
IEEE TRANSACTIONS ON SIGNAL PROCESSING 1

An Exact Expectation Model for the LMS Tracking

Abilities
Thiago T. P. Silva, Pedro Lara, Filipe Igreja, Fernanda D. V. R. Oliveira, member, IEEE, Luı́s Tarrataca,

and Diego B. Haddad, member, IEEE

Abstract—Nonstationary environments are ubiquitous in com-
munications and acoustic systems. The ability to track their
dynamics is one of the most desirable features of adaptive
processing algorithms. The designers of these algorithms employ
guidelines derived from stochastic analyses to adjust user-defined
parameters to maximize performance or avoid stability issues.
It is therefore important that analyzes of adaptive processing
algorithms take into account the built-in sophisticated learning
capabilities. This work presents a comprehensive model of the
performance of the least mean square algorithm, operating under
Markovian time-varying channels. Our advanced analysis con-
siders both transient and steady-state regimes. Furthermore, in
our analysis, the popular independence assumption is not adopted,
resulting in a stochastic model which is accurate even when: (i)
the step size is not infinitesimally small; or (ii) when the unknown
system presents a high nonstationary degree. In addition, our
evaluation is also able to provide a deterministic theoretical step-
size sequence that optimizes algorithmic performance, as well
as an accurate step size upper bound that guarantees algorithm
stability. Computer simulations performed are in accordance with
our theoretical predictions.

Index Terms—Adaptive Filtering, Tracking, Exact Expectation
Analysis.

I. INTRODUCTION

IN applications such as channel equalization, hearing aids

and echo cancellation, it is crucial that adaptive algorithms

present a low asymptotic mean-squared error (MSE) [1]. It is

sometimes argued that the choice of a fixed learning factor

(or step size) β is influenced by a trade-off between high

convergence rate and good steady-state performance [2]. In

practice, such a trade-off is more subtle, since time-varying

channels introduce a “lag” in the adaptive process when

emulating the optimal and unknown vector1 w⋆(k) ∈ R
N [3].

As a consequence, reducing β does not necessarily imply that

better steady-state performance will be attained [4].

The least mean squares (LMS) algorithm is a simple yet

effective adaptive scheme that combines robustness with a

numerically stable implementation. Furthermore, it demands
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Pesquisa do Estado do Rio de Janeiro (FAPERJ). Thiago T. P. Silva,
Pedro Lara, Filipe Igreja, Luı́s Tarrataca and Diego B. Haddad are
with Centro Federal de Educação Tecnológica Celso Suckow da Fon-
seca, Brazil (emails: thiagoteodoro501@gmail.com, pedro.lara@cefet-rj.br,
figreja@gmail.com, luis.tarrataca@cefet-rj.br, diego.haddad@cefet-rj.br). Fer-
nanda Oliveira is with Universidade Federal do Rio de Janeiro (email:
fernanda.dvro@poli.ufrj.br)

1In this paper, all vectors are of column-type.

a computational burden that is only proportional to the filter

tap-length, since its update equation may be expressed in terms

of an inner product of the current input vector. Additionally,

the LMS performance dynamics depend on a feedback control

mechanism, in which the error e(k) ∈ R drives the update

of the adaptive coefficients w(k) ∈ R
N . This feedback

procedure is responsible for the complex behaviour of the

LMS (e.g., its disturbance rejection feature [5]), which makes

the development of analytical stochastic models challenging.

Moreover, the fact that a proper adjustment of its learning

factor remains a difficult task (since the optimal step size

choice is an intricate function of the input statistics [6], [7])

is a driving force for the significant amount of effort invested

in the development of new theoretical approaches. In order

to maintain the mathematics tractable, LMS advanced models

that can be found in the literature often rely on some simplify-

ing assumptions, that are able to provide insights about factors

that enhance algorithmic performance even when the resulting

predictions are not accurate [3], [8], [9]. The most critical of

them is the independence assumption (or independence heuris-

tic [10]), which considers that the excitation data is statistically

independent from the adaptive weights. Despite its wide usage

in the stochastic approximations field [3], the independence

assumption performs unreliable predictions when the step size

parameter assumes large values. Nevertheless, some potential

advantages of adaptive filtering schemes may become apparent

only for large step sizes [11].

The exact expectation analysis (EEA) [12]–[18] is a refined

technique that recursively generates update equations for a

set of joint moments (or state variables). The joint moments

update equations govern the dynamics of the LMS learning.

Since EEA does not adopt the independence assumption,

its predictions are a better fit for experimental results than

standard approaches (e.g., in the specification of an upper

bound for the learning factor that ensures convergence [14],

[16], [17]).

The EEA technique was proposed in [19], in a config-

uration where the excitation data is assumed to be white.

An unequal-mode convergence behaviour in the variances

of the filter coefficients (which contradicts the independence

assumption) was theoretically predicted and confirmed by

simulations. Work [12] extended the approach to the sign-

data LMS algorithm, without assuming a white input data. A

more comprehensive analysis of the LMS algorithm (assuming

colored input data) under EEA is the focus of [13], [14], which

effectively established EEA as a powerful and alternative anal-

ysis method for predicting LMS performance. More recently,
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this technique has experienced some generalizations, namely:

[15] removed the whiteness assumption of the additive noise;

[18] has demonstrated that coloring the additive noise does not

impact mean-square stability; [20] addressed the identification

of nonlinear plants; [16] employed EEA to derive an optimal

sequence of step size values that optimize performance; and

[17] modeled the deficient case that occurs when the adaptive

filter length is surpassed by the length of the unknown transfer

function the adaptive filter intends to emulate.

In this paper, EEA is for the first time employed in or-

der to perform an in-depth analysis of asymptotic and non-

asymptotic behaviour of the LMS under the time-varying

plant setting. Popular assumptions (such as the independence

assumption) are not used, which yields an accurate and more

complex model. One may argue that our approach trades off

computational cost for adherence with experiments. This point

of view may be misleading, since standard approaches may

incorrectly predict that the algorithm is stable in cases where

it is not. This problem does not exist when the proposed

stochastic model is used, and in these configurations there is

no trade-off at all.

