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Abstract Graph search represents a cornerstone in computer science and is em-
ployed when the best algorithmic solution to a problem consists in performing an
analysis of a search space representing computational possibilities. Typically, in
such problems it is crucial to determine the sequence of transitions performed that
led to certain states. In this work we discuss how to adapt generic quantum search
procedures, namely quantum random walks and Grover’s algorithm, in order to
obtain computational paths. We then compare these approaches in the context
of tree graphs. In addition we demonstrate that in a best-case scenario both ap-
proaches differ, performance-wise, by a constant factor speedup of two, whilst still
providing a quadratic speedup relatively to their classical equivalents. We discuss
the different scenarios that are better suited for each approach.
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2 Lúıs Tarrataca, Andreas Wichert.

1 Introduction

Graph theory assumes a pivotal dimension in computer science, where it is usually
employed in order to depict transitions between different computational states. In
its most simple form a graph depicts a set of points, referred to as vertexes, that
may or may not be interconnected through edges [30]. A generic graph G can be
represented as a pair G = (V,E) where V and E represent, respectively, the sets
of vertexes and edges. The number of edges at a particular vertex is referred to
as the degree of a vertex. Depending on the particular problem being solved, the
degree may or may not be constant.

Graph search problems can be represented as a tuple (V,E, Si, Sg) comprising, re-
spectively, (i) the set of all possible vertexes representing system states; (ii) the set
of possible edges of the form (x, y) representing transitions from state x to state
y; (iii) a set of initial states with Si ⊆ V and (iv) a set of goal states with Sg ⊆ V .
Elementary graph algorithms traditionally focus on searching a graph, i.e. system-
atically following the edges of the graph so as to visit the vertices of the graph
[15]. The objectives of the search can be various but typically include discovering
specific details about the structure of the graph, determining the presence of cer-
tain vertexes or can focus on the specific details regarding possible sequences of
edges.

In our case we are particularly interested in determining a sequence of edges P , also
known as path, capable of leading the system from an initial state to a goal state,
as illustrated by Expression 1, where d ∈ Z

+ is referred to as the solution depth
and 1 ≤ k ≤ d. Determining P is important because it reflects a type a logical
process of transitions responsible for performing an adequate system evolution.
Representative examples include determining the sequence of moves in a game
of chess leading to a victory [22], solving Rubik’s cube, or developing general
mechanisms for problem solving [26].

P := ((x1, x2), (x2, x3), · · · , (xd−1, xd)|xk ∈ V, x1 ∈ Si, xd ∈ Sg) (1)

This procedure is illustrated in Figure 1, where we define vertex A to be an initial
state and vertex E to be a goal state. Accordingly, possible examples of compu-
tational paths leading from A to E include the sequences of edges ((A,B), (B,E))
and ((A,C), (C,D), (D,E)).

A B

C D

E

(A,B)

(A,C)

(B,E)

(D,E)

(C,D)

(C,B) (B,D)

Fig. 1: A graph with five vertexes and seven edges.
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1.1 Current Approaches to Quantum Search

Quantum computation has enabled for important performance improvements in
search procedures. There are two main quantum procedures capable of performing
graph search, namely quantum random walks on graphs and Grover’s algorithm.
Both of which can deliver a quadratic speedup, i.e. O(

√
N ) time when the overall

objective of the search method resides in evaluating N states and obtaining a goal
state. Equivalent classical approaches to search require O(N) time.

Quantum random walks are the quantum equivalents of their classical counterparts
([23] provides an excellent introduction to the area) and were initially approached
in [2], [28] in one-dimensional terms, i.e. walk on a line. These concepts were then
extended to quantum random walks on graphs in [17], [21], and [1]. Quantum
random walks can also provide a probabilistic speedup relatively to their classi-
cal parts, namely the hitting time for some specific graphs, i.e. the time it takes
to reach a certain vertex B starting from a vertex A, can be shown to be expo-
nentially smaller [11]. However, these approaches only focus on graph transversal
through a simultaneous selection of all possible edges at any given vertex via the
superposition principle.

