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Abstract
Gearboxes, as critical components, often operate in demanding conditions, enduring constant exposure to variable loads and
speeds. In the realm of condition monitoring, the dataset primarily comprises data from normal operating conditions, with
significantly fewer instances of faulty conditions, resulting in imbalanced datasets. To address the challenges posed by this data
disparity, researchers have proposed various solutions aimed at enhancing the performance of classification models. One such
solution involves balancing the dataset before the training phase through oversampling techniques. In this study, we utilized
the Sparse Autoencoder technique for data augmentation and employed Support Vector Machine (SVM) and Random Forest
(RF) for classification. We conducted four experiments to evaluate the impact of data imbalance on classifier performance:
(1) using the original dataset without data augmentation, (2) employing partial data augmentation, (3) applying full data
augmentation, and (4) balancing the dataset while using Kernel Principal Component Analysis (KPCA) for dimensionality
reduction. Our findings revealed that both algorithms achieved accuracies exceeding 90%, even when employing the original
non-augmented data. When partial data augmentation was employed both algorithms were able to achieve accuracies beyond
98%. Full data augmentation yielded slightly better results compared to partial augmentation. After reducing dimensions
from 18 to 11 using KPCA, both classifiers maintained robust performance. SVM achieved an overall accuracy of 98.72%,
while RF achieved 96.06% accuracy.
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1 Introduction

Gearboxes serve as vital components in amyriad of transmis-
sion devices, including helicopter transmission reducers, the
main propulsion reducer of a ship, and wind power generator
sets, among others. The wind power industry stands out as
a promising sector within renewable energy, representing a
predominant approach to harnessing renewable resources [1,
2].
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The challenging operating conditions in wind turbine
gearboxes frequently lead to failures of critical components,
such as gears and bearings. Statistical data indicate that
gearbox failures often cause the most substantial economic
losses and extended downtime for wind turbines [1]. The
challenging operating conditions in wind turbine gearboxes
frequently lead to failures of critical components, such as
gears and bearings. Statistical data indicate that gearbox fail-
ures often cause the most substantial economic losses and
extended downtime for wind turbines [2].

Consequently, research into gearbox fault diagnosis holds
significant practical importance [3], prompting numerous
authors to concentrate their efforts on this area. Many studies
have centered on fault diagnosis of wind turbine gearboxes
through vibration monitoring employing machine learning
techniques [4] and, more recently, researchers have also
explored the application of deep learning techniques in this
domain [3, 5]. For processing vibration dada, numerous
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researchers have employed a range of techniques and fea-
ture extraction, such asWavelet Transform [6] and Empirical
Mode Decomposition [7].

In gearbox condition monitoring, acquiring a substan-
tial volume of monitoring data in normal operational states
across various working conditions is relatively straightfor-
ward. However, the availability of monitoring data in fault
states is limited, resulting in a scarcity of fault samples for
training fault diagnosismodels. This imbalance in the sample
set significantly undermines the performance of the clas-
sifier, making the resolution of unbalanced sample sets a
highly pertinent task [8]. Various solutions have been pro-
posed to address the challenge posed by unbalanced data,
aiming to enhance the performance of classification mod-
els [9]. Among these solutions, two prominent approaches
stand out. One revolves around algorithmic framework. This
method offers the advantage of improving diagnostic accu-
racy for a few samples at the algorithm level, eliminating the
need to directly handle unbalanced data. The other approach
centers ondata frameworks [10]. Theobjective of thismethod
is to balance the dataset prior to classification by using an
oversampling technique [11].

Two commonly employed oversampling techniques
include the Synthetic Minority Oversampling Technique
(SMOTE), pioneered by Chawla et al. [12]. SMOTE
increases the number of minority class by generating virtual
samples through random interpolation to achieve a balanced
dataset. To enhance the algorithmic performance of SMOTE,
Han et al. [13] introduced Borderline-SMOTE, which syn-
thesizes samples along the boundary between the majority
and minority classes. Another oversampling method is the
adaptive synthetic sample approach, proposed by He et al.
[14], known as ADASYN. ADASYN dynamically generates
minority data samples based on their distributions, prioritiz-
ing the generation of synthetic data forminority class samples
that are harder to learn compared to those that are eas-
ier to learn. Furthermore, Generative Adversarial Networks
(GANs), introduced by Goodfellow et al. [15], represent
another oversampling avenue. This concept has since evolved
to encompass various GAN variants, including conditional
Generative Adversarial Networks (cGAN) [16].

