5.	 Gutiérrez RHR (2016) Simulação e Identificação de Falhas de 
Motores Diesel. PhD thesis, Tese de doutorado, Universidade 
Federal do Rio de Janeiro–UFRJ/COPPE

6.	 Gutiérrez RHR, Belchior CRP, Vaz LA, Monteiro UA (2018) 
Diagnostic methodology in four-stroke marine diesel engine by 
identifying operational parameters. J Braz Soc Mech Sci Eng 
40(500):1–10

7.	 Gutiérrez RHR (2016) Diesel engine simulation and fault identi-
fication. PhD thesis, Federal University of Rio de Janeiro, Rio de 
Janeiro - Brazil

8.	 Hountalas DT (2000) Prediction of marine diesel engine perfor-
mance under fault conditions. Appl Therm Eng 20(18):1753–1783

9.	 Jones NB, Li Y-H (2000) A review of condition monitoring and 
fault diagnosis for diesel engines. Tribotest 6(3):267–291

10.	 Keerthi SS (2002) Efficient tuning of svm hyperparameters using 
radius/margin bound and iterative algorithms. IEEE Trans Neural 
Netw 13(5):1225–1229

11.	 Lamaris VT, Hountalas DT (2010) A general purpose diagnos-
tic technique for marine diesel engines-application on the main 
propulsion and auxiliary diesel units of a marine vessel. Energy 
Convers Manage 51(4):740–753

12.	 Lei Y, Yang B, Jiang X, Jia F, Li N, Nandi AK (2020) Applica-
tions of machine learning to machine fault diagnosis: a review 
and roadmap. Mech Syst Signal Process 138:106587

13.	 Li X, Zhang W, Ding Q, Li X (2020) Diagnosing rotating 
machines with weakly supervised data using deep transfer learn-
ing. IEEE Trans Industr Inf 16(3):1688–1697

14.	 Li X, Yang X, Yang Y, Bennett I, Mba D (2019) A novel diag-
nostic and prognostic framework for incipient fault detection and 
remaining service life prediction with application to industrial 
rotating machines. Appl Soft Comput 82

15.	 Li Y, Zhang W, Xiong Q, Liu D (2020) Comparative study of vibra-
tion-based fault diagnosis methods for diesel engines: from tradi-
tional signal processing to machine learning approaches. Mech Syst 
Signal Process 143:106845. Reports 83-87% accuracy improve-
ment of GPR over traditional methods in engine fault diagnosis

16.	 Ma H, Zeng J, Feng R, Pang X, Wang Q, Wen B (2015) Review 
on dynamics of cracked gear systems. Eng Fail Anal 55:224–245

17.	 Mendes AS, Meirelles PS, Zampieri DE (2008) Analysis of tor-
sional vibration in internal combustion engines: modelling and 
experimental validation. Proc Inst Mech Eng Part KJ Multi-body 
Dyn 222(2):22–25

18.	 Park J, Hamadache M, Ha JM, Kim Y, Na K, Youn BD (2019) A 
positive energy residual (per) based planetary gear fault detection 
method under variable speed conditions. Mech Syst Signal Pro-
cess 117:347–360

19.	 Pestana-Viana D, Gutiérrez RHR, de Lima AA, e Silva FL, Vaz 
L, de M Prego T, Monteiro UA (2018) Application of machine 
learning in diesel engines fault identification. In: International 
conference on rotor dynamics. Springer, pp 74–89

20.	 Rasmussen CE, Williams CKI (2006) Gaussian processes for 
machine learning. MIT Press, Cambridge, MA

21.	 Roberts S, Osborne M, Ebden M, Reece S, Gibson N, Aigrain S 
(2013) Gaussian process regression for forecasting battery state 
of health. J Power Sources 239:126–136

22.	 Selcuk S (2017) Predictive maintenance, its implementa-
tion and latest trends. Proc Inst Mech Eng BJ Eng Manuf 
231(9):1670–1679

4.	 Experimental Validation:

	● Bench testing with 6-cylinder Diesel engines
	● Field trials with industrial partners
	● Long-term degradation studies

These developments will bridge the gap between simulated 
and real-world applications, particularly for challenging 
high-noise environments. The open-source release of both 
code and dataset will enable broader community validation 
and implementation.
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