Grover’s algorithm [19] represents another alternative to quantum search. After
performing O(

√
N ) amplitude amplifications the algorithm is capable of evaluat-

ing a superposition of N states and deliver, with high probability, a goal state
upon measurement. This approach later inspired an equivalent O(

√
N ) quantum

random walk on graphs [29]. Both approaches rely on building a superposition
over all possible bit strings and require that goal states are marked through an
oracle and apply in some form Grover’s iterate. However, some important differ-
ences also exist, namely the quantum random walk algorithm [29]: (1) can only be
approximately mapped onto a two-dimensional subspace; (2) final superposition
state contains trace contributions of the neighbours of a goal state and (3) applies
Grover’s iterate to a space of dimension n whilst Grover’s algorithms evaluates a
space of dimension 2n.

1.2 Problem

Both quantum random walks and Grover’s algorithm only focus on obtaining goal
states, and do not consider the dynamics associated with determining the corre-
sponding computational path P . Given that this is such a crucial task in many
computational problems, the question naturally arises of how P can be determined
in a quantum fashion? Namely, how can these methods be adapted such that P
is obtained? More specifically, what are the mechanisms available, alongside re-
spective requisites, limitations, and how do these fare against each other, not only
from a computational perspective but also performance-wise.

Furthermore, both approaches to search involve intrinsically different concepts
that were initially focused on performing search in general terms. This broadness
in purpose can sometimes make it difficult to analyse exactly what stands to be
gained from a graph perspective. In order to facilitate such an analysis we choose



4 Lúıs Tarrataca, Andreas Wichert.

to focus on graphs whose structure we can predict. This is the case of graphs
whose structural form resembles an inverted tree. Tree search distinguishes itself
from ordinary graph search by the exponential-growth of the number of vertexes
that need to be examined with each additional depth-layer. Accordingly, it would
also be interesting to determine if one of these methods is better suited for, not
only determining P , but also to perform an exhaustive analysis of the search
space.

1.3 Paper Organisation

The following sections review and describe how to adapt existing quantum search
methods and are organised as follows: Section 2 presents the main results regard-
ing quantum random walks on graphs and extends the existing framework such
that the computational path is obtained; Section 3 describes Grover’s algorithm
and what adaptations are required in order to obtain P ; Section 4 compares both
methods and illustrates the key differences between them from a tree search per-
spective; Section 5 provides some additional insight regarding the dynamics and
impacts associated with set E; the overall conclusions of this work are presented
in Section 6.

2 Paths on Quantum Random Walks

There are two types of quantum random walks, namely, discrete- and continuous-
time. Both approaches perform a random walk without intermediate measure-
ments. In classical models of computations such as the Turing machine a com-
putational procedure is specified through a set of discrete transitions associating
input states to output states. A discrete and finite space is also important when
such systems need to be simulated on a classical finite computer [25]. Accordingly,
we choose to focus on discrete-time quantum random walks since they allow for
a simple mapping between concepts. The next following sections are organised
as follows: Section 2.1 provides the necessary details for understanding quantum
random walks on graphs; Section 2.2 describes how to extend these concepts in
order to store the computational path performed.

2.1 Original Quantum Random Walk on Graphs

The simplest discrete-time quantum random walk on a graph G = (V,E) can be
described by a unitary operator U acting upon a Hilbert space H = HS ⊗ HC ,
where HS represents the space associated with vertexes of the graph whilst HC is
associated with a “coin space” [29]. The coin operation owns its name from the
classical random walk where a destination state would be chosen according to some
probabilistic distribution. Operator U can be described as presented in Expression
2 [1], which is obtained through a composition of operators S and C. Each step of
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the quantum walk can be perceived as consisting of two operations, namely [10]:
(1) building a superposition over the appropriate neighbour states; and (2) moving
the system state to the new target destination. Additionally, operator U employs
states of the form |j〉|k〉, where (j, k) ∈ E.