While the aforementioned methods have demonstrated
some efficacy, they still exhibit room for improvement. Both
SMOTE and ADASYN, in their endeavors to augment the
number of minority samples, overlook the distribution area,
thereby increasing the risk of classifier overfitting. Con-
versely, training GAN networks proves to be unstable and
requires time-consuming hyperparameter optimization [10].
In contrast, autoencoders, which are unsupervised learn-
ing approaches, preserve nonlinear similarities within input
data and accurately reproduce them in the generated data
[17]. In Ref. [18], the Sparse Autoencoder technique was
employed to enhance vibration signal data for diagnosing

gear pitting wear. By integrating the sparse autoencoder data
augmentation method with a classification algorithm, the
study achieved an accuracy of 99%.

In paper [19], a Variational Autoencoder (VAE) was used
to generate synthetic instances across nine distinct datasets to
enhance the performance of classification models. The study
assessed the effectiveness of two classifiers, Support Vec-
tor Machine (SVM) and K-Nearest Neighbors (K-NN), by
comparing their performance on both the original datasets
(without data augmentation) and the augmented datasets
containing synthetic instances. The analysis examined three
different configurations for the number of neurons per layer
in the VAE. The results showed that augmenting the datasets
with synthetic instances from theVAE consistently improved
the performance of both classifiers.

In work [20], a dataset containing ten distinct types of
faults from a wind farm in China was utilized. To address
the imbalance in the dataset, a Stacked Autoencoder was
employed to generate synthetic samples, thereby augmenting
the training set. The feature vector, consisting of 68 dimen-
sions, included data on environmental conditions, operating
time, and the operational status of the units, all obtained from
a SCADA system. The results of the study show that incor-
porating synthetic data alongside the real data significantly
enhanced the performance of the classification algorithm.

In paper [21], it was demonstrated that synthetic data gen-
erated by the Variational Autoencoder (VAE) closely mimic
the characteristics of real data in both the time and frequency
domains. This approach surpassed other data augmentation
methods evaluated in the study. By integrating synthetic data
with real data for training a convolutional neural network
(CNN), the performance of the classification algorithm was
significantly improved.

Feature extraction plays a crucial role in fault iden-
tification within condition monitoring. Improper feature
extraction inevitably leads to misclassification [22]. While
Principal ComponentAnalysis (PCA) is a commonly utilized
method for data dimension reduction, its linear space trans-
formation may not effectively address nonlinear problems.
In contrast, Kernel Principal Component Analysis (KPCA)
offers a solution by employing a kernel function to map the
original data to a high-dimensional feature space.Within this
space, linear principal components of the mapped data are
extracted, facilitating nonlinear fault feature extraction and
dimension reduction [23].

This study aims to introduce a novel approach for clas-
sifying a wind turbine gearbox dataset containing complex
real faults. Our methodology utilizes the deep learning tech-
nique Sparse Autoencoder for data augmentation, alongside
the KPCA method for dimensionality reduction. Two clas-
sification approaches are also analyzed, namely, one using
Support Vector Machines (SVM) and another based on Ran-
dom Forests (RF). A comparative analysis is conducted on
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Fig. 1 Architecture of an autoencoder

the performance of models trained on the original dataset,
without employing data augmentation or dimension reduc-
tion techniques.

The subsequent sections of this paper are organized as
follows: Sect. 2 provides an overview of Autoencoder and
Sparse Autoencoder, the KPCA method, and the SVM and
Random Forest classifiers. Section 3 outlines the method-
ology employed in this study, encompassing signal acqui-
sition, signal processing, and feature extraction techniques.
Section 4 presents the obtained results and, finally, Sect. 5
offers concluding remarks.

2 Theorical Background

2.1 Sparse Autoencoder

An Autoencoder is a type of unsupervised neural network
designed to replicate its input as its output. Its conventional
architecture comprises two main components: the encoder,
which condenses the original (x) into a new representation
known as the ‘latent vector’ or ‘compressed representation’,
and the decoder, which reconstructs this representation into
a new output (x ′) based on the correlations among the input
features. Internally, it features a hidden layer that encapsu-
lates the code utilized to represent the input [17, 24, 25].
Figure 1 illustrates the architecture of an autoencoder, with
the encoder and decoder functions depicted in Eqs. (1) and
(2), respectively.

h � f (x) � σ (wx + b) (1)

x ′ � g(h) � σ (w′x + b′) (2)

where w and b denote the weights and bias values for the
encoder model and w′ and b′ denote the weights and bias
values for the decoder model and σ is the activation function
[25]. The network is trained by minimizing a loss function
between the original input and the reconstructed input L(x ,
x ′) [17].