This paper is structured as follows. Section II concisely

describes the LMS algorithm, whereas Section III depicts a

standard stochastic model (i.e., one based on the ubiquitous

independence assumption) for its performance abilities. The

devised exact expectation method is explained in Section IV,

which is later utilized for constructing two versions of optimal

and deterministic step-size sequences in Section V. Although

the first version can be seen as an adaptation of the method

devised in [16] to the tracking setting, the second version

is an entirely new contribution. Comparisons between theo-

retical predictions and experimental results are presented and

discussed in Section VI. Concluding remarks are presented

in Section VII which outlines some possible promising future

works that could be derived from it.

Throughout this paper, vector and matrices are represented

with lowercase and uppercase bold fonts, respectively, while

scalars are denoted by italics. The symbol ⊗ stands for the

Kronecker product of matrices, and E [·] is the mean operator.

(·)T denotes transpose and the vec(A) operator generates a

column-type vector by successively stacking the columns of

the matrix A (e.g., vec

([
a c

b d

])

= [a b c d ]
T

). Finally,

IN means the N ×N identity matrix, whereas 0N denotes a

null column vector with dimensions N × 1.

II. LMS

Suppose that the output of the ideal system (excited by a

stationary stochastic input signal x(k)) is generated by the

following noisy affine-in-the-parameters regression model:

d(k) = [w⋆(k)]
T
x(k) + ν(k), (1)

where d(k) ∈ R denotes the reference signal, ν(k) ∈ R is a

zero-mean additive noise and

x(k) ,
[
x(k) x(k − 1) . . . x(k −N + 1)

]T
. (2)

Linear observation models similar to (1) are popular in the

literature, since they are apt to capture many practical cases

of interest [21].

The optimal set of coefficients w⋆(k) is updated according

to a first-order stochastic multivariate Markovian random walk

model:

w⋆(k + 1) = w⋆(k) + q(k), (3)

where q(k) ∈ R
N is a driving white perturbation random vec-

tor whose components are statistically independent. It is note-

worthy that first-order Markovian variations are encountered in

several realistic applications such as audio signal processing,

acoustic echo cancellation and transmission systems [22]–[25].

In addition, LMS may outperform the Recursive Least Square

(RLS) under slow-fading environments [26].

In a system identification setup, the LMS algorithm intends

to emulate w⋆(k) from the observable data {x(k), d(k)}. In

order to do that, the LMS uses the stochastic approximation

of the iterative steepest descent algorithm. By adopting the

instantaneous quadratic error as the cost function, its update

equation is derived from

w(k + 1) = w(k)− β∇w(k)

[
1

2
e2(k)

]

, (4)

where

e(k) , d(k)− y(k) = d(k)−wT (k)x(k), (5)

is an instantaneous discrepancy measure that is correlated

with current adaptive performance. The LMS modification rule

arises from (4):

w(k + 1) = w(k) + βx(k)e(k), (6)

which uses a stochastic gradient of the cost function
E
[
1
2e

2(k)
]
. Alternatively, the LMS update equation (6) can

be interpreted as an exact solver of the following deterministic
problem:

min
w(k+1)

‖w(k+1)−w(k)‖2 s.t. ep(k) =
(

1− β‖x(k)‖2
)

e(k), (7)

where ep(k) , d(k) − wT (k + 1)x(k) denotes the posterior

error. The term ‖w(k + 1) −w(k)‖2 in (7) incorporates the

minimum distortion principle, which adopts a conservative

guideline that prevents the adaptive coefficients from suffering

abrupt changes. Deterministic analyses may elucidate relevant

features of the LMS algorithm, as, for example the presence

of amplified components of high-frequency disturbances in the

error output [5]. Standard statistical assumptions, which are

usually applied on LMS stochastic models are discussed in

the next section.

III. STANDARD LMS TRACKING ANALYSIS

This section presents a concise theoretical tracking analysis

of the LMS, which helps to emphasize by contrast some import

features of the EEA. Among the reasons that motivate EEA,

one may highlight that adaptive filters exhibiting good learning

behavior in stationary environments do not necessarily present

good tracking ability when identifying time-variant plants [27].

Considering the deviation vector w̃(k) as

w̃(k) , w⋆(k)−w(k), (8)
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and using (3) and (6), the following nonhomogeneous stochas-

tic difference equation can be derived:

w̃(k+ 1) =
[
IN − βx(k)xT (k)

]
w̃(k)− βx(k)ν(k) + q(k),

(9)

where IN is the identity matrix of size N . Rigorously speak-

ing, the driving forces −βx(k)ν(k) and q(k) in (9) precludes

asymptotic convergence of the deviation vector energy to zero,

even if the algorithm operates in the stability region. The

average behavior of the deviation vector can be studied by

applying the expectation operator in (9). Some complicated

joint moments usually are not computed due to the use of

several assumptions, namely:

⋆ Independence Assumption (IA). The components of the

instantaneous input vector x(k) are statistically independent

from the adaptive weights wi(k), for i ∈ {0, . . . , N − 1}.

⋆ Noise Independence Assumption (NIA). The zero-mean

additive noise ν(k) is statistically independent from the exci-

tation data.

Remarks: Although almost ubiquitous, IA-based analyses2

are accurate only when small step sizes are utilized [14].

Although even more common, NIA is not valid in the presence

of physical nonlinear phenomena, such as operation near the

saturation region, diffusion capacitance, and intermodulation

distortion [28]. In these cases the additive noise contains

nonlinear components of the excitation data.

Using IA and NIA, the mean weight tracking behavior of

the LMS can be written as

E [w̃(k + 1)] = [IN − βRx]E [w̃(k)] , (10)

where E [·] represents the expectation operator and the term

Rx , E
[
x(k)xT (k)

]
is the input autocorrelation matrix.

Eq. (10) implies that the LMS performs an unbiased asymp-

totic estimation and that the adaptive coefficients, despite their

Brownian motion, behave on average like the weights of the

steepest descent algorithm. Moreover, under mild conditions,

it may be stated that the expected value of w(k) converges to

w⋆ (in a stationary setting) if the step size satisfies

β <
2

ρ [Rx]
, (11)

with ρ [Rx] standing for the spectral radius of Rx, i.e.,

ρ [Rx] , maxi |λi (Rx)|, where λi is the i-th eigenvalue of

Rx.

Since stable-in-the-mean adaptive filters can diverge in

practice due to an unbounded variance of the adaptive weight

vector, the first-order analysis (10) is not very useful. Alter-

natively, a second-order (or mean square) analysis may be

employed to estimate either the MSD or the MSE, defined

as

MSD(k) = ς(k) = E
[
‖w̃(k)‖2

]
, (12)

MSE(k) = ξ(k) ≈ σ2
ν + E [RxRw̃(k)] , (13)

where Rw̃(k) , E
[
w̃(k)w̃T (k)

]
is the system mismatch

covariance matrix and σ2
ν is the additive noise variance.