U = SC (2)

Operator C is responsible for building a superposition in register |k〉 spanning
the neighbours of j. This behaviour is presented in Expression 3 (adapted from
[32]), where deg(j) represents the degree of vertex j, i.e. the number of edges at
vertex j [30]. Let Pj,k represent the probability of making a transition from j to
k, then in order to preserve unit-length normalization required by quantum states
∑|V |

k=1 Pj,k = 1. Assuming a uniform distribution amongst the neighbours of a
vertex j this is equivalent to

∑

m:(j,m)∈E
1

deg(j)
= 1.

C|j〉|k〉 → |j〉 1
√

deg(j)

∑

m:(j,m)∈E

|k ⊕m〉 (3)

The state |j, k〉 obtained after applying the coin operator indicates to operator S
that the system should be moved from state j to state k. Subsequently, operator
S performs a conditional shift based on the state of the coin space, as illustrated
by Expression 4. The overall effect of Expression 2 emphasizes the notion that the
quantum random walk takes places on the edges of the graph.

S|j〉|k〉 → |k〉|j〉 (4)

In [29] the authors proposed an approach capable of obtaining goal states when
searching N elements in time O(

√
N ). Given that N = |V | this can be restated

as O(
√

|V | ). Initially, the goal states are marked through an oracle operator
O|x〉|y〉 → |x〉|y⊕ f(x)〉, where f(x) is a function that return 1 when x is a solution
and 0 otherwise. Oracle operators can be perceived as simple verification proce-
dures that verify language membership. This procedure effectively results in an
amplitude flipping of the marked states when |y〉 is initialized in the superposition
1√
2
(|0〉− |1〉). The authors then proceed by reformulating the the coin operator in

order to perform Grover’s diffusion operator [19] which was first proposed in [27].
The reformulated coin operator C is presented in Expression 5.

C|j〉|k〉 → |j〉





2
√

deg(j)

∑

m:(j,m)∈E

|k ⊕m〉〈k| − I



 (5)

The quantum random walk search algorithm first initializes the system state |j〉|k〉
to a uniform superposition |ψi〉 covering all vertexes in a graph G and the re-
spective neighbours, as illustrated by Expression 6. State |ψi〉 can be obtained by
applying n Hadamard gates to state |0〉, i.e. H⊗n|0〉, where n is the number of bits
required to encode the elements in H. This procedure assumes that the number of
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states employed is a power of two, which simplifies analysis. However, for the re-
maining cases this procedure may have an adverse impact on system performance
since a larger than necessary search space needs to be examined [31]. The algo-
rithm then proceeds by applying the oracle followed by unitary operator SC. This
process is repeated for π

2

√
2n times allowing for a superposition state |ψf 〉 to be

obtained that is primarily composed of the marked state. Each application of SC
effectively increases the amplitude of the goal state [29]. However, as the authors
point out, |ψf 〉 also possesses small contributions from the closest neighbours to
the solution state [29]. The procedure is concluded by performing a measurement
on the quantum register, yielding with high probability a solution state.

|ψi〉 =
1

√

|V |
∑

v∈V

|v〉 1
√

deg(v)

∑

m:(v,m)∈E

|m〉 (6)

2.2 Adapting Quantum Random Walks

In order for the computational path performed by the walk to be stored an auxil-
iary operator needs to be introduced, respectively Rt. The operator is responsible
for copying the edge transition performed at time step t of the walk to an addi-
tional memory register |m〉. This register should have an adequate length in order
to store the appropriate sequence of transitions. Accordingly, since the algorithm
requires O(

√

|V | ) time this means that |m〉 should have length d =
√

|V | , i.e.

|m〉 = |m0, m1, · · · , md−1〉. This behaviour is illustrated in Expression 7 where mk

represents an individual auxiliary memory slot with n = ⌈log2 |E|⌉ bits. As a re-
sult the overall memory register |m〉 will require d × n bits. After each step t of
the quantum walk, the application of operator Rt ensures that, for each element
of the superposition, the associated transition will be stored in register |m〉. This
procedure is performed by applying the reversible action mt ⊕ (j, k).