Sparse Autoencoder stands out as a state-of-the-art tech-
nique that has demonstrated success in enhancing equipment
fault diagnosis through data augmentation [17].

When regularization constraints are introduced to the loss
function of artificial neural networks, the resulting autoen-
coder can be termed as a SparseAutoencoder [18]. To impose
a bottleneck in the information flow, the Sparse Autoencoder
randomly restricts the number of active nodes during training.
This enforced sparsity within the hidden layers prevents the
autoencoder from capturing noise in the data and reproduc-
ing the input verbatim, enabling it to discern intrinsic features
from the input data [17, 24]. In a SparseAutoencoder, the aim
is to minimize the average output of hidden layer, ensuring
that most neurons remain inactive [18]. This technique can
be classified as a deep learning algorithm because both the
encoder and decoder components may consist of multiple
hidden layers of neurons, as discussed in references [17, 18].
Equation (3) represents the average activation ρ̂ of hidden
layer neurons j :

ρ̂ j � 1

m

m
∑

i�1

[a(l)
j (xi )] (3)

where ρ̂ j represents the average activation of the j-th neuron,
and m represents the total number of samples in the dataset.
a(l)
j (xi ) indicates the degree of activation of the hidden layer

neuron j given the input data is xi , and l indicates the l-th
layer of the neural network [18]. The expression of the Sparse
Autoencoder loss function is:

Jsparse(W , b) � J (W , b)

+ β

sl
∑

j�1

K L
(

ρ||ρ̂ j
)

ρ̂ j

� 1

m

m
∑

i�1

[

a(l)
j (xi )

]

(4)

where Jsparse represents the loss function of the Sparse
Autoencoder, W represents the weight matrix, b represents
the bias term, K L represents the relative entropy (KL diver-
gence),β is theweight of the sparsity penalty,ρ is the sparsity
parameter and sl is number of cells in the l-th layer. The first
term in Eq. (4) is the loss function of the Autoencoder with-
out sparse constraints, including the mean squared term and
the weighted decay term [18]. The concrete expression of
J (W , b) is:

J (W , b) �
[

1

m
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1

2
‖yi ′ − yi‖2

)
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+
λ

2
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j i

)2
(5)
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where λ is the weight attenuation coefficient, nl−1 is the
network layer number and sl is the number of units in the
corresponding layer. The second term in Eq. (4) is the sparse
penalty term, and the KL distance expression is [18]:

K L
(

ρ||ρ̂ j
) � ρ log

ρ

ρ̂ j
+ (1 − ρ)log

1 − ρ

1 − ρ̂ j
(6)

where the weighting coefficient for controlling the sparsity
penalty is β and the sparsity parameter ρ is usually a smaller
value close to zero [18].

2.2 Kernel Principal Component Analysis (KPCA)

Principal Component Analysis (PCA) stands as a renowned
unsupervised linear technique for dimensionality reduction
and feature extraction. It operates by linearly transforming
a high-dimensional input vector into a lower-dimensional
one, yielding uncorrelated components known as Principal
Components (PCs). These PCs are derived by computing the
eigenvectors of the covariance matrix of the original inputs
[26, 27].

PCA may not produce optimal results for nonlinear data.
Specifically, it is most effective when applied to observations
generated from a Gaussian distribution or when the data can
be adequately described by linear second-order correlations
[28, 29]. Hence, the Kernel Principal Component Analysis
(KPCA), which uses the kernel trick K to project data to a
higher feature space so that the data can be linearly separated,
becomes useful [30], as shown in Eq. (7).

K (xa , xb) � φ(xa)
Tφ(xb) (7)

where xa and xb are two arbitrary data points [27]. Only non-
stationary kernel functions were utilized, as they represent
the most general class of such functions, as documented in
[31].

KPCA operates by initially mapping the original input
vectors xi to a higher-dimensional feature space φ(xi ) using
the kernel method [26]. Commonly used kernels in KPCA
include linear, polynomial, Gaussian, and sigmoid. Follow-
ing the application of the kernelmethod, PCA is employed on
the transformed data, which now exhibits linear separability,
to reduce dimensionality [27]. Among the kernel functions,
the Gaussian kernel is known for its superior performance,
and is often the preferred choice in practical applications of
KPCA.