2In this paper, the acronym IA refers to independence assumption, where
IA denotes the analysis that relies on the independence assumption.

Approximation (13) employs the following additional assump-

tion w.r.t. the stochastic characteristic of the additive noise:

⋆ White Noise Assumption (WNA). The additive noise ν(k)
is white.

Remarks: WNA remains as an almost universal hypothesis.

Although it often is approximately true when ν(k) derives

directly from quantization issues, one cannot assure that it will

be always the case, since a colored interference (e.g., a speech

signal) may be captured by the transducers. Papers [15], [29]

are important references that do not assume whiteness of

the additive noise. Furthermore, approximation (13) helps to

elucidate the major role that Rx plays in the standard statistical

analyses of adaptive filtering algorithms. As will be clearer in

the next section, such a role is less pronounced under the EEA

paradigm.
Multiplying (9) by its transpose, one obtains

Θ(k + 1) = Θ(k)− βΘ(k)x(k)xT (k) +O [ν(k), q(k)]

−βx(k)xT (k)Θ(k) + β
2
ν
2(k)x(k)xT (k) (14)

+β
2
x(k)xT (k)Θ(k)x(k)xT (k) + q(k)qT (k),

where Θ(k) , w̃(k)w̃T (k) and O [ν(k), q(k)] contains first-

order components of ν(k) and q(k) that do not impact the

following derivations.

Obtaining a recursion for E [Θ(k)] requires us to consider

operator vec(A), using the identity

vec(XY Z) =
[

ZT ⊗X
]

vec(Y ), (15)

and the linearity of the expectation operator, Eq. (14) leads to

the following dynamic time-invariant state space model of the

deviation error covariance matrix:

y(IA,2)(k + 1) = A(IA,2)y(IA,2)(k) + d(IA,2), (16)

where the superscript (IA, 2) means that the state space linear
model is obtained by adopting IA in a mean square (i.e.,
second-order) stochastic analysis and

y
(IA,2)(k) , E [Θ(k)] , (17)

A
(IA,2)

, IN2 − βE
[

IN ⊗ x(k)xT (k)
]

−βE
[

x(k)xT (k)⊗ IN

]

(18)

+β
2
E

[

x(k)xT (k)⊗ x(k)xT (k)
]

,

d
(IA,2)

, β
2
σ
2
νRx + E

[

q(k)qT (k)
]

. (19)

Note that the transition matrix A(IA,2) depends on β and

the analysis predicts stable operation if the magnitude of its

maximum eigenvalue is less than unity [14]. Also important

is that such an eigenvalue can be efficiently computed, for a

fixed step size, using the power method [30]. Moreover, if the

algorithm does not diverge, the relevant steady-state statistical

quantities may be estimated by [16]

lim
k→∞

y(IA,2)(k) =
(

IN −A(IA,2)
)
−1

d(IA,2). (20)

The advanced analysis of this paper also aims to construct

a linear state space equation system. However, the entire

procedure, as will be described in the next section, is much

more complex, because IA is no longer employed.
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IV. EXACT EXPECTATION TRACKING ANALYSIS

Model (3) is the most commonly employed in the study of

the effects of nonstationarity in adaptive filtering systems [31].

In this section, an analysis of the LMS tracking abilities is

performed without IA for the first time. Several theoretical

analyses also assume independence between samples of the

input sequence, which can be stated as follows:

⋆ White Input Assumption (WIA). The excitation data x(k)
is a stationary sequence of independent random variables.

Remark: WIA is a very popular assumption that renders the

analysis more tractable, but can be incoherent with practical

settings [32], [33]. In this work, WIA is circumvented by

modeling x(k) as an output sequence of an M -length moving

average system B(z) applied to an unitary-variance white

signal with an even probability density function (pdf) u(k):

x(k) =
M−1∑

i=0

biu(k − i). (21)

Remark: Note that model (21) does not assume a Gaussian

x(k), which is another popular hypothesis [8], [13], [34]–[36].

Its major restriction applies to the correlation between x(k1)
and x(k2), which is supposed to be zero whenever |k1−k2| >
M .

Loosely speaking, the EEA is a systematic procedure that

recursively generates update equations for the statistical quan-

tities of interest [14]. The method constructs a linear state

space model similar to (16), which contains the necessary

information of the algorithm performance dynamics.

Our proposal does not employ WNA, because the additive

noise can present a finite memory character, since it is assumed

to be generated by an L-length moving average model:

ν(k) ,
L−1∑

i=0

aiv(k − i), (22)

where v(k) is an unitary-variance i.i.d. process with a sym-

metric distribution. Also, (22) does not assume that ν(k) is

Gaussian.

Consider the configuration (N,M,L) = (1, 2, 2), which

maintains equation lengths tractable, in the following deriva-

tions, where N is the filter length and parameters M and L are

related to the length of the filters responsible for the coloring

of x(k) and ν(k) (see (21)-(22)). Although the validity of

the equations presented next is restricted to the considered

configuration, the construction procedure is the same for more

complex settings.

A. Mean Weight Analysis

Recursion (9) allows for the writing of the following recur-

sion:

w̃0(k+1) = (1− βx2(k))w̃0(k)− βx(k)ν(k) + q0(k), (23)

where w̃i(k) (resp. qi(k)) is the i-th element of vector w̃(k)
(resp. q(k)), for i ∈ {0, 1, . . . , N − 1}. In a standard stochas-

tic approach (i.e., an IA-based one), the application of the

expectation operator in (23) together with NIA and (21) leads

to

E [w̃0(k + 1)] =
[
1− β(b20 + b21)γ2

]
E [w̃0(k)] , (24)

where γn , E [un(k)] and bi (for i ∈ {0, 1}) derives from
model (21). Eq. (24) is a simpler recursion than the one
obtained with EEA, since in the EEA case one cannot make
use of the IA-based approximation3

E [un(k − j)w̃m
i (k)] ≈

γnE [w̃m
i (k)], for j > 0. Therefore, EEA generates the

following update equation for the state variable E [w̃0(k)]:

E[w̃0(k+1)] = (1−b
2
0βγ2)E[w̃0(k)]−b

2
1βE[u

2(k−1)w̃0(k)], (25)

where one may note the emergency of a nuisance state

variable E[u2(k − 1)w̃0(k)]. This joint moment is termed

as a nuisance due to fact that it is necessary to compute

it in order to update another state variable of interest (i.e.,

E[w̃0(k)]) [37]. Since (25) is no longer a self-contained

recursion (like (24)), an additional recursion for the nuisance

term E[u2(k − 1)w̃0(k)] is necessary. This recursion may be

obtained by multiplying both sides of (23) by u2(k), before

the application of the expectation operator, which leads to:

E[u2(k)w̃0(k + 1)] = (γ2 − b20βγ4)E[w̃0(k)]

−b21βγ2E[u
2(k − 1)w̃0(k)].(26)

Equations (25) and (26) may be concisely rewritten as a

self-contained linear state space equation system:

y(1)(k + 1) = A(1)y(1)(k), (27)

where

y(1)(k) =

[
E[w̃0(k)]

E[u2(k − 1)w̃0(k)]

]

(28)

contains the state of the statistical quantities the theoretical

analysis is interested in at the k-th iteration and the time-

invariant transition matrix is

A(1) =

[
1− b20βγ2 −b21β

γ2 − b20βγ4 −b21βγ2

]

. (29)

The two eigenvalues of matrix A(1) can be written as

λ1 =
1 +

√
∆+

(
−b20 − b21

)
βγ2

2
, (30)

λ2 =
1−

√
∆+

(
−b20 − b21

)
βγ2

2
, (31)

where

∆ = β2b41γ
2
2 − 2β

(
β
(
γ2
2 − 2γ4

)
b20 + γ2

)
b21+

(
b20βγ2 − 1

)2
.

(32)

The eigenvalues of the transition matrices depend on β in

a complex way, which indicates the higher sophistication of

taking into account additional stochastic couplings. One may

state that in the considered configuration the LMS is first-

order stable in the exact expectation sense if β is chosen

so that max{|λ1|, |λ2|} ≤ 1. Note that neither the additive

noise variance σ2
ν nor σ2

q (the variance of qi(k), for i ∈
{0, 1, . . . , N − 1}) influence the stability in the mean sense.

3Random variable w̃i(k) is indeed statistically dependent from u(k),
although it is not the case with x(k), unless when x(k) is a white input
signal (i.e., M = 1 in (21)).
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B. Mean Square Analysis

Under the considered setting and circumventing the employ-
ment of the ubiquitous IA, the MSE at the k-th iteration may
be expressed as

MSE(k) = E
[

e
2(k)

]

= E
[

(w̃0(k)x(k) + ν(k))2
]

(33)

= (a2
0 + a

2
1)σ

2
v + b

2
0γ2E[w̃

2
0(k)] + b

2
1E[u

2(k − 1)w̃2
0(k)].

Thus, a theoretical EEA-based predicion of the MSE re-

quires two statistical quantities:

E[w̃2
0(k)] and E[u2(k − 1)w̃2

0(k)]. (34)

Finding a recursion for the former quantity may be done
by squaring both sides of (23) and applying the expectation
operator, resulting in

E[w̃2
0(k + 1)] = (1− 2b20γ2β + b

4
0β

2
γ4)E[w̃

2
0(k)] + σ

2
q

+(6b20β
2
b
2
1γ2 − 2b21β)E[u

2(k − 1)w̃2
0(k)]

+(a2
0 + a

2
1)b

2
0σ

2
νβ

2
γ2 + (a2

0 + a
2
1)b

2
1σ

2
vβ

2
γ2

+b
4
1β

2
E[u4(k − 1)w̃2

0(k)], (35)

where E[u4(k−1)w̃2
0(k)] is a nuisance state variable, whereas

E[u2(k−1)w̃2
0(k)] is not, because it is required for computing

the MSE (see (33)). Eq. (35) is not self-contained, since
it requires the evaluation of two state variables, namely:
E[u2(k − 1)w̃2

0(k)] and E[u4(k − 1)w̃2
0(k)]. By carrying out

similar steps to those that lead to (26), one may conclude that

E[u2(k)w̃2
0(k + 1)] = (γ2 − 2b20γ4β + b

4
0β

2
γ6)E[w̃

2
0(k)] + γ2σ

2
q

+(6b20β
2
b
2
1γ4−2b

2
1βγ2)E[u

2(k − 1)w̃2
0(k)]

+b
2
0

(

a
2
0 + a

2
1

)

σ
2
vβ

2
γ4

+b
2
1

(

a
2
0 + a

2
1

)

σ
2
vβ

2
γ
2
2

+b
4
1β

2
γ2E[u

4(k − 1)w̃2
0(k)], (36)

and

E[u4(k)w̃2
0(k + 1)] = (γ4 − 2b20γ6β + b

4
0β

2
γ8)E[w̃

2
0(k)] + γ4σ

2
q

+(6b20β
2
b
2
1γ6−2b

2
1βγ4)E[u

2(k − 1)w̃2
0(k)]

+b
2
0

(

a
2
0 + a

2
1

)

σ
2
vβ

2
γ6

+b
2
1

(

a
2
0 + a

2
1

)

σ
2
vβ

2
γ4γ2

+b
4
1β

2
γ4E[u

4(k − 1)w̃2
0(k)]. (37)

A linear time-domain state space equation may concisely

represent (35)-(37):

y(2)(k + 1) = A(2)y(2)(k) + d(2), (38)

where

A
(2) =





1−2b20γ2β+b
4
0β

2γ4 −2b21β+6b20β
2b21γ2 b41β

2

γ2−2b20γ4β+b
4
0β

2γ6 −2b21βγ2+6b20β
2b21γ4 b41β

2γ2
γ4−2b20γ6β+b

4
0β

2γ8 −2b21βγ4+6b20β
2b21γ6 b41β

2γ4



 ,

(39)

y(2)(k) =





E[w̃2
0(k)]

E[u2(k − 1)w̃2
0(k)]

E[u4(k − 1)w̃2
0(k)]



 , (40)

and

d
(2) =





σ2
q + b20(a

2
0 + a2

1)σ
2
vβ

2γ2 + b21(a
2
0 + a2

1)σ
2
vβ

2γ2
γ2σ

2
q + b20(a

2
0 + a2

1)σ
2
vβ

2γ4 + b21(a
2
0 + a2

1)σ
2
vβ

2γ2
2

γ4σ
2
q + b20(a

2
0 + a2

1)σ
2
vβ

2γ6 + b21(a
2
0 + a2

1)σ
2
vβ

2γ4γ2



 .