Rt|j, k〉|m0,m1, · · · ,md〉 → |j, k〉|m0,m1, · · · ,mt ⊕ (j, k), · · · ,md−1〉 (7)

Operator Rt is unitary since it performs a bijection between input and output
states. Namely, any irreversible logical function f can be made reversible by intro-
ducing a constant number of auxiliary input and output bits to a logical gate [24].
This procedure produces as a result a unitary operator Uf |x〉|y〉 → |x〉|y ⊕ f(x)〉.
Since the original input states |j〉, |k〉, and the auxiliary memory slots mk are part
of the outputs it immediately follows that Rt is unitary. The original version of
the algorithm would require an operator of the form (SC)d. However, by intro-
ducing operator Rt we need to be careful in order to guarantee that index t is
properly updated. The overall operator sequence for a quantum walk requiring d
steps is described in Table 1. Once the final measurement on superposition |ψf 〉 is
performed the computational state will translate not only the goal state obtained
but also the computational path leading to it.
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Walk length Operator Sequence

1 (R0SC)|ψ〉
2 (R1SC)(R0SC)|ψ〉
..
.

..

.
d (Rd−1SC)(Rd−2SC) · · · (R0SC)|ψ〉

Table 1: Operator sequence for the modified quantum random walk search algo-
rithm.

3 Paths on Grover’s algorithm

Grover’s algorithmwas first proposed in [19] and subsequently published as a letter
in [20]. Grover’s algorithm is able to search a superposition spanning N elements
in time O(

√
N ). This approach was later extended in order to search for only the

first k bits of an n bit goal state in [18]. This upper bound of O(
√
N ) queries was

shown to be asymptotically optimal when using oracle operators. This result was
first proven in [7], with earlier versions of the manuscript appearing before Grover’s
algorithm [6]. A simple closed-form formula for the probability of success after any
given number of iteration was given in [8]. This result was used to proof that even
if other quantum algorithms are devised that deliver a solution with non-random
probability they are still not able to provide a meaningful speedup. Zalka then
showed that π

4

√
N oracle queries are required in order to output a goal state with

maximum probability [33]. The following sections are organised as follows: Section
3.1 presents the basic details regarding Grover’s algorithm; Section 3.2 explains
how to adapt these concepts such that the computational path can be obtained
upon the measurement.

3.1 Grover’s algorithm

The quantum search algorithm employs a system state |q〉|a〉 representing, respec-
tively, the query and answer register. Register |q〉 is configured with query elements

belonging to a set S of size N and is placed in a superposition |ψ〉 =
∑2n−1

x=0
1√
2n

|x〉
where n is the number of bits required to encode the set of possible values con-
tained in S, i.e. n = ⌈log2 |S|⌉. The states present in the superposition are then
marked by an oracle operator similar to the one employed by quantum random
walks. This procedure effectively marks with an amplitude flip the goal states.
The algorithm then proceeds by applying operator G = HU0⊥HUf , where Uf , H
and U0⊥ are, respectively, the oracle, the Hadamard gate, and an n-qubit phase
shift operator. The latter inverts the amplitude of all states orthogonal to state
|0〉. Each application of G adds close to 2√

N
to the amplitude of marked states

and slightly decreases the amplitude of the remaining states such that the overall
unit-length norm is still preserved [24]. After performing O(

√
N ) amplifications

the algorithm is capable of evaluating a superposition of N states and deliver, with
high probability, a goal state upon measurement.
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3.2 Adapting Grover’s algorithm

Whilst the appropriateness of quantum random walks for searching graphs seems
fairly natural, Grover’s application to the same problem is not immediately ap-
parent. Mainly, this is because of the original formulation proposed by Grover in
[19] which was not formulated in terms of graph search, i.e. with a set of states
V and transitions E. Instead, the quantum search algorithm focused exclusively
on analysing the elements of a set S. Accordingly, in order to obtain graph-like
search behaviour from Grover’s algorithm some of the information contained in a
graph G = (V,E) needs to be embedded into the verification procedure performed
by oracle O.