To streamline the testing of various models for Kernel
Principal Component Analysis (KPCA), a literature review
was conducted to identify kernel functions commonly asso-
ciated with strong performance. Based on this review, the
Gaussian kernel was selected as the KPCA kernel function
[30, 32–34].

Accordingly, in this study, the Gaussian kernel was
selected as the KPCA kernel function [30].

K (xa , xb) � exp
(

−γ ‖xa − xb‖2
)

(8)

where γ , is a parameter [35, 36]. In this work, the value of γ

was found by testing a range of different values among the
value set [0.01; 0.1; 1; 10; 100].

2.3 Support Vector Machine (SVM)

The Support Vector Machine (SVM) stands as a prominent
supervised machine learning algorithm employed exten-
sively in classification tasks. Its core principle involves
seeking an optimal hyperplane that maximally separates two
classes in the input space. In scenarios where the classes are
not linearly separable, SVM employs nonlinear kernel func-
tions tomap the input space into a higher-dimensional feature
space, facilitating effective classification. The input feature
vectors that lie on the boundary plane are called support vec-
tors, and they help to decide the hyperplane orientation and
position [37]. As they contain the needed information, the
support vectors are sufficient to model the classifier [37].

To optimize the SVM classifier, a grid search technique
was employed to select the optimal value for the regulariza-
tion constant C . The search space for C was defined as {2−5,
2−3, 2−1, ..., 213, 215} and a Gaussian kernel function was
used.

2.4 Random Forest (RF)

TheRandomForest algorithm is a powerfulmachine learning
ensemble method composed of multiple decision trees (DT).
Unlike a single decision tree, which is constructed greedily
by selecting the best feature splits at each node, Random
Forest employs bagging to build its decision trees. Bagging
involves creating T bootstrap sets, which are subsets of the
N training data formed by random sampling with replace-
ment of training instances [38]. About 2/3 of each bootstrap
dataset is used to build each tree, while the remaining 1/3,
referred to as out-of-bag data, is used to estimate the classifi-
cation error of each tree [38]. After constructing the random
forest, the classification of an instance involves passing it
through each decision tree within the forest. The output of
each decision tree serves as a vote, collectively contributing
to the final classification. The overall output of the random
forest is determined by aggregating these individual deci-
sions, typically by selecting the class with the majority of
votes [38].

To optimize the Random Forest (RF) classifier, a grid
search technique was used to determine the optimal num-
ber of trees. The search space for the number of trees was
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Fig. 2 Expanded view of the
gearbox [39]

(a) (b)

Fig. 3 Wind Turbine Gearbox; a bearings location; b gearbox arrangement [39]

defined as {5, 10, 15, ..., 40, 50} with 5 observations per
leaf.

3 Methodology

3.1 Data Acquisition

The dataset was collected using a three-blade test turbine
rated at 750 kW, featuring upwind and stall control. Data
acquisition was performed with the National Instruments
PXI-4472Bhigh-speed data acquisition (DAQ) system.Mea-
surements were taken with the main shaft operating at
22.09 rpm and the high-speed shaft running at its nominal

speed of 1800 rpm. To minimize the risk of critical gear-
box failure, a nominal power setting of 50%was used during
these measurements.

The dataset was obtained from two gearboxes of iden-
tical design—one in a ‘healthy’ state and the other ‘dam-
aged’—through GRC dynamometer tests. Vibration data
were sampled at 40 kHz over a ten-minute period and subse-
quently divided into ten separate files for each test condition
[39].

The complete drivetrain and nacelle assembly were
installed in the National Renewable Energy Laboratory
(NREL) Drive Train Facility (DTF) and securely anchored
to the floor, excluding the hub, rotor, yaw bearing, and
yaw drives. The system was operated using the actual field
controller to manage start-up procedures and ensure safety
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Table 1 Gears and bearings basic
information [39] Gears Bearings

Teeth Speed
(Hz)

GMF
(Hz)

Type Local Quantity

HS-ST HS-SH

Pinion 22 30 660 CRB Upwind 1

Gear 88 7.5 TRB Downwind 2

IMS-ST IMS-SH

Pinion 23 7.5 172.5 CRB Upwind 1

Gear 82 2.1 TRB Downwind 2

Planetary Planetary

Sun Gear 21 2.1 36.45 CRB Upwind 1

Planet Gear 39 1.3 CRB Downwind 1

Ring Gear 99 × Planet
Carrier

fcCRB Upwind 1

fcCRB Downwind 1

responses. To measure turbine vibration levels, accelerom-
eters were installed on various components: the lower and
upper radial ring gears, LS-SH radial, IMS-SH radial, HS-
SH radial, HS-SH radial upwind bearing, HS-SH upwind
bearing, radial wind support downwind, and the radial sup-
port. Additionally, a tachometer was installed on the HS-SH
to measure rotational speed [39].