(41)

The model under consideration requires R = 3 internal

state variables, of which only one is a nuisance parameter.

The increase of N and M implies a substantial increment of

R, and for most configurations the majority state variables

are nuisance joint moments (e.g., for (N,M,L) = (8, 1, 1),
R = 2, 438, 009, whereas the number of non-nuisance terms

is only 29). The large amount of equations necessary for

performing EEA means that commercially available algebraic

symbolic packages are not useful. As a result, we decided

to develop our own efficient C++-based code responsible for

tackling the issue.

Vector d(2) can be decomposed into two parts:

d(2) = d
(2)
std + d(2)

q , (42)

where d(2)
q ∈ R

R only contains terms that depends on

statistic features of vector q(k). For example, by applying the

decomposition on d(2) from (41), d(2)
q can be written as:

d(2)
q =

[
σ2
q γ2σ

2
q γ4σ

2
q

]T
. (43)

Decomposition (42) is important because it can describe

asymptotic operation (assuming algorithm stability) as a sum

of two terms:

lim
k→∞

y(2)(k) =
(

IR −A(2)
)
−1

d
(2)
std

︸ ︷︷ ︸

,y
ss,std(2)

+
(

IR −A(2)
)
−1

d(2)
q

︸ ︷︷ ︸

,y
(2)
q

,

(44)

where y
(2)
q isolates the contribution of the tracking task to

steady-state statistical quantities. Obviously, such a decoupling

is also possible with IA-based analyses.

Employing EEA, the upper bound βmax on the step size

that guarantees that the state space realization is stable (i.e.,

the algorithm converges) can be written as

βmax , sup
{

β such that ρ
[

A(2)
]

< 1
}

. (45)

Remarks: Note that (45) is able to provide a more accurate

upper bound, guaranteeing stability of the LMS, than the one

provided by IA-based standard approaches, because instability

issues occur for large step sizes, when such approaches are

not precise [17]. The number of equations of even a slightly

complex configuration (i.e. (N,M,L) = (2, 2, 1)) is too large

to present in this paper because it requires 48 recursions, which

can be obtained by following the same steps described in this

section. In this case, the length of the recursions (which are

not the larger ones of the considered configuration) of the state

variables E[w̃2
0(k)] and E[w̃2

1(k)] are somewhat cumbersome:
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E[w̃2
0(k + 1)] = (1− 2b20γ2β + b40β

2γ4)E[w̃
2
0(k)]

+ (−2b21β + 6b20β
2b21γ2)E[u

2(k − 1)w̃2
0(k)]

+ (−2b1b0β + 6b30β
2b1γ2)E[u

2(k − 1)w̃1(k)w̃0(k)]

+ ϑE[u(k − 2)u(k − 1)w̃1(k)w̃0(k)] + σ2
q

+ b20a
2
0σ

2
νβ

2γ2 + b40β
2γ2E[u

2(k − 1)w̃2
1(k)]

+ 2b30β
2b1γ2E[u(k − 2)u(k − 1)w̃2

1(k)]

+ b20b
2
1β

2γ2E[u
2(k − 2)w̃2

1(k)] + b21a
2
0σ

2
νβ

2γ2

+ b41β
2
E[u4(k − 1)w̃2

0(k)]

+ 2b31β
2b0E[u

4(k − 1)w̃0(k)w̃1(k)]

+ 2b41β
2
E[u3(k − 1)u(k − 2)w̃0(k)w̃1(k)]

+ b21b
2
0β

2
E[u4(k − 1)w̃2

1(k)]

+ 2b31b0β
2
E[u3(k − 1)u(k − 2)w̃2

1(k)]

+ b41β
2
E[u2(k − 1)u2(k − 2)w̃2

1(k)], (46)

where ϑ , −2b21β + 6b20β
2b21γ2, and

E[w̃2
1(k + 1)] = E[w̃2

1(k)]− 2b0b1βE[u
2(k − 1)w̃0(k)w̃1(k)]

− 2b20βE[u
2(k − 1)w̃2

1(k)]

− 4b0b1βE[u(k − 2)u(k − 1)w̃2
1(k)]

− 2b21βE[u(k − 1)u(k − 2)w̃0(k)w̃1(k)]

− 2b21βE[u
2(k − 2)w̃2

1(k)] + σ2
q + b20a

2
0σ

2
νβ

2γ2

+ b40γ2β
2
E[u2(k − 1)w̃2

0(k)]

+ 2b30γ2β
2b1E[u(k − 1)u(k − 2)w̃2

0(k)]

+ b20b
2
1β

2
E[u4(k − 1)w̃2

0(k)]

+ 2b30b1β
2
E[u4(k − 1)w̃0(k)w̃1(k)]

+ 6b20b
2
1β

2
E[u3(k − 1)u(k − 2)w̃0(k)w̃1(k)]

+ 2b0b
3
1β

2
E[u3(k − 1)u(k − 2)w̃2

0(k)]

+ 6b0b
3
1β

2
E[u2(k − 1)u2(k − 2)w̃0(k)w̃1(k)]

+ b40β
2
E[u4(k − 1)w̃2

1(k)]

+ 4b30β
2b1E[u

3(k − 1)u(k − 2)w̃2
1(k)]

+ 6b20β
2b21E[u

2(k − 1)u2(k − 2)w̃2
1(k)]

+ 4b0b
3
1β

2
E[u(k − 1)u3(k − 2)w̃2

1(k)] + b21a
2
0σ

2
νβ

2γ2

+ b21b
2
0γ2β

2
E[u2(k − 2)w̃2

0(k)]

+ b41β
2
E[u2(k − 2)u2(k − 1)w̃2

0(k)]

+ 2b41β
2
E[u3(k − 2)u(k − 1)w̃0(k)w̃1(k)]

+ b41β
2
E[u4(k − 2)w̃2

1(k)]. (47)

In order to gain a better grasp of the computational burden of EEA, Table
I presents a comparison of some key computational metrics between the
EEA and IA methods. The C++ program was compiled using the -Ofast

optimization directive and we employed the perf performance analyzing tool
in Linux to get the results. The table describes the number of instructions,
cycles, amount of memory used (peak), equations generated and time elapsed
for two different configurations. Namely, the number of CPU cycles and
instructions is, roughly, between an order and two orders of magnitude worse
for the EEA. Memory usage is increased by a constant factor. The number of
equations required by the IA is in the single digits, and the execution time is
reduced to less than one second. Overall, in all observed measures, the EEA
method presents a significantly worse computational performance than the IA
method.