Given that oracle Uf verifies if an input state is a goal state, one possible strat-
egy resides in evaluating if a given initial input state alongside a sequence of
transitions leads to a goal state, an approach proposed in [31]. This encoding is
illustrated in Expression 8, where the query register is decomposed into two com-
ponents, namely |s〉 where s ∈ Si and a sequence of edge transitions where each
pair (ek, ek+1) ∈ E. Applying Grover’s algorithm requires initializing the query
register in a superposition state spanning all admissible possible path configura-
tions for the corresponding state s. Consequently, the function employed by oracle
Uf needs to be defined in order to reflect these changes. This operation is de-
picted in Expression 9 which can be performed in linear-time since it represents
a simple verification procedure. Notice that with this approach the quantum su-
perposition will span all the sequence of transitions up to depth d. This means
that if we consider an average degree b then the upper-bound complexity will be
O(

√
bd ).

|q〉|a〉 = |s〉|(e0, e1), (e1, e2), · · · , (ed−2, ed−1)〉|a〉 (8)

f(s, (e0, e1), · · · , (ed−2, ed−1)) =

{

1 , if ((e0, e1), · · · , (ed−2, ed−1)) applied to S is in Sg
0 , otherwise

(9)

4 Comparing both methods

Although both procedures previously described deliver a quadratic speedup over
their classical counterparts, they nonetheless still grow in an exponential manner,
albeit expressed as different functions. Namely, quantum random walks execute
in time O(

√

|V | ) whilst Grover’s algorithm upper-bound complexity is O(
√
bd ).

Hence, it is important to ask the question of how do these functions compare
against each other? Section 4.1 provides the necessary background details in or-
der to analyse these approaches from a tree search perspective. We then analyse
both methods through an effort function that considers the total number of states
evaluated in Section 4.2.
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4.1 Tree search

In order to answer this question we will focus on a particular type of graph, namely
tree search graphs. Tree search problems can be perceived as a subset of elementary
graph theory representing acyclic connected graphs where each vertex has zero or
more children nodes and at most one parent node, as illustrated in Figure 2.
Traditionally, tree search literature refers to a vertex as a node. In addition, the
degree of a node is referred to as branching factor and is usually represented
through variable b.

A

B

D E

H I J K

C

F G

L M N O

H
ei
g
h
t
=

3

Depth 0

Depth 1

Depth 2

Depth 3

(A,B) (A,C)

(B,D) (B,E) (C,F ) (C,G)

(D, I) (E, J) (E,K) (F,L) (F,M) (G,N) (G,O)(D,H)

Fig. 2: A search tree with binary branching factor and depth 3 alongside all possible
paths.

Quantum random walks can be employed in order to evaluate binary formulas,
which represents a form of tree search. The original Grover’s algorithm can be
adapted to evaluate the logical OR of N bits. The quantum search algorithm
can even be employed to evaluate AND-OR trees in time O(

√
N logN) as was

demonstrated in [9], where N is the number of nodes in the tree. Ambainis proved
that computing an AND of ORs requires time Ω(

√
N ) [3]. In addition, every

NAND formula of size N can be evaluated in time N
1

2
+o(1) [13]. Ambainis then

presented an O(
√
N ) discrete query quantum algorithm for evaluating balanced

binary NAND formulas [4] which was also proven to be optimal [5]. In [16] a con-
tinuous time quantum random walk algorithm was presented capable of evaluating
a balanced AND-OR tree in time O(

√
N ). A discrete version of this algorithm was

later presented [12] requiring N
1

2
+o(1) queries. These results were later employed

to demonstrate how to evaluate minmax trees with N
1

2
+o(1) [14].