After completing its run-in period on the dynamometer,
one of the gearboxes underwent field testing at a wind farm,
where it encountered two instances of oil loss leading to
damage in internal components like bearings and gear ele-
ments. Following these incidents, the gearbox was returned
to the National Renewable Energy Laboratory (NREL) for
further assessment. Here, condition monitoring (CM) equip-
ment was installed, and the gearbox underwent controlled
load testing to prevent catastrophic damage [39]. The dataset
provided by NREL thus encompasses real-world faults,
reflecting compound issues affecting the gearbox. The two
gearboxes were originally taken from the field and they are
composed of one low speed planetary stage and two parallel
stages, with an overall ratio of 1:81.49 [39].

As an innovative extension of prior research [40], this
study broadened the scope by introducing six distinct con-
ditions, encompassing both healthy and damaged states of:
(I) the High-Speed Shaft; (II) Intermediate Shaft Speed; and
(III) Planetary components.

Figure 2 shows an overview of the expanded gearbox con-
ditions, while Fig. 3a, b illustrate the locations of the bearings
and the arrangement of the gearbox, respectively.

As can be seen in Fig. 3a, each planet gear is supported
by two identical cylindrical roller bearings (CRB) and the
planet carrier is supported by two full-component cylindrical
roller bearings (fcCRB). Each parallel shaft is supported by

Table 2 Faults and their locations [39]

Component Fault

HS-ST gear set Scuffing

HS-SH downwind bearings Overheating

IMS-ST gear set Fretting Corrosion, scuffing,
polishing wear

IMS-SH upwind bearings Assembly damage, scuffing,
dents

IMS-SH downwind bearings Assemby damage, dents

Annulus/ring gear, or sun pinion Scuffing and polishing,
fretting corrosion

Planet carrier upwind bearing Fretting corrosion

a CRB on the upwind side and by two back-to-back mounted
tapered roller bearings (TRB) on the downwind side of the
assembly [39].Table 1 provides the location of those bearings
and information about all the gears of the gearbox andTable 2
shows the faults and their locations.

3.2 Signal Processing

The signals collected for the parallel axes (High Speed and
Intermediate Speed shafts) and for the planetary in the con-
ditions described above, were processed using MATLAB
software.

Each condition of the parallel axes comprises 10 sig-
nals, while each condition of the planetary has 20 signals,
resulting in an unbalanced dataset. To assess classifier per-
formance, four experiments were conducted to compare the
original unbalanced dataset with the same dataset subjected
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Fig. 4 Flowchart of the proposed method

Table 3 Time domain features
extracted No Feature Name Definition No Feature Name Definition

1 Mean 1
N

∑N
i�1 xi 10 Impulse Factor max

1
N

∑N
i�1|xi |

2 RMS
√

1
N

[

∑N
i�1 (xi )2

] 11 Peak to Peak max(xi ) − min(xi )

3 Standard Deviation
√

1
N

∑N
i�1 (xi − μ)2

12 Minimum value min(xi )

4 Peak max(abs(xi )) 13 Sum
∑N

i�1 xi

5 Skewness N
∑N

i�1(xi−μ)3

σ 3 14 Variance 1
N

∑N
i�1 (xi − μ)2

6 Kurtosis N
∑N

i�1(xi−μ)4

[

∑N
i�1(xi−μ)2

]2
15 Standard Error

√

1
N

∑N
i�1 (xi−μ)2√

N

7 Crest Factor max
RMS 16 Median median(xi )

8 Clearence Factor max
1
N

∑N
i�1(xi )

2
17 Energy

∑N
i�1 |xi |2

9 Shape Factor RMS
1
N

∑N
i�1|xi |

18 Entropy − ∑N
i�1 pi log2(pi )

wherepi � Ei
E

to data augmentation and dimensionality reduction tech-
niques. Figure 4 depicts the flowchart outlining the proposed
methodology, as employed in the fourth experiment.

In the four experiments, a bandpass filter between 10 and
2000 Hz was used in all signals according to [41], and after
that, 18 time domain features, which are shown in Table 3,
were extracted from the filtered signals [40].