V. THEORETICAL DERIVATION OF AN OPTIMUM

VARIABLE STEP-SIZE SEQUENCE

Once a constant step size has been chosen, a trade-off between con-
vergence rate, steady-state performance and tracking ability is established.
This trade-off may be circumvented by the adoption of a time-variant step
size β(k) [2], [38], whose adjustment relies on a data-dependent control
policy [39]. This mechanism typically employs observable quantities, e.g.:

the instantaneous quadratic error, estimated correlation between adjacent error
samples or even the estimated correlation between the error and the input

TABLE I
COMPUTATIONAL PERFORMANCE COMPARISON FOR (N,M,L) = (6, 1, 2)

AND (N,M,L) = (2, 4, 6).

(N,M,L) = (6, 1, 2) (N,M,L) = (2, 4, 6)
EEA IA EEA IA

CPU Cycles 106G 23M 961G 1G

Instructions 163G 53M 1.2T 894M

Memory 583M 5M 896M 10M

Equations 28181 6 3517 3

Time 33s 0.02s 291s 0.33s

vector [40]. Paper [41] argues that the design (i.e., the parameters tuning
for better performance) of a variable step size (VSS) scheme depends on
the evaluation of its efficiency, which may be performed by comparing it
with an optimal theoretical sequence. Unfortunately, the use of IA-based
derivation of such a deterministic optimal sequence may induce divergence
in practice, because standard analyses overestimate the β upper bound that
guarantees stability [16]. Our work generalizes the EEA-based derivation of
an optimal step-size sequence (proposed in [16]) in order to address the MSD
minimization in the tracking setting. In this context, the involved optimum
step sizes do not asymptotically converge to zero. Two versions of such an
extension are described:

⋆ Version I: at each iteration, the step size β(k) is the same for all adaptive
weights;

⋆ Version II: each adaptive coefficient wi(k) is updated by the utilization
of a particular step size βi(k).

Remark: The second version has the potential to enhance the design of
proportionate adaptive algorithms, which distribute the “adaptation energy” in
order to provide faster convergence of high-magnitude coefficients [8], [42],
[43]. Since the updating process of each adaptive coefficient is independent
from the other coefficients, the adaptation gains are distributed in order to
speed up their convergence [44]. Proportionate algorithms are practical mainly
because they determine the direction update based on current filter estimates
without demanding any prior information [45].

A. Theoretical VSS Sequence - Version I

From (12), the MSD at the k-th iteration can be written as:

ς(k + 1) =

N−1
∑

i=0

E
[

w̃2
i (k)

]

=

N−1
∑

i=0

y
(2)
Ii

(k + 1), (48)

where Ii is the position of vector y(2)(k + 1) containing state variable
E
[

w̃2
i (k)

]

. Using (38), Eq. (48) can be explicitly rewritten as a function

of elements of vector y(2)(k):

ς(k + 1) =

N−1
∑

i=0

R−1
∑

j=0

a
(2)
Ii,j

(k)y
(2)
j (k) +

N−1
∑

i=0

d
(2)
Ii

(k), (49)

where a
(2)
Ii,j

(k) is the (Ii, j) element of matrix A(2)(k) and d
(2)
Ii

(k) is the

Ii-th element of vector d(2)(k). Note that these quantities are no longer
time-invariant, since they now depend on a time-variant step size β(k). Since
β(k) is an user-defined parameter, it can be adjusted in order to minimize the
posterior MSD ς(k + 1) by zeroing the following derivative:

∂ς(k + 1)

∂β(k)
=

N−1
∑

i=0

R−1
∑

j=0

∂a
(2)
Ii,j

(k)

∂β(k)
y
(2)
j (k) +

N−1
∑

i=0

∂d
(2)
Ii

(k)

β(k)
= 0, (50)

which results in a linear equation w.r.t. β(k), because both a
(2)
Ii,j

(k) and

d
(2)
Ii

(k) depend quadratically on β(k), see (39) and (41).

Remarks: The sequence {β(k)} that solves (50) is deterministic. Fur-
thermore, unlike traditional approaches, the optimization that provides the
sequence construction procedure takes into account the stochastic coupling be-
tween the input data and the adaptive coefficients. This reduces the probability
of divergence, especially in the initial phase of the learning curve [16]. The
optimal sequence is necessary to plot the optimal trajectory in the learning

plane, which provides useful guidelines for the designer of practical VSS
strategies that rely on observable data [41]. It should be emphasized that in
experiments, the deterministic sequence {β(k)}, chosen through (50), tends
to assume larger values in the initial learning phase, and provides small steps
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when the error magnitude is small, as expected. This type of behaviour avoids
the trade-off between steady-state misadjusment and convergence rate that
exists when a fixed learning factor is employed [46].

B. Theoretical VSS Sequence - Version II

It is widely recognized that the use of different step sizes for each adaptive
weight may enhance the convergence rate of the adaptive filter [8], [42], [43].
In this case, the LMS update equation is

w(k + 1) = w(k) + Γ(k)x(k)e(k), (51)

where Γ(k) ∈ R
N×N is a diagonal matrix, with the i-th element of its

main diagonal denoted as βi(k) ∈ R+ (i.e., the step size associated with
the adaptive coefficient wi(k)). Using similar steps to those presented in
Section IV, it is possible to write a state space linear time-variant equation
system:

y(2)(k + 1) = A(2,II)(k)y(2)(k) + d(2,II)(k), (52)

where A(2,II)(k) and d(2,II)(k) depend on {βi(k)} (for i ∈ {0, 1, . . . , N−
1}), and no longer on β(k). This fact is indicated by the superscript “II”. The
optimal step sizes {βi(k)} for the k-th iteration can be evaluated by zeroing
the following gradient

∇β(k)





N−1
∑

i=0

R−1
∑

j=0

a
(2,II)
Ii,j

(k)y
(2)
j (k) +

N−1
∑

i=0

d
(2,II)
Ii

(k)



 = 0N , (53)

where β(k) ,
[

β0(k) β1(k) . . . βN−1(k)
]T

.