4.2 Geometric growth

We will start by performing an analysis on how these functions behave in the
context of tree search. Note that with tree search the dimension of set V grows
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exponentially fast, since each additional level of depth adds bd to V . As a result,
the method based on quantum random walks will need to evaluate b0 + b1 +
· · · + bd states. In contrast, the approach based on Grover’s algorithm will only
evaluate the possible computational paths, which represent the number of leaf
nodes, respectively bd. In practice the latter should outperform the former since
bd < b0 + b1 + · · · + bd. But precisely how much of an improvement is obtained?
Since quantum random walks need to examine more states we can view Grover’s
algorithm performance as the standard to which we wish to compare. This means
that random walks will perform an additional effort relatively to the quantum
search algorithm. Accordingly, we can choose to represent the supplementary effort
performed to be represented as a function of the branching factor b and depth d,
respectively ξ(b, d), as illustrated in Expression 10. Notice that for d > 0, ξ(b, d) > 1

since the last term of the series is bd

bd
= 1.

ξ(b, d) =

∑d
k=0 b

k

bd
=

1

bd
1− bd+1

1− b
(10)

Figure 3 illustrates the additional effort required to search a binary tree up to
depth level d = 100. As it is possible to verify the function rapidly grows until
approximately depth level d = 25 but then stabilizes when ξ ≃ 2. In practice,
this means that for this specific case both approaches differ in complexity by a
constant factor of two. Hence, if Grover’s algorithm considers bd = 2d states,
the random walk approach will need to evaluate twice the number of nodes, i.e.
2×2d = 2d+1. Consequently, for binary tree search this is equivalent, performance-
wise, to extending the search by an additional depth limit, which represents a
significant hindrance. This result is also valid from a classical point of view.

20 40 60 80 100
d

1.99999

1.99999

2.00000
Ξ

Fig. 3: The additional effort performed by quantum random walks relatively to
Grover’s algorithm when searching a binary tree up to depth level 100.
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Expression 10 represents a geometric series with a common ratio of b which for
non-trivial computation is always greater than one. As a result the series will
never fully converge. This fact makes it difficult to predict exactly how ξ will
behave as both b and d grow towards infinity. The analysis is somewhat simplified
if we consider that we are dealing with a ratio of exponential growth functions.
As a result, the last last p terms of the series can be perceived as being the ones
that contribute the most to the effort performed. The initial d − p terms drop off
suddenly and stop contributing in a meaningful manner to the overall effort. This
p-error approximation is presented in Expression 11, where p ∈ N is chosen so that
d− p ≥ 0.

ξ(b, d, p) =

∑d
k=d−p b

k

bd
=
bd−p + bd−p+1 + · · ·+ bd−1 + bd

bd
=

1

bp
+

1

bp−1
+· · ·+ 1

b1
+

1

b0

(11)

By focusing on the p-error it becomes possible to effectively forgo the depth variable
from the equation. As b grows towards infinity, and assuming a constant error p,

the only relevant term will be the last one, respectively bd

bd
. Hence, up to p-error,

limb→+∞ ξ(b, d, p) = 1. The constant factor of two presented in Figure 3 thus
illustrates an optimal performance gain, since any increases in branching factor
and depth will only exacerbate the rate at which the remaining elements, other
than the last one, stop contributing significantly to the effort.

5 Final Considerations

For some specific applications knowing in advance the precise form of sets V and E
maybe problematic given the sheer number of possibilities to consider, and conse-
quently, to specify. For example, consider a chess playing application where V may
be represented in more general terms as V := {x|x is an admissible chess state}.
The same process could be applied to set E, since it would also be infeasible to
completely specify all possible edges. In these situations, this issue is usually tack-
led through the use of symbolical rules γ belonging to a set R, which has the form
presented in Expression 12, where Γ ∗ is a set of strings over a finite nonempty set
Γ . The elements of Γ ∗ are an integral component of the overall state description.
The application of any of these rules effectively verifies if an input state x meets
certain conditions, and if so perform a computational action that results in a tran-
sition to state y, respectively represented by the tuple ((x, y), γ), where x, y ∈ V

and γ ∈ R.