3.3 Data Augmentation

Data augmentation is employed to enhance predictive model
performance by expanding the original dataset through gen-
erated data. We conducted four experiments to evaluate the
impact of data imbalance on classifier performance: (1)
using the original dataset without data augmentation, (2)
employing partial data augmentation, (3) applying full data
augmentation, and (4) balancing the dataset while using
Kernel Principal Component Analysis (KPCA) for dimen-
sionality reduction. In thiswork, the SparseAutoencoderwas
utilized for data augmentation. Given the substantial sam-
ple count within the time series, each signal in the original
dataset was partitioned into six equal segments, as showed
in in Table 4. Subsequently, we used the partitioned dataset
as input for the autoencoder to produce new signals.

Table 4 Initial dataset and dataset partitioned in 6 equal parts

Original dataset Original dataset partitioned in 6
parts

10 HSS healthy signals 60 HSS healthy signals

10 HSS damaged signals 60 HSS damaged signals

10 IMSS healthy signals 60 IMSS healthy signals

10 IMSS damaged signals 60 IMSS damaged signals

20 Planetary healthy signals 120 Planetary healthy signals

20 Planetary damaged signals 120 Planetary damaged signals

The number of planetary signals (healthy or damaged)
served as the reference for determining the necessary signal
augmentation to ensure that each condition comprised 20%
of the dataset, thus balancing it.

Initially, data augmentation was applied only partially,
resulting in an improved but still unbalanced dataset, as
depicted in the first column of Table 5. Then, augmenta-
tion was extended, achieving dataset balance, as shown in
the second column of Table 5.

Regarding the autoencoder structure, we used a single
hidden layer with an L2 weight regularizer set to 0.01. The
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Table 5 Dataset with partial data augmentation and full data augmented
and balanced

Partial data augmentation Full data augmented and
balanced

270 HSS healthy signals 300 HSS healthy signals

270 HSS damaged signals 300 HSS damaged signals

270 IMSS healthy signals 300 IMSS healthy signals

270 IMSS damaged signals 300 IMSS damaged
signals

300 Planetary healthy signals 300 Planetary healthy
signals

300 Planetary damaged signals 300 Planetary damaged
signals

loss function employed was msesparse, with Logsig as the
encoder transfer function and Purelin as the decoder trans-
fer function. The training was conducted with a maximum
of 400 epochs. For the number of neurons, we configured
12 neurons for HSS Healthy, 22 for HSS Damaged, 18 for
IMSS Healthy, 7 for Planetary Healthy, and 20 for Planetary
Damaged.

3.4 Data Validation

To assess the fidelity of the generated data, two metrics were
employed: Mean Square Error (MSE) and the Pearson Cor-
relation Coefficient (PCC). This approach ensures that any
significant deviation between the generated and real data is
detected, as excessive disparities could compromise classifi-
cation accuracy.

MSE measures the amount of error in statistical mod-
els assessing the average squared difference between the
observed and the predicted values. When a model has no
error, the MSE value is equal to 0, so the closer to 0 the value
of the error is, better is the model. PCC computes the lin-
ear relationship between the two signals and its magnitude
ranges from − 1 to + 1. The closer to the extremes greater is
the correlation between the signals. A value of 0 or close to
0, indicates a weak or no correlation between signals [42].
Table 6 shows the average of the MSE and PCC values for
the generated data.

As indicated in Table 6, the Mean Square Error (MSE)
values approached zero, and the Pearson Correlation Coef-
ficient (PCC) values neared unity, suggesting an acceptable
correspondence between the generated and real data. Figure 5
visually illustrates this relationship between the real and gen-
erated data.

Figures 5, 6, and 7 display the training curves of the
autoencoder used to generate synthetic data for HSSHealthy,
IMSS Healthy, and Planetary Healthy signals. Figures 8, 9,
and 10 compare the measured and synthetic vibration signals

Table 6 MSE and PCC values for the generated data

Signals MSE value PCC value

HSS healthy A 0.7306 0.9462

HSS healthy B 0.5278 0.9629

HSS damaged A 0.2501 0.9927

HSS damaged B 0.7667 0.9771

IMSS healthy A 0.0939 0.9942

IMSS healthy B 0.7363 0.9553

IMSS damaged A 0.2448 0.9939

IMSS damaged B 0.7252 0.9825

Planetary healthy B 0.5058 0.9284

Planetary damaged B 0.5503 0.9662

in both the time and frequency domains for HSS, IMSS, and
Planetary.