Remark: Usually, it is assumed that the step size sequence should asymptot-
ically approach zero, in order to enhance steady-state performance by reducing
the variance of the adaptive estimator. This is not true for the tracking scenario,
which is the one considered in this paper.

VI. RESULTS

This section presents simulation results to confirm the theoretical analysis
presented earlier. In these simulations we compare the results of the proposed
analysis (EEA) and of the standard analysis (IA-based) with empirical results
derived from computer-based LMS simulations, that mirror the actual behavior
of the LMS. The analysis that better matches the empirical result presents a
more accurate prediction of the LMS performance. The empirical curves were
obtained by computing the LMS behavior for K independent Monte Carlo
trials.

In the following experiments, the elements of the initial vector w⋆(0) are
equal to unity, and the adaptive coefficient vector are initialized with zeros.
The zero-mean perturbation vector q(k) is white and Gaussian. Furthermore,
their elements are statistically independent from the remaining random vari-
ables, which is coherent with the adopted Markovian model. Unless stated
otherwise, u(k) and the noise ν(k) are zero-mean, white and Gaussian. The
input signal is generated by filtering a zero-mean unitary Gaussian signal
using the filter B(z) = 1−0.8z−1, in order to demonstrate that the advanced
analysis does not require a white input signal.

Fig. 1 depicts the evolution of the expected value E[w0(k)] along the
iterations, for a scenario where N = 5, M = 2, β = 0.075, and σ2

ν =
σ2
q = 10−2 . Since it is related to first-order statistics, one usually does not

expect significant divergence between simulated and theoretical curves, even
under IA. Fig. 1 demonstrates that this is not always the case, because the
large value of β in this configuration (relative to the stability upper bound)
emphasizes the discrepancy of empirical results w.r.t. the standard model (i.e.,
one based on IA). From Fig. 1, we can see that larger discrepancies happen
in the beginning of the simulation. At iteration 25, the IA-based simulation
expected value is around 15% higher than the EEA and empirical expected
values.

Under stable operation, the MSE curve usually monotonically decreases up
to some point, after which the algorithm reaches the steady-state operation.
For some scenarios, though, as the one presented in Fig. 2, this description
is inaccurate, but EEA can predict the correct behaviour.

As an example, consider the configuration N = 3, σ2
ν = 10−3 and

σ2
q = 10−2. Fig. 2 presents the MSE variation through the iterations for

this configuration. In this scenario, EEA predicts an initial stage in which
the algorithms experiment a performance worse than the one obtained during
initialization. Fig. 2 shows that this theoretical EEA forecast matches with
the experimental curve, since the empirical curve shows an MSE increase in
the first iterations. The standard analysis, on the other hand, is not capable of
predicting the MSE increase and instead shows a more conventional behaviour
where MSE always decreases.
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Fig. 1. Evolution of E[w0(k)], with K = 106 independent Monte Carlo
trials.
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Fig. 2. Evolution of the MSE (in dB). The empirical results were obtained
by the usage of K = 1010 independent Monte Carlo trials.

Consider a scenario with N = 3, M = 2, σ2
q = 10−2, σ2

ν = 10−3, which
illustrates the advantage of our method in the determination of an accurate step
size upper bound that avoids divergence. For each step size value, the LMS
runs for 1000 iterations. The realization is assumed to experience instability if,
in a specific realization, at least one adaptive parameter exceeds the threshold
of 10 (i.e., |wi(k)| > 10). Using K = 104 independent trials, it is possible
to estimate the divergence probability for each step size in a experimental
manner. Fig. 3 shows the result of this estimation, that is, the probability of
divergence as a function of β for this scenario, in solid line, along with the
theoretical upper bound on β advocated by both IA and EEA analyses. The
upper bound is obtained by the larger β value for which the magnitude of
the maximum eigenvalue of the transition matrix is less than unity [14]. Note
that the EEA upper bound actually avoids divergence, when it is not violated,
whereas the IA-based upper bound on β is not trustworthy, since it results in
approximately 70% of of divergence probability.

The asymptotic MSE for different values of the step size β is shown in
Fig. 4, for a case where N = 6, M = 1, σ2

ν = 10−8 and L = 5. The
colored additive noise is generated by filtering an white Gaussian noise by
the following filter

A(z) = 1− 0.8z−1 + 0.8z−2 − 0.7z−3 + 0.6z−4. (54)

As expected, Fig. 4 shows that larger step sizes lead to lower accuracy of
IA-based analysis. That is, with the IA-based analysis we are not able to
precisely predict the asymptotic MSE for β higher than 0.05.

The misadjustment, given by

M(k) ,
E[e2(k)]− σ2

ν

σ2
ν

, (55)
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Fig. 3. Divergence probability as a function of β. The empirical curve (in
blue) was obtained by the use of K = 104 independent Monte Carlo trials.

is another important criterion used to asses the filter performance. The
misadjustment is directly related to the excess MSE. In Fig. 5 we plot the
evolution of the misadjustment considering N = 3, M = 2, L = 1,
β = 0.082, σ2

ν = 10−2, and σ2
q = 10−8. In this scenario, IA does not

predict the misadjustment increase, in the first iterations which is a behavior
similar to the one seen in Fig. 2. Using EEA, on the other hand, we are capable
of correctly computing the misadjustment. Even in steady-state, the IA-based
analysis predicts that the misadjustment is 0.5 dB smaller than actually is.

Fig. 6 presents steady state MSE, but for a scenario with N = 2, σ2
ν =

10−3, and σ2
q = 10−2. The curves of both Figs. 4 and 6 are important

because they convey information that can be used as a guideline for the choice
of the best step size (i.e., one that yields the lower asymptotic MSE). Note
that in Fig. 6 the adoption of the IA-based analysis leads to the misconception
that the best step size is close to 0.14, but from the empirical results one can
see that this step size value is actually located near the instability region. The
EEA, on the other hand, predicts precisely the steady-state MSE for each
step size, allowing for the designer to choose a β that results in the optimal
MSE in practice. Additionally, the impact of the Markovian noise q(k) can
be assessed through decomposition (44), because the asymptotic MSE can be
decoupled by a sum of two easily distinguishable contributions:

lim
k→∞

MSE(k) = MSEss,std + MSEss,q , (56)

where MSEss,q (i.e., the tracking delay [47]) isolates the influence of the
perturbation q(k), whereas MSEss,std coincides with the steady-state mean
squared error of the stationary case. The decomposition results are presented
in Figs. 7 and 8. Fig. 7 depicts MSEss,q with respect to different β values.
From Fig. 7 we can see that the standard analysis is not able to accurately
model the impact of large step sizes, which is also valid for MSEss,std, as
depicted in Fig. 8. It is interesting to note that such a lag contribution is not
β-decreasing, as argued by some papers (e.g., [47]). Furthermore, notice, by
comparing Figs. 6, 7 and 8, that the contribution of MSEss,q is much more
significant to the overall MSE (Fig. 6), under the considered setting.