R := {(precondition, action)|precondition, action ∈ Γ
∗} (12)

Notice that a single rule γ has the potential to: (1) be applied to multiple input
states depending on whether or not the conditions are met by these; and (2)
generate multiple output states depending on the original node. This process is
represented in Figure 2 illustrating a binary tree. Suppose that node K in Figure
2 is a goal state, then the computational path leading to it can be perceived as
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applying the sequence of rules 0,1, 1 which map, respectively, to the transitional
tuples ((A,B),0), ((B,E),1) and ((E,K), 1).

By employing set R we are able to obtain the same computational behaviour
represented by the original set of transitions E, although through a much smaller
specification. In order to accommodate for these requirements, the specific terms
of the definition may be modified such that a stronger emphasis is placed on
determining sequences of rules that lead to goal states. Accordingly, we can opt to
represent such problems by a tuple (V,R, Si, Sg), and where the overall objective
consists in determining P , but this time reformulated in order to store sequence
of rules, as illustrated in Expression 13.

P := (((x1, x2), γ1), ((x2, x3), γ2), · · · , ((xd−1, xd), γd)|xk ∈ V, x1 ∈ Si, xd ∈ Sg , γi ∈ R)
(13)

Expression 13 can be simplified if we consider that given an input state x alongside
a rule γ it is a simple task to determine the successor state y. Accordingly, we can
opt to merely keep track of the sequence of rules performed, since the original
edges of a path P can be reconstituted in linear time given an initial state i ∈ Si,
as presented in Expression 14.

P := (γ1, γ2, · · · , γd|γi ∈ R) (14)

Although both approaches achieve the same functional purposes of determining
P they differ substantially on the costs required for obtaining the computational
path. Namely, by utilising rules we are able to describe a set R that will impose
a maximum branching factor b. As a result the computation would execute in
O(

√
bd ) time. Alternatively, employing a traditional graph representation would

require specifying bd edges, which by itself would involve an exponential amount
of time. Ultimately, such a procedure would yield an O(bd) time complexity since
there is a “hidden cost” associated with generating V .

6 Conclusions

In this work we presented two adaptations to existing quantum search methods
in order to store the paths leading to solutions states. Additionally, we showed
that the best one should be expected, performance-wise, is a constant speedup of
two that tends to dilute when the branching factor is increased. Although both
approaches provide a quadratic speedup relatively to their classical counterparts,
they are intrinsically different. The path approach based on quantum random walks
performs in O(

√

|V | ) time and upon measurement produces a path whose length
grows as a function of the search space. This means that typical exponential growth
search spaces will also deliver a computational path with an exponential number
of transitions. With quantum random walks not only is the complexity exponential
time-wise but the space required to store the path also grows exponentially fast.
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Further, the path obtained may be non-optimal since nothing in quantum random
walks theory prevents loops from occurring.

Grover’s methods allows for a time of O(
√
bd ) with the associated path length

expressed as a function of the search depth d, which grows linearly. In addition
there is a greater control over what computational paths should be processed since
one has the ability to build path-verifying oracle operators. Although this may first
be perceived as advantageous over quantum random walks it is not clear how to
perform node evaluation that requires non-linear transversal of the tree. Namely, it
would be interesting to determine how to evaluate a node whose value is calculated
as a function of its children, which is precisely the type of computational behaviour
required by procedures such as the minimax algorithm. This difficulty arises since
each basis state of the superposition employed represents individual computational
paths.

Accordingly, with the current form of these procedures, deciding which of the
two methods should be employed is a matter of elaborating a careful analysis of
the problem being tackled. If no requisites exist involving the analysis of a node
based on the forest of nodes starting at it, then the method based on Grover’s
algorithm is adequate. Otherwise, the approach based on random walks is the
most suitable.
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