4 Results and Discussion

4.1 Results

As previously mentioned, four experiments were conducted.
After filtering the vibration signals, 18 time-domain features
(refer to Table 3) were extracted. These experiments were
as follows: the first utilized the data from Table 4 without
any partitioning, data augmentation, or balancing; the second
employed the dataset from Table 5, incorporating partial data
augmentation; the third utilized the balanced and augmented
dataset fromTable 5; and the fourth, utilizing the samedataset
as the third experiment, alongside dimensionality reduction
via KPCA.

In each experiment, data from both sides of the tables
were amalgamated, followed by a stratified fivefold cross-
validation to split the dataset into training and testing subsets.
Subsequently, SVM and RF classifiers were trained and
evaluated on the respective datasets. The results of the
first, second, and third experiments, along with the best-
performing results of SVM and RF models from the fourth
experiment, are summarized in Table 7.

Figures 8, 9 and 10 show the comparison of the mea-
sured and synthetic vibration signals, in time and frequency
domains, for HSS, IMSS and Planetary.

The confusion matrices of each experiment are presented
in Figs. 11, 12, 13 and 14, where the columns represent the
predicted values.

Upon analyzing the results presented in Table 7, it
becomes evident that even with a small and unbalanced
dataset in the first experiment, both SVM and RF achieved
accuracies exceeding 90%. This performance can likely be
attributed to the effectiveness of the extracted features in
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Fig. 5 Autoencoder training curve for generating synthetic data for HSS healthy
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Fig. 6 Autoencoder training curve for generating synthetic data for IMSS healthy

accurately representing the vibration patterns associatedwith
different conditions.

In the second and third experiments, as illustrated in
Figs. 11 and 12 respectively, the introduction of dataset
augmentation enhanced classifier performance. Moreover,
dataset balancing further improved performance, affirming
the quality of the generated data.

Furthermore, upon comparison of the confusion matrices,
it is apparent that the most significant classification errors

occurred within the parallel shaft conditions, likely due to
consistent damage patterns in the gears. Conversely, mini-
mal classification errorswere observed between the planetary
conditions or between planetary conditions and any one of
the parallel shaft conditions, owing to slight variations in
vibration patterns between the planetary and parallel shafts.

The KPCA experiment achieved good results. Both SVM
and Random Forest models reduced their dimensionality to
11. For the SVM model, the KPCA parameter γ was set to
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Fig. 7 Autoencoder training curve for generating synthetic data for Planetary healthy

Fig. 8 Comparison of measured and synthetic vibration signals in time and frequency domains

1, and it achieved the same overall accuracy value (98.72%)
as that achieved in the third experiment, which used all the
18 time domain features, using the Gaussian kernel and the
value of the regularization index C� 32 as the SVM hyper-
parameters.

For the RF model, the KPCA parameter γ was set to
0.1, and it achieved an overall accuracy value of 96.06%,
which is very close to those achieved in the second and third

experiments, using the Random Search as the searchmethod,
comprising of 146 trees with 5 observations per leaf.

While accuracy and the confusion matrix serve as pri-
mary metrics for comparing model performance, providing
an overview of classification correctness, additional metrics
were calculated to compare the best models from the fourth
experiment, as depicted in Fig. 15.

It can be seen in Fig. 15 that both models yielded similar
results in all calculated metrics, except for the computational
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Fig. 9 Comparison of measured and synthetic vibration signals in time and frequency domains
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Fig. 10 Comparison of measured and synthetic vibration signals in time and frequency domains

Table 7 Results of the
experiments SVM RF

Experiment 1 Accuracy (%) 90.83 95.00

Experiment 2 Accuracy (%) 98.03 99.83

Experiment 3 Accuracy (%) 98.72 99.94

Experiment 4 Accuracy (%) 98.72 96.06
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Fig. 11 Confusion matrices of the first experiment (%); a SVM; b Random Forest

Fig. 12 Confusion matrices of the second experiment (%); a SVM; b Random Forest

Fig. 13 Confusion matrices of the third experiment (%); a SVM; b Random Forest
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Fig. 14 Confusion matrices of the fourth experiment (%); a SVM; b Random Forest

Fig. 15 Radar plot of the comparison metrics between the best models
of the fourth experiment

time. The SVM model achieved shorter computation time,
17.9058 s compared with 34.0076 s of the Random Forest.