The ability of the EEA to determine the optimal step size even in a high
nonstationary scenario (i.e., one with a large σ2

q ) can be seen in Fig. 9, in

which the distribution of the signal u(k) is Laplacian4. This experiment was
performed with N = M = 2 and σ2

ν = 10−3. In view of the unimodality
of the steady-state MSE as a function of β (see Fig. 6), for each value of
σ2
q a ternary search was used to obtain the β that minimizes the empirical

steady-state value of the MSE. In addition, EEA indicates a proper step size
value that optimizes asymptotic performance.

As stated in Section V, the employment of a fixed step size value is often
not an optimal choice, due to the inherent trade-off between convergence
rate, asymptotic performance and instability issues. The impact of using the
deterministic variable step size (VSS) derived in Section V can be seen
in Fig. 10, which presents the evolution of a theoretical sequence β(k),
obtained using Version I of the VSS method described in Section V. The
considered setup employs N = 3, M = 2, σ2

ν = 10−4 and σ2
q = 10−4. It

should be emphasized that the standard model suggests a larger step size for

4The Laplacian distribution was chosen to demonstrate that the advanced
model does not require a Gaussian input signal
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Fig. 4. Steady-state MSE as a function of the step size. The empirical curve
was generated with K = 105 independent Monte Carlo trials.
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Fig. 5. Misadjustment evolution (in dB). The empirical results were obtained
by the usage of K = 107 independent Monte Carlo Trials.
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Fig. 6. Steady-state MSE as a function of the step size. The empirical curve
was generated with K = 106 independent Monte Carlo trials.

enhanced performance, whereas our proposal indicates a more conservative
step size magnitude, which is coherent with the discussion presented in5 [16].

5However [16] does not address the LMS tracking abilities.
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of Fig. 6.

Furthermore, the different sequences do not converge asymptotically to zero,
due to the fact that the use of infinitesimally small step sizes hampers the
tracking capabilities of the adaptive algorithm.

The effectiveness of the optimal deterministic step size sequence obtained
using both theoretical models is assessed in Fig. 11. This figure depicts the
resulting empirical MSE evolution obtained by the utilization of the referred
sequences. The employment of the sequence suggested by the standard
model tends to induce divergence in practice, especially in the first phase
of learning, which is again coherent with the results of [16]. Although the
divergence occurs with low probability (which explains the elevated number
of independent Monte Carlo trials used in the experiment in order to capture
its effects), this is due to a catastrophic failure whose avoidance is crucial in
practice. We can also see from Fig. 11 that by using the EEA sequence, MSE
reaches steady-state approximately 50 iterations before the solution that uses
the IA sequence.

Fig. 12 shows deterministic step size sequences (for both standard and
advanced models) for Version II of the VSS technique derived in Section V,
which allows for distinct step size values for each adaptive coefficient. The
figure setup has the following specifications: N = 3, M = 2, σ2

ν = 10−4,
and σ2

q = 10−4. Once again, the standard model suggests a more aggressive
step size policy, in order to maximize the convergence rate. In theory, this type
of step sizes may induce divergence, since an IA-based technique does not
infer correctly the upper bound of β that avoids instability, as demonstrated
in Fig. 3. The sequences suggested by both analyses can be compared by
the empirical evaluation of the different step size sequences. This scenario,
the same of Fig. 12, is shown in Fig. 13 which reveals that the theoretical
step size sequence engineered by an IA-based stochastic model behaves in
a far-from-optimal manner. On the other hand, with the EEA sequence the
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Fig. 9. This plot shows the optimal step size choice in function of σ2
q . A

total of 105 independent Monte Carlo trials were used to achieve the empirical
results.
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Fig. 10. Theoretical sequences β(k) obtained by EEA and IA analyses.
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Fig. 11. Evolution of the empirical MSE using theoretical step size sequences
from the standard (IA) and from the proposed (EEA) analyses, for K = 107

independent Monte Carlo trials.

MSD, shown in Fig. 13, decreases throughout the iterations, as desired. By
using the EEA sequence, MSD reaches steady-state performance around the
80th iteration mark, by contrast, when utilizing IA generated sequence, 140
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Fig. 13. Evolution of the empirical MSD (in dB) in the same scenario of
Fig. 12, using the step size sequences suggested by IA- and EEA-based
analyses. The empirical results were obtained by the usage of K = 107

independent Monte Carlo trials.

iterations are necessary to reach a similar MSD value.

VII. CONCLUSIONS

This work presents a comprehensive model of the tracking capabilities
of the LMS algorithm, using an EEA-based approach that does not assume
neither a white nor a Gaussian input signal. The model is able to accurately
predict first-order and second-order learning behaviours of the LMS, as well
as to provide proper step size upper bounds that effectively avoid stability
issues. Furthermore, it provides proper guidelines for a step size value choice
that optimizes performance, even when a “condition of slow variations” [47]
of the ideal plant is not satisfied.

Additionally, the advanced stochastic model is capable of engineering a
theoretical step size sequence that optimizes the overall LMS performance,
and even the restriction of an equal step size for each adaptive coefficient
can be removed, in a similar way to what proportionate algorithms do. The
evaluation of such sequences in order to avoid divergence issues in practice is
an important feature, since it may help the design of data-dependent variable
step size algorithms.

The avoidance of the IA is what lends EEA both its significance and
limitations. The former derives from the ability to accurately predict algorithm
performance when the step size attains large values or when the unknown plant
has a significant non-stationary characteristic. EEA main constraint derives
from its high algebraic complexity, which limits the range of scenarios the
advanced analysis can model. The authors are also investigating whether it is
possible to construct an intermediary analysis method, which assumes a weak

formulation of IA in order to require a smaller computational burden than
the one demanded by the EEA.
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