4.2 Comparison with PreviousWorks

Numerous studies in the literature have addressed the clas-
sification of mechanical faults in wind turbine gearboxes. In
[43], the authors proposed a Convolutional Neural Network
(CNN) for fault classification, employing cyclostationary and
kurtogram analyses on acquired data. Despite not employing
data augmentation or dimensionality.

Similarly [42], proposed SVM with RBF kernel func-
tion, utilizing PCA for dimensionality reduction, which
achieved 92% accuracy. However, their focus was solely on
the planetary stage of a wind turbine gearbox, unlike our

approach, which evaluated the entire gearbox. By employ-
ing data augmentation and dimensionality reduction, our
method achieved superior results, in identifying and clas-
sifying faults in both parallel shafts and planetary stages. In
[44], the authors proposed a CNN for fault classification,
incorporating a variant of GAN, termed improved spec-
trally normalized-GAN, for data augmentation, achieving
an impressive 98.5% accuracy. However, their study con-
centrated on three distinct types of gear faults. In contrast,
our proposed method focuses on compound faults, mirror-
ing real-world scenarios with simultaneous faults in gearbox
internal components such as bearings and gears. Table 8 pro-
vides a summary of these comparative results.

In this paper, statistical features were extracted directly
from the vibration signal without using the empirical mode
decomposition technique used in work [40], thus allowing an
increase in speed in the training stage of themachine learning
models used in this paper.

Dealing with unbalanced datasets is a common issue in
equipment failure diagnosis, as there are often very few
instances related to failure classes. This study examines the
impact of using synthetic data generated by the variational
autoencoder technique on the training of machine learning
algorithms and the effectiveness of equipment diagnosis.
This approach was not applied in paper [40].

In this paper, an additional contribution to the previ-
ous work [40] is the identification of two more scenarios:
planetary healthy signals and planetary damaged signals.
Consequently, the present paper deals with the identifica-
tion of six different scenarios, while the work referenced in
[40] aimed to identify only four scenarios.

In this study, we evaluated the effectiveness of using the
KPCA technique to reduce the dimensionality of the feature
vector. This process helped in reducing model training time
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Table 8 Summary results of
previous works Work Classifier Data Augmentation Dimensionality

reduction
Accuracy
(%)

[42] SVM – Dynamic PCA 92.0

[43] Cyclostationary-based
CNN

– – 88.9

[44] CNN SN-GANs – 98.5

and improving diagnostic accuracy. On the other hand, the
outhors of [40] used the mRMR, ReliefF, Decision Tree, and
Chi-square techniques to create a feature selection commit-
tee for choosing the most relevant features for the machine
learning models.

5 Conclusion

This study utilized a gearbox dataset provided byNREL, fea-
turing compound real faults, to classify six state conditions:
Healthy High-Speed Shaft (HSS), Damaged HSS, Healthy
Intermediate Shaft Speed (IMSS), Damaged IMSS, Healthy
Planetary, and Damaged Planetary stages. Due to the small
size and imbalance nature of the dataset, data augmentation
was performed using the Sparse Autoencoder.

The augmentation process, validated through MSE and
PCC values, involved splitting the original dataset in half and
generating additional signals. Following augmentation, the
signals underwent bandpass filtering, from which 18 time-
domain features were extracted.

Four experiments were conducted: (1) utilizing the orig-
inal unbalanced dataset, (2) augmenting the dataset with-
out balancing, (3) augmenting and balancing the dataset,
and (4) augmenting, balancing, and employing KPCA for
dimensionality reduction. SVMs and RFs algorithms were
employed for classification in all experiments.

Results demonstrated that despite the small and unbal-
anced dataset, both SVM and Random Forest models
achieved over 90% overall accuracy. Dataset augmentation
and subsequent balancing notably improved classifier perfor-
mance,with experiments 2 and3yielding comparable results.
Furthermore, dimensionality reduction via KPCA enhanced
the performance of both SVM and RF, achieving an overall
accuracy of 98.72 and 96.06%, respectively, with the dimen-
sions of each model being reduced from 18 to 11. Notably,
SVM exhibited faster computational times compared to Ran-
dom Forest, completing the analysis in 17.9058 s versus
34.0076 s.

The method proposed in this work evaluated the whole
gearbox, identifying and classifying faults in the parallel
shafts and planetary stage using data augmentation and
dimensionality reduction outperforming previous works.

For future research, the proposed method could be tested
under variable speed conditions and extended to differentiate
between gear and bearing faults